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bioaccumulation of arsenic
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Background: Arsenic (As), a class | carcinogen, affected 200 million people
globally either through consumption of contaminated groundwater or food
crops especially rice, leading to acute or chronic health issues including fatigue,
respiratory diseases, liver fibrosis, and cancer.

Research gap: For reclamation, majority of the efforts focused on single
application of a particular amendment in reducing As levels in rice ecosystems.
Methodology: This particular article comprehensively studied package of those
amendments being used in reducing the bioaccumulation of As.

Results: Consortia based package involving Si-rich agro-wastes (intact waste,
compost, ash etc.) and agriculturally important microbes have the potential to
reduce translocation of As to the above ground biomass by various mechanisms
viz., competitive inhibition of transporters, iron plaque formation, anti-oxidant
defense system, microbial oxidation etc. Rice straw compost (RSC) and husk
composts (RHC) which are rich sources of Si (7-10%), Fe (700-900 ppm), Zn
(40-60 ppm) and P (0.35-0.5%) have been explored owing the ability of Si
and P to hinder the uptake of highly toxic As (Ill) and As (V) within plants by
competitively inhibiting LSil and LSi2 for Si, and Pht4 and Pht8 transporters for
P uptake with additional Fe released from amendments can form Fe-plaques
that might work like As filters. Agro-wastes combined with silicate solubilizing
bacteria significantly reduced As loading in final produce (25-52%), thereby
reducing dietary exposure (ADI) even up to one third compared to control.
Conclusion: This comprehensive review on understanding and validation of
the mechanism provides a valuable insight in formulating a feasible As toxicity
management strategy.
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1 Introduction

Generation of agro-wastes is a ground reality by default with the extensive growth of
agricultural productivity. The world population has been increased from 2.49 billion in
1950 to 8.19 billion in 2025. It is predicted to reach 9 billion by 2050 and to 11 billion by
2,100, respectively (1). Therefore, future food security poses a significant issue. There has
been a dramatic increase in crop and livestock production to meet the intensive demands of
a growing population, which has led to the formation of agro-wastes (2). Rapid population
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growth, economic prosperity, and an increase in agro-wastes
production capacities have all been witnessed in Africa, China, and
India within the past century (1). India produces around 850 Mt of
agro-wastes annually which makes it the second largest producer
of agro-wastes after China. Among the total agro-wastes generated
by India larger portion are coming from paddy straw (130 Mt)
(3). India’s food grain production rose by 6% to a record 353.2
million ton (Mt) in the 2024-25 crop year (July-June) compared
to previous year because of a significant rise in rice, wheat, pulses
and oilseed output. This huge amount of production results in
huge amount of waste materials. Additionally, there are public
health concerns regarding the air pollution caused by the practice
of burning rice residue, often known as parali (4). Greenhouse
gases (GHGs) such as carbon dioxide (CO,), nitrous oxide (N,O),
and methane (CHy) are produced when agricultural residue is not
disposed of properly and are harmful to both humans and the
environment (5). Whether it is waste material or a huge resource
that is the main concern. The effective utilization of this vast
volume of agricultural waste as a resource rather than a liability
holds immense potential for advancing sustainable agriculture and
contributing to societal wellbeing. Utilization or conversion of
this huge resource is a tremendous challenge with a resultant
impairment of natural resources due to unsustainable practices.
The substantial generation of agro-wastes facilitates the reduction
of heavy metal contamination in plants due to its intrinsic makeup.
This review concentrates on arsenic among all heavy metals. Agro-
wastes, particularly rice straw, rice husk, maize cob and sugarcane
bagasse, possess a substantial amount of silicon. Utilizing this
concentrated silica through the incorporation of agro-wastes into
the soil might diminish arsenic bioaccumulation and enhance plant
resilience against diverse biotic and abiotic stressors.

Several management strategies were proposed to maintain soil
As bioavailability and grain As content below the recommended
limits (6) as arsenic has impacted 200 million individuals
worldwide from the ingestion of contaminated groundwater or
food crops, particularly rice (7), resulting in acute or chronic health
complications such as weakness, respiratory ailments, liver fibrosis,
and cancer (8-11). However, majority of the efforts focused on
single application of a particular amendment. Among different
physical, chemical and biological remediation options implied,
application of silicon (Si) emerged as a potential strategy in
reducing the Asload in grains (12, 13). Si and As(III) share the same
transporters (Lsil and Lsi2) for their uptake and movement within
the plant. Si can competitively inhibit the transporters and reduce
the uptake of As. Application of Si can enhance the iron plaque
formation and also reduce the conversion of short-range order
ferrihydrite to goethite or siderite or other crystalline compounds
of iron oxides or hydroxides present in Fe-plaque. Application
of Si facilitate rhizosphere oxygenation by enhancing the radial
oxygen loss which in turn induces microbial oxidation of Fe?*
to Fe** leads to more formation of Fe-plaque around the roots
(14). This Fe-plaque has the potential of trapping As by adsorption
or co-precipitation mechanism (15). A lot of studies described
that application of inorganic silica sources (CaSiOs3, NaSiO3, Si
nano-particles etc.) reduced mobility of As from soil to plant.
But exploring Si-based agro-wastes as a potential source of Si is
rare and not exclusively studied. Moreover, these wastes are a rich
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source of iron, zing, carbon, cellulose, lignin, and various inorganic
or organic chemicals. These compounds play a specific role in
restricting arsenic absorption.

Co-application of these Si-rich agro-wastes with silicate
solubilizing microbes (SSM) can open a new path in reducing the
As loading in final produce, thereby reducing dietary exposure up
to one third compared to control. Si is abundantly available in
earth crust (27.06% by weight) but often insufficiently available
for crops, as plants generally uptake Si as monosilicic acid
(H4SiO4). Higher plants especially rice removes Si rapidly, requires
its supplementation. Although aqua soluble silica fertilizers like
CaSiO3, NaSiOs3, Si nano-particles provides large amount of Si, it
can present a cost challenge for conventional agricultural practices.
There is rare occurrence of negative effect of Si-fertilizer application
(16). In light of high cost of inorganic Si-fertilizers, there is a
much need of thinking viable, sustainable alternative strategies to
address the issue of remediating As bioaccumulation. Application
of Si-rich agro-wastes already resulted in a reduction of 20-
40% of As concentration in rice grains (10). The potential of
resistant SSM presents a practical, ecological, sustainable, and
economical method to increase Si availability for crops by affecting
the complex process of Si cycling. The solubilization of silica has
been enhanced by SSM by many methods, including the formation
of organic and inorganic acids, extracellular polysaccharides,
ligands, or via nucleophilic assault. The microorganisms facilitate
the solubilization of potassium (K) and Si, rendering them a
viable alternative for bio-fertilization and potentially reducing
reliance on synthetic fertilizers. The function of As-resistant
silicate solubilizing bacteria (SSB) in reducing As uptake by rice
necessitates further exploration, despite a rather comprehensive
understanding of the role of bacteria associated with rice in the
solubilization of silicate minerals (17, 18). New insights into the
complexities of As absorption, dispersion, and the potential impact
of Si highlight the importance of this characteristic. The dual
influence of Si on As accumulation in rice may be amplified by
As-resistant SSB, according to recent results. Implementing SSB-
inoculum into simple hydroponic systems reduced As uptake by
rice plants. This was achieved by increasing the availability of Si
and encouraging root-based competition between As and Si for
aquaporin transporters (19). Research conducted by Bist et al. (20)
concluded that the silicate-solubilizing Bacillus amyloliquefaciens
effectively reduced As levels in rice grains.

This review paper examines the integration of SSM and Si-
rich agro-wastes to evaluate their dual efficacy in mitigating As
levels in the final product. It highlights the potential of SSM
and Si-rich agro-wastes, either individually or in conjunction,
as a cost-effective and environmentally sustainable alternative to
commercially available Si fertilizers. This comprehensive review on
understanding and validation of the mechanism provides a valuable
insight in formulating a feasible As toxicity management strategy.

2 Arsenic contamination and food
security

Arsenic, a toxic metalloid naturally present in the Earth’s crust,
has become an increasingly significant threat to agriculture due
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to anthropogenic sources such as the use of As pesticides, mining
activities, and irrigation with As-contaminated groundwater (21).
One of the most critical pathways through which As impacts
human health indirectly is by altering the nutritional quality of
crops (22). This degradation begins at the soil-root interface,
where As disrupts nutrient uptake, mobility, and assimilation,
leading to deficiencies in essential macro- and micro-nutrients
in edible plant parts. This section reviews in detail how As
interferes with nutrient acquisition and the resulting effects on crop
nutritional profiles.

2.1 Arsenic speciation and its interaction
with nutrient pathway into plants

Arsenic exists primarily in two inorganic forms in the soil:
arsenate (As®™) and arsenite (As®T), with methylated organic
forms like monomethylarsonic acid and dimethylarsinic acid
found to a lesser extent (23). In aerobic soils, arsenate (As’T)
predominates and structurally and chemically mimics phosphate
(POi_), allowing it to compete for absorption via phosphate
transporters in root cells (PHT1 family). This phosphate pathway
mimicry leads to a physiological phosphorus deficiency even in
P-sufficient soils (24). Under anaerobic circumstances, such as
inundated paddy fields, As>* emerges as the predominant species
and infiltrates plant roots via nodulin 26-like intrinsic protein
aquaporin channels (25). This absorption pathway indicates that As
directly disrupts the transport and bioavailability of key nutrients,
starting with phosphorus and extending to others via various
indirect and regulatory processes (Table 1).

The competitive interaction between arsenic and essential
nutrients—especially phosphorus, nitrogen, and iron—not only
hampers plant health and productivity but also diminishes the
nutritional quality of food crops. These interactions are critical
in arsenic-exposed regions, where targeted nutrient management
could mitigate arsenic toxicity and improve food safety.

