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Technology of China, Chengdu, China

Background: A plateau hypoxic environment can increase the physiological
burden on athletes. Although nutritional interventions have been recognized
as a potential strategy to improve plateau acclimatization, evidence in support
of specific dietary patterns is still lacking. This study compared the effects
of different dietary interventions on cardiopulmonary fitness during plateau
exercise through systematic evaluation and network meta-analysis methods.
Methods: This study systematically reviewed relevant literature up to June
2025 and included 20 randomized controlled trials (RCTs) conducted at
altitudes above 1,500 meters involving healthy participants aged 16 years and
above who engaged in physical activities. The primary outcomes included
cardiopulmonary indicators [maximal oxygen uptake (VO2max), heart rate (HR)],
blood biomarkers [peripheral oxygen saturation (SpO2), hematocrit (HCT)],
and subjective perception indicators [rating of perceived exertion (RPE)].
For each outcome, the pooled effects of each intervention compared to
others were estimated. Mean difference (MD) or standardized mean difference
(SMD) with 95% Credible Intervals (95% CrI) were calculated. The Surface
Under the Cumulative Ranking Curve (SUCRA) was used to rank the dietary
interventions and quantify their relative effectiveness. In addition, the Grading of
Recommendations Assessment, Development and Evaluation (GRADE) approach
was applied to assess the quality of evidence.
Results: A total of 20 randomized controlled trials involving 329 participants
were included, evaluating eight dietary interventions. Moderate-quality
evidence indicated that carbohydrate supplementation significantly improved
the percentage of maximal oxygen uptake (VO2max) compared to placebo
(SMD = 1.13, 95% CrI: 0.25 to 2.05) and reduced RPE scores (MD = −0.77, 95%
CrI: −1.83 to −0.09). Moderate-quality evidence indicated that carbohydrate
supplementation combined with glutamine ranked highest in improving SpO2
(SUCRA 84.54%) and RPE (SUCRA 69.37%), while iron supplementation showed
the highest SUCRA rankings for HR (56.54%) and HCT (66.67%). However,
these interventions did not demonstrate statistically significant advantages.
Notably, the observed increase in VO2max exceeded the minimally clinically
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important difference (MCID) of 1.0 ml/kg/min reported in previous studies,
suggesting that the effect of carbohydrate supplementation on VO2max may
have clinical relevance.
Conclusions: Differences exist in the effects of different dietary interventions
on cardiopulmonary fitness during altitude exercise. The current network
meta-analysis indicates that carbohydrate-based strategies show beneficial
effects, with carbohydrate plus glutamine supplementation demonstrating
greater advantages in SpO2 and RPE, while carbohydrate alone is more
supported in improving VO2max. Therefore, carbohydrate-based strategies may
serve as effective options to promote altitude acclimatization, whereas iron
supplementation may have potential benefits in improving HCT and HR.
Systematic review registration: https://www.crd.york.ac.uk/prospero/
display_record.php?ID=CRD420251069629, identifier: CRD420251069629.

KEYWORDS

high-altitude, nutritional interventions, cardiopulmonary fitness, network
meta-analysis, randomized controlled trial

1 Introduction

In recent years, a growing number of people have been engaging
in physical activity at high altitudes for purposes such as work,
recreation, and sports (1). Particularly in the field of sports, interest
in understanding the effects of altitude on physical performance
has significantly increased since the 1968 Olympic Games were
held at an altitude of over 2,000 meters (2). At present, high-
altitude training has become a crucial method for enhancing
endurance in athletic disciplines. The unique geographical and
climatic conditions at high altitudes lead to a series of physiological
adaptations in the human body. As altitude increases, the oxygen
content in the air decreases, creating a hypoxic environment
that induces physiological responses to enhance oxygen transport
and utilization. Specifically, the body stimulates the expression of
erythropoietin (EPO) through hypoxia-inducible factors (HIFs) in
the kidneys. Once released into the bloodstream, EPO promotes
the differentiation of erythroid progenitor cells in the bone marrow
into mature red blood cells. In addition, hypoxia can increase
capillary density and enhance mitochondrial efficiency. Together,
these adaptations improve the oxygen-carrying capacity of the
blood (3, 4). Studies have shown that once athletes adapt to high-
altitude conditions, hypoxia regulation may benefit and protect the
cardiovascular system, increase maximal oxygen uptake (VO2max),
and thereby improve athletic performance (5).

Nutritional supplementation is crucial for high-altitude
training. The International Olympic Committee (IOC) Nutrition
Expert Group recommends that athletes increase their intake
of energy, carbohydrate (CHO), iron, fluids, and antioxidant-
rich foods during high-altitude training (6). Acute exposure to
high altitudes for training imposes significant stress on various
physiological and metabolic processes. A review on high-altitude
nutrition, hydration and supplementation pointed out that
prolonged stay at high altitude often leads to an imbalance between
energy expenditure and intake, highlighting the importance of
both macronutrient and micronutrient supplementation (7). This
perspective is supported by several empirical studies. For example,
a study on elite runners training at a 2,100-meter altitude camp

found that daily supplementation with 200 mg of elemental iron
significantly increased red blood cell mass following high-altitude
exposure (8). Similarly, research by Oliver et al. showed that
participants in high-altitude expeditions who received CHO
supplementation experienced significantly lower Rated Perceived
Exertion (RPE) and improved physical performance compared to
the placebo group (9).

At present, there is no definitive evidence identifying
which dietary intervention is most effective in improving
cardiopulmonary fitness and physical performance during high-
altitude exercise. Existing studies have primarily focused on
the following nutritional interventions: nitrates, CHO, CHO
combined with glutamine, high-protein diets, d-aspartic acid,
iron, antioxidant-rich foods, rhodiola crenulata-and cordyceps
sinensis (RC) (10–17). The aim of this study is to rank the
effectiveness of different dietary and therapeutic interventions
used to enhance cardiopulmonary function under high-altitude
conditions by analyzing changes in cardiopulmonary indicators
[(VO2max), heart rate (HR)], blood biomarkers [peripheral oxygen
saturation (SpO2), hematocrit (HCT)], and RPE. The findings are
intended to provide evidence-based guidance for athletes and high-
altitude activity enthusiasts to optimize their nutrition and training
strategies in such environments.

