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Torsion of the testis (TT) is a recognised urological emergency whereby twisting 
of the spermatic cord causes testicular ischemia. Surgical detorsion restores 
perfusion, but inevitably results in testicular ischemia–reperfusion injury (tIRI). The 
resultant of this is oxidative stress, inflammation, impaired steroidogenesis, and 
a loss of spermatogenic function. Although single-agent antioxidants have been 
evaluated by previous studies in the mitigation of tIRI, there is limited evidence that 
addresses the additive or synergistic protection of co-administration of vitamins C 
and E after detorsion. Mechanistic data indicate possible complementary actions 
of vitamin E’s (α-tocopherol) protection of membrane lipids from peroxidation 
and vitamin C’s (ascorbate) clearance of aqueous reactive oxygen species, which 
regenerates oxidized α-tocopherol back to its active form. Together, they reduce 
lipid peroxidation markers, attenuate neutrophil-mediated oxidative bursts, suppress 
NF-κB-driven pro-inflammatory signalling, and may activate cytoprotective pathways 
such as Nrf2/HO-1. Preclinical studies show more consistent reductions in oxidative 
damage and inflammatory markers with combined treatment than with either 
vitamin alone. However, most evidence derives from animal and in vitro models. 
Hence, heterogeneity in dosing, timing (pre- vs. post-treatment), and outcome 
measures limits direct clinical translation. This review, therefore, examines preclinical 
and mechanistic studies of vitamins C and E co-administration in models of tIRI 
and related ischemic injuries.
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1 Introduction

Torsion of the testis (TT) is one of the urological emergencies seen 
in neonatal or adolescent males that requires early diagnosis and 
treatment to prevent testicular loss and preserve future fertility (1). TT 
is described as the twisting of the testis around its spermatic cord, 
causing an interruption in the blood flow to and away from the testis 
(2). Cessation of arterial blood flow leads to hypoxia and venous 
congestion, which in most cases result in pain, swelling, erythema, 
inflammation, loss of cremasteric reflex, and premature testicular 
death (3). About one fourth of patients with TT may develop testicular 
atrophy and infertility even after surgical detorsion (repair of the 
twisted testis) (4). Based on an epidemiological study conducted in 
Nigeria, testicular torsion contributes about 5.8% to male infertility 
(5). Experimental models have noted that 720° torsion sustained for 
several hours can cause impaired spermatogenesis and lead to the 
irreversible loss of germ cells, particularly if detorsion is delayed 
beyond 4–6 h (6–8). In essence, viability is highest within 6 h and 
declines thereafter. However, it should be noted that viability is not 
uniformly lost beyond 6–24 h, thereby reinforcing the need for urgent 
action without the implication of futility after 6 h (9). While the 
restoration of blood flow at detorsion protects the ischemic testis 
against necrosis, it inevitably precipitates testicular ischemia–
reperfusion injury (tIRI) (1, 10, 11). Reperfusion triggers a burst of 
reactive oxygen species (ROS), endothelial dysfunction, neutrophil 
recruitment, and inflammatory signalling (e.g., NF-κB), which leads 
to the disruption of endogenous cytoprotective pathways (e.g., Nrf2/
HO-1), as well as the depletion of antioxidants, including superoxide 
dismutase (SOD) and catalase, hence culminating in germ-cell loss 
and impaired Sertoli and Leydig cell function (12). Also, the degree of 
twist and duration jointly determine injury severity (higher degrees, 
such as 720°, causing more rapid ischemia), but even with technically 
successful detorsion, IRI can drive atrophy and subfertility.

In the testis, there is a need to create a balance between the 
reactive oxygen species (ROS) generated and antioxidant system in 
order to protect it against tIRI (13). The body’s antioxidant defence 
system are capable of mopping up ROS generated during metabolic 
processes. However, these antioxidants are usually depleted in 
pathological conditions, including tIRI (14). Upon depletion, ROS 
damages the cytoarchitecture, and predisposes the cell to a cascade of 
events that culminate in death. Particularly, in tIRI, redox imbalance 
is a key pathological event that contributes to the positive feedback 
loop of damage in the testis (15, 16). Interestingly, the body’s 
antioxidant system can be preserved/upregulated via the intake of 
exogenous antioxidants, which are capable of scavenging ROS directly 
in order to prevent oxidative stress-induced IRI. Therefore, it is 
plausible that the use of antioxidant vitamins may be used to boost the 
body’s antioxidant system in order to mitigate damage from oxidative 
stress-induced processes (17, 18).