2.2 Disruption of root architecture

Roots are the initial organs that interact with metals and
metalloids in the soil; hence, various morphological modifications
of root tissues may be anticipated (Figure 1). As toxicity causes
morphological changes in root systems, including reduced root
length, branching, and surface area. These alterations limit the
physical capacity of the root to explore soil nutrients, thereby
compounding the problem of nutrient deficiency (26). Water
lettuce (Pistia stratoides) exhibited root loss with exposure to As
(27). Talukdar (28) observed a threefold and two and a half-
fold decrease in root length and root dry weight, respectively,
in seedlings of Phaseolus vulgaris. The application of As led to
a notable brown discoloration of the roots, accompanied by a
reduction in the development of lateral roots. The presence of
As at a concentration of 2mg L™! led to the total eradication
of lateral roots, leaving merely a few lateral root primordia in
the cortex (29). The number of lateral roots decreased, becoming
concentrated in the basal region of the roots, alongside a darkening
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of the roots in soybean (Glycine max) plants subjected to As
treatment (30).

Although the root apical meristem, safeguarded by the root
cap, is pivotal in influencing subsequent root growth, anatomy,
morphology, and functionality (31, 32), it is the initial segment
of the root that directly encounters toxic soil conditions and
is consequently vulnerable to As exposure. Exposed roots often
preserved the functioning of the root apical meristem concerning
cellular division. The genotoxic effects of As on onion root growth
were described by Gupta et al. (33). This was demonstrated by
the increased frequency of micronuclei inside the intermediate
phase of root meristem cells. There have been cases when arsenic’s
negative impacts on tap root lateral root primordia’s growth and
development have led to an increase in their activation along the tap
root axis, which in turn has changed the root morphology. Arsenic
and cadmium, according to Ronzan et al. (34), both facilitated the
growth of lateral roots, which were associated with altered and
weakened meristem organization. In addition, the uneven creation
of the quiescent center and aberrant cell divisions in the root apical
meristem prevented the emergence of several lateral root primordia
from the tap root. These changes may subsequently lead to various
anatomical alterations in older tissues (35).

The rhizodermis is the first root tissue affected by arsenic (As)
contamination, disrupting water and nutrient uptake (35). Arsenic
alters root hair development (36), often reducing or eliminating
root hairs in species like Phaseolus aureus (37) and P. vulgaris
(28), while Pteris vittata, a known As hyperaccumulator, shows
minimal morphological changes (38). Cortical tissues—exo-, meso-
, and endodermis—exhibit significant damage under As exposure
(35), including cell disintegration, reduced parenchyma thickness
(30), and dark deposit accumulation, as observed in Glycine max
and Cajanus cajan (29). Structural changes also affect the central
cylinder and vascular tissues. Brassica juncea showed increased
cylinder diameter, while B. oleracea showed a decrease (39). As
toxicity caused xylem deformation and vascular tissue destruction
in P. vulgaris and C. cajan. Notably, dark deposits in vascular tissues
were more pronounced under As(III) than As(V) (30). These
findings highlight the species-specific morphological responses and
the detrimental impact of arsenic on root structure and function
(Figure 1).

2.3 Changes in stem tissue anatomy

The stem is the part of the plant organ that links the roots with
the primary photosynthetic organs, which are the leaves. One of
the primary roles of the stem is to support and transport nutrients
to leaves and blossoms. Metals and metalloids are conveyed to
aerial organs via vascular tissues; hence, the vasculature and its
environs are often the locus of notable morphological modifications
within stem tissues (35). Sclerenchymatous cells next to the phloem
become desiccated and limp after As exposure, which impedes
water transport and causes abnormalities in the phloem cells of the
stem (40). The introduction of As led to the formation of crystals
and druses within the epidermal layer, vascular bundles, cortex, and
pith region of the stem (28).
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TABLE 1 Interaction of arsenic with nutrients and its implication on plant and human health.
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Nutrient Mechanism of As interaction with the Implication on plant  Implication on References
interaction nutrient health human health
Nitrogen (N) Arsenic suppresses nitrate transporters (notably NRT1.1and | Reduced concentrations of Populations consuming these (124, 255-257)
NRT2.1 in cereals), decreases nitrate reductase and nitrite total nitrogen, free amino crops may experience reduced
reductase activities by altering their gene expression and acids, and protein in dietary protein intake leading
promoting reactive oxygen species (ROS) accumulation and consumable tissues, impaired to protein malnutrition,
interferes with ammonium incorporation into amino acids. amino acid and protein impaired growth, weakened
Furthermore, As interferes with the incorporation of biosynthesis. immunity, and lowered
ammonium into amino acids via glutamine synthetase and nutritional status.
glutamate synthase, leading to reduced pools of glutamine
and glutamate—precursors for the biosynthesis of all other
amino acids.
Phosphorus In aerobic soils, arsenate (As**) predominates and Impaired cellular energy Low phosphorus in foods can (43)
(P) structurally and chemically mimics phosphate (PO} ), and metabolism, reduced active increase risks of bone and
competes for phosphate transporters (PHT1 family); nutrient transport and dental problems, poor energy
disrupts ATP formation by substituting phosphate, creating metabolic activity. metabolism, and general
unstable ADP-As intermediates, which decompose rapidly weakness, particularly among
and dissipate cellular energy. groups like children, pregnant
women, and those with
limited dietary diversity
Iron (Fe) Arsenic downregulates iron transporter genes (IRT1, FRO2), As induced chlorosis in fully Iron-deficiency anemia (258)
causes oxidative stress that mobilizes iron, depleting Fe in developed young leaves, lower | (fatigue, weakened immunity,
edible parts. iron content in edible parts developmental and cognitive
(such as grains, fruits, and problems in children), greater
vegetables), directly reducing susceptibility to arsenic
their nutritional value. toxicity, which impacts the
skin, cardiovascular system,
neurological function, and
increases cancer risk
Zinc (Zn) Zn uptake is inhibited through both competitive interactions Lower Zn concentration in Frequent illness or infection, (259)
at root uptake sites and indirect effects on membrane straw, roots, grains; increased slow wound healing, reduced
permeability. Zinc deficiency due to As has been associated ROS, DNA modification, DNA synthesis and
with reduced activity of carbonic anhydrase and superoxide reduced growth hormone neurotransmission, hair loss,
dismutase enzymes essential for crop health and nutritional efficiency like auxins, skin rashes, white spots on
density gibberellins, and carotenoids. nails
Manganese As interferes with Mn acquisition by disrupting Mn Damaged chloroplast Reduced fertility, impaired (260)
(Mn) transporter expression and root oxidation capacity, which is structure, lowers chlorophyll bone development, and
essential for converting Mn*? into absorbable forms content, reduces net metabolic disturbances,
photosynthesis, and decreases neurodegenerative disorder
soluble sugar concentrations
Calcium (Ca) Specific Ca®* signals are generally detected by various Ca®* As stress causes cytosolic Weak, brittle bones with risk (44, 261)
sensors such as CALCIUM-DEPENDENT PROTEIN acidification, disrupting of osteopenia and
KINASES (CPKs), CALMODULIN (CaM), CALCINEURIN calcium signaling pathways osteoporosis; muscle cramps,
B-LIKE PROTEINS (CBLs), CALMODULIN-LIKE and causing cellular leakage of | spasms, twitching; dental
PROTEINS, and their interacting kinases, called CBL Ca*" ions which ultimately issues like enamel weakening;
INTERACTING PROTEIN KINASES (CIPKs). These reduces cell wall integrity and potential cardiovascular
sensors then translate the signals into metabolic and cell membrane stability effects.
transcriptional responses. In response to arsenic stress, the
differential expression of CaMs indicates a potential role for
Ca”*-dependent signaling in the arsenic tolerance
mechanisms of plants. In this context, Calcium-Dependent
Protein Kinases (CPKs) are key regulatory proteins that
typically play a role in decoding Ca®" signals triggered by As
stress.
Magnesium As reduces Mg availability through altered transporter Reduced photosynthetic Abnormal heart rhythm (26)
(Mg) function and membrane fluidity. Although docking efficiency and nutritional (arrhythmia), palpitations,
interaction studies between 60CE protein with both Mg?* development and increased risk of cardiac
and As>* showed a better link with As®>* via hydrogen bond, arrest, obesity, insulin
it can damage the plant more effectively with Mg deficiency. resistance, metabolic
syndrome, and type 2
diabetes.

2.4 Modifications in leaf tissue anatomy

maintain physiological functions throughout all plant tissues. The

predominant approach employed by many plants involves limiting

The leaf functions as the central organ of photosynthesis, the absorption and movement of heavy metals and metalloids to

an essential process that generates the energy required to  aerial structures, thus protecting photosynthetically active tissues
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FIGURE 1

Arsenic contamination impacts food security and increases cancer risk for humans and animals by altering nutrient mobilization from soil to plants
and affecting the structural organization of various plant parts. Abbreviation: As, Arsenic.

from the adverse impacts of these toxic elements (35). Numerous
findings indicate that leaf thickness has diminished as a result of
the inclusion of metalloids. This was noticed as a result of the
presence of As (39, 41). The narrowing of xylem channels (Figure 1)
in the leaves of various plant species due to As exposure has been
documented (41, 42).

2.5 Impact on plant metabolism

2.5.1 Impact on photosynthesis

According to various research, As accumulation greatly hinders
photosynthesis process (43, 44) (Table 2; Figure 2). According to
the mainstream view, the previously described inhibition is linked
to ROS accumulation which is caused by As and their discrepant
effect on basic photosynthetic mechanism. Kalita et al. (45)
posited that, contrary to conventional understanding, oxidative
stress resulted from the suppression of photosynthesis at lethal
concentrations of As. Accumulation leads to a substantial decrease
in chlorophyll concentration (46, 47). While As has a greater impact
on chlorophyll synthesis, it has a smaller effect on the degradation
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of carotenoid pigments, which is linked to the reduction of
chlorophyll in As-grown plants (48, 49).