2 Methods

2.1 Search strategy

This systematic review and network meta-analysis followed
the guidelines outlined in the Cochrane Handbook for Systematic
Reviews of Interventions and the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement
(18). We conducted a comprehensive search across multiple
online databases, including PubMed (Medline), Embase, and
Web of Science–Science Citation Index, to identify potential
studies. Additionally, manual searches were performed on
preprint platforms (medRxiv and Research Square) as well as
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other databases such as CINAHL, China National Knowledge
Infrastructure (CNKI), Wanfang Data, and Scielo. Although
Scopus and ScienceDirect are also widely used in systematic
reviews, they were not included in the present search. Scopus
has substantial overlap with PubMed, Embase, and Web of
Science, which were already comprehensively searched, while
ScienceDirect primarily serves as a publisher-specific database
and provides limited additional coverage beyond these sources.
Therefore, the exclusion of these databases is unlikely to have
materially affected the comprehensiveness of our literature
search. Besides, to supplement the academic database searches,
we also explored gray literature sources including ProQuest
Dissertations and Theses, EThOS, and ClinicalTrials.gov.
The search terms used to identify eligible studies included
combinations of keywords such as (“dietary intervention” OR
“nutritional supplementation” OR “nutrient supplementation”
OR “dietary strategy” OR “macronutrient” OR “micronutrient”),
(“high altitude” OR “plateau” OR “highland” OR “mountain” OR
“hypoxia” OR “low oxygen”), and (“exercise performance” OR
“physical performance” OR “physical training” OR “endurance
training” OR “strength training”). Validated filters were applied to
identify randomized controlled trials (RCTs). The search covered
literature published from the inception of each database up to
June 2025. The study protocol was registered in PROSPERO
(CRD420251069629) and strictly followed throughout the
review process.

2.2 Eligibility criteria

This study included randomized controlled trials (RCTs)
involving healthy participants aged 16 years or older who
engaged in physical activities (such as hiking, long-distance
running, mountaineering, or cycling) at high-altitude regions
above 1,500 meters (19). Healthy participants were defined
as individuals without a history of acute mountain sickness,
without cardiovascular, metabolic, pulmonary diseases, or other
chronic conditions, and not taking concomitant medications that
could affect exercise performance or altitude adaptation (20).
All included studies were required to implement clearly defined
dietary interventions and report at least one of the following
outcome indicators: VO2max, HR, SpO2, HCT, or RPE. Exclusion
criteria were as follows: (1) non-RCT study designs; (2) animal
or in vitro experiments; (3) participants with severe chronic
diseases (e.g., cardiovascular disease or chronic mountain sickness)
or acute infections; (4) interventions not involving nutritional
components (e.g., pure pharmacological or oxygen therapy); (5)
studies with missing key data or inaccessible full texts; and (6)
duplicate publications.

2.3 Screening and data extraction

The literature screening and data extraction were conducted
independently by two reviewers (Y.X., D.M.). After removing
duplicates, the titles, abstracts, and full texts were reviewed in
strict accordance with the inclusion and exclusion criteria. A

standardized data collection form was designed and developed
using Microsoft Excel. The extracted information included: ①

basic publication details (title, authors, year, and country); ②

study design; ③ participant characteristics (sample size, age);
④ intervention details (altitude exposure model, altitude level,
type of physical activity, type and dosage of dietary intervention,
and duration); ⑤ outcome indicators (VO2max, HR, SpO2, HCT,
and RPE). For studies with missing data, we contacted the
corresponding authors via email to request the original data. If no
response was received, the study was excluded.

2.4 Quality assessment

This study employed the Cochrane Risk of Bias 2.0 tool
(ROB 2.0) to rigorously assess the methodological quality of
the included RCTs (21). Two independent reviewers (Y.X. and
B.W.) conducted a cross-assessment of each study across the
following seven key domains: (1) random sequence generation; (2)
allocation concealment; (3) blinding of participants and personnel;
(4) blinding of outcome assessors; (5) completeness of outcome
data; (6) selective outcome reporting; (7) other potential sources
of bias. Each trial was ultimately classified as having a “low risk of
bias,” “unclear risk of bias,” or “high risk of bias.” All risk of bias
assessment results were documented in the study characteristics
table using Review Manager software (version 5.4).

2.5 Synthesis methods

Network meta-analyses based on both Bayesian and
frequentist approaches were conducted using R version 4.4.2.
A graphical network plot was used to illustrate the comparative
relationships among different dietary interventions, where each
node represented a dietary strategy with its size proportional
to the number of included studies, and the thickness of edges
reflected the number of trials with direct comparisons. For
continuous outcomes, standardized mean differences (SMDs)
were calculated when measurement units were inconsistent
across studies, and mean differences (MDs) were used when
units were consistent. Effect estimates were reported with 95%
credible intervals (CrIs) under the Bayesian framework. Random-
effects models were applied, and model fitting was optimized
via four-chain Monte Carlo simulations to generate posterior
samples. At least 20,000 adaptive iterations were set to ensure
model convergence, followed by 50,000 sampling iterations
(22). Interventions were ranked using the Surface Under the
Cumulative Ranking (SUCRA) curve, with values expressed as
percentages ranging from 0 to 100%. Higher SUCRA values
indicated better rankings of intervention effectiveness (23).
SUCRA results were visualized using STATA version 17. Besides,
in this study, between-study heterogeneity was assessed using
the between-study variance (τ ², tau-squared). A τ ² value greater
than 0.36 was considered indicative of substantial heterogeneity,
in line with previously suggested thresholds (24). To test the
robustness of the results, sensitivity analyses were performed by
excluding studies with high risk of bias. The purpose of these
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analyses was to evaluate whether the exclusion of potentially
influential studies significantly altered the overall estimates
or rankings.