Some dietary vitamins can prevent the harmful effects of ROS on 
the testis via non-enzymatic pathways like vitamin C (ascorbic acid/
ascorbate) and vitamin E (α-tocopherol). These vitamins have been 
used in several in-vitro experimental studies and reviews (19–21). 
Vitamin C is a water-soluble antioxidant considered as ‘the forefront 
defense’ against aqueous free radicals through ROS neutralization, 
reduction of peroxides, repair of peroxidized cell membranes and 
sequestration of iron (22). Vitamin C provides high-energy electrons 

via oxidation to neutralize free aqueous radicals causing them to 
regain their stability and quench their reactivity (23). On the other 
hand, vitamin E is a lipophilic antioxidant, and is widely used due to 
its action against peroxidation reactions in cell membranes by 
neutralizing lipid peroxyl radicals (LPO•) (24). Vitamin E breaks the 
lipid peroxyl radical chain reactions by donating hydrogen atom via 
oxidation and averting the peroxidation of membrane lipids (25). 
Importantly, ascorbate can regenerate α-tocopherol from the 
tocopheroxyl radical, hence providing a mechanistic basis for 
combination therapy (20). Several studies have reported this 
synergistic action between these vitamins when combined (19, 20, 26). 
Also, while many studies have used vitamins C and E, both separately 
and combined, to prevent chemical or toxicant-induced testicular 
injury (19, 20, 27, 28), there has not been any study reporting the 
combined use of these vitamins to prevent tIRI.

This is partly because the translational feasibility of these agents 
depends on their pharmacokinetics and timing in emergency settings. 
Oral vitamin C exhibits saturable transport with plasma levels, usually 
plateauing near ~70–80 μM. Intravenous dosing has been noted to 
transiently achieve much higher concentrations and has been used 
peri-procedurally in IRI contexts (29). On the other hand, 
α-Tocopherol absorption requires chylomicron transport, which 
explains the slower rises in plasma/tissue levels, and consequently 
suggests peri-operative “rapid loading” is more practical for vitamin 
C than for vitamin E (30). Hence, vitamin E may be better suited for 
early post-operative dosing to support membrane protection during 
ongoing inflammatory/oxidative signalling. Furthermore, safety 
considerations, such as high-dose IV vitamin C in renal risk, and 
vitamin E–associated bleeding risk, should also be considered (31). 
Additionally, because most rodent models endogenously synthesize 
vitamin C, this can complicate dose translation to humans (30).

2 Torsion of the testis (TT)

Torsion of the testis (TT) requires early diagnosis and treatment 
to prevent testicular loss and preserve future fertility (1). The twisting 
of the testis around its spermatic cord (Figure 1) causes an interruption 
in the blood supply to that testis (2). When arterial blood flow is 
interrupted, hypoxia and venous congestion occur, causing scrotal 
pain, swelling, erythema, inflammation and absence of cremasteric 
reflex (3). One in every four thousand men under the age of twenty-
five has reportedly had TT (32). Although the greatest incidence of TT 
is observed in the teenage age range, when the testes quickly grow in 
size due to a sudden rise in the levels of testosterone; however, TT is 
not precluded in adults or elderly individuals (33). TT has no known 
cause, although there are several anatomical characteristics that 
increase the risk, including a history of cryptorchidism, clapper bell 
deformity, a congenital abnormality, and a spermatic cord with a 
lengthy intrascrotal segment (34). Recently, excessively long-distance 
cycling has been reported by Coguplugil and Bedir (35), to seldomly 
result in testicular torsion in adults.

Surgical detorsion (SD) is done to restore blood flow (reperfusion) 
to an ischemic testis in order to terminate ischemic pain, hypoxia and 
necrosis (36). However, a number of investigations have shown that 
certain metabolic processes follow the restoration of blood flow, 
resulting in additional injury called ‘testicular ischemia–reperfusion 
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injury-tIRI’ (12, 37). It must be emphasized that tissue damage results 
from both the ischemia and reperfusion phases. Most studies agree 
that permanent alterations start after 6 h, or even 4 h if the spermatic 
cord is highly twisted (38). Therefore, in the repair of TT, time is the 
most important issue, largely determining the salvage rate and late 
result (4, 38). Afolabi et al. (6) reported that a 720° torsion for 1 h 
followed by reperfusion for 48 h is needed to cause tIRI. Delay in the 
treatment can lead to atrophy of the ipsilateral testis and suppression 
of the contralateral testis’ functions, having a variable effect on 
reproduction. Therefore, delayed SD can be  fatal and may lead to 
impaired fertility and loss of the testicles (39).

3 Complications associated with the 
surgical repair of torsion of the testis

3.1 Testicular ischemia reperfusion injury 
(tIRI)

Testicular injury that results from restoring blood flow to an 
ischemic testis is called testicular-ischemia–reperfusion injury (tIRI), 
often referred to as testicular re-oxygenation injury (40). Cessation of 
blood flow to the testis (TT) induces hypoxia and premature testicular 
loss, and while reperfusion preserves ischemic testis, it also sets off a 
paradoxical chain of events leading to tIRI, as shown in Figure 2 (41, 
42). During testicular ischemia, degradation of ATP to adenosine 
diphosphate (ADP), then to adenosine monophosphate (AMP), to 

adenosine, and finally to hypoxanthine occurs via anaerobic glycolysis 
(43, 44).

Under lower ATP conditions, the enzyme xanthine dehydrogenase 
undergoes a conformational change to xanthine oxidase, which, on 
reperfusion, triggers the formation and release of free radicals 
(superoxide and hydrogen peroxide) during the degradation of 
hypoxanthine to uric acid (45, 46). During ischemia, the membrane 
ion pumps, including Na+/K+-ATPase and Ca2+-ATPase, are also 
disrupted, consequently leading to intracellular acidosis and activation 
of the Na+/H+ exchanger. As a result, there is an accumulation of H+ 
ions in the cytosol, which causes a fall in the intracellular pH. To 
maintain normal intracellular pH, the cell forces out H+ ions in 
exchange for Na+ ions via the Na+/H+ exchanger system; likewise, Na+ 
ions are also swapped for Ca2+ ions by the plasmalemmal Na+/ Ca2+ 
exchanger, resulting in intracellular Ca2+ overload (47). The secondary 
reverse-mode Na+/Ca2+ exchange further promotes cytosolic Ca2+ 
overload (47, 48).