2.5.2 Impact on protein, lipid, and carbohydrate
metabolism

The presence of As adversely impacts the metabolic
processes  (Table 2;
as sugars and starches. The incorporation of As in Oryza

Figure 2) of wvital carbohydrates, such
sativa led to a decrease in both reducing (hexoses) and non-
reducing (sucrose) sugars in the shoots (50), suggesting a
suppression of sucrose synthesis in comparison to hexose
monophosphate. Its phytotoxicity was enhanced because it
significantly suppressed the functions of enzymes that break
down starch, namely starch phosphorylase and «- and pB-
amylase. On the other hand, when stress was applied to Oryza
sativa and Phaseolus aureus seedlings, it increased starch
phosphorylase activity, leading to higher levels of soluble
sugars (51).

The stress induced by As leads to lipid oxidation, a process
considered significantly harmful to plants. Cellular electrolyte
leakage and membrane degradation were significantly enhanced
in several plant species that were subjected to As stress (52-54).
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TABLE 2 Effects of arsenic phytotoxicity on plant metabolism.

10.3389/fnut.2025.1657640

‘ Impact on plant metabolism Observed effect under As stress  Proposed mechanism References
Photosynthetic Chlorophyll a (Chl a) Decline in Chl a concentration and the Suppression of d-aminolevulinic acid (262, 263)
components inhibition or diminished availability of dehydrogenase activity, elevated activity of

precursors such as d-aminolevulinic acid chlorophyllase, Mg** replacement by As(III) in
tetrapyrrole ring
Chlorophyll b (Chl b) Inhibition of activity Oxidative damage, reduction in Chl a content (48)
Carotenoids Variable: decrease or increase Inhibition of precursor synthesis/ROS-induced (264-266)
non-enzymatic antioxidant response
PSII Reaction center inactivation, lowered Oxidative damage to thylakoid proteins and D1 (48, 267-269)
plastoquinone reduction, decreased OJIP protein turnover, blocking effect on the donor
kinetics including Fv/F0 values end of PSIT
Dark reaction Minimal impact Primary target is light reaction components (270)
Protein metabolism Reduction in total protein content, enzyme As binding to sulfhydryl groups; inhibition of (53,59)
inhibition, protein carbonylation nitrate/nitrite reductases; ROS-induced
oxidation of amino acid residues
Lipid metabolism Lipid peroxidation, membrane damage, altered ROS-induced peroxidation; altered expression (53, 56)
lipid biosynthesis gene expression of lipid synthesis genes; cytotoxic radical
production
Carbohydrate metabolism Decrease in reducing and non-reducing sugars; Suppression of sucrose synthesis; inhibition of (50,51)
inhibition of starch-degrading enzymes starch phosphorylase, o- and p-amylase; altered
hexose monophosphate pathway

FIGURE 2

aminolevulinic acid‘
dehydrogenase

Cysteine o} OHOH
(Cvsz_ ;
-1 Reducing and
:t'i H W non-reducing
sugar

amyls

Cytotoxic
radlcal
productlon

As affects
ATP and
damage
DNA as it is
analogous to
Pi

Cytoplasm

The effect of arsenic phytotoxicity on photosynthetic pigments, protein, carbohydrate and lipid molecules. It is shown how arsenic can compete
with Pi in the metabolic processes that require Pi. Abbreviations: Arsenic (As), Inorganic arsenic [As (Il)], Arsenite [As(II1)], Arsenate [As(V)], Phosphorus
(Pi), Reactive oxygen species (ROS), Glutathione (GSH), Oxidized glutathione (GSSH), Phytochelatin (PC), Adenosine triphosphate (ATP),
Deoxyribonucleic acid (DNA).
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According to Clemens and Ma (55), the peroxidation of lipid
molecules within cellular and organelle membranes is influenced
by the elevated level of ROS caused by As. In the end, the cytotoxic
radicals that are mediated by lipids damage the functionality of
cells or tissues. It has been discovered that As exposure alters
the mechanism for lipid synthesis. Significant changes in the
expression of 59 genes associated with lipid formation were seen
in a comparative transcriptome analysis of rice following exposure
to As(III) treatment (56). Despite evidence that As affects genes
involved in lipid formation, studies elucidating how As affects
plant lipid levels are scarce. The strong binding of inorganic As
compounds to sulfthydryl groups in proteins causes damage to plant
cell membranes and eventual cell death, significantly interfering
with plant metabolism. The total protein content in plants is
reduced when As is present (53). The external introduction of
As impeded the activity of nitrate and nitrite reductase, enzymes
integral to the reduction of protein concentrations in plants.
The disintegration of proteins into individual amino acids is
primarily facilitated by proteases and peptidases. A reduction
in exposure leads to diminished protease levels, subsequently
hindering the growth and development of plants (57). The
trivalent form of As can bind directly to the sulthydryl groups
of proteins and obstruct several biological pathways; in contrast,
the pentavalent form acts as a phosphate analog and disrupts
phosphorylation activities (58). According to Fedorova et al. (59),
proteins undergo carbonylation changes due to an overabundance
of ROS produced by As stress. Proteins incorporate carbonyl
(C=0) groups either directly or indirectly via interactions with
reactive carbonyl species or the oxidation of certain amino acids
(60). When their side chains are oxidized, some amino acids that are
known to be proteinogenic—including arginine, histidine, lysine,
proline, threonine, and tryptophan—are able to form carbonyl
groups. Biomolecular impairment, increased toxicity, and the
induction of apoptotic cell death are caused by the increased
presence of carbonyl compounds, which are a result of reactive
carbonylated species and their interactions with nucleophilic
substrates (61).

2.6 Impact on soil microbial activity

Arsenic (As) contamination in soils presents a substantial
risk to the ecological viability of agroecosystems by adversely
affecting microbial populations, enzymatic activity, and nutrient
cycling. These biological disruptions impair soil health and
diminish plant productivity, thereby jeopardizing long-term food
and nutritional security. Li et al. (62) documented a significant
alteration in microbial community composition due to As stress,
characterized by a rise in Gemmatimonadota and a decrease
in Bacteroidota and Nitrospirota. In the arsenic-contaminated
soils of the Bengal Delta Plain, significant alteration of microbial
species including Alpha-, Beta-, and Gamma-proteobacteria,
Actinobacteria, and Acidobacteria was reported (63). These
groupings, functionally associated with soil nutrients such as
nitrogen, potassium, phosphate, and iron, exhibited a negative
correlation with increasing arsenic levels. Evaluations of microbial
activity using basal respiration, substrate-induced respiration
(SIR), and fluorescein diacetate (FDA) hydrolysis demonstrate
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persistent declines in arsenic-contaminated soils. Ghosh et al.
(64) documented an elevation in the microbial metabolic quotient
(qCO3), signifying increased respiratory stress in relation to
microbial biomass carbon. The decline in FDA hydrolysis was
ascribed to the inhibited production of hydrolyzing enzymes
(protease, lipase, esterase) and diminished fluorescein absorption
and release in microbial cells (65). Soil enzyme activities—
specifically B-glucosidase, arylsulfatase, urease, and both acid and
alkaline phosphatase—diminish markedly with elevated labile As
concentrations. Bhattacharyya et al. (66) exhibited significant
negative associations between these enzymatic activities and
exchangeable or water-soluble arsenic components. The activity
of alkaline phosphatase is notably sensitive because of the
structural resemblance between As(V) and phosphate, resulting in
competitive inhibition (67). Nonetheless, urease exhibited merely
a 33-38% decrease, suggesting a diminished direct reliance on
arsenic concentrations (68). Environmental variables additionally
influence these consequences. Enzyme activities were significantly
inhibited under anaerobic circumstances, like those in paddy
fields, compared to aerobic soils, owing to microbial sensitivity
to oxygen (69). Anaerobic respiration with low molecular
weight organic acids (e.g., acetate, formate) facilitates arsenic
desorption and impairs enzymatic activity (70). The microbial
reduction of iron oxyhydroxides increases arsenic solubility at low
redox potential, intensifying enzyme inhibition, particularly for
glucosidase (68).

Soil microbial communities demonstrate differing tolerances
to arsenic species. Guan et al. (71) discovered that As(III)-
tolerant bacteria and actinomycetes are present in lesser quantities
than their As(V)-tolerant equivalents, but fungus exhibited
comparable resistance to both As(III) and As(V), indicating
superior fungal resilience. Despite these detrimental impacts,
certain microbes possess arsenic-detoxifying abilities, such as
As(V) reduction, As(III) oxidation, methylation, or sequestration
in biomass (Section 3.2). These groups can reduce arsenic
mobility and bioavailability, indirectly reducing plant uptake
of As. Harnessing such microbial processes—either naturally
occurring or through bioaugmentation—can complement other
remediation strategies.

As both microbial processes and soil amendments can influence
arsenic speciation and mobility, integrating microbial remediation
with silicon (Si) supplementation offers a synergistic approach.
While Si reduces arsenic bioavailability through adsorption,
precipitation, and competition with phosphate uptake, beneficial
microbes can further enhance this effect by immobilizing or
transforming arsenic into less bioavailable forms. Together,
they form a dual strategy for mitigating As bioaccumulation
in crops.

