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Torsion of the testis (TT) is a recognised urological emergency whereby twisting
of the spermatic cord causes testicular ischemia. Surgical detorsion restores
perfusion, but inevitably results in testicular ischemia—reperfusion injury (tIRI). The
resultant of this is oxidative stress, inflammation, impaired steroidogenesis, and
a loss of spermatogenic function. Although single-agent antioxidants have been
evaluated by previous studies in the mitigation of tIRI, there is limited evidence that
addresses the additive or synergistic protection of co-administration of vitamins C
and E after detorsion. Mechanistic data indicate possible complementary actions
of vitamin E's (a-tocopherol) protection of membrane lipids from peroxidation
and vitamin C's (ascorbate) clearance of aqueous reactive oxygen species, which
regenerates oxidized a-tocopherol back to its active form. Together, they reduce
lipid peroxidation markers, attenuate neutrophil-mediated oxidative bursts, suppress
NF-kB-driven pro-inflammatory signalling, and may activate cytoprotective pathways
such as Nrf2/HO-1. Preclinical studies show more consistent reductions in oxidative
damage and inflammatory markers with combined treatment than with either
vitamin alone. However, most evidence derives from animal and in vitro models.
Hence, heterogeneity in dosing, timing (pre- vs. post-treatment), and outcome
measures limits direct clinical translation. This review, therefore, examines preclinical
and mechanistic studies of vitamins C and E co-administration in models of tIRI
and related ischemic injuries.

KEYWORDS

torsion of the testis, surgical detorsion, testicular ischemia reperfusion injury,
oxidative stress, inflammation and synergistic antioxidants

01 frontiersin.org


https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1660240&domain=pdf&date_stamp=2025-11-03
https://www.frontiersin.org/articles/10.3389/fnut.2025.1660240/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1660240/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1660240/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1660240/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1660240/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1660240/full
mailto:raajike30@lautech.edu.ng
mailto:hezekiahseun@gmail.com
https://doi.org/10.3389/fnut.2025.1660240
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1660240

Ogunleye et al.

1 Introduction

Torsion of the testis (TT) is one of the urological emergencies seen
in neonatal or adolescent males that requires early diagnosis and
treatment to prevent testicular loss and preserve future fertility (1). TT
is described as the twisting of the testis around its spermatic cord,
causing an interruption in the blood flow to and away from the testis
(2). Cessation of arterial blood flow leads to hypoxia and venous
congestion, which in most cases result in pain, swelling, erythema,
inflammation, loss of cremasteric reflex, and premature testicular
death (3). About one fourth of patients with TT may develop testicular
atrophy and infertility even after surgical detorsion (repair of the
twisted testis) (4). Based on an epidemiological study conducted in
Nigeria, testicular torsion contributes about 5.8% to male infertility
(5). Experimental models have noted that 720° torsion sustained for
several hours can cause impaired spermatogenesis and lead to the
irreversible loss of germ cells, particularly if detorsion is delayed
beyond 4-6 h (6-8). In essence, viability is highest within 6 h and
declines thereafter. However, it should be noted that viability is not
uniformly lost beyond 6-24 h, thereby reinforcing the need for urgent
action without the implication of futility after 6 h (9). While the
restoration of blood flow at detorsion protects the ischemic testis
against necrosis, it inevitably precipitates testicular ischemia—
reperfusion injury (tIRI) (1, 10, 11). Reperfusion triggers a burst of
reactive oxygen species (ROS), endothelial dysfunction, neutrophil
recruitment, and inflammatory signalling (e.g., NF-kB), which leads
to the disruption of endogenous cytoprotective pathways (e.g., Nrf2/
HO-1), as well as the depletion of antioxidants, including superoxide
dismutase (SOD) and catalase, hence culminating in germ-cell loss
and impaired Sertoli and Leydig cell function (12). Also, the degree of
twist and duration jointly determine injury severity (higher degrees,
such as 720°, causing more rapid ischemia), but even with technically
successful detorsion, IRI can drive atrophy and subfertility.

In the testis, there is a need to create a balance between the
reactive oxygen species (ROS) generated and antioxidant system in
order to protect it against tIRI (13). The body’s antioxidant defence
system are capable of mopping up ROS generated during metabolic
processes. However, these antioxidants are usually depleted in
pathological conditions, including tIRI (14). Upon depletion, ROS
damages the cytoarchitecture, and predisposes the cell to a cascade of
events that culminate in death. Particularly, in tIRI, redox imbalance
is a key pathological event that contributes to the positive feedback
loop of damage in the testis (15, 16). Interestingly, the body’s
antioxidant system can be preserved/upregulated via the intake of
exogenous antioxidants, which are capable of scavenging ROS directly
in order to prevent oxidative stress-induced IRI. Therefore, it is
plausible that the use of antioxidant vitamins may be used to boost the
body’s antioxidant system in order to mitigate damage from oxidative
stress-induced processes (17, 18).