In the early reperfusion phase, the mitochondria take up the 
accumulated Ca2+. Ca2+ overload together with ROS favours the 
opening of the mitochondrial permeability transition pore (mPTP) 
and outer-membrane permeabilization, thereby facilitating the release 
of cytochrome c and SMAC/DIABLO from mitochondria into the 
cytosol to drive caspase activation and apoptosis (46, 49–53). Ca2+ 
elevation can also activate calpains, which are a cysteine protease 
family, capable of degrading cytoskeletal and organellar proteins (37). 
In parallel, Ca2+ overload and ROS can prime/activate inflammasome 
signalling, thereby amplifying cytokine release (52).

While re-oxygenation is required to restore aerobic 
metabolism and save the ischemic tissue, the major burst of ROS 
occurs on reperfusion rather than during ischemia (37, 42). With 
increased intracellular calcium and consumption of nicotinamide 
adenine dinucleotide (NAD+), XO-dependent purine catabolism 
further contributes to ROS formation due to the conversion of 
hypoxanthine to uric acid (45). Key ROS generated during 
reperfusion include superoxide (O₂•−), hydrogen peroxide (H₂O₂), 
and the hydroxyl radical (•OH) (49). When ROS generation 
exceeds antioxidant capacity, oxidative stress ensues, which 
damages proteins, lipids, and DNA, as well as activates apoptotic 
machinery, which usually goes beyond the initial insult of the 
ischemic phase (12, 37, 51, 54).

Generally, the primary clinical context where tIRI is indicated is 
torsion followed by detorsion/surgical repair. However, testicular 
transplantation can offer a parallel surgical scenario, having similar 
pathophysiological implications. Barten and Newling (55) and Stanley 
(56) traced the controversial history of testicular transplantation from 
surgical attempts by early pioneers to controlled animal studies. 
Contemporary transplantation of testicular tissue, or whole-organ 
grafting, as it is called, now primarily occurs within the context of 
fertility preservation and experimental revascularized graft models 
rather than “glandular rejuvenation,” which marked early endeavours 
by clinicians (57, 58). Although full spermatogenic recovery remains 
inconsistent, autologous grafting and re-implantation of cryopreserved 
immature or adult testicular tissue have reported survival of graft 
fragments and re-establishment of somatic cell markers (59). In 
essence, testicular transplantation is feasible but constrained by 
ischemic intervals during retrieval, cold storage or revascularization, 
as well as host–graft interactions (58, 60).

FIGURE 1

Schematic illustration of testicular torsion. The figure illustrates the 
anatomical comparison between a normal testis and a torsed 
(ischemic) testis. On the left, the normal testis appears intact with a 
straight spermatic cord, indicating normal blood flow. On the right, 
the ischemic testis shows a twisted spermatic cord.
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During transplantation, the grafted testicular tissue is inevitably 
subjected to a period of ischemia (either cold preservation or loss of 
perfusion), followed by reperfusion once vascular connections are 
restored. This process can provoke oxidative stress, inflammatory 
responses, apoptosis, and impairment of spermatogenesis analogous 
to that of post-detorsion I/R in torsion (61, 62).

3.2 Oxidative stress and antioxidant 
defense

Oxidative stress is a condition of imbalance between the 
production of free radicals and the biological system’s ability to quickly 
detoxify reactive mediators or quickly repair the damage caused (63, 
64). Oxidative stress can affect every component of the testes, 
including the germ cells, spermatozoa, Sertoli cells, Leydig cells, and 
seminiferous tubules (65). This imbalance is a central pathogenic 
mechanism in testicular ischemia–reperfusion injury (tIRI). Major 
sources of ROS during reperfusion include mitochondrial electron 
transport chain dysfunction, xanthine oxidase activation, NADPH 
oxidase, and uncoupled nitric oxide synthase (63–65). Also, the main 
species implicated are superoxide (O₂•−), hydrogen peroxide (H₂O₂), 
hydroxyl radical (•OH), and peroxynitrite (ONOO−) (66).

Free radicals are very unstable and reactive with other compounds 
due to unpaired electrons in their outermost shell. Reactive oxygen 
species, or reactive oxygen molecules, are created when an oxygen 

molecule (O2) experiences a four-electron reduction upon reperfusion 
(66). Because of their archly reactive character, ROS can readily 
combine with different molecules, directly causing oxidation that can 
result in structural and functional alterations and cell damage (67). At 
the molecular level, these oxidants attack lipids, proteins, and nucleic 
acids, producing lipid peroxidation products such as malondialdehyde 
(MDA) and 4-hydroxynonenal, oxidized DNA bases like 8-OHdG, 
and protein carbonyl derivatives (67). These by-products are usually 
used as biomarkers of oxidative damage in experimental torsion–
detorsion models. Elevated MDA and depleted reduced glutathione 
(GSH) have consistently been reported in ischemic testes (68, 69).