3 Role of Siin mitigating As
bioaccumulation

Silicon, although not essential for plant growth, confers
numerous physiological benefits and interact in the soil
environment through several mechanisms, primarily affecting
bioavailability of As and its uptake by plants.
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3.1 Si-mediated iron plaque—As interaction
in plants

The interaction between Si, iron (Fe) plaques, and As at
the root-soil interface is a critical process influencing As uptake
and toxicity in wetland crops, especially rice (Figure 3). Rice
cultivated in inundated soil conditions, along with other aquatic
flora, develops a Fe plaque on the root surfaces as a result of
pronounced redox gradients from the roots to the reduced bulk
soil. The diminished bulk soil is defined by the reductive dissolution
of iron oxide minerals, leading to elevated Fe(II) concentrations in
the soil solution (25, 72). Oxygen escaping from the expanded gas
cavities of aerenchyma tissue into the rhizosphere, known as radial
oxygen loss, significantly influences the redox chemistry in close
proximity to the root (73, 74). The oxic rhizosphere facilitates the
fast oxidation of porewater Fe(II) to insoluble Fe(III) precipitates
on the exterior of roots, predominantly at root tips and lateral
root junctions (75, 76). Figure 4 depicts the sequential formation
of Fe plaque in distinct stages. This Fe plaque is predominantly
made up of the Fe oxyhydroxides ferrihydrite [Fe(OH)3;-nH,O],
lepidocrocite (y-FeOOH), and goethite (a-FeOOH) (77, 78).
The elevated zero charge potential of FeOx (>7) facilitates the
formation of robust inner-sphere adsorption complexes with
various anions and promotes adsorption at edge and corner sites
(79). Porewater containing arsenate [As(V), H3AsO4] and arsenite

10.3389/fnut.2025.1657640

[As(III), H3AsO3] exhibits significant monodentate or bidentate
complexation with iron plaque (80). Ferrihydrite is a highly
reactive mineral that initially predominates in the rhizosphere
but can subsequently convert into the more crystalline forms of
lepidocrocite and goethite over time. Anions adhere to the edge
and corner sites of FeOx, with ferrihydrite exhibiting a greater
abundance of the more robust edge sites compared to the other
two (81).

= FeOH + H,AsO; — (= Fe0), AsO; + 2H,0

Under dynamic redox conditions, As(V) or As(III) can be
immobilized through coprecipitation with Fe oxides during Fe(II)
oxidation and Fe(III) hydrolysis (82). Arsenic becomes structurally
incorporated within the Fe oxide matrix as it forms:

2+, 1 5 +
Fe ™ + ZOZ + EHZO — Fe (OH); (s) + 2H
H3AsO4 + Fe (OH); (s) — Fe — As coprecipitate

Si can be adsorbed onto or co-precipitated with Fe oxides
during plaque formation. The incorporation of Si into Fe oxides
interferes with their structural ordering due to steric hindrance
and disruption of Fe-O-Fe bonding, which alters nucleation and

As(lll) + O, = As(V)

Arsenic species at root
surface

As(Ill)
As(V)

Radial O,
loss through
aerenchyma
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Rhizospheric
microbes affects
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FIGURE 3

The influence of Fe plague formation on rice root surface on As availability.
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FIGURE 4

The formation process of Fe plaque (IP) through various oxidation-reduction processes occurring outside the root.
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crystal growth kinetics (83). Si incorporation has a retarding effect
on Fe oxide crystallization by binding to surface hydroxyl groups
and blocking reactive sites necessary for phase transformation.
This results in the stabilization of poorly crystalline phases like
ferrihydrite over more crystalline forms like goethite or hematite,
both under pure mineral systems and in rice root experiments
(78, 84). The resulting plaques exhibit higher specific surface areas,
greater sorption capacities for metals like arsenic (As), and altered
redox reactivity. Hence, elevated concentrations of Si in porewater
may enhance the retention of As by promoting the formation
of ferrihydrite-dominated Fe plaques (85). Moreover, Si nutrition
benefits rice plants growth and improves oxygen secretion ability
of the roots, maintaining an oxic microenvironment for plaque
formation strength and silicate anions compete with arsenite for
sorption sites, thereby increasing As mobility in the (86). But
under Si-rich flooded condition, reduction of arsenate to arsenite
decreases its adsorption rhizosphere (85, 87).

Gu et al. (88) observed that Fe content in amorphous fraction
of plaque (AIP) was higher than the crystalline fraction (CIP) and
further increased (40.8-205.8% in AIP and 2.9-187.9% in CIP)
after supplying Si-rich rice husk ash (RHA). Compared with non-
RHA addition, the As contents in the AIP and CIP increased
by 22.4-235.6% and 51.5%, respectively, with HA supplication at
low-concentration single As stress. The application of HA reduced
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As contents in the shoots and roots by 31.9-42.8% and 9.9-17.9%,
respectively at single As stress. Jiang et al. (89) reported an
increased Fe and As content in plaque by 9.4-53.7% and 28.0-
33.1%, respectively, after application of 0.5-2.0% RHA. Compared
to no-RHA treatments, 0.5-2.0% RHA treatments significantly
reduced the As contents in stem, leaves and roots by 50.0-78.8%,
16.8-82.8% and 14.9-38.1%, respectively. 2.0% RHA application
decreased inorganic As content in brown rice by 30.8% compared
to no-RHA treatment. Khanam et al. (10) showed co-application
rice straw compost (RSC) and SSB resulted in the maximum
Fe plaque formation with a concentration of 3,140mg kg~ !,
followed by the sole RSC (2,911 mg kg™!), which were significantly
higher than the control (2,321 mg kg~!). Leksungnoen et al. (90)
found that Si-rich RHA (0.64% w/w) almost doubled that As
concentration in Fe plaque compared to untreated plots and plaque
As was higher that compared to RHB.

3.2 Microbe mediated immobilization of As

A variety of bacteria associated with the rice rhizosphere can
play a role in the biotransformation of As (As) by oxidizing
As(III), reducing As(V), methylating As(III), and respiring As(V)
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Cellular locations and functioning of microbial enzymes involved in As immobilization.

(91). Microorganisms containing As functional genes, including
arsenite oxidase, arsenate reductase, respiratory arsenate reductase
and arsenite methyltransferase play a key role in regulating the
speciation and mobility of As in paddy soil as shown in Figure 5
(92). The oxidation and methylation of As(III) are recognized as
natural detoxification pathways of the As biotransformation cycle
in the paddy rice system (91, 93).

The archetypal aio system, the aioBA operon, was first
identified and completely sequenced from the B-proteobacteria
Herminiimonas arsenicoxydans. It encodes arsenite oxidase
(Aio), comprising two subunits: AioA, the large molybdopterin-
containing catalytic unit, and AioB, a small Rieske [2Fe-2S] cluster
protein (94). Aio catalyzes the oxidation of As(IIl) to As(V)
through four sequential electron transfer steps (95). Stopped-flow
spectroscopy and isothermal titration calorimetry revealed that
As(III) binds near a funnel-shaped cavity of AioA, where polar
residues coordinate it via the molybdopterin cofactor. The bound
As(III) donates electrons to the Mo(VI) center, reducing it to
Mo(IV) while being oxidized to As(V) at rates exceeding 4,000
s~!. Electrons are then rapidly transferred from Mo to the Rieske
centers. The final, rate-limiting step involves electron transfer
from the AioB Rieske cluster to the terminal electron acceptor,
cytochrome ¢, completing the catalytic cycle (96).

Microbial methylation, or biomethylation, refers to the
and metalloids into
with the
help of methyltransferase enzyme (97). First identified in

biological transformation of metals

volatile and nonvolatile methylated compounds

fungi, this process is crucial for As detoxification and its
environmental cycling. The arsM gene enables microbes to
methylate and resist As toxicity (98). The most widely accepted
pathway, proposed by Challenger et al. (99, 100), involves
initial reduction of As(V) to As(IIl), followed by two successive
enzyme-mediated reductions. Each reduced As(III) intermediate
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undergoes methylation, ultimately forming trimethylarsine
(Figure 4). S-adenosylmethionine (SAM) serves as the primary
methyl group donor, though some anaerobic bacteria may use
methylcobalamin (97).

Microorganisms reduce As(V) via two distinct pathways: the
first involves cytoplasmic arsenate reductases encoded by the
ars operon, and the second utilizes dissimilatory or respiratory
arsenate reduction mediated by the arr gene cluster (Figure 4)
(101). Serendipitously, ars genes were originally discovered during
studies on antibiotic resistance in Staphylococcus aureus, not
through direct investigation of arsenic resistance. Each gene in
the ars operon contributes uniquely to arsenic detoxification:
arsR encodes a transcriptional repressor of the SmtB/ArsR family
(102); arsA encodes an ATPase that, along with ArsB, forms
an ATP-dependent As(III) efflux pump (103); arsD encodes a
metallochaperone that binds As(III) and transfers it to the ArsAB
pump (104); and arsC encodes a cytoplasmic arsenate reductase,
converting As(V) to As(III) (105). Alternatively, the arr operon,
first characterized in Shewanella sp. ANA-3, encodes respiratory
arsenate reductase ArrAB. The ArrA subunit, a large protein
containing a bis-molybdopterin guanine dinucleotide cofactor and
a [4Fe—4S] cluster, catalyzes As(V) reduction. ArrB, the smaller
subunit, harbors four [4Fe—4S] clusters that facilitate electron
transfer. This system enables anaerobic respiration using As(V) as
a terminal electron acceptor, contributing to arsenic cycling under
anoxic conditions (106).