Some dietary vitamins can prevent the harmful effects of ROS on
the testis via non-enzymatic pathways like vitamin C (ascorbic acid/
ascorbate) and vitamin E (a-tocopherol). These vitamins have been
used in several in-vitro experimental studies and reviews (19-21).
Vitamin C is a water-soluble antioxidant considered as ‘the forefront
defense’ against aqueous free radicals through ROS neutralization,
reduction of peroxides, repair of peroxidized cell membranes and
sequestration of iron (22). Vitamin C provides high-energy electrons
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via oxidation to neutralize free aqueous radicals causing them to
regain their stability and quench their reactivity (23). On the other
hand, vitamin E is a lipophilic antioxidant, and is widely used due to
its action against peroxidation reactions in cell membranes by
neutralizing lipid peroxyl radicals (LPOe) (24). Vitamin E breaks the
lipid peroxyl radical chain reactions by donating hydrogen atom via
oxidation and averting the peroxidation of membrane lipids (25).
Importantly, ascorbate can regenerate «-tocopherol from the
tocopheroxyl radical, hence providing a mechanistic basis for
combination therapy (20). Several studies have reported this
synergistic action between these vitamins when combined (19, 20, 26).
Also, while many studies have used vitamins C and E, both separately
and combined, to prevent chemical or toxicant-induced testicular
injury (19, 20, 27, 28), there has not been any study reporting the
combined use of these vitamins to prevent tIRI.

This is partly because the translational feasibility of these agents
depends on their pharmacokinetics and timing in emergency settings.
Oral vitamin C exhibits saturable transport with plasma levels, usually
plateauing near ~70-80 pM. Intravenous dosing has been noted to
transiently achieve much higher concentrations and has been used
peri-procedurally in IRI contexts (29). On the other hand,
a-Tocopherol absorption requires chylomicron transport, which
explains the slower rises in plasma/tissue levels, and consequently
suggests peri-operative “rapid loading” is more practical for vitamin
C than for vitamin E (30). Hence, vitamin E may be better suited for
early post-operative dosing to support membrane protection during
ongoing inflammatory/oxidative signalling. Furthermore, safety
considerations, such as high-dose IV vitamin C in renal risk, and
vitamin E-associated bleeding risk, should also be considered (31).
Additionally, because most rodent models endogenously synthesize
vitamin C, this can complicate dose translation to humans (30).

2 Torsion of the testis (TT)

Torsion of the testis (TT) requires early diagnosis and treatment
to prevent testicular loss and preserve future fertility (1). The twisting
of the testis around its spermatic cord (Figure 1) causes an interruption
in the blood supply to that testis (2). When arterial blood flow is
interrupted, hypoxia and venous congestion occur, causing scrotal
pain, swelling, erythema, inflammation and absence of cremasteric
reflex (3). One in every four thousand men under the age of twenty-
five has reportedly had TT (32). Although the greatest incidence of TT
is observed in the teenage age range, when the testes quickly grow in
size due to a sudden rise in the levels of testosterone; however, TT is
not precluded in adults or elderly individuals (33). TT has no known
cause, although there are several anatomical characteristics that
increase the risk, including a history of cryptorchidism, clapper bell
deformity, a congenital abnormality, and a spermatic cord with a
lengthy intrascrotal segment (34). Recently, excessively long-distance
cycling has been reported by Coguplugil and Bedir (35), to seldomly
result in testicular torsion in adults.

Surgical detorsion (SD) is done to restore blood flow (reperfusion)
to an ischemic testis in order to terminate ischemic pain, hypoxia and
necrosis (36). However, a number of investigations have shown that
certain metabolic processes follow the restoration of blood flow,
resulting in additional injury called ‘testicular ischemia-reperfusion
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FIGURE 1

Schematic illustration of testicular torsion. The figure illustrates the
anatomical comparison between a normal testis and a torsed
(ischemic) testis. On the left, the normal testis appears intact with a
straight spermatic cord, indicating normal blood flow. On the right,
the ischemic testis shows a twisted spermatic cord.

injury-tIRT (12, 37). It must be emphasized that tissue damage results
from both the ischemia and reperfusion phases. Most studies agree
that permanent alterations start after 6 h, or even 4 h if the spermatic
cord is highly twisted (38). Therefore, in the repair of TT, time is the
most important issue, largely determining the salvage rate and late
result (4, 38). Afolabi et al. (6) reported that a 720° torsion for 1 h
followed by reperfusion for 48 h is needed to cause tIRI. Delay in the
treatment can lead to atrophy of the ipsilateral testis and suppression
of the contralateral testis’ functions, having a variable effect on
reproduction. Therefore, delayed SD can be fatal and may lead to
impaired fertility and loss of the testicles (39).

3 Complications associated with the
surgical repair of torsion of the testis

3.1 Testicular ischemia reperfusion injury
(tIRI)

Testicular injury that results from restoring blood flow to an
ischemic testis is called testicular-ischemia-reperfusion injury (tIRI),
often referred to as testicular re-oxygenation injury (40). Cessation of
blood flow to the testis (T'T) induces hypoxia and premature testicular
loss, and while reperfusion preserves ischemic testis, it also sets off a
paradoxical chain of events leading to tIRI, as shown in Figure 2 (41,
42). During testicular ischemia, degradation of ATP to adenosine
diphosphate (ADP), then to adenosine monophosphate (AMP), to
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adenosine, and finally to hypoxanthine occurs via anaerobic glycolysis
(43, 44).