Lipid peroxidation, usually assessed by MDA, is a chain reaction 
in which unsaturated fatty acids (components of cell membranes) are 
oxidized to produce free radicals such as hydroxyl radical (HO·), 
hydroperoxyl radical (HOO·), lipid peroxyl radical (LOO·), and 
alkoxyl radicals (LO·). The peroxidation chain reaction will propagate 
once it has started (70). The LPO radicals destroy testicular 
macromolecules and induce cytotoxic, genotoxic and inflammatory 
reactions (71). Lipid peroxidation is a consequential factor that causes 
localized damage to seminiferous tubules and alters the activity of 
membrane-bound steroidogenic enzymes and receptors (72). Among 
the agents that protect the testes from lipid peroxidation, vitamin E 
(lipid soluble) is considered the most important (73). The abilities of 
this vitamin to scavenge lipid peroxyl radicals and so stop the 
propagation of free radical chain reactions have drawn attention to it 
as an exogenous antioxidant (74).

FIGURE 2

Mechanisms of testicular ischemia reperfusion injury (tIRI). During testicular torsion, arterial occlusion leads to ischemia characterized by ATP 
degradation and depletion. This metabolic stress drives conversion of ATP to hypoxanthine. Under hypoxic conditions, xanthine dehydrogenase is 
converted to xanthine oxidase. On reperfusion, the re-introduction of oxygen allows xanthine oxidase to metabolize hypoxanthine to uric acid, 
generating reactive oxygen species (ROS) in the process. Simultaneously, ischemia impairs ionic homeostasis, causing intracellular Ca2+ overload and 
NADPH/NAD+ imbalance, further amplifying ROS generation. Following surgical detorsion, reperfusion salvages ischemic tissue but also triggers a 
surge in ROS that overwhelms endogenous antioxidants. This initiates lipid peroxidation, mitochondrial dysfunction, and activation of inflammatory 
and apoptotic pathways. If the ischemic duration is prolonged, necrosis ensues and testicular salvage becomes unlikely. Together, these processes 
define tIRI as the paradoxical injury caused by restoring blood flow after torsion.
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The biological relevance of oxidative stress in TT is supported by 
experimental interventions. For instance, GSH supplementation 
significantly improved post-thaw sperm function and reduced 
oxidative stress markers in avian reproductive models (75). This 
demonstrates that restoring intracellular redox buffering is essential 
for sperm preservation and, by extension, relevant to tIRI (65).

3.3 Activation of inflammatory pathways

Reperfusion causes many changes in endothelial cells such as 
increased membrane permeability and recruitment of inflammatory 
cells (48). Inflammation is a critical contributor to tIRI and often acts 
synergistically with oxidative stress. At the molecular level, ROS and 
Ca2+ overload trigger redox-sensitive transcription factors, particularly 
nuclear factor kappa B (NF-κB). NF-κB activation induces the 
expression of pro-inflammatory cytokines, including tumour necrosis 
factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), as 
well as downstream inflammatory mediators such as inducible nitric 
oxide synthase (iNOS) (76). These cytokines perpetuate germ cell 
apoptosis, impair Leydig cell steroidogenesis, and compromise the 
blood–testis barrier, thereby exacerbating subfertility risk. 
Complement system activating products (anaphylatoxins-C5a and 
membrane attack complex C5b-9) further induce inflammatory effects 
such as neutrophil chemotaxis, protease release, and O2 radical 
production, all of which additionally increase the response of 
neutrophil chemotaxis (77, 78).

The release of inflammatory cytokines and inflammatory genes 
(STAT3, CCR1, RAC1, MMP9, CCR10, CSF3R and HTRA1) has been 
noted to be stimulated by myeloperoxidase (MPO) and nuclear factor 
kappa B (NF-κB), respectively to initiate inflammatory reactions 
(79, 80).

Experimental models confirm the relevance of inflammation 
to testicular injury. The pharmacological inhibition of NF-κB, 
genetic ablation of MPO, or cytokine blockade each attenuates 
histological damage and reduces apoptosis after torsion–detorsion 
(79). In support of this, natural antioxidants with anti-
inflammatory activity, such as hydro-alcoholic extract of Quercus 
brantii, were shown to downregulate NF-κB activation and lower 
oxidative/inflammatory markers in male reproductive tissues 
exposed to lead toxicity (80). Despite consistent findings from 
animal models, meta-analyses or systematic syntheses specific to 
TT are lacking. Most available data are experimental and 
heterogeneous in design, that is, species, torsion duration, and 
pharmacological interventions, all of which limit quantitative 
comparison. Nonetheless, the convergence of evidence supports 
inflammation as a mechanistic driver of tIRI alongside oxidative 
stress, reinforcing the rationale for combination antioxidant 
therapies that also possess anti-inflammatory potential.

4 Therapeutic strategy to prevent 
testicular ischemia reperfusion injury 
(tIRI): role of vitamins C and E

Non-enzymatic antioxidants are also known as exogenous 
antioxidants. These antioxidants have the capacity to scavenge ROS 
produced in the testicular tissues to prevent peroxidation of plasma 

membrane lipids (17, 81). They are usually consumed with food and 
include vitamins C and E (20).