The abundance of these As functional genes is generally
dependent on the bacterial community structure that can be
evaluated based on the diversity of 16S rRNA genes. The
incorporation of Si-rich agro-wastes amendments, such as rice
straw and rice husk, enhances soil organic matter and reduces
soil redox potential, thereby directly affecting the soil microbiota
(107). Porewater inorganic As(III) levels can be increased by
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elevated organic matter in two ways: first, by enriching an anaerobic
microbial community that may be pivotal in As methylation; and
second, by increasing the activity of Fe-reducers and As-reducers.
Amendments high in Si had different effects on the total microbial
population and the specific group of microbes that methylated As
(108). Elevated calcium from calcium silicate treatments enhanced
carbon storage in the first year, leading to carbon release in the
second year, which may have influenced the distribution of both
16S rRNA and arsM genes. Modifications to the arsM community
composition may have been impacted by reduced porewater redox
potentials caused by rice husk amendment. In their study, Das
et al. (109) found that indica rice grains had a 28% reduction
in As and in Japonica rice grains a 30% reduction after being
treated with slag-based Si. Additionally, the application of this
Si increased the number of bacteria that were As-resistant and
arsenite-oxidizing, which helped the soil naturally attenuate the As.
Herath et al. (92) examined three different types of modified rice
husk biochar (RHBC): unmodified RHBC, Si-modified RHBC, and
nano-montmorillonite clay modified RHBC. The results showed
that Si-RHBC significantly raised the number of bacteria (16S
rRNA gene) and doubled the number of aioA gene copies compared
to RHBC, which was already 25% higher than the control.
The arrA, arsC, and arsM gene copy numbers were somewhat
upregulated with Si-RHBC, but this effect did not reach statistical
significance. The results suggest that bacteria in paddy soil that
are connected with the aioA gene may help with the anaerobic
oxidation of As(III) to As(V). Soil treated with Si-RHBC also
showed a marked decrease in the relative abundance of Fe-reducing
bacteria, particularly Bacillus and Geobacter. This suggests that
the decreased abundance of these bacteria in paddy soil leads to
a drop in the dissolution of As(III) from iron oxide minerals.
In their study, Gao et al. (86) showed that reducing bacteria,
Anaeromyxobacter and Geobacteraceae, and levels of As(III) and
Fe in the rhizoplane were significantly increased by adding Si. This,
in turn, inhibited the uptake of As(III) into roots.

3.3 Competition for transport pathways in
plants

Si is an essential element in the soil and crust of the earth,
but only 0.1 to 0.6% is soluble (110). Plants absorb Si as ionized
Si(OH)30 and silicic acid. Si and As, specifically arsenite, As(III),
exhibit striking chemical similarities under soil solution conditions.
Both exist as uncharged molecules at typical pH ranges: H4SiO4
and H3AsOs3 (arsenous acid) (111). Due to this similarity, plants,
particularly rice (Oryza sativa), inadvertently take up As(III) using
the same transporter systems that are primarily involved in Si
uptake (112). The two major transporters identified for this dual
uptake mechanism are Low silicon 1 (Lsil) and Low silicon 2 (Lsi2).
Both transporters play complementary roles in Si transport, yet they
differ in their structure, localization, transport mechanisms, and
energy dependence.

Lsil, a member of the NIP subfamily of aquaporins within
the major intrinsic protein (MIP) superfamily, is a passive channel
facilitating silicic acid influx via facilitated diffusion, characterized
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by ar/R selectivity filters and NPA motifs (113, 114). In contrast,
Lsi2 is not an aquaporin but a secondary active efflux transporter
likely driven by a proton gradient, functioning as a putative anion
transporter (115, 116). Unlike Lsil, structure of Lsi2 remains less
defined, though its functional role is critical for Si translocation.

Both Lsil and Lsi2 are polarly localized in the plasma
membranes of root cells but on opposite sides. Lsil is localized on
the distal (outer) side of both exodermis and endodermis cells as
shown in Figure 6, facilitating the influx of silicic acid from the
soil into root cortical cells (113, 117). On the other hand, Lsi2 is
localized on the proximal (inner) side of the same cells, promoting
the efflux of silicic acid from the root cells into the stele (Figure 6),
enabling xylem loading and translocation to the shoot (115). Lsil
operates via passive transport, relying solely on the concentration
gradient of silicic acid. It does not require energy input in the
form of ATP or electrochemical gradients. This aligns with its
role as a bidirectional channel that can facilitate both influx and
efflux depending on substrate concentration (118). Whereas, Lsi2
functions via an active transport mechanism, coupling the efflux
of silicic acid with the inward movement of protons. This energy-
dependent process enables Lsi2 to transport silicic acid against
its concentration gradient, a necessary step to move Si from root
cortical cells into the xylem (115).

Subsequent to absorption, over 95% of Si is swiftly translocated
to the xylem by both Lsi2 and Lsi3 in rice. Lsi3, a homolog of Lsi2,
is situated in the root pericycle cells and helps in xylem loading of
Si (119). The unloading of Si from the xylem into leaf is facilitated
by Lsi6, a homolog of Lsil. Lsi6 is positioned in a polar manner
on the adaxial side of the xylem parenchyma cells within the leaf
sheaths and leaf blades (120, 121). Basically, Lsi6 and Lsi3 play a
role in distributing silicon within the plant, including loading Si
into the xylem and unloading it in specific tissues like leaf sheaths.
Each plant contains specialized transporters for the uptake and
accumulation of Si in various sections, such as OsLsi (Rice), TaLsi
(Wheat), and ZmLsi (Maize), as indicated in Table 3.

These transporters,
inadvertently become conduits for a toxic metalloid. This

primarily evolved for Si uptake,
functional convergence presents a critical interface in As-
contaminated environments, especially in paddy fields where
anaerobic conditions favor the prevalence of As(IIl). The dual
uptake mechanism is not merely a biochemical or physiological
curiosity but a pressing agronomic challenge, as it tightly links
beneficial and toxic element transport. Advances in protein
modeling and transporter engineering have opened new avenues
to selectively modify Lsil pore architecture and selectivity filters
(e.g., ar/R and NPA motifs) to discriminate between silicic acid
and arsenous acid. This possibility was largely unexplored until
recent structural insights emerged from high-resolution cryo-EM
and in silico mutagenesis studies (121). The potential to reengineer
Si transporters to reduce As permeability while maintaining
Si uptake marks a paradigm shift in plant nutrient and stress
management strategies. Moreover, limited information exists on
how transporter expression is modulated under simultaneous Si
deficiency and As stress, or how root exudates and rhizospheric
microbiota influence transporter functionality. These unexplored
areas represent novel frontiers to enhance our understanding of
Si-As dynamics.
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The existing Si transport model in rice roots. Lsil is expressed at the distal end, while Lsi2 is expressed at the proximal end.

Boorboori et al. (122) elucidated the mechanisms of Lsil
regulating Si uptake, which influences As accumulation in rice
seedlings. They discovered that the Lsil overexpression line
(LE-OE) exhibited a superior capacity for Si absorption under
hydroponic conditions compared to the wild type (LE-WT).
Furthermore, the addition of Si to the LE-OE rice lines possessing
the Lsil gene conferred enhanced As resistance relative to the LE-
WT line. Khan and Gupta (123) demonstrated that compared to the
control and Si treatments, the As(III)+Si treatment increased the
expression levels of the OsLsil, OsLsi2, and OsLsi6 genes involved
in transporting As(III), but this increase was less pronounced than
in treatments where As(III) was used alone.

3.4 As tolerance through improved
antioxidant defense system and reduced
uptake

A surplus of ROS, such as superoxide radicals (O27-), hydrogen
peroxide (H,0,), and hydroxyl radicals (-OH), is produced when
toxic substances are present in plants, leading to oxidative stress
(124). In the presence of ROS, various physiological processes
are disrupted, including lipid peroxidation, protein oxidation,
DNA damage, and the eventual stunting of plant development
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(125). Under As stress, Si supplementation dramatically boosts the
activities of key antioxidant enzymes like superoxide dismutase
(SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase
(POD) and glutathione reductase (GR), as well as important non-
enzymatic antioxidants like cysteine, ascorbic acid (AsA), and
glutathione (GSH). Additionally, Si can induce heavy metal co-
precipitation by surface adsorption by Si-rich tissues and thicken
the cell wall, both of which impede heavy metal transport. Cui et al.
(126) observed that treatment with SiO, NPs could maintain the
integrity of the cell, increase the thickness of the cell wall (77.4%)
and the ratio of As in the pectin (19.6%). In addition, the pectin
content, cation exchange capacity (CEC) and pectin methylesterase
(PME) activity were also increased in the SiO, NPs-pretreated cells,
leading to a decreased degree of pectin methylesterification and
an improved mechanical force of the cell walls. Silica-rich tissues
(phytoliths) in rice can incorporate trace amounts of As, either
through physical entrapment or surface adsorption (127).

Tripathi et al. (128) showed Si treatment enhanced SOD, GR
and APX activities in rice plants exposed to As, resulting in lower
ROS accumulation. Boorboori et al. (129) also found addition
Si during As exposure significantly increased SOD, CAT, APX
and POD activity and decreased MDA content in two different
cultivars of rice. Geng et al. (130) observed that application of
sodium silicate @ 168 mg L~! increased SOD, CAT and POD
activities along with elevated GSH and AsA contents implied
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TABLE 3 Literature survey of Si specific genes and transporters or sub families aquaporins of various plants.