Under lower ATP conditions, the enzyme xanthine dehydrogenase
undergoes a conformational change to xanthine oxidase, which, on
reperfusion, triggers the formation and release of free radicals
(superoxide and hydrogen peroxide) during the degradation of
hypoxanthine to uric acid (45, 46). During ischemia, the membrane
ion pumps, including Na'/K*-ATPase and Ca**-ATPase, are also
disrupted, consequently leading to intracellular acidosis and activation
of the Na*/H" exchanger. As a result, there is an accumulation of H*
ions in the cytosol, which causes a fall in the intracellular pH. To
maintain normal intracellular pH, the cell forces out H* ions in
exchange for Na* ions via the Na*/H* exchanger system; likewise, Na*
ions are also swapped for Ca** ions by the plasmalemmal Na*/ Ca*
exchanger, resulting in intracellular Ca** overload (47). The secondary
reverse-mode Na'/Ca®* exchange further promotes cytosolic Ca*
overload (47, 48).

In the early reperfusion phase, the mitochondria take up the
accumulated Ca*. Ca®* overload together with ROS favours the
opening of the mitochondrial permeability transition pore (mPTP)
and outer-membrane permeabilization, thereby facilitating the release
of cytochrome ¢ and SMAC/DIABLO from mitochondria into the
cytosol to drive caspase activation and apoptosis (46, 49-53). Ca**
elevation can also activate calpains, which are a cysteine protease
family, capable of degrading cytoskeletal and organellar proteins (37).
In parallel, Ca’* overload and ROS can prime/activate inflammasome
signalling, thereby amplifying cytokine release (52).

While re-oxygenation is required to restore aerobic
metabolism and save the ischemic tissue, the major burst of ROS
occurs on reperfusion rather than during ischemia (37, 42). With
increased intracellular calcium and consumption of nicotinamide
adenine dinucleotide (NAD*), XO-dependent purine catabolism
further contributes to ROS formation due to the conversion of
hypoxanthine to uric acid (45). Key ROS generated during
reperfusion include superoxide (O,7), hydrogen peroxide (H,0,),
and the hydroxyl radical (¢OH) (49). When ROS generation
exceeds antioxidant capacity, oxidative stress ensues, which
damages proteins, lipids, and DNA, as well as activates apoptotic
machinery, which usually goes beyond the initial insult of the
ischemic phase (12, 37, 51, 54).

Generally, the primary clinical context where tIRI is indicated is
torsion followed by detorsion/surgical repair. However, testicular
transplantation can offer a parallel surgical scenario, having similar
pathophysiological implications. Barten and Newling (55) and Stanley
(56) traced the controversial history of testicular transplantation from
surgical attempts by early pioneers to controlled animal studies.
Contemporary transplantation of testicular tissue, or whole-organ
grafting, as it is called, now primarily occurs within the context of
fertility preservation and experimental revascularized graft models
rather than “glandular rejuvenation,” which marked early endeavours
by clinicians (57, 58). Although full spermatogenic recovery remains
inconsistent, autologous grafting and re-implantation of cryopreserved
immature or adult testicular tissue have reported survival of graft
fragments and re-establishment of somatic cell markers (59). In
essence, testicular transplantation is feasible but constrained by
ischemic intervals during retrieval, cold storage or revascularization,
as well as host-graft interactions (58, 60).
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FIGURE 2

Mechanisms of testicular ischemia reperfusion injury (tIRI). During testicular torsion, arterial occlusion leads to ischemia characterized by ATP
degradation and depletion. This metabolic stress drives conversion of ATP to hypoxanthine. Under hypoxic conditions, xanthine dehydrogenase is
converted to xanthine oxidase. On reperfusion, the re-introduction of oxygen allows xanthine oxidase to metabolize hypoxanthine to uric acid,
generating reactive oxygen species (ROS) in the process. Simultaneously, ischemia impairs ionic homeostasis, causing intracellular Ca2+ overload and
NADPH/NAD+ imbalance, further amplifying ROS generation. Following surgical detorsion, reperfusion salvages ischemic tissue but also triggers a
surge in ROS that overwhelms endogenous antioxidants. This initiates lipid peroxidation, mitochondrial dysfunction, and activation of inflammatory
and apoptotic pathways. If the ischemic duration is prolonged, necrosis ensues and testicular salvage becomes unlikely. Together, these processes
define tIRI as the paradoxical injury caused by restoring blood flow after torsion.

During transplantation, the grafted testicular tissue is inevitably
subjected to a period of ischemia (either cold preservation or loss of
perfusion), followed by reperfusion once vascular connections are
restored. This process can provoke oxidative stress, inflammatory
responses, apoptosis, and impairment of spermatogenesis analogous
to that of post-detorsion I/R in torsion (61, 62).