2.6 Publication bias and inconsistency
analysis

Publication bias was assessed by comparing the funnel plots
and performing Egger’s test for each outcome. A symmetric
distribution in the funnel plots combined with a non-significant
Egger’s test result (P > 0.05) indicated a low risk of publication
bias. All analyses were conducted using the netmeta package in R
software (version 4.4.2). Additionally, inconsistency was evaluated
by comparing the Deviance Information Criterion (DIC) values
between the consistency and inconsistency models (25). The model
with the lower DIC was preferred. A DIC difference of ≥3
between the two models was considered to indicate a meaningful
difference (26).

2.7 Confidence in estimates

We assessed the quality of evidence using the CINeMA
(Confidence in Network Meta-Analysis) platform, which is based
on the GRADE (Grading of Recommendations Assessment,
Development and Evaluation) framework. CINeMA evaluates each
comparison across six domains—within-study bias, reporting bias,
indirectness, imprecision, heterogeneity, and incoherence—and
integrates direct and indirect evidence to determine the overall
confidence in network meta-analysis estimates. According to this
approach, evidence from RCTs starts at “high” confidence but may
be downgraded due to these limitations, resulting in ratings of
“moderate,” “low,” or “very low.”

3 Results

3.1 Search and selection

A total of 368 relevant studies were identified through
systematic searching, and duplicate records were removed. The
remaining 45 studies were assessed based on their titles and
abstracts. After a full-text review, 13 studies were excluded because
they did not align with the objectives of the meta-analysis, and 12
studies were excluded due to the absence of the outcome measures
of interest. Ultimately, 20 RCTs with 329 participants were included
(Figure 1).

3.2 Study characteristics

The baseline characteristics of the quantitative and qualitative
studies are detailed in Table 1. This meta-analysis included 20
studies published between 1999 and 2023, involving eight types
of dietary interventions. The proportion of participants in each
dietary intervention was as follows: nitrate (48.94%), CHO
(26.44%), antioxidant-rich foods (9.42%), CHO combined with

glutamine (5.47%), RC (5.47%), d-aspartic acid (4.86%), iron
(4.86%), and high-protein (2.74%). The study duration ranged from
10 days to 7 weeks.

3.3 Subject characteristics

A total of 329 independent participants were included in this
meta-analysis. Due to the use of a crossover design in some studies,
all participants underwent both the intervention phase and the
control phase, resulting in 441 participant data points, with 53.74%
from the intervention group and 46.26% from the control group.
The study population was predominantly male, with 80.17% in
the intervention group and 75% in the control group. Regarding
altitude distribution, 40.59% of the participant data points were
from high-altitude areas above 3,500 meters. Among the different
study locations, the highest proportion of participant data points
came from the UK (49.20%). In terms of exercise modalities,
running was the most common form of exercise, with 34.18% in
the intervention group and 34.31% in the control group (Table 2).

3.4 Risk of bias

Bias risk analysis of the 20 included studies was conducted
using the RoB 2 tool (Figure 2). Five studies showed some high-
risk points [Charlot et al. (13); Cheng, (17); Hennis et al. (27);
Hennis et al. (1); Marshall et al. (28)]. Additionally, four studies
had issues with random sequence generation [Charlot et al. (13);
Cheng, (17); Kent et al. (29); Paris et al. (20)]. Fourteen studies
had problems with allocation concealment [Bradbury et al. (11);
Caris and Thomatieli-Santos (12); Charlot et al. (13); Cheng, (17);
Friedmann et al. (15); Fulco et al. (30); Hennis et al. (1); Kent et al.
(29); Koivisto et al. (16); Oliver et al. (9); Paris et al. (20); Płoszczyca
et al. (14); Robison, (62); Tavares-Silva et al. (31)]. Seven studies
had issues with blinding of participants and researchers [Bradbury
et al. (11); Charlot et al. (13); Hennis et al. (27); Koivisto et al. (16);
Marshall et al. (28); Płoszczyca et al. (14); Shannon et al. (32)]. Six
studies had problems with blinding of outcome assessors [Bradbury
et al. (11); Charlot et al. (13); Kent et al. (29); Marshall et al. (28);
Robison, (62); Shannon et al. (32)].

3.5 Quantitative synthesis

Figure 3 shows the network interventions for each outcome.
The thickness of the lines corresponds to the number of studies,
and the size of the nodes corresponds to the number of included
treatment options. For RPE, SpO2, and HR, the networks contained
at least one closed loop, enabling the assessment of inconsistency.
In contrast, the VO2max and HCT networks consisted only of star-
shaped structures centered on the placebo, with no closed loops
available for inconsistency checks.
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FIGURE 1

Flow diagram for identification of studies in the systematic review.

3.6 Ranking of interventions

The SUCRA was used to calculate the probability of each
dietary intervention being ranked for each outcome. The results are
shown in Table 3.

3.7 Results of cardiopulmonary fitness

A total of five cardiopulmonary outcomes (VO2max, HR,
SpO2, HCT, and RPE) were analyzed across multiple studies
and interventions (Figure 3). CHO supplementation consistently
showed favorable effects, demonstrating significant improvements
in VO2max compared to both placebo (SMD = 1.13, 95% CrI: 0.25–
2.05) and nitrate supplementation (SMD = 1.31, 95% CrI: 0.26–
2.38; Figure 4). For RPE, CHO alone also showed superiority over
placebo (MD = −0.77, CrI: −1.83 to −0.09; Figure 4). For both
RPE and SpO2, CHO combined with glutamine ranked highest in
effectiveness (SUCRA: 69.37 and 84.54%, respectively; Figure 5).
Besides, iron supplementation ranked highest for improving HR
(SUCRA: 56.54%) and HCT (SUCRA: 66.67%; Figure 5).

3.8 Heterogeneity assessment

Between-study heterogeneity was evaluated using the estimated
τ ² for each cardiopulmonary outcome. The τ ² values for VO2max
(τ ² ≈ 0.12) and RPE (τ ² ≈ 0.33) were below the commonly cited
threshold of 0.36, indicating low heterogeneity (24). In contrast, the
τ ² values for SpO2 (τ ² ≈ 0.59), HR (τ ² ≈ 2.03), and HCT (τ ² ≈
0.71) exceeded this threshold, suggesting substantial heterogeneity
in these outcomes. These results imply that the studies reporting

VO2max and RPE yielded more consistent findings, whereas greater
variability was observed among studies evaluating SpO2, HR,
and HCT.