Transporter/ Plant species  Specific Type and Functional significance References
agquaporin genes expression sites
Lsil Oryza sativa OsLsil Influx; basal roots Facilitates passive transport of silicic acid [Si(OH),] into (113,271)
root cells following the concentration gradient; first step
in Si uptake; mutations in Lsil severely reduce Si
accumulation, leading to weaker stress tolerance and
lower yield stability.
Hordeum vulgare HvLsil Influx; basal roots (272)
Triticum aesativum TaLsil Influx; roots (273,274)
Zea mays ZmlLsil Influx; roots (275, 276)
Sorghum bicolor SbLsil Influx; roots (277)
Cucurbita moschata CmlLsil Influx; roots and shoots (114)
Solanum SILsil Influx; root (278)
lycopersicum
Cucumis sativus CsLsil Influx; root tips (279)
Lsi2 Oryza sativa OsLsi2 Efflux; main and lateral Actively exports Si from root cells into the apoplast (115, 280)
roots (not in root hairs) toward the xylem, working in tandem with Lsil to
achieve directional Si transport; Essential for loading Si
into xylem; disruption of Lsi2 leads to Si retention in
root tissues and impaired long-distance transport.
Hordeum vulgare HvLsi2 Efflux; basal roots (272,275)
Zea mays ZmLsi2 Efflux; basal roots (275, 276)
Cucurbita moschata CmLsi2 Efflux; roots and shoots (114)
Equisetum arvense EaLsi2 Efflux; roots and shoots (281)
Lsi3 Oryza sativa OsLsi3 Influx; Panicles Facilitates unloading of Si into xylem transfer cells in (282)
upper nodes to ensure distribution to panicles and flag
leaves; Regulates partitioning of Si to developing
reproductive organs
Lsi6 Oryza sativa OsLsi6 Influx; leaves Mediates inter-vascular transfer and redistribution of Si (120)
within shoots, particularly toward developing tissues;
Critical for optimizing Si allocation within shoots,
ensuring enhanced stress resistance
Hordeum vulgare HvLsi6 Influx; leaf blade and (283)
sheaths
Zea mays ZmlLsi6 Influx; leaf blade and (275)
sheaths
Aquaporins like Equisetum arvense EaNIP3;1 Influx; roots and shoots Provide a structural and evolutionary framework for (284)
MIP, NIP etc. specialized channels such as Lsil and Lsi6, which evolved
for Si transport; Key mediators of Si homeostasis,
influencing plant stress adaptation, detoxification of
arsenite, and efficient nutrient management.
Glycine max GmNIP2 Influx; roots and shoots (285)

the active involvement of ROS scavenging and played, at least
in part, to Si-mediated alleviation of organoarsenic arsanilic acid
(ASA) toxicity in rice. Li et al. (131) demonstrated As content in
wheat shoots and grains decreased with the addition of Si-rich
materials and maximum reduction of 16.2% and 17.8% in shoots
and grains, respectively, was observed in rice husk biochar+2g
kg~ ! bentonite treatment compared to control. Activity of GSH and
AsA significantly increased with application of Si-rich materials
with subsequent decrement in MDA content. However, As content
in subcellular fractions of wheat shoots displayed no significant
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change after the Si-rich material addition. More similar studies have
been summarized in Table 4.

4 Agro-wastes

Agricultural wastes are residual byproducts from crop
cultivation and initial processing of agricultural produce, including
vegetables, fruits, dairy, meat, and poultry (132). These wastes
encompass non-edible materials such as crop residues, forest
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TABLE 4 Impact of Si application on antioxidant defense mechanisms
under As stress.

Crop  Application Results References

rate of Si

Rice 1 mM silicic Reduced H,0,, (286)
acid malondialdehyde (MDA)
content and EC by
24.78-34.78%, 20.0% and
32.92-37.79%, respectively
and increased SOD, CAT,
APX and POD activity by
36.89-68.89%, 135.58%,
59.36-66.77% and
48.69-53.59%, respectively,
in two different rice
cultivars

Rice Silicic acid @
0,0.5and
1.0 mM

Decreased O, -, H,0,, (128)
electrolyte leakage (EC) and
MDA content by 11-16%,
9-10%, 13-17% and
13-18%, respectively

Si and biochar
@ 100 mg kg~!
and 50 g kg™,
respectively

Maize Combined application of Si (287)
and biochar significantly
enhanced the antioxidant
activities (SOD, POD, CAT,
and APX) by 34.72, 23.12,
24.49, and 35.29%,

respectively

Wheat 1.0 mM

H40,481

CAT, POD, and GR (288)
activities significantly
increased in roots under Si
supplementation in
As-stressed plants. In
shoots, application of Si
showed a significant
increase in CAT activity
compared with As stress.

Date 1 mM Na,SiO3
palm polyphenols (48%) and
increased antioxidant
activities (POD: 50%, PPO:
75%, GSH: 26.1%, CAT:
51%) resulted in a
significant decrease in
superoxide anion (O, - :
58%) and lipid peroxidation
(MDA: 1.7-fold)

Enhanced accumulation of (289)

Brassica
Jjuncea

SiO, NPs @
200 ppm

Significant reduction in (290)
oxidative stress markers,
with H,O, and MDA levels
decreasing by 41% and 39%,
respectively, and increased
activities of antioxidant
enzymes activity by 84%
(SOD), 73% (POX), and
69% (CAT) along with 27%
(proline content)

litter, animal manure, and chemical remnants from fertilizers
and pesticides (133). Generated through activities like seed
production and livestock management, agro-waste poses serious
environmental concerns, particularly when openly burned,
contributing to air pollution and health risks (134). Post-harvest
waste accounts for nearly 80% of total agricultural biomass, with
burning still widely practiced. In India, Punjab, Maharashtra, and
Gujarat are the leading states where extra residue is incinerated
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(Figure 7). Sustainable management requires conservation,
recycling, and reuse strategies (135). Agro-wastes are categorized
as field residues (e.g., stalks, stems), process residues (e.g., husk,
bagasse, molasses), and commercial byproducts such as orange
peel and oil cakes (136). Annually, millions of tons of agro-waste
are generated worldwide, with over 90% in low-income nations
being incinerated or discarded in open spaces, exacerbating
environmental deterioration (137). Asian nations lead in the
production of crop residues, particularly from silica-dense grains.
India produces over 500 million tons of agricultural waste each
year, contributing to a worldwide total of almost 1 billion tons
(138). Due to escalating population pressures and food demand,
nations such as India and China are encountering growing leftover
surpluses. While usage and surplus fractions vary by crop type
the surplus crop residue (Table 5) is improbable to meet potential
demands; nevertheless, high-resolution spatio-temporal biomass
availability may assist in overcoming current challenges in crop

residue utilization (139).

4.1 Sirich agro-wastes

Agricultural waste generation has increased steadily, driven
largely by population growth, making it essential for environmental
agencies to adopt strategies that minimize waste production.
Recycling agro-wastes offers an effective means to reduce their
adverse impacts on the environment and human health (140).
Recent research focuses on using silica-rich waste materials to
mitigate As bioaccumulation in plants (Table 6). Although Si is
the most abundant element, its concentration in agro-wastes is
lower than in primary minerals. Nonetheless, the vast quantities
of agro-waste generated globally present a promising source for
Si extraction (141). Alternative silica sources currently explored
worldwide include rice husk, wheat husk, palm oil fuel ash,
Miscanthus ash, e-waste, coal ash, reed ash, sedge ash, Carex
riparia, sugarcane bagasse, bamboo leaves, natural clay, and
ore tailings.

4.1.1 Rice husk

Rice is one of the most widely cultivated crops globally, with
production surpassing 756 million tons in 2020. Milling generates
approximately 20% of this yield as rice husk, a major by-product
(142). Commonly discarded or used as fuel during parboiling, rice
husk contains high levels of organic compounds such as lignin
and cellulose, along with significant mineral content, particularly
silica (143, 144). The high silica content has attracted interest
for environmental applications, notably in reducing arsenic (As)
toxicity in soils and plants. Rice husk ash (RHA), produced by
combustion, typically contains 87-99% silica, depending on husk
origin and burning conditions (143, 145). Quality and composition
of RHA are influenced by soil type, climate, cultivation methods,
and pre-treatment. RHA is characterized by high ash content
compared to other biomass fuels, with properties such as high
porosity, low bulk density, and large surface area, making it highly
suitable for adsorption processes, including As mitigation. Silica
in RHA occurs in both amorphous and crystalline polymorphs
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FIGURE 7
Crop residue dynamics in India: (A) State-wise residue generation, (B) Residue surplus availability, and (C) Residue burning status.

like, quartz, cristobalite, and tridymite, whose proportions
depend on combustion temperature and treatment parameters
(146).The crystalline structure formed is contingent upon the
combustion temperature and treatment parameters. The extraction
of amorphous silica generally entails acid leaching, succeeded by
burning or pyrolysis to eliminate organic material and produce
high-purity silica. This technique guarantees the synthesis of
silica customized for catalytic, adsorption, and other sophisticated
material applications (147).

The structural differences between amorphous and crystalline
polymorphs influence adsorption affinity and binding mechanisms
for As species [both As(III) and As(V)] in soil-water systems
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(148). Amorphoussilica typically has a much higher specific surface
area and more silanol (Si-OH) groups than crystalline quartz,
enhancing As adsorption through ligand exchange or hydrogen
bonding (149). The density and reactivity of Si-OH groups vary
with polymorph type and surface treatment. More reactive surfaces
(common in amorphous forms) facilitate stronger chemisorption
of arsenate and arsenite ions. Crystalline silica is generally less
reactive due to lower surface hydroxyl density, resulting in weaker
As retention, unless weathering or surface functionalization creates
active sites. Also, the point of zero charge (PZC) of different silica
polymorphs influences As speciation and binding. For example, at
pH above the PZC, surfaces become negatively charged, reducing
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TABLE 5 Global estimates of crop residue generation and surplus
availability (MT yr—*) across selected countries [adopted from Sen et al.
(291)1.

Country  Gross residue generation Surplus (MT
(MTyr—1) yr—1)
India 500 140
912 300
682.6 178
683 _
Bangladesh 72 -
99.6 24.3
Indonesia 55 -
Myanmar 19 -
Afghanistan 9.7 2.2
Bhutan 0.4 0.1
Nepal 22.8 6.3
Pakistan 122.8 37.3
Sri Lanka 4.7 1.3
China 1,039.5 -
USA 488 -
World 2,445.2 -
3,758 -

electrostatic attraction for arsenate but allowing specific adsorption
via inner-sphere complexes (150).

Utilizing RHA as a silica source enhances the value of an
agricultural byproduct while fostering environmentally sustainable
practices. The capacity to regulate silica polymorph formation
by temperature and pre-treatment presents opportunities for
specific applications in environmental research, such as arsenic
remediation, water purification, and nanomaterial synthesis (151).