4.1 Vitamin C (L-ascorbic acid) and its role 
in protecting testicular function

Vitamin C (L-ascorbic acid) is a hydrophilic, non-enzymatic 
antioxidant that donates electrons to neutralize aqueous reactive 
oxygen species (ROS) and repair oxidized biomolecules, thereby 
limiting chain-propagating reactions in ischemia–reperfusion injury 
(IRI) (22). Its chemical formula is C6H8O6 (Figure 3A), which is made 
up of six carbons, eight hydrogen atoms, and six oxygen atoms (82). 
This structure facilitates its role as an electron donor, enabling it to 
neutralize a wide spectrum of reactive oxygen species (ROS), 
including singlet oxygen, hydrogen peroxide (H₂O₂), and the highly 
damaging hydroxyl radical (22, 83). In addition to direct radical 
scavenging, ascorbate can reduce lipid-phase radicals indirectly by 
regenerating α-tocopherol (vitamin E) from its tocopheroxyl radical 
at the aqueous–lipid interface. Its synergism with vitamin E is well-
described and supports membrane integrity during oxidative bursts 
(82–85). This “front-line” role has been demonstrated across 
reproductive models; for example, vitamin C lowered oxidative 
markers and improved tissue integrity in cyclophosphamide-injured 
ovaries in mice, consistent with its capacity to sequester redox-active 
metals and reduce peroxides (rather than “repair” membranes 
directly) (86, 87).

Mechanistically, ascorbate is oxidized to semidehydroascorbate 
and dehydroascorbate (DHA) during radical scavenging. DHA is then 
recycled back to ascorbate by glutathione-dependent dehydroascorbate 
reductase (using GSH as the electron donor) and by NAD(P)
H-dependent semidehydroascorbate reductases. These recycling steps 
preserve intracellular ascorbate pools and sustain α-tocopherol 
regeneration during reperfusion (88–90). Ascorbate also attenuates 
oxidative cascades that follow xanthine oxidase (XO)–driven 
superoxide generation after ischemia, primarily by lowering the 
overall oxidant burden and preserving endogenous antioxidant 
enzyme activities. In essence, vitamin C more accurately modulates 
the redox milieu than directly controlling XO conformational 
switching (53, 82–85, 91, 92).

In the testis, vitamin C is abundant in the seminal plasma where 
it helps maintain sperm DNA integrity and limits lipid peroxidation 
of the polyunsaturated fatty acid–rich sperm membrane (93–95). 
Several animal studies report improved spermatogenic indices and 
steroidogenic markers after ascorbate administration in oxidative 
injury models, though controlled human data specific to testicular 
torsion (TT) and tIRI remain absent (96–100). Complementary 
findings from cryobiology further illustrate ascorbate-like antioxidant 
effects in reproductive cells; for example, κ-carrageenan and fullerene 
(C60HyFn) additives reduced post-thaw oxidative damage in buffalo 
bull semen, highlighting that bolstering extracellular antioxidant 
capacity can preserve sperm function under oxidative stress (101). 
While not a TT model, the directionality is consistent with the 
proposed mechanism.

Rodent torsion–detorsion studies indicate that antioxidants 
administered before or at detorsion can curb subsequent tIRI by 
reducing malondialdehyde (MDA), restoring superoxide dismutase 
(SOD)/catalase/glutathione peroxidase (GPx) activities, and 
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improving histology (82–85, 96–100). Vitamin C has been used alone 
and sometimes alongside other agents in these models. Typical doses 
cluster around 50–200 mg/kg i.p./i.v. given 15–60 min pre-detorsion, 
with some studies extending dosing into the early reperfusion window 
(102–104). Extrapolation to humans requires caution due to species 
differences in ascorbate transporters (SVCT1/2), redox enzyme 
expression, and the unique kinetic constraints of emergency TT 
care (11).

Human pharmacokinetics show that oral vitamin C displays tight 
control with saturable absorption. Usually, steady-state plasma 
concentrations plateau at ~70–80 μM at ~200–400 mg/day, whereas 
higher oral doses chiefly increase urinary excretion (87, 92). In 
contrast, intravenous vitamin C transiently achieves millimolar 
plasma levels that may be relevant for short, high-oxidant states like 
reperfusion. If vitamin C is ever tested peri-detorsion, an IV bolus at 
induction and a second dose shortly after reperfusion would be a 
rational design, paired with rigorous safety monitoring [this is a 
proposal, and not the current standard of care; (87, 92, 104)].

At typical dietary intakes, vitamin C is safe. For adults, the 
Tolerable Upper Intake Level (UL) is 2,000 mg/day orally, above 

which gastrointestinal upset and osmotic diarrhea occur (87). 
High-dose vitamin C can increase urinary oxalate, and individuals 
with a history of calcium oxalate nephrolithiasis or renal 
impairment should exercise caution for usage. G6PD deficiency is 
also a concern for very high-dose IV regimens due to rare 
hemolysis reports. Hence, this must be  excluded in any 
interventional study. Vitamin C may also affect certain lab 
measurements (e.g., point-of-care glucose). However, none of 
these issues preclude research in TT/tIRI, but they highlight the 
need for defined dosing windows, monitoring of renal function/
urinalysis, and exclusion criteria (87, 92, 104).