3.9 Publication bias and hypothesis of
overall consistency between networks

Figure 6 shows the funnel plot for publication bias. The results
of the Egger regression test indicate no evidence of publication
bias (all egger regression tests for comparisons were >0.05,
Table 4). The comparison of DIC values between the consistency
and inconsistency models showed that the consistency model
was superior for all outcomes (Table 5), with no evidence of
inconsistency in the network meta-analysis.

3.10 Confidence in evidence and sensitivity
analyses

We used the CINeMA platform to systematically evaluate
the quality of evidence for the outcomes of our network
meta-analysis. Overall, most comparisons were rated as low to
moderate confidence, mainly due to concerns about within-
study bias and imprecision. Several indirect comparisons were
further downgraded to very low confidence because of limited
sample sizes and wide confidence intervals (Appendix I). To
test the robustness of our findings, we conducted sensitivity
analyses by excluding five studies judged to be at high
risk of bias and re-running the NMA. The resulting league
tables, forest plots, and SUCRA values were generally similar
to those from the main analyses (Appendix II). Excluding
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TABLE 1 Characteristics of the studies included in this review.

Author,
Year

Country Population Sample
size
(n)

Age
(years)

Altitude
(m)

Exposure
state

Sports
mode

Research
method

Intervention
regimen

Intervention
dose

Control
regimen

Duration Outcome
indicator

Friedmann,
1999 (15)

Germany National
German
boxing team

16 C: 24.2 ±
2.9

P: 23.8
± 2.6

1,800 Continuous
altitude
exposure

Boxing,
training
maximal
strength,
sprint training.
endurance
training, etc.

Randomized
double-blind
placebo-
controlled
design

Ferrous-glycine-
sulfate (iron
supplementation)

2 × 100 mg
elemental iron
daily (1,335 mg
ferrous-glycine-
sulfate)

Placebo
(fructose in
identical
gelatin-coated
capsules)

18 days ①②⑤

Fulco,
2005 (30)

USA Healthy males 16 p: 25.1 ±
6

C: 25.3
± 6

4,300 Continuous
altitude
exposure

Cycling Double-blind,
placebo
controlled
prospective
design

Carbohydrate
[Tropical punch
flavored blend of
maltodextrin
(mass·volume−1,
9%), glucose
(2%), and
fructose (1%)]

0.175 g·kg−1

body weight
Equal volume of
indistinguishable
PLA

10 days ①

Oliver,
2012 (9)

UK Healthy adults 17 C: 24 ± 4
p: 32
± 11

5,192 Continuous
altitude
exposure

Mountaineering A
prospective,
experimental,
randomized
parallel
groups design

Carbohydrate
(principally
maltodextrin)

Provided 100
g·L−1 of
carbohydrate
and 370 kcal·L−1

Placebo
solution was
composed
principally of
natural
flavorings and
aspartame, and
its nutrient
content was
negligible.

22 days ②③④

Charlot,
2013 (13)

France Healthy active
male

11 18–25 3,500 Intermittent
exposure at
simulated
altitude

Not
mentioned

Single blind
and in a
counter
balanced
order

Carbohydrate
(breakfasts
consisted of high
CHO)

2,340 kJ, 70%
CHO, 12%
protein

High-protein
(35% CHO,
48% protein)
breakfast

2 weeks ②

Chen,
2014 (17)

China
(Taiwan)

Long-distance
track and field
male athletes

18 19.66 ±
0.18

2,200 Continuous
altitude
exposure

Running,
weight
training, ball
activity

Double-blind
and placebo-
controlled
experimental
de-sign

Rhodiola
crenulata plus
Cordyceps
sinensis
supplement
(capsule)

1,000 mg:
breakfast
1,000 mg: dinner

Starch placebo
1,000 mg:
breakfast
1,000
mg: dinner

2 weeks ①⑤

Arnold,
2015 (10)

UK Well-trained
competitive
male runners

10 37 ± 13 2,500 Intermittent
exposure at
simulated
altitude

Running Double-blind
repeated
measures
crossover
design

Concentrated
beetroot juice

70 ml (7 mmol
nitrates)

Same texture,
taste and
appearance
with negligible
nitrate
concentration
placebo

17 days ①②③④

(Continued)
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n
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N

u
tritio

n
0

6
fro

n
tie

rsin
.o

rg

https://doi.org/10.3389/fnut.2025.1658950
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


W
an

g
e

t
al.

1
0

.3
3

8
9

/fn
u

t.2
0

2
5

.1
6

5
8

9
5

0

TABLE 1 (Continued)

Author,
Year

Country Population Sample
size
(n)

Age
(years)

Altitude
(m)

Exposure
state

Sports
mode

Research
method

Intervention
regimen

Intervention
dose

Control
regimen

Duration Outcome
indicator

Hennis,
2016 (27)

UK Healthy male
students

40 16 ± 1 5,300 Continuous
altitude
exposure

Climbing Single-blind
parallel group
randomized
controlled
design

Concentrated
beetroot juice

140 ml (10 mmol
nitrates)

Concentrated
blackcurrant
juice

11 days ②③

Shannon,
2016 (60)

UK Healthy males 12 24.4 ± 4.3 2,500 Intermittent
exposure at
simulated
altitude

Running Randomized
double-blind
placebo-
controlled
design

Concentrated
beetroot juice

138 ml (15.2
mmol nitrates)

Placebo with
negligible
nitrates

6 weeks ①②③④

Rossetti,
2017 (61)

UK Recreationally
active males

20 22 ± 4 4,219 Intermittent
exposure at
simulated
altitude

Weighted
trekking

Randomized-
double-
blinded
placebo-
controlled
crossover
design.