3.2 Oxidative stress and antioxidant
defense

Oxidative stress is a condition of imbalance between the
production of free radicals and the biological system’s ability to quickly
detoxify reactive mediators or quickly repair the damage caused (63,
64). Oxidative stress can affect every component of the testes,
including the germ cells, spermatozoa, Sertoli cells, Leydig cells, and
seminiferous tubules (65). This imbalance is a central pathogenic
mechanism in testicular ischemia-reperfusion injury (tIRI). Major
sources of ROS during reperfusion include mitochondrial electron
transport chain dysfunction, xanthine oxidase activation, NADPH
oxidase, and uncoupled nitric oxide synthase (63-65). Also, the main
species implicated are superoxide (O,e~), hydrogen peroxide (H,O,),
hydroxyl radical (¢OH), and peroxynitrite (ONOO") (66).

Free radicals are very unstable and reactive with other compounds
due to unpaired electrons in their outermost shell. Reactive oxygen
species, or reactive oxygen molecules, are created when an oxygen
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molecule (O2) experiences a four-electron reduction upon reperfusion
(66). Because of their archly reactive character, ROS can readily
combine with different molecules, directly causing oxidation that can
result in structural and functional alterations and cell damage (67). At
the molecular level, these oxidants attack lipids, proteins, and nucleic
acids, producing lipid peroxidation products such as malondialdehyde
(MDA) and 4-hydroxynonenal, oxidized DNA bases like 8-OHdG,
and protein carbonyl derivatives (67). These by-products are usually
used as biomarkers of oxidative damage in experimental torsion-
detorsion models. Elevated MDA and depleted reduced glutathione
(GSH) have consistently been reported in ischemic testes (68, 69).

Lipid peroxidation, usually assessed by MDA, is a chain reaction
in which unsaturated fatty acids (components of cell membranes) are
oxidized to produce free radicals such as hydroxyl radical (HO-),
hydroperoxyl radical (HOO-), lipid peroxyl radical (LOO-), and
alkoxyl radicals (LO-). The peroxidation chain reaction will propagate
once it has started (70). The LPO radicals destroy testicular
macromolecules and induce cytotoxic, genotoxic and inflammatory
reactions (71). Lipid peroxidation is a consequential factor that causes
localized damage to seminiferous tubules and alters the activity of
membrane-bound steroidogenic enzymes and receptors (72). Among
the agents that protect the testes from lipid peroxidation, vitamin E
(lipid soluble) is considered the most important (73). The abilities of
this vitamin to scavenge lipid peroxyl radicals and so stop the
propagation of free radical chain reactions have drawn attention to it
as an exogenous antioxidant (74).
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The biological relevance of oxidative stress in TT is supported by
experimental interventions. For instance, GSH supplementation
significantly improved post-thaw sperm function and reduced
oxidative stress markers in avian reproductive models (75). This
demonstrates that restoring intracellular redox buffering is essential
for sperm preservation and, by extension, relevant to tIRI (65).

3.3 Activation of inflammatory pathways

Reperfusion causes many changes in endothelial cells such as
increased membrane permeability and recruitment of inflammatory
cells (48). Inflammation is a critical contributor to tIRI and often acts
synergistically with oxidative stress. At the molecular level, ROS and
Ca® overload trigger redox-sensitive transcription factors, particularly
nuclear factor kappa B (NF-kB). NF-kB activation induces the
expression of pro-inflammatory cytokines, including tumour necrosis
factor-o (TNF-a), interleukin-1 (IL-1f), and interleukin-6 (IL-6), as
well as downstream inflammatory mediators such as inducible nitric
oxide synthase (iNOS) (76). These cytokines perpetuate germ cell
apoptosis, impair Leydig cell steroidogenesis, and compromise the
blood-testis
Complement system activating products (anaphylatoxins-C5a and

barrier, thereby exacerbating subfertility risk.
membrane attack complex C5b-9) further induce inflammatory effects
such as neutrophil chemotaxis, protease release, and O, radical
production, all of which additionally increase the response of
neutrophil chemotaxis (77, 78).

The release of inflammatory cytokines and inflammatory genes
(STAT3, CCR1, RAC1, MMP9, CCR10, CSF3R and HTRA1) has been
noted to be stimulated by myeloperoxidase (MPO) and nuclear factor
kappa B (NF-kB), respectively to initiate inflammatory reactions
(79, 80).

Experimental models confirm the relevance of inflammation
to testicular injury. The pharmacological inhibition of NF-kB,
genetic ablation of MPO, or cytokine blockade each attenuates
histological damage and reduces apoptosis after torsion-detorsion
(79). In support of this, natural antioxidants with anti-
inflammatory activity, such as hydro-alcoholic extract of Quercus
brantii, were shown to downregulate NF-xB activation and lower
oxidative/inflammatory markers in male reproductive tissues
exposed to lead toxicity (80). Despite consistent findings from
animal models, meta-analyses or systematic syntheses specific to
TT are lacking. Most available data are experimental and
heterogeneous in design, that is, species, torsion duration, and
pharmacological interventions, all of which limit quantitative
comparison. Nonetheless, the convergence of evidence supports
inflammation as a mechanistic driver of tIRI alongside oxidative
stress, reinforcing the rationale for combination antioxidant
therapies that also possess anti-inflammatory potential.