The claims of synergy with vitamin E are mechanistically sound 
(ascorbate regenerates α-tocopherol) and supported by in vitro and 
in vivo oxidative-injury models apart from TT (91). However, head-
to-head TT data comparing vitamin C alone vs. C + E vs. other 
combinations (e.g., N-acetylcysteine, melatonin, quercetin, CoQ10) 
are not available. The broader torsion literature shows benefit from 
several antioxidants (11), but potency, timing, and tissue distribution 
differ, which are key variables that a future clinical trial would need to 
harmonize (91).

FIGURE 3

Chemical structure of Vitamin C (A) and Vitamin E (B). (A) Vitamin C (L-Ascorbic Acid): The structure shows a six-membered lactone ring with multiple 
hydroxyl (-OH) groups at positions 2, 3, 5, and 6, and a characteristic enediol group (C=C with adjacent OH groups) between carbons 2 and 3. This water-
soluble vitamin contains a primary alcohol group (-CH2OH) at carbon 6 and exhibits strong reducing properties due to its enediol moiety. The planar ring 
structure with its conjugated system of double bonds and hydroxyl groups enables vitamin C to readily donate electrons, making it a powerful antioxidant 
capable of neutralizing reactive oxygen species and regenerating other antioxidants like vitamin E. Image reproduced from the Public domain, via 
Wikimedia Commons. (B) Vitamin E (α-Tocopherol): The structure displays a complex fat-soluble molecule consisting of a chromanol head group 
connected to a long phytyl side chain. The chromanol ring system contains a phenolic hydroxyl group that serves as the active antioxidant site, while three 
methyl substituents on the ring enhance its stability. The 16-carbon saturated phytyl tail, with its characteristic methyl branches at carbons 4, 8, and 12, 
anchors the molecule within cell membranes and determines its lipophilic character. This structural arrangement allows vitamin E to protect membrane 
lipids from peroxidation by breaking free radical chain reactions. Image reproduced from the Public domain, via Wikimedia Commons.

https://doi.org/10.3389/fnut.2025.1660240
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://commons.wikimedia.org/wiki/File:L-Ascorbic_acid.svg
https://commons.wikimedia.org/wiki/File:Alpha-Tocopherol_Structural_Formulae_V.1.svg


Ogunleye et al.� 10.3389/fnut.2025.1660240

Frontiers in Nutrition 07 frontiersin.org

4.2 Vitamin E (α-tocopherol) and its role in 
protecting testicular function

Vitamin E, also known as α-tocopherol, is an antioxidant and 
lipid-soluble vitamin having the chemical formula C29H50O2 
(Figure 3B). Generally, vitamin E refers to a family of eight fat-soluble 
molecules (four tocopherols and four tocotrienols), of which 
α-tocopherol is the most biologically active form in humans due to 
preferential hepatic binding to α-tocopherol transfer protein (105). 
Like other vitamins, vitamin E may be obtained from food, such as 
nuts, seeds, and vegetable oils, but it can also be  taken as a 
supplement (106).

Vitamin E protects the plasma membrane by scavenging lipid 
peroxyl radicals and stopping chain reactions of lipid peroxidation 
in the lipid layers of the membranes (79). Its lipophilic structure 
allows it to insert itself into polyunsaturated fatty acid (PUFA)-rich 
membranes where it acts as a chain-breaking antioxidant, 
intercepting lipid peroxyl radicals (LOO•) and donating a hydrogen 
atom to terminate lipid peroxidation (107, 108). This prevents the 
propagation of membrane damage that is characteristic of 
reperfusion injury, particularly relevant in the PUFA-dense 
membranes of spermatozoa and germ cells (109). When α-tocopherol 
donates a hydrogen atom, it becomes the tocopheroxyl radical. 
Unlike many other antioxidants, this radical is relatively stable and 
can be  recycled back to its active form by vitamin C or other 
reducing agents (110, 111). The continuous maintenance of the 
steady-state or low concentration of vitamin E radicals via vitamin 
E recycling prevents the loss or consumption of vitamin E (111). 
Therefore, a more significant therapeutic effect of α-tocopherol 
probably requires co-antioxidants such as vitamin C to have a 
beneficial effect.

In addition to preventing lipid peroxidation, vitamin E can also 
influence the redox-sensitive enzymes and transcription factors in the 
body. In experimental systems, α-tocopherol downregulates NADPH 
oxidase activity and reduces XO-mediated ROS formation indirectly 
by maintaining redox balance, thereby limiting the conversion of 
xanthine dehydrogenase to xanthine oxidase (80, 112, 113). This effect 
contributes to lower ROS burden during reperfusion and protects 
against apoptosis. Vitamin E has also been reported to stabilize 
mitochondrial membranes, limit cytochrome c release, and modulate 
Bcl-2/Bax signaling, thereby directly influencing the apoptotic 
threshold (80).