Concentrated
beetroot juice

70 ml (6.4 mmol
nitrates)

Placebo with
negligible
nitrates

22 days ③④

Shannon,
2017 (32)

UK Healthy males 10 23 ± 3 4,300 Intermittent
exposure at
simulated
altitude

Running Randomized
controlled
design

Concentrated
beetroot juice

140 ml (12.5
mmol nitrates)

Placebo with
negligible
nitrate
concentration

7 weeks ②③④

Koivisto,
2018 (16)

Norway Elite athletes 31 23 ± 5 2,320 Continuous
altitude
exposure

Different
training plans
swimming,
triathlon and
athletics, etc.

Randomized
controlled
trial

Antioxidant-rich
foods

750 ml fruit-,
vegetable- and
berry smoothie,
50 g dried berries
and fruits, 40 g
walnuts, and 40 g
dark chocolate
(>70% cocoa
content)

Eucaloric foods
(4.2 MJ or 1,000
kcal) with a
significantly
lower
antioxidant
content

3 weeks ①⑤

Paris,
2019 (20)

USA Endurance-
trained
men

12 25 ± 1 3,000 Intermittent
exposure at
simulated
altitude

Running Randomized
double-blind
placebo-
controlled
design

Carbohydrate 6% carbohydrate
solution: 15
ml/kg/h

A non-caloric
sweetener

4 weeks ①②③④

Kent,
2019 (29)

Australia Moderately
trained, male

12 22.3 ± 2.6 3,000 Intermittent
exposure at
simulated
altitude

Cycling Double blind,
repeated-
measures,
counter-
balanced
design

Concentrated
beetroot juice

2 × 70 ml (6.45
mmol nitrates)

Placebo with
negligible
nitrates

Not
mentioned

②③④

(Continued)
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TABLE 1 (Continued)

Author,
Year

Country Population Sample
size
(n)

Age
(years)

Altitude
(m)

Exposure
state

Sports
mode

Research
method

Intervention
regimen

Intervention
dose

Control
regimen

Duration Outcome
indicator

Robinson,
2020 (62)

UK Trained males 8 23 ± 4 2,400 Intermittent
exposure at
simulated
altitude

Running Repeated-
measures,
crossover
design

Concentrated
beetroot juice

140 ml (12.4
mmol nitrates)

Placebo with
negligible
nitrates

4 weeks ②③

Caris,
2020 (12)

Brazil Healthy and
trained male

9 26.4 ± 3.5 4,300 Intermittent
exposure at
simulated
altitude

Running Randomized
double-blind
placebo-
controlled
design

(1)
Carbohydrate
(Maltodextrin)
(2)
Carbohydrate
and glutamine

(1) 200 ml of 8%
maltodextrin/
20 min
(2) 20 g/day for 6
days, 8%
maltodextrin
(200
ml/every 20 min)

Placebo (10 g
starch + 10 g
lactose)

24 days ②③④

Bradbury,
2020 (11)

USA Healthy males 14 Not
mentioned

4,300 Continuous
altitude
exposure

Running Randomized
controlled
design

Carbohydrate
(65.25 g fructose
+ 79.75 g
glucose)

Ingested at 1.8
g/min

PLA (n = 6, 4
standard and 2
high protein)

22 days ②③④

Tavares-
Silva,
2020 (31)

Brazil Healthy and
physically
active male

8 24 ± 3 4,200 Intermittent
exposure at
simulated
altitude

Running Randomized
double-blind
placebo-
controlled
design

Carbohydrate
(maltodextrina
strawberry-
flavored)

200 ml solution
of carbohydrate

A placebo 0 kcal
(strawberry-
flavored Crystal
Light)

2 weeks ④

Marshall,
2021 (28)

UK Healthy adults 22 28 ± 12 4,800 Continuous
altitude
exposure

Climbing Single-
blinded
randomized
control study

Concentrated
beetroot juice

140 ml (12.5
mmol nitrates)

Non-nitrate,
same calorie
placebo

20 days ②③④

Hennis,
2022 (1)

UK healthy
volunteers

27 21 males:
28.9 ± 5.2

4,559 Continuous
altitude
exposure

Cycling Randomized,
double blind,
placebo-
controlled
factorial
design

Concentrated
beetroot juice

0.18
mmol/kg/day
nitrates

Placebo with
negligible
nitrates

Not
mentioned

①②

Płoszczyca,
2023 (14)

Poland Male Boxers 16 18–25 2,500 Intermittent
exposure at
simulated
altitude

Boxing drills,
endurance,
resistance
exercises

Randomized
Controlled
Trial

D-aspartic acid 6 g/day, divided
into two doses
per day

Placebo
(cellulose) in
identical gelatin
capsules

14 days ⑤

① Maximal oxygen uptake (VO2max); ② heart rate (HR); ③ peripheral oxygen saturation (SpO2); ④ rating of perceived exertion (RPE); ⑤ hematocrit (HCT).
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TABLE 2 Demographic characteristics of participants.

Characteristics Intervention Placebo

Total numbers, n (%
total)

237 (53.74%) 204 (46.26%)

1. Gender

Males 190 (80.17%) 153 (75%)

Males + Females 47 (19.83%) 51 (25%)

2. Altitude

<3,500 m 91 (38.40%) 88 (43.14%)

>3,500 m 146 (61.60%) 116 (56.86%)

3. Nation

UK 107 (45.15%) 110 (53.92%)

USA 28 (11.81%) 26 (12.75%)

Brazil 26 (10.97%) 17 (8.33%)

Norway 16 (6.75%) 15 (7.35%)

Australia 12 (5.06%) 12 (5.88%)

France 22 (9.28%) 0

China 9 (3.80%) 9 (4.41%)

Germany 9 (3.80%) 7 (3.43%)

Poland 8 (3.38%) 8 (3.92%)

4. Sport modes

Running 81 (34.18%) 70 (34.31%)

Cycling 34 (14.35%) 34 (16.67%)

Climbing 32 (13.5%) 30 (14.71%)

Weighted trekking 20 (8.43%) 20 (9.80%)

Mountaineering 6 (2.53%) 11 (5.39%)

Mixed training 42 (17.72%) 39 (19.12%)

Not mentioned 22 (9.28%) 0

4. Interventions

Nitrate 113 (47.68%) 111 (52.11%)