4 Therapeutic strategy to prevent
testicular ischemia reperfusion injury
(tIRI): role of vitamins C and E

Non-enzymatic antioxidants are also known as exogenous
antioxidants. These antioxidants have the capacity to scavenge ROS
produced in the testicular tissues to prevent peroxidation of plasma
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membrane lipids (17, 81). They are usually consumed with food and
include vitamins C and E (20).

4.1 Vitamin C (L-ascorbic acid) and its role
in protecting testicular function

Vitamin C (L-ascorbic acid) is a hydrophilic, non-enzymatic
antioxidant that donates electrons to neutralize aqueous reactive
oxygen species (ROS) and repair oxidized biomolecules, thereby
limiting chain-propagating reactions in ischemia-reperfusion injury
(IRI) (22). Its chemical formula is C;HgOg (Figure 3A), which is made
up of six carbons, eight hydrogen atoms, and six oxygen atoms (82).
This structure facilitates its role as an electron donor, enabling it to
neutralize a wide spectrum of reactive oxygen species (ROS),
including singlet oxygen, hydrogen peroxide (H,O,), and the highly
damaging hydroxyl radical (22, 83). In addition to direct radical
scavenging, ascorbate can reduce lipid-phase radicals indirectly by
regenerating a-tocopherol (vitamin E) from its tocopheroxyl radical
at the aqueous-lipid interface. Its synergism with vitamin E is well-
described and supports membrane integrity during oxidative bursts
(82-85). This “front-line” role has been demonstrated across
reproductive models; for example, vitamin C lowered oxidative
markers and improved tissue integrity in cyclophosphamide-injured
ovaries in mice, consistent with its capacity to sequester redox-active
metals and reduce peroxides (rather than “repair” membranes
directly) (86, 87).

Mechanistically, ascorbate is oxidized to semidehydroascorbate
and dehydroascorbate (DHA) during radical scavenging. DHA is then
recycled back to ascorbate by glutathione-dependent dehydroascorbate
reductase (using GSH as the electron donor) and by NAD(P)
H-dependent semidehydroascorbate reductases. These recycling steps
preserve intracellular ascorbate pools and sustain o-tocopherol
regeneration during reperfusion (88-90). Ascorbate also attenuates
oxidative cascades that follow xanthine oxidase (XO)-driven
superoxide generation after ischemia, primarily by lowering the
overall oxidant burden and preserving endogenous antioxidant
enzyme activities. In essence, vitamin C more accurately modulates
the redox milieu than directly controlling XO conformational
switching (53, 82-85, 91, 92).

In the testis, vitamin C is abundant in the seminal plasma where
it helps maintain sperm DNA integrity and limits lipid peroxidation
of the polyunsaturated fatty acid-rich sperm membrane (93-95).
Several animal studies report improved spermatogenic indices and
steroidogenic markers after ascorbate administration in oxidative
injury models, though controlled human data specific to testicular
torsion (TT) and tIRI remain absent (96-100). Complementary
findings from cryobiology further illustrate ascorbate-like antioxidant
effects in reproductive cells; for example, k-carrageenan and fullerene
(C60HyFn) additives reduced post-thaw oxidative damage in buffalo
bull semen, highlighting that bolstering extracellular antioxidant
capacity can preserve sperm function under oxidative stress (101).
While not a TT model, the directionality is consistent with the
proposed mechanism.

Rodent torsion-detorsion studies indicate that antioxidants
administered before or at detorsion can curb subsequent tIRI by
reducing malondialdehyde (MDA), restoring superoxide dismutase
(GPx)

(SOD)/catalase/glutathione ~ peroxidase activities, and
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Chemical structure of Vitamin C (A) and Vitamin E (B). (A) Vitamin C (L-Ascorbic Acid): The structure shows a six-membered lactone ring with multiple
hydroxyl (-OH) groups at positions 2, 3, 5, and 6, and a characteristic enediol group (C=C with adjacent OH groups) between carbons 2 and 3. This water-
soluble vitamin contains a primary alcohol group (-CH2OH) at carbon 6 and exhibits strong reducing properties due to its enediol moiety. The planar ring
structure with its conjugated system of double bonds and hydroxyl groups enables vitamin C to readily donate electrons, making it a powerful antioxidant
capable of neutralizing reactive oxygen species and regenerating other antioxidants like vitamin E. Image reproduced from the Public domain, via
Wikimedia Commons. (B) Vitamin E (a-Tocopherol): The structure displays a complex fat-soluble molecule consisting of a chromanol head group
connected to a long phytyl side chain. The chromanol ring system contains a phenolic hydroxyl group that serves as the active antioxidant site, while three
methyl substituents on the ring enhance its stability. The 16-carbon saturated phytyl tail, with its characteristic methyl branches at carbons 4, 8, and 12,
anchors the molecule within cell membranes and determines its lipophilic character. This structural arrangement allows vitamin E to protect membrane
lipids from peroxidation by breaking free radical chain reactions. Image reproduced from the Public domain, via Wikimedia Commons.

improving histology (82-85, 96-100). Vitamin C has been used alone
and sometimes alongside other agents in these models. Typical doses
cluster around 50-200 mg/kg i.p./i.v. given 15-60 min pre-detorsion,
with some studies extending dosing into the early reperfusion window
(102-104). Extrapolation to humans requires caution due to species
differences in ascorbate transporters (SVCT1/2), redox enzyme
expression, and the unique kinetic constraints of emergency TT
care (11).