4.1.2 Rice straw

Rice straw, a significant agricultural by-product, is produced
in excess of 700 million tons each year after the rice harvest
(152). Worldwide, around 20% of rice straw is employed, with
more than 100 million tons incinerated each year (153), resulting
in significant environmental and health issues, especially in
nations such as India (154, 155). Rice straw possesses various
potential applications, including animal feed, mushroom growing,
energy generation, biochar, bioethanol, and biogas production;
nevertheless, its elevated silica content constitutes a significant
constraint. rice requires a significant amount of silica (10-12%
of dry matter) (156) for mechanical strength and resistance to
biotic and abiotic stressors (157). Silica exists in the dry matter
of straw, predominantly as phytoliths, which enhance the plants
structural integrity (158). These silica-rich structures are integrated
within the lignocellulosic matrix of the straw, consisting of cellulose
(32-47%), hemicellulose (19-27%), and lignin (5-24%) (159, 160).
Although it poses a hindrance to its application in certain sectors,
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the silica present in rice straw has significant environmental
advantages. The integration of rice straw into soil using rice straw-
based composites (RSBC) facilitates gradual Si release (159), hence
augmenting nutrient availability, promoting plant development,
and enhancing stress resilience, particularly in Si-deficient paddy
fields (161). This promotes sustainable agriculture and aids in
the attainment of Sustainable Development Goals (SDGs). Rice
straw is a hybrid nanocomposite composed of cellulose and silica
(SiO;), wherein silica nanoparticles serve as reinforcing agents
within the plant’s cellular matrix (162). Studies demonstrate that
the majority of silica in straw is present in an amorphous state,
predominantly located on the external surfaces of the sheath
and stem (162). The incorporation of rice straw into circular
bioeconomy methods, specifically for sustainable silica recovery
and reuse, offers a practical approach to managing agricultural
waste, mitigating environmental effect, and fostering resource-
efficient farming systems (163).

4.1.3 Sugarcane bagasse

Sugarcane (Saccharum officinarum) is crucial to the economics
of numerous developing countries because of its importance in
worldwide sugar production (164). Presently, Brazil is the foremost
producer, accounting for approximately 36% of global output (165).
Nonetheless, sugarcane processing produces substantial quantities
of byproducts, including bagasse, straw, and cane tops (166), which
present environmental disposal difficulties. Sugarcane bagasse is a
viable feedstock for reducing arsenic (As) translocation in plants,
owing to its availability, affordability, and substantial silica (Si)
concentration. The buildup of silica in sugarcane is contingent
upon the availability of silicon in the soil, which is absorbed
by the roots in the form of silicic acid, thereafter transported,
and deposited as amorphous silica throughout the plant tissues
via transpiration. The silica concentration in sugarcane bagasse
fluctuates according to species, soil conditions, fertilizer use,
and growing methods. Sugarcane bagasse ash (SCBA) has both
amorphous and crystalline silica, including quartz and cristobalite
(167), with quartz occasionally included through sand adherence
during harvesting (168). SCBA provides a sustainable alternative
for silica production, facilitating waste valorization and circular
economy frameworks. Enhancing recovery techniques, including
response surface approach, guarantees high-purity silica (169)
appropriate for diverse industrial applications while promoting
ecologically sustainable resource management.

4.1.4 Wheat husk

Wheat husk serves as a significant by-product in the wheat
production process, with estimates indicating that around 1.5
tons of wheat husk are generated as solid waste for every ton
of wheat produced (170). Conversely, wheat husk has frequently
been incinerated or utilized as livestock feed and fertilizer.
Consequently, the ash generated from burning wheat husk (WHA)
can lead to significant environmental issues due to the emission
of substantial amounts of harmful pollutants. To mitigate this
significant environmental issue, studies have been undertaken
regarding the utilization of WHA as a renewable, cost-effective, and
environmentally friendly source of amorphous silica, considering
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TABLE 6 Effectiveness of Si-rich agro-wastes and their derivatives in reducing As bio-accumulation in final produce.

Rice husk Enhanced Si release to pore-water, Fe-plaque 25-50 Increased activity of soil microbes that (244)

formation express the As methyltransferase gene,

arsM

Rice husk and The competitive interactions between Si and As 36-58 (245)
husk ash for plant uptake and sorption
Rice husk Significantly more ferrihydrite and less goethite, ~40 (292)

thereby more As(III) associated with Fe-plaque
Rice husk 20-24 (90)
biochar and
husk ash
Rice husk and Increase in the mole ratio of porewater Si/As, ~50 (249)
husk ash indicating an elevated pool of dissolved Si to

compete with As for root uptake by their shared

transporters
Fe-modified Decreased As/Fe ratio in root plaque 37-79 Reduced abundance of Fe(III) reducing (250)
rice hull bacteria by 24-64%
biochar
Rice straw Increased As solubilization in the porewater, 41.4-57.5 (251)
biochar functional groups of biochar capable of

immobilizing As
Paddy straw Reduced bioavailable As, higher Fe-plaque 34.2-53.2 SSB improved solubilization of Si from (10)
compost with formation and presence of As uptake transporters straw compost than its sole applicaiton
SSB in rice roots
Charred rice Increased the fraction of ferrihydrite in the root 70.6 Increased the copy number of arsM in (78)
husk plaques paddy soil, suggesting an increased

capacity for arsenite methylation

the high silica content found in WHA (171). The wheat husk
primarily consists of cellulose (23-42% by weight), hemicellulose
(18-21% by weight), lignin (14-28% by weight), and starch (9-
19% by weight); lignin renders it a possible source of silica/lignin
hybrid minerals (172). Various researchers conducted analyses on
the elemental silica content, determining it to be approximately
2.1% (weight basis) to 2.57% (weight basis). Sodium silicate is a
compound that serves as a precursor to Si. Its extraction from
ashes presents an alternative method, as traditional production
processes demand significant energy, typically sourced from quartz
sand combined with sodium carbonate at 1,300 °C (173). Biosilica-
based materials derived from wheat waste may serve as secondary
products that enhance the value of agricultural crops. Furthermore,
silica with varying properties, such as nano silica and meso/macro
porous silica, can be efficiently produced from wheat husk tailored
to its specific application (174). The ash content of the wheat
husk and spike exceeds 20%, comprising 86% SiO,, which is
ascribed to the type of fertilization applied (172). Terzioglu et al.
(175) determined that an ashing temperature of 1,000 °C yields
the highest SiO, content; however, this temperature cannot be
regarded as the optimal ashing temperature due to the irrecoverable
structure of silica (cristobalite). Wheat husk phytoliths are spherical
(14-22 pm diameter) and oblong (18-40 pm length, 12-18 pm
width) in epidermal cells and consist of a silica shell and the
plant cell’s organism core (176). Wheat husk possesses a higher
concentration of surface Si, rendering it a more viable Si source for
the remediation of As toxicity (138).
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4.1.5 Bamboo leaf

Bamboo is one of the most important non-wood forest
products worldwide, valued for its rapid growth and diversity,
particularly in subtropical regions of Asia, Africa, and Latin
America (145). It is widely used in construction, household items,
pulp, paper, textiles, and handicrafts. However, only about 40% of
harvested bamboo is effectively utilized, with 50-80% discarded as
agro-industrial waste (177). While bamboo stalks are the primary
raw material, leaves are generally treated as waste. These leaves
can be used as a fuel source, producing considerable quantities of
bamboo leaf ash (145). Although agro-wastes like rice husk, corn
cob, and sugarcane bagasse are well-known silica sources, bamboo
leaves remain underutilized, despite being an abundant, low-cost,
and commercially untapped source of high silica content. The ash
from bamboo leaves contains a significant silica content, ranging
from approximately 75.90% to 82.86%, as indicated by Olawale
(178). Setiadji et al. (179) successfully extracted 81.76% pure
amorphous silica from bamboo leaf ash using an alkaline solvent.

4.1.6 Corncob

Corn cobs, an agricultural byproduct of maize—a major grain
crop cultivated globally—are composed primarily of cellulose and
lignin, with notable mineral content including silicon (Si, 0.133
wt%) (180, 181). Upon combustion, corn cob ash (CCA) contains
over 60% silica by mass along with trace metallic elements (182).
Produced as a fine powder, CCA requires no further grinding,
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Silicate solubilizing bacteria isolated from different cultivars and their role.