CHO 62 (26.16%) 54 (25.35%)

Antioxidant-rich foods 16 (6.75%) 15 (7.04%)

RC 9 (3.79%) 9 (4.23%)

CHO+Glutamine 9 (3.79%) 9 (4.23%)∗

Fe 9 (3.79%) 7 (3.29%)

D-aspartic acid 8 (3.38%) 8 (3.76%)

High protein 11 (4.64%) 0

CHO, carbohydrate; Fe, iron; RC, rhodiola crenulata-and cordyceps sinensis.
∗The 9 control group cases listed under CHO+Glutamine were part of studies that included
three arms: CHO, CHO+Glutamine, and placebo. These control participants were used as
a shared comparator for both intervention groups (CHO and CHO+Glutamine) and thus
appear in both categories. This classification does not represent duplicate participants but
reflects the structure of the original study design.

high-risk studies did not materially affect the effect estimates
or treatment rankings, thereby supporting the robustness of our
main conclusions.

4 Discussion

This study aimed to rank interventions for improving
cardiopulmonary fitness and exercise performance at high altitudes
and identify which dietary intervention was most beneficial in
modulating the outcome measures of the participants. Our network
meta-analysis, based on 20 RCTs involving 329 participants,
indicated that different dietary interventions exerted distinct
effects on exercise performance at high altitude. Carbohydrate-
based strategies showed overall benefits, with carbohydrate plus
glutamine supplementation demonstrating advantages in SpO2 and
RPE, while carbohydrate alone was more consistently supported
for VO2max improvement. Iron supplementation ranked highest for
HR and HCT, suggesting potential benefits, although these effects
did not reach statistical significance. In contrast, interventions such
as high-protein, nitrates, antioxidant-rich foods, RC, and d-aspartic
acid showed relatively limited effects.

Cardiopulmonary fitness is a core indicator of an individual’s
exercise performance and adaptability. In high-altitude
environments, various physiological factors such as hypoxia
significantly affect the autonomic regulation of the heart and
lead to a decline in tissue oxygenation, which is reflected by a
decrease in SpO2 and an increase in HR (33). A change in HR
greater than 2.4% is considered the minimally clinically important
difference (MCID), while for SpO2, a widely accepted MCID is
approximately ±4 percentage point (34, 35). VO2max is the gold
standard for assessing cardiopulmonary health. Its improvement
not only contributes to better cardiopulmonary health but also
enhances an individual’s exercise performance (36). According
to previous research, an increase of 1.0 ml/kg/min in VO2max
is associated with a 9% reduction in all-cause mortality risk.
Therefore, this threshold was adopted in the present study as the
MCID to evaluate the clinical relevance of each intervention’s
effect (37). RPE is an effective tool for evaluating exercise intensity
and physiological load during resistance training. A higher score
indicates greater physiological strain caused by exercise and higher
cardiopulmonary regulatory pressure (38). For the RPE, a change
of 1.5 points is generally considered the MCID, indicating a
perceptible and clinically relevant change in exertion levels (34).

Additionally, HCT is positively correlated with SpO2 and
VO2max. This indicator also reflects an individual’s oxygen
transport and cardiopulmonary adaptation (39). Therefore, the
five outcome indicators included in this study provide a
comprehensive assessment system for cardiopulmonary fitness,
effectively reflecting an individual’s physiological status and
adaptability during high-altitude exercise.

The network meta-analysis results of this study confirm that
CHO supplementation effectively maintains the oxidation rate
of energy substrates during high-altitude exercise, significantly
increasing VO2max and reducing RPE scores. When combined
with glutamine, this intervention ranked highest for improving
SpO2 and RPE. Our findings are consistent with several previous
studies. For example, Caris et al. found that, compared to placebo,
CHO supplementation or the combination of CHO and glutamine
significantly reduced RPE scores (12). High-altitude training
exacerbates the challenges of energy metabolism, and athletes face
significantly increased physiological loads compared to sea level,
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FIGURE 2

Risk of bias (ROB) analysis highlighting results in all domains examined within the nine identified studies (A) and overall risk of bias for included
studies (B).
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FIGURE 3

Network meta-analysis of various interventions on cardiopulmonary fitness. (A) Network of interventions for VO2max. (B) Network of interventions for
RPE. (C) Network of interventions for SpO2. (D) Network of interventions for HR. (E) Network of interventions for HCT. (F) Forest plot displaying
weighted standardized mean difference and 95% credible interval for the effect of various interventions vs. placebo on VO2max levels. (G) Forest plot
displaying weighted mean difference and 95% credible interval for the effect of various interventions vs. placebo on RPE levels. (H) Forest plot
displaying weighted mean difference and 95% credible interval for the effect of various interventions vs. placebo on SpO2 levels. (I) Forest plot
displaying weighted mean difference and 95% credible interval for the effect of various interventions vs. placebo on HR levels. (J) Forest plot
displaying weighted mean difference and 95% credible interval for the effect of various interventions vs. placebo on HCT levels. CHO, carbohydrate;
Fe, iron.
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TABLE 3 SUCRA ranking of dietary interventions for cardiopulmonary outcomes at high altitude.

SUCRA % (Rank)

Dietary approaches HR SpO2 RPE HCT

1 2 3 1 2 3 1 2 3 1 2 3

Nitrate 2.20 13.20 32.63 6.29 22.50 28.56 4.82 14.94 54.19 – – –

CHO 0.23 2.03 9.02 4.09 28.70 25.04 25.69 61.68 11.64 – – –

RC – – – – – – – – – 8.74 24.03 25.07

Antioxidant-rich foods – – – – – – – – – 12.54 24.16 16.49

CHO+Glutamine 30.92 44.65 15.41 84.54 7.93 4.83 69.37 21.58 5.73 – – –

High protein 10.02 12.41 14.94 – – – – – – – – –

D-aspartic acid – – – – – – – – – 10.48 18.73 13.08

Fe 56.54 25.32 8.98 – – – – – – 66.67 16.82 7.05

Placebo 0.09 2.39 19.01 5.08 40.86 41.57 0.11 1.81 28.44 1.58 16.26 38.31

CHO, carbohydrate; Fe, iron; RC, rhodiola crenulata-and cordyceps sinensis.