Human pharmacokinetics show that oral vitamin C displays tight
control with saturable absorption. Usually, steady-state plasma
concentrations plateau at ~70-80 uM at ~200-400 mg/day, whereas
higher oral doses chiefly increase urinary excretion (87, 92). In
contrast, intravenous vitamin C transiently achieves millimolar
plasma levels that may be relevant for short, high-oxidant states like
reperfusion. If vitamin C is ever tested peri-detorsion, an IV bolus at
induction and a second dose shortly after reperfusion would be a
rational design, paired with rigorous safety monitoring [this is a
proposal, and not the current standard of care; (87, 92, 104)].

At typical dietary intakes, vitamin C is safe. For adults, the
Tolerable Upper Intake Level (UL) is 2,000 mg/day orally, above
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which gastrointestinal upset and osmotic diarrhea occur (87).
High-dose vitamin C can increase urinary oxalate, and individuals
with a history of calcium oxalate nephrolithiasis or renal
impairment should exercise caution for usage. G6PD deficiency is
also a concern for very high-dose IV regimens due to rare
hemolysis reports. Hence, this must be excluded in any
interventional study. Vitamin C may also affect certain lab
measurements (e.g., point-of-care glucose). However, none of
these issues preclude research in TT/tIRI, but they highlight the
need for defined dosing windows, monitoring of renal function/
urinalysis, and exclusion criteria (87, 92, 104).

The claims of synergy with vitamin E are mechanistically sound
(ascorbate regenerates a-tocopherol) and supported by in vitro and
in vivo oxidative-injury models apart from TT (91). However, head-
to-head TT data comparing vitamin C alone vs. C + E vs. other
combinations (e.g., N-acetylcysteine, melatonin, quercetin, CoQ10)
are not available. The broader torsion literature shows benefit from
several antioxidants (11), but potency, timing, and tissue distribution
differ, which are key variables that a future clinical trial would need to
harmonize (91).

frontiersin.org


https://doi.org/10.3389/fnut.2025.1660240
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://commons.wikimedia.org/wiki/File:L-Ascorbic_acid.svg
https://commons.wikimedia.org/wiki/File:Alpha-Tocopherol_Structural_Formulae_V.1.svg

Ogunleye et al.

4.2 Vitamin E (a-tocopherol) and its role in
protecting testicular function

Vitamin E, also known as a-tocopherol, is an antioxidant and
lipid-soluble vitamin having the chemical formula C,H;,O,
(Figure 3B). Generally, vitamin E refers to a family of eight fat-soluble
molecules (four tocopherols and four tocotrienols), of which
a-tocopherol is the most biologically active form in humans due to
preferential hepatic binding to a-tocopherol transfer protein (105).
Like other vitamins, vitamin E may be obtained from food, such as
nuts, seeds, and vegetable oils, but it can also be taken as a
supplement (106).

Vitamin E protects the plasma membrane by scavenging lipid
peroxyl radicals and stopping chain reactions of lipid peroxidation
in the lipid layers of the membranes (79). Its lipophilic structure
allows it to insert itself into polyunsaturated fatty acid (PUFA)-rich
membranes where it acts as a chain-breaking antioxidant,
intercepting lipid peroxyl radicals (LOOe») and donating a hydrogen
atom to terminate lipid peroxidation (107, 108). This prevents the
propagation of membrane damage that is characteristic of
reperfusion injury, particularly relevant in the PUFA-dense
membranes of spermatozoa and germ cells (109). When a-tocopherol
donates a hydrogen atom, it becomes the tocopheroxyl radical.
Unlike many other antioxidants, this radical is relatively stable and
can be recycled back to its active form by vitamin C or other
reducing agents (110, 111). The continuous maintenance of the
steady-state or low concentration of vitamin E radicals via vitamin
E recycling prevents the loss or consumption of vitamin E (111).
Therefore, a more significant therapeutic effect of a-tocopherol
probably requires co-antioxidants such as vitamin C to have a
beneficial effect.

In addition to preventing lipid peroxidation, vitamin E can also
influence the redox-sensitive enzymes and transcription factors in the
body. In experimental systems, a-tocopherol downregulates NADPH
oxidase activity and reduces XO-mediated ROS formation indirectly
by maintaining redox balance, thereby limiting the conversion of
xanthine dehydrogenase to xanthine oxidase (80, 112, 113). This effect
contributes to lower ROS burden during reperfusion and protects
against apoptosis. Vitamin E has also been reported to stabilize
mitochondrial membranes, limit cytochrome c release, and modulate
Bcl-2/Bax signaling, thereby directly influencing the apoptotic
threshold (80).