Although vitamin E is highly effective against lipid peroxidation, 
it is less potent in scavenging aqueous ROS than vitamin C or 
glutathione. This makes it particularly valuable in membrane-rich 
tissues like the testis, but less comprehensive as a stand-alone therapy. 
Other antioxidants such as melatonin, quercetin, and N-acetylcysteine 
have also demonstrated benefit in tIRI by targeting multiple redox and 
inflammatory pathways (114–116). Thus, vitamin E should 
be considered part of a broader antioxidant strategy rather than a 
single “magic bullet.”

Animal studies commonly use 100–200 mg/kg doses of vitamin E 
administered intraperitoneally or orally before detorsion (117, 118). 
Human physiology, however, differs significantly as oral absorption of 
vitamin E depends on chylomicron assembly and bile salts, making 
absorption variable and slower than vitamin C. On average, plasma 
α-tocopherol concentrations plateau at ~30 μM with typical dietary 
intakes, while pharmacologic supplementation (≥400 IU/day) can 

raise levels modestly, but this requires chronic dosing (119). High-
dose vitamin E supplementation in humans has also raised safety 
concerns. While generally well tolerated, doses above 800 IU/day have 
been associated with increased risk of hemorrhagic stroke and 
impaired platelet aggregation due to vitamin E’s anti-vitamin K 
activity (120). Meta-analyses also suggest possible associations with 
increased all-cause mortality at very high doses, though causality 
remains debated. Thus, perioperative or acute IV regimens for TT/
tIRI have not been established, and translation from animal models to 
clinical settings must carefully balance efficacy with safety.

While vitamin E does offer a unique protection against membrane 
lipid peroxidation and apoptotic signaling in tIRI, its slower 
pharmacokinetics and potential safety risks limit its use as a stand-
alone acute therapy in TT. The most rational translational approach is 
co-administration with vitamin C, where vitamin C supports rapid 
aqueous radical scavenging and regenerates α-tocopherol, while 
vitamin E stabilizes sperm and germ cell membranes during oxidative 
reperfusion stress (Figure 4).

4.3 Previous reports on the synergistic 
effect of vitamins C and E when 
co-administered

The synergistic potential of vitamins C and E has been a focus of 
scientific inquiry for decades and has spanned diverse pathological 
conditions characterized by oxidative stress (OS), including ischemia–
reperfusion injury (IRI) in multiple organs, toxicant-induced 
testicular damage, and male infertility. Both vitamins have been 
investigated individually and in combination, with a substantial body 
of evidence confirming that their co-administration can result in 
enhanced antioxidant capacity beyond what either can achieve alone 
(114, 121). This synergy derives from their complementary 
mechanisms of action, which involve vitamin E neutralizing lipid 
peroxyl radicals within membranes, while vitamin C recycles oxidized 
tocopherol back to its reduced, active form (91, 122, 123). Through 
this redox recycling, vitamin C prevents the accumulation of 
α-tocopheroxyl radicals and thereby sustains vitamin E’s chain-
breaking capacity (115). The “vitamin E-sparing” mechanism is now 
well-characterized and forms the biochemical basis of their 
cooperative activity (124, 125).

Experimental work has consistently shown that the combined 
administration of vitamins C and E efficiently prevents lipid 
peroxidation (LPO), reduces malondialdehyde (MDA) accumulation, 
and restores glutathione homeostasis in tissues subjected to IRI (114, 
124). In renal IRI, the combined supplementation of these two 
vitamins improved functional recovery and preserved structural 
integrity, which outerformed monotherapies (114). Similarly, Layachi 
and Kechrid (126) reported significant improvements in hepatic 
glutathione levels with C + E supplementation on cadmium induced 
oxidative liver injury, showcasing their cooperative ability to restore 
endogenous antioxidant defenses. These findings are consistent with 
broader reperfusion models, even in the intestine and kidney, where 
the C + E pairing attenuated tissue necrosis, improved microvascular 
perfusion, and suppressed oxidative biomarkers more effectively than 
either vitamin alone (114, 127, 128).

In reproductive toxicology, several studies have demonstrated that 
vitamins C and E indeed act synergistically to neutralize testicular 
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toxicity induced by heavy metals and pharmaceuticals. 
Co-administration of these two vitamins mitigated mercury-induced 
testicular toxicity by chelating transition metals and suppressing 
ROS-mediated oxidative damage (27, 35). Similar protective outcomes 
were observed in lead-exposed rats, where C + E supplementation 
improved luminal spermatozoa count, seminiferous epithelium 
integrity, reproductive hormone levels, and overall semen quality (19). 
The positive impact observed was attributed to vitamin C’s ability to 
chelate lead, thereby preventing displacement of zinc in zinc-
dependent processes, and to vitamin E’s recycling through vitamin C, 
which in turn helped replenish glutathione and reinforce antioxidant 
capacity. Likewise, combined supplementation lowered MDA levels 
and inhibited LPO in vancomycin-induced testicular injury (28), 
while in models of drug-induced testicular OS, the pairing reduced 
inflammatory markers, improved serum oxidative balance, and 
strengthened the blood–testis barrier, underscoring its therapeutic 
promise in male infertility (129).