such as shortness of breath, gas exchange disturbances, reduced
cardiac output, and central fatigue due to hypoxic responses
(40). Therefore, practitioners, coaches, and athletes should not
overlook the importance of energy in high-altitude training (41).
In lowland areas, CHO supplements have become very common
among athletes. According to the FAO Food and Nutrition report,
CHO-containing foods are considered to have the most significant
impact on exercise performance (42). CHO are the main energy
substrate for skeletal muscles during prolonged exercise, and as
exercise intensity increases, the proportion of energy supplied by
CHO significantly rises (43). During exercise lasting more than
2 h, CHO intake, compared to placebo, prevents hypoglycemia,
maintains a higher CHO oxidation rate, and enhances endurance
(44). Glutamine, a conditionally essential amino acid, is widely used
in sports nutrition. It can influence respiratory function through
neuroregulatory mechanisms, helping to restore SpO2 (45). The
immunoregulatory effects of glutamine maintain immune cell
activity, ensuring training continuity, while also delaying exercise-
induced fatigue through various mechanisms (46). Furthermore,
the hypoxic environment at high altitudes triggers acute immune
suppression, and prolonged exercise training further exacerbates
this phenomenon, leading to a significant decline in glutamine
concentrations in muscles and plasma. This reduction in glutamine
leaves immune cells without the energy sources needed for
synthesis and nucleotides. As a result, athletes training at high
altitudes are at greater risk of infection (47, 48). Studies have
shown that the combination of glutamine and CHO improves
exercise performance more effectively than glutamine alone (46).
The combined supplementation may enhance performance and
improve metabolic status after high-intensity training by increasing
glycogen reserves, supporting gluconeogenesis, and accelerating
recovery (49). Favano et al. (50) supplemented football players
undergoing intermittent treadmill training with glutamine peptides
and CHO or with CHO alone and observed that compared to
CHO supplementation alone, the combination of glutamine and
CHO resulted in increased exercise time and distance, while
significantly reducing RPE (50). Furthermore, Carvalho-Peixoto
et al. (49) found that the combined supplementation of glutamine

and CHO effectively reduced blood ammonia accumulation and
central fatigue compared to the control group.

The results of the network meta-analysis in this study
further confirm that iron supplementation effectively improves
tissue oxygen supply by increasing hemoglobin concentration
and enhancing blood oxygen-carrying capacity (51). It showed
the highest ranking for post-exercise HR and HCT among the
interventions assessed. As a core nutrient for oxygen transport and
cellular energy metabolism, iron plays a key role in the adaptation
process to high-altitude exercise. The hypoxic environment at high
altitudes significantly stimulates the secretion of erythropoietin,
thereby greatly increasing the body’s demand for iron. Athletes,
due to exercise-related iron loss pathways (including sweat
loss, exercise-induced hemolysis, gastrointestinal bleeding, and
menstrual blood loss in female athletes), face a higher risk of
iron deficiency (41). Research evidence indicates that daily iron
supplementation effectively promotes erythropoiesis during high-
altitude adaptation, particularly for athletes with low baseline
ferritin levels (52).

Dietary antioxidants are among the most common sports
nutrition supplements used to alleviate exercise-induced oxidative
stress. Intense exercise and muscle contractions increase the
production of reactive oxygen species (ROS) and reactive
nitrogen species (RNS), promoting oxidative stress in skeletal
muscles. Therefore, endurance athletes commonly take antioxidant
supplements to minimize exercise-induced oxidative stress, thereby
enhancing recovery and improving athletic performance (53).
Additionally, at sea level, dietary nitrates are also widely used as
a popular supplement among athletes. Nitrate intake significantly
increases the concentration of nitrite (NO−

2 ) in plasma, which is an
important substrate to produce nitric oxide (NO) and a biomarker
in its circulation. As a key signaling molecule, NO regulates exercise
performance through various physiological mechanisms, including
enhancing skeletal muscle contraction efficiency, modulating
mitochondrial respiration and energy metabolism, and improving
local tissue blood flow. These effects synergistically promote oxygen
utilization efficiency and metabolic stability, thereby enhancing
exercise endurance and overall performance (54, 55). However, in
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FIGURE 4

League table displaying pairwise comparisons among various interventions on VO2max (A), RPE (B), SpO2 (C), HR (D), and HCT (E). Statistically
significant differences are bolded (**). CHO, carbohydrate; Fe, iron; **P < 0.01.

high-altitude environments, the effects of some antioxidants are not
as effective. Our study showed that nitrate supplementation did not
demonstrate significant advantages across several indicators. Our
previous meta-analysis on the effects of nitrate on cardiopulmonary
fitness at high altitudes also showed that while it increased
serum nitrite levels, it had no effect on cardiopulmonary
fitness (56). Hennis’ study similarly indicated that dietary nitrate
supplementation did not significantly improve exercise efficiency
in high-altitude environments (1). Rhodiola rosea and Cordyceps
sinensis are widely found in high-altitude areas in the plateau and
mountain regions. Both plants are popular traditional medicines
in Europe and Asia. Studies have shown that Rhodiola rosea is
often used as an ergogenic aid to enhance endurance performance
and antioxidant capacity, while Cordyceps supplementation has
been shown to stimulate vasodilation, possibly by stimulating NO
release, improving tissue oxygen utilization, and thereby having the
potential to enhance endurance performance (17). However, when

these two supplements were combined, similar to antioxidant food
supplementation, the intervention did not show significant effects.
The primary reason for this may be the small sample sizes in the
related studies, as most interventions were included in the analysis
for only 1–2 indicators, which led to reduced statistical power and
made it difficult to fully assess their true effects. This finding is
consistent with the studies of Koivisto et al. and Chen et al., which
showed no significant effect of antioxidant food supplementation
or Rhodiola rosea combined with Cordyceps on HCT (16, 17).
This result is similar to high-protein supplementation or D-aspartic
acid supplementation, where the effects on high-altitude exercise
performance were not significant. Protein is typically considered
a low-efficiency fuel source, contributing little to the total energy
demands of exercise. For example, Macdermid and Stannard
found that cyclists on a high-protein diet took significantly
longer to complete a time trial compared to those on a low-
protein/high-CHO diet (57). D-aspartic acid may improve muscle
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FIGURE 5