Although vitamin E is highly effective against lipid peroxidation,
it is less potent in scavenging aqueous ROS than vitamin C or
glutathione. This makes it particularly valuable in membrane-rich
tissues like the testis, but less comprehensive as a stand-alone therapy.
Other antioxidants such as melatonin, quercetin, and N-acetylcysteine
have also demonstrated benefit in tIRI by targeting multiple redox and
inflammatory pathways (114-116). Thus, vitamin E should
be considered part of a broader antioxidant strategy rather than a
single “magic bullet”

Animal studies commonly use 100-200 mg/kg doses of vitamin E
administered intraperitoneally or orally before detorsion (117, 118).
Human physiology, however, differs significantly as oral absorption of
vitamin E depends on chylomicron assembly and bile salts, making
absorption variable and slower than vitamin C. On average, plasma
a-tocopherol concentrations plateau at ~30 pM with typical dietary
intakes, while pharmacologic supplementation (>400 IU/day) can
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raise levels modestly, but this requires chronic dosing (119). High-
dose vitamin E supplementation in humans has also raised safety
concerns. While generally well tolerated, doses above 800 IU/day have
been associated with increased risk of hemorrhagic stroke and
impaired platelet aggregation due to vitamin E’s anti-vitamin K
activity (120). Meta-analyses also suggest possible associations with
increased all-cause mortality at very high doses, though causality
remains debated. Thus, perioperative or acute IV regimens for TT/
tIRI have not been established, and translation from animal models to
clinical settings must carefully balance efficacy with safety.

While vitamin E does offer a unique protection against membrane
lipid peroxidation and apoptotic signaling in tIRI, its slower
pharmacokinetics and potential safety risks limit its use as a stand-
alone acute therapy in TT. The most rational translational approach is
co-administration with vitamin C, where vitamin C supports rapid
aqueous radical scavenging and regenerates a-tocopherol, while
vitamin E stabilizes sperm and germ cell membranes during oxidative
reperfusion stress (Figure 4).

4.3 Previous reports on the synergistic
effect of vitamins C and E when
co-administered

The synergistic potential of vitamins C and E has been a focus of
scientific inquiry for decades and has spanned diverse pathological
conditions characterized by oxidative stress (OS), including ischemia-
reperfusion injury (IRI) in multiple organs, toxicant-induced
testicular damage, and male infertility. Both vitamins have been
investigated individually and in combination, with a substantial body
of evidence confirming that their co-administration can result in
enhanced antioxidant capacity beyond what either can achieve alone
(114, 121). This synergy derives from their complementary
mechanisms of action, which involve vitamin E neutralizing lipid
peroxyl radicals within membranes, while vitamin C recycles oxidized
tocopherol back to its reduced, active form (91, 122, 123). Through
this redox recycling, vitamin C prevents the accumulation of
a-tocopheroxyl radicals and thereby sustains vitamin E’s chain-
breaking capacity (115). The “vitamin E-sparing” mechanism is now
well-characterized and forms the biochemical basis of their
cooperative activity (124, 125).

Experimental work has consistently shown that the combined
administration of vitamins C and E efficiently prevents lipid
peroxidation (LPO), reduces malondialdehyde (MDA) accumulation,
and restores glutathione homeostasis in tissues subjected to IRI (114,
124). In renal IRI, the combined supplementation of these two
vitamins improved functional recovery and preserved structural
integrity, which outerformed monotherapies (114). Similarly, Layachi
and Kechrid (126) reported significant improvements in hepatic
glutathione levels with C + E supplementation on cadmium induced
oxidative liver injury, showcasing their cooperative ability to restore
endogenous antioxidant defenses. These findings are consistent with
broader reperfusion models, even in the intestine and kidney, where
the C + E pairing attenuated tissue necrosis, improved microvascular
perfusion, and suppressed oxidative biomarkers more effectively than
either vitamin alone (114, 127, 128).

In reproductive toxicology, several studies have demonstrated that
vitamins C and E indeed act synergistically to neutralize testicular
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toxicity induced by heavy metals and pharmaceuticals.
Co-administration of these two vitamins mitigated mercury-induced
testicular toxicity by chelating transition metals and suppressing
ROS-mediated oxidative damage (27, 35). Similar protective outcomes
were observed in lead-exposed rats, where C + E supplementation
improved luminal spermatozoa count, seminiferous epithelium
integrity, reproductive hormone levels, and overall semen quality (19).
The positive impact observed was attributed to vitamin C’s ability to
chelate lead, thereby preventing displacement of zinc in zinc-
dependent processes, and to vitamin E’s recycling through vitamin C,
which in turn helped replenish glutathione and reinforce antioxidant
capacity. Likewise, combined supplementation lowered MDA levels
and inhibited LPO in vancomycin-induced testicular injury (28),
while in models of drug-induced testicular OS, the pairing reduced
inflammatory markers, improved serum oxidative balance, and
strengthened the blood-testis barrier, underscoring its therapeutic
promise in male infertility (129).