Directly within the context of testicular torsion–detorsion, 
the mechanistic rationale for C + E synergy is particularly 
compelling. Detorsion induces a surge in ROS that damages 
lipids, proteins, and DNA, disrupts spermatogenesis, and 
impairs steroidogenesis. While animal studies have frequently 
demonstrated the protective effects of either vitamin 
individually, that is, vitamin E reducing LPO and preserving 
seminiferous structure (130) and vitamin C attenuating 
oxidative and histological injury (131, 132), the evidence for 
co-administration of C and E together in torsion–detorsion 
models is relatively sparse. Nonetheless, extrapolation from 

other reperfusion-prone tissues and from male infertility trials 
suggests that the dual regimen could be particularly effective. In 
clinical studies on male infertility, daily oral supplementation 
with vitamin C and vitamin E significantly reduced sperm DNA 
fragmentation index compared to placebo (133, 134). This 
outcome is established in in  vitro studies where semen 
supplementation with both vitamins reduced ROS-induced 
DNA damage (135). These data support the hypothesis that their 
combined use during testicular reperfusion could protect both 
germ cells and the integrity of testicular steroidogenesis, 
consistent with prior toxicological and infertility findings (136).

Interestingly, not all studies have been uniformly supportive. 
Afolabi et al. (137), for instance, observed no reduction in MDA levels 
in a model of cryptorchidism despite C + E supplementation. They 
hypothesized that an insufficient concentration of vitamin C relative 
to vitamin E may have limited the synergistic recycling process, 
underscoring the importance of dosing ratios in harnessing their 
combined benefits. That is, while the potential for synergy is strong, 
optimal timing, dosage, and ratios are essential for realizing maximal 
benefits (29, 138).

Beyond the testes, the combined antioxidant network of C + E 
has demonstrated benefits in cardiovascular and visceral IRI. In 
myocardial reperfusion, for example, peri-procedural 
administration of both vitamins reduced lipid peroxidation indices 
and troponin release, with the PREVEC trial explicitly designed on 
the rationale that vitamin C recycles vitamin E during reperfusion 
bursts (138, 139). These findings are directly translatable to surgical 
detorsion, where the timing of reperfusion is predictable and could 

FIGURE 4

Role of vitamin C in vitamin E Regeneration. Reproduced with permission from (140). The diagram depicts the lipid bilayer membrane structure with its 
characteristic phospholipid organization, showing both the undamaged membrane (left side) and areas of oxidative damage (right side). The 
membrane’s hydrophobic core contains embedded vitamin E molecules (shown as yellow structures) strategically positioned to intercept lipid peroxyl 
radicals and prevent propagation of oxidative chain reactions.
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allow pre-operative administration of the two vitamins. Similarly, 
intestinal IRI studies have confirmed that hydrocortisone + 
vitamins C and E outperformed either therapy alone (114), pointing 
to a general principle: antioxidant synergy is often most effective 
when aqueous- and lipid-phase antioxidants are paired at the 
moment of reperfusion.

In essence, the synergy between vitamins C and E is established 
across various pathological models. This synergistic effect is usually 
denoted by significant reductions in OS, preservation of tissue 
structure, and improvement in functional outcomes. In toxicological 
and infertility contexts, their combination has been associated with 
improved spermatogenesis, semen parameters, and hormonal 
balance. While direct torsion–detorsion studies with C + E 
co-administration do remain relatively limited, there is a strong 
mechanistic plausibility and proven efficacy already in closely related 
testicular and systemic IRI models, as well as an established role in 
male reproductive health. This makes a compelling case for their 
clinical evaluation in the surgical repair of testicular torsion. The 
literature suggests that when administered in correct doses and 
ratios, vitamins C and E can synergistically target ROS, prevent lipid 
peroxidation, strengthen testicular defense systems, with consequent 
preservation of fertility potential in the aftermath of ischemia–
reperfusion injury.

5 Conclusion

Testicular torsion remains a clinical emergency in which surgical 
detorsion is life-saving for the gonad but paradoxically causes 
reperfusion injury. Oxidative stress and inflammation are central 
mediators of this injury, which is denoted by germ cell apoptosis, 
Leydig/Sertoli dysfunction, and subsequent subfertility. Vitamins C 
and E can mitigate this OS-induced injury, and they also occupy 
complementary antioxidant niches, meaning they can act 
synergistically to better mitigate OS than when used singly. Evidence 
from experimental torsion–detorsion models, reproductive toxicology, 
and ischemia–reperfusion studies in other organs shows this 
synergistic effect, and while clinical translation has not yet been 
realized, this review highlights that rapid-acting vitamin C in 
combination with vitamin E (membrane-targeted) is a biologically 
plausible adjunct to surgical detorsion. We propose that well-designed 
trials are needed to determine optimal dosing, timing, and long-term 
fertility outcomes.

6 Limitations of the review

A glaring limitation of this review is the fact that the majority of 
the evidence used is from animal or in vitro models. Studies on human 
testicular torsion using vitamin C and/or E are absent, hence limiting 
direct clinical extrapolation. Also, since experimental protocols 
usually vary widely in torsion angle, duration, route, and timing of 
antioxidant administration, this can make cross-study comparisons 
difficult. Another important limitation is that most rodents 

endogenously synthesize vitamin C, unlike humans, which can 
complicate dose translation. In addition, only a few studies account 
for the different antioxidant pharmacokinetics, which differ 
substantially between oral and intravenous preparations.
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