Surface Under the Cumulative Ranking Curve (SUCRA) illustrating the cumulative probability of each intervention being among the best in terms of
RPE (A), SpO2 (B), HR (C), and HCT (D) levels. CHO, carbohydrate; Fe, iron.

function by regulating the hypothalamic-pituitary-gonadal axis
and increasing plasma testosterone levels, potentially enhancing
exercise performance (58). Płoszczyca et al. found that continuous
supplementation of d-aspartic acid did not affect testosterone,
cortisol, or hematological responses during training in athletes
(14). This may be because the shorter duration of D-aspartic
acid supplementation was insufficient to observe changes in
hormone secretion.

To the best of our knowledge, this is the first study to
systematically assess the ranking of different dietary interventions
on high-altitude exercise performance and cardiopulmonary fitness
using network meta-analysis methods. The main strength of
this study lies in its rigorous methodological design, which
comprehensively evaluated multiple key physiological indicators
related to high-altitude exercise. The findings clearly identified
the three promising nutritional intervention strategies, providing
practical guidance for high-altitude trainees. However, there are
some limitations. For instance, the overall sample size across the
included RCTs was relatively small, with most trials enrolling
only a limited number of participants. Such constraints inevitably
reduce the statistical power of the analyses and may compromise
the stability and precision of the pooled estimates. Under
these conditions, both false-negative and false-positive findings
become more likely, and some observed effects may reflect
random variation rather than consistent clinical benefit. Another
key limitation of this review lies in the clinical heterogeneity
among the included studies. Specifically, the altitude of exposure

varied considerably, ranging from moderate to extreme altitudes,
which may have triggered different physiological adaptations.
Participants engaged in diverse forms of exercise, such as running,
cycling, hiking, and mountaineering, each imposing distinct
metabolic and cardiovascular demands. The duration of dietary
interventions also varied, from several days to multiple weeks,
adding further variability to exposure intensity and adaptation.
Additionally, approximately half of the studies were conducted in
real high-altitude environments, while the remainder employed
simulated hypoxic conditions. These settings differ substantially
in terms of environmental stressors such as temperature, terrain,
and barometric pressure, which may influence the efficacy of
nutritional interventions. Collectively, these variations may have
contributed to inconsistencies in effect estimates and complicated
the interpretation of outcomes. However, due to the limited
number of included studies, formal subgroup analyses could not be
performed, representing a constraint in addressing and interpreting
potential heterogeneity. Additionally, the current data primarily
come from male athletes and active individuals with a training
background, which may not fully reflect the impact of gender
and training background differences on intervention outcomes.
Therefore, the results may be more applicable to trained or active
male individuals and may not be fully generalizable to a broader
population. Moreover, although SUCRA provides a convenient
summary of the relative ranking of different interventions, its
interpretation should be approached with caution. SUCRA values
are easily influenced by sample size, network structure, and

Frontiers in Nutrition 14 frontiersin.org

https://doi.org/10.3389/fnut.2025.1658950
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2025.1658950

FIGURE 6

Funnel plot detailing publication bias in the studies reporting the impact of dietary nitrate on VO2max (A), HR (B), SpO2 (C), RPE (D), and HCT (E) levels.
CHO, carbohydrate; Fe, iron; RC, rhodiola crenulata- and cordyceps sinensi.

between-study heterogeneity, and they do not directly convey the
magnitude or clinical relevance of treatment effects. Some NMAs
have attempted to report uncertainty intervals for SUCRA (SUCRA
CrIs), but when the analysis is based on only a few small studies, the
95% CrIs are often extremely wide, sometimes spanning the entire
range from 0 to 100% (59). This indicates considerable instability
and imprecision in the ranking results. Therefore, SUCRA rankings
should be regarded as suggestive rather than definitive evidence.
Taken together, these limitations mean that the conclusions of the
present review should be interpreted with caution, and the overall

certainty of evidence is low to moderate. Thus, the effectiveness
of targeted dietary interventions in enhancing cardiopulmonary
fitness and exercise performance at high altitudes remains a topic
of ongoing debate. Future RCTs with larger sample sizes, longer
follow-up periods, and more diverse populations (including women
and non-athletic individuals), as well as standardized protocols
for exercise modality, exposure duration, and supplementation
strategies, are urgently needed to confirm and refine these findings,
thereby providing more reliable evidence for high-altitude sports
nutrition interventions.
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TABLE 4 Egger’s test for publication bias in dietary interventions on
cardiopulmonary outcomes at high altitude.

Outcome P-value

VO2max 0.3762

HR 0.3774

SpO2 0.7043

RPE 0.1147

HCT –

TABLE 5 Deviance information criterion (DIC) comparison between
consistency and inconsistency models for each outcome.

Outcome Inconsistency Consistency

VO2max 14.356 19.980

HR 57.962 43.721

SPO2 49.926 28.138

RPE 45.776 39.506

HCT 16.040 16.047

5 Conclusion

The eight dietary strategies evaluated across 20 randomized
controlled trials involving 329 participants, carbohydrate
supplementation significantly improved VO2max and reduced
RPE, with the observed increase in VO2max exceeding the MCID,
indicating potential clinical relevance. Additionally, carbohydrate
combined with glutamine ranked first in improving SpO2 and
RPE, while iron supplementation ranked first for enhancing HR
and HCT. However, these latter interventions did not demonstrate
statistically significant advantages. Moreover, antioxidant-rich
foods, nitrates, high-protein diets, and RC showed limited
effects. Overall, carbohydrate-based strategies appear to be the
most promising for supporting cardiopulmonary function and
exercise performance at high altitude. Although the findings
provide a reference for high-altitude sports nutrition strategies,
the conclusions are limited by the number of studies and
sample heterogeneity. Further high-quality studies are needed to
validate these findings and optimize nutritional interventions for
high-altitude training populations.
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