Directly within the context of testicular torsion-detorsion,
the mechanistic rationale for C + E synergy is particularly
compelling. Detorsion induces a surge in ROS that damages
lipids, proteins, and DNA, disrupts spermatogenesis, and
impairs steroidogenesis. While animal studies have frequently
demonstrated the protective effects of either vitamin
individually, that is, vitamin E reducing LPO and preserving
seminiferous structure (130) and vitamin C attenuating
oxidative and histological injury (131, 132), the evidence for
co-administration of C and E together in torsion-detorsion
models is relatively sparse. Nonetheless, extrapolation from
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other reperfusion-prone tissues and from male infertility trials
suggests that the dual regimen could be particularly effective. In
clinical studies on male infertility, daily oral supplementation
with vitamin C and vitamin E significantly reduced sperm DNA
134). This
outcome is established in in vitro studies where semen

fragmentation index compared to placebo (133,

supplementation with both vitamins reduced ROS-induced
DNA damage (135). These data support the hypothesis that their
combined use during testicular reperfusion could protect both
germ cells and the integrity of testicular steroidogenesis,
consistent with prior toxicological and infertility findings (136).

Interestingly, not all studies have been uniformly supportive.
Afolabi et al. (137), for instance, observed no reduction in MDA levels
in a model of cryptorchidism despite C + E supplementation. They
hypothesized that an insufficient concentration of vitamin C relative
to vitamin E may have limited the synergistic recycling process,
underscoring the importance of dosing ratios in harnessing their
combined benefits. That is, while the potential for synergy is strong,
optimal timing, dosage, and ratios are essential for realizing maximal
benefits (29, 138).

Beyond the testes, the combined antioxidant network of C + E
has demonstrated benefits in cardiovascular and visceral IRIL. In
myocardial  reperfusion, for example, peri-procedural
administration of both vitamins reduced lipid peroxidation indices
and troponin release, with the PREVEC trial explicitly designed on
the rationale that vitamin C recycles vitamin E during reperfusion
bursts (138, 139). These findings are directly translatable to surgical

detorsion, where the timing of reperfusion is predictable and could
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allow pre-operative administration of the two vitamins. Similarly,
intestinal IRI studies have confirmed that hydrocortisone +
vitamins C and E outperformed either therapy alone (114), pointing
to a general principle: antioxidant synergy is often most effective
when aqueous- and lipid-phase antioxidants are paired at the
moment of reperfusion.

In essence, the synergy between vitamins C and E is established
across various pathological models. This synergistic effect is usually
denoted by significant reductions in OS, preservation of tissue
structure, and improvement in functional outcomes. In toxicological
and infertility contexts, their combination has been associated with
improved spermatogenesis, semen parameters, and hormonal
balance. While
co-administration do remain relatively limited, there is a strong

direct torsion-detorsion studies with C+E

mechanistic plausibility and proven efficacy already in closely related
testicular and systemic IRI models, as well as an established role in
male reproductive health. This makes a compelling case for their
clinical evaluation in the surgical repair of testicular torsion. The
literature suggests that when administered in correct doses and
ratios, vitamins C and E can synergistically target ROS, prevent lipid
peroxidation, strengthen testicular defense systems, with consequent
preservation of fertility potential in the aftermath of ischemia-
reperfusion injury.

5 Conclusion

Testicular torsion remains a clinical emergency in which surgical
detorsion is life-saving for the gonad but paradoxically causes
reperfusion injury. Oxidative stress and inflammation are central
mediators of this injury, which is denoted by germ cell apoptosis,
Leydig/Sertoli dysfunction, and subsequent subfertility. Vitamins C
and E can mitigate this OS-induced injury, and they also occupy
complementary antioxidant niches, meaning they can act
synergistically to better mitigate OS than when used singly. Evidence
from experimental torsion—detorsion models, reproductive toxicology,
and ischemia-reperfusion studies in other organs shows this
synergistic effect, and while clinical translation has not yet been
realized, this review highlights that rapid-acting vitamin C in
combination with vitamin E (membrane-targeted) is a biologically
plausible adjunct to surgical detorsion. We propose that well-designed
trials are needed to determine optimal dosing, timing, and long-term
fertility outcomes.

6 Limitations of the review

A glaring limitation of this review is the fact that the majority of
the evidence used is from animal or in vitro models. Studies on human
testicular torsion using vitamin C and/or E are absent, hence limiting
direct clinical extrapolation. Also, since experimental protocols
usually vary widely in torsion angle, duration, route, and timing of
antioxidant administration, this can make cross-study comparisons
difficult. Another important limitation is that most rodents
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endogenously synthesize vitamin C, unlike humans, which can
complicate dose translation. In addition, only a few studies account
for the different antioxidant pharmacokinetics, which differ
substantially between oral and intravenous preparations.
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