Silicate solubilizing
bacteria

Plant
cultivar

Source of
isolation

Medium of isolation

Source of
silicate used

for isolation/
characterization

Focused area of
interest

References

Daegu, a city of Gyeongbuk Burkholderia eburnea Oryza sativa L. Rice rhizosphere Silicate medium Magnesium trisilicate Silicate solubilization, (18)
Province, Republic of Korea cv. Dongjin TAA production, 1 plant
growth, 1 Sie uptake and
deposition
Institute of Natural Sciences and | Bacillus Species Brassica juncea Clay substarte Zak-Alexandrov medium Sodium silicate Structural and functional | (293)
Mathematics, Ural Federal (L.) parameter of
University, Ekaterinburg, Russia photosynthetic
apparatus
Microbiology and Environment Burkholderia cenocepacia KTG, _ Sandy soil Bunk and Rovira medium Magnesium trisilicate Production of citric, (294)
Laboratory, the Indonesian Aeromonas punctata RIM3020 and quartz acetic and oxalic acid; 1
Research Institute for and Burkholderia vietnamiensi solubilization of silica
Biotechnology and Bioindustry, ZEO3
Bogor
Teaching Farm of Fujian Aeromonas, Bacillus, Cellvibrio, Zea mays L. cv. Earthworm gut and Orthoclase feldspar Aleksandrov’s Silicate weathering and (295)
Agriculture and Forestry Ensifer, Flavobacterium, Yuebai surrounding soil medium availability to plants
University, Fuzhou, China Microbacterium, Paracoccus,
Pseudomonas, Rhizobium, and
Streptomyces
Division of Microbial Pseudomonas and Bacillus Oryza sativa cv. Rhizospere Magnesium trisilicate, talc, Si solubilizing media 4 Si uptake, | disease (242)
Technology, CSIR-National (Sphingobacterium sp., B. Jayanti and feldspar (NBRISSM) severity, and
Botanical Research Institute, amyloliquefaciens) containing feldspar as antioxidative enzyme
Lucknow, India silicate activities
Gyeongbuk, South Korea Enterobacter ludwigii Rice mutant Paddy soil and forest Magnesium trisilicate Glucose agar medium | Potential Si and (296)
Waito-C and rice | soil samples phosphate bio-fertilizer
cultivar
‘Hwayoungbyeo
Bacillus mucilaginosus Rhizosphere soil Magnesium trisilicate Bunt and Rovira (297)
medium
Puducherry, India Bacillus flexus, B. mucilaginosus, _ Soil samples from red Magnesium trisilicate, Bunt and Rovira The dissolution of silica (201)
B. megaterium and soil, plantation soil, sea | feldspar, calcium medium in solution functions as a
Pseudomonas fluorescens sand, pond sediment, aluminosilicate, sodium nutrition for living
sea water aluminosilicate, talc, organisms.
muscovite, illite and quartz
Longshan (Nanjing, China) Rhizobium tropici _ Weathered rocks Feldspar and biotite Solid K-limited 4 Siand K (298)
medium (KLM) concentrations
Besut, Terengganu, Malaysia Serratia marcescens and Oryza sativa var Rhizosphere soil Magnesium trisilicate Magnesium trisilicate J chemical application (49)
Pseudomonas aeruginosa MR219 media in rice sheath blight
Fujian Agriculture and Forestry Kosakonia sp. Zea mays L. Bryophyte Hypnum Feldspar and silica Aleksandrov medium Si availability in the soil, (203)

University, Fuzhou, China

plumaeforme rhizoids

Si uptake and plant
growth
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making it a highly cost-effective raw material for silicate, silica,
and silica nanoparticle production (183). While corn cobs have
been extensively studied for uses such as enzyme production,
protein extraction, adsorbents, fuels, and cement manufacturing,
limited research has explored CCA for silica extraction and
applications. Chanadee and Chaiyarat (184) demonstrated that
sweet corn cobs (Zea mays saccharata L.) yield optimal silica
powder at a combustion temperature of 600 °C. XRD analysis
confirmed its amorphous structure, FTIR identified silanol and
siloxane functional groups, and XRF revealed a silica content
of 46.9% (185). These findings highlight CCA as a promising,
low-cost, and underutilized silica source for industrial and
environmental applications.

4.1.7 Reed ash

Phragmites australis (Cav) Trin. ex Steud, commonly known
as common reed, is a native perennial plant found in wetlands
globally, primarily utilized as a domestic fodder (186). It can be
utilized for several applications, including paper manufacture,
construction materials, feed, phytoremediation, electricity
generation, energy supply, and bioethanol. Aquatic common reed
significantly contributes to aquatic habitats by serving as a natural
cleanser through its phytoremediating properties and mitigating
river erosion (82). Currently, the common reed is recognized as
a significant environmental issue, as its adaptability to various
environments obstructs the growth of other ecologically vital
plant species. Notwithstanding the various applications of reed,
it has been utilized in certain regions globally as a financially
sustainable biomass for energy generation, as noted by Kobbing
et al. (187). Subsequently, the incineration of common reed
for energy generation results in the formation of common reed
ash (CRA) as the primary by-product (188). CRA possesses a
significant SiO, content and offers a distinctive opportunity to
serve as a cost-effective and plentiful source of amorphous silica
(145) for the environmentally conscious mitigation of As toxicity.

5 Microbial mediated solubilization of
Si

Although constituting 27% of the Earth’s crust and ranking as
the second most abundant element, the limited solubility of most
Si forms inhibits their absorption by plants (189). Si exhibits a
notable affinity for oxygen; consequently, it predominantly occurs
in nature as silicates (Si03), a form that is not readily absorbable
by plants (17). Aluminosilicates, ferromagnesian silicates, silicon
dioxides, amorphous silica, clay, feldspar, and mica are all examples
of compounds that fall under the umbrella term “silicates.” Other
silicates contain iron, calcium, sodium, potassium, or sodium,
and ferromagnesian silicates include amphiboles, olivine, and
pyroxenes. Silicas make up more than 90% of the Earth’s crust and
are present in substantial amounts in sedimentary, igneous, and
metamorphic rocks as well. Depending on the soil’s pH levels, Si
can also appear as silicic acid (190). The release of Si into the soil by
weathering or dissolution is necessary for plant uptake (191). Along
with water, plants absorb orthosilicic acid, a soluble form of Si.
According to Klotzbticher et al. (192), monosilicic acid is produced
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when soil nutrients are depleted, Si-containing minerals weather,
and irrigation is used. Si fertilizers, in contrast to more conventional
fertilizers, are expensive and scarce, making them out of reach for
most farmers. Hence, Si fertilizers are rarely used, especially in
developing countries (17). Reusing materials with Si concentrations
from mining, agriculture, and construction and demolition can lead
to the production of silicate fertilizers with long-term economic
viability (193). Thakral et al. (194) reported that the concentration
of Si in the soil solution is significantly affected by the solubilities of
both primary and secondary minerals. Soil applications involving
biochemical and physicochemical treatments can speed up the
solubilization of these chemicals, with microbial activity being the
most important factor in biochemical action (17).

Microorganisms are recognized for their ability to breakdown
and mobilize minerals in the soil (195). Numerous investigations
have established that microorganisms isolated from silicate mineral
surfaces weather various silicates (196, 197). This signifies the
crucial function of silicate-solubilizing microorganisms (SSM) as
biofertilizers in the solubilization of silicates and phosphates (198,
199). Microorganisms are prevalent in soils, although only a limited
subset is capable of solubilizing insoluble silicates. Plants and
microflora are known to generate chelating ligands, modify soil
physical properties, and influence the dissolution and mobilization
of soil silicate minerals (199). Among microorganisms, plant-
associated bacteria, fungi, actinomycetes have been documented to
facilitate the dissolution of silicates and expedite the release of Si
into the plant-soil system through bio-weathering processes.

5.1 Silicate solubilizing bacteria (SSB)

Microorganisms such as Burkholderia, Bacillus, Pseudomonas,
and Enterobacter have been documented to solubilize various
types of silicates, including magnesium silicate, quartz, feldspar,
and other insoluble silicates (Table 7). SSB is primarily located
in soil, water, sediment, mineral ore, weathered rocks, and the
rhizosphere of plants, where it plays a crucial role in regulating the
biogeochemical cycle of Si (200). Vasanthi et al. (201) indicated that
a considerable amount of SSB linked with phyto-sil, muscovite, and
calcium aluminosilicate suggests that these minerals preserve them
from their natural sources of extraction. The clarification provided
indicates that the ratio of SSB associated with a mineral does not
align with its silica concentration. For instance, muscovite, which
contains 21% silica, displayed a higher proportion of SSB compared
to phyto-sil, which has 78% silica. This observation contrasts with
quartz at 98%, talc at 54%, and feldspar at 45% silica. The findings
clearly demonstrate a notable difference in the overall bacterial
presence within soil or silicate minerals compared to the SSB.

The rhizosphere of crop plants such as rice has been extensively
studied for the isolation of SSB due to the significant Si need
and uptake by rice plants. Comparable initiatives have been
implemented with numerous other Si-rich accumulator plant
species (200). Tropical forests, especially bamboo forests, are
recognized as significant sources of soluble Si in rivers. This
is mostly attributable to the significant accumulation of Si in
bamboo leaves, perhaps due to the activities of soil-Si bacteria.
Nevertheless, minimal attempts have been made to discover
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SSB inside bamboo rhizosphere or forest environments. Recent
reports indicate Si buildup in 456 distinct plant species cultivated
under same soil conditions (202). Hu et al. (203) identified a
Kosakonia genus SSB from the rhizomes of Hypnum plumaeforme,
which promotes Si absorption and accumulation in maize, hence
increasing growth. The investigation of SSBs offers a cost-efficient
and eco-friendly approach to augmenting plant nutrition in
Si, phosphorus, and potassium, consequently raising agricultural
yields (201, 204).

5.2 Silicate solubilizing fungi (SSF)

The majority of the literature is based on the population
and variety of SSB, whereas SSF has been minimally investigated.
The fungal species Aspergillus niger, Trichoderma sp., Beauveria
caledonica, and Serpula himantioides have been examined for their
ability to solubilize silicates (205). Two SSF isolated from soil
were screened and identified as Penicillium limosum and Bipolaris
sorokiniana (206).

5.3 Mechanism involved in silicate
solubilizing activity observed in microbes

The extraction of microbiological nutrients from insoluble
silicates depends on a conventional geochemical process known
as bio-weathering (200). In this process, living things break down
soil minerals and bring them to the surface. A wide variety of
saprophytic bacteria, actinomycetes, and fungi are the principal
agents of bioweathering. The growth of plants is supported
by these bacteria because they dissolve important nutrients for
plant-soil interactions. Plants are able to absorb and use newly
formed nutrients because bio-weathering is the main process
that transforms polymerized silica into monomeric forms (207).
The bond strength between Si and its neighboring components
determines how easily the bonded Si can be released from
the framework (208). An example of a material that shows
resistance to dissolving even when subjected to high temperatures
and pressures is SiO, polymers (82). Materials such as quartz,
silica, and phytoliths can only be dissolved through proton
action and mineral-bound cation exchange, while metal-bound
silicates require a coordinated shift in pH and ligand attack
(200, 209). Some bacterial species may have varying solubilization
capacities depending on the mineral supply. Biogenic materials
like siliceous earth, diatomaceous earth, rice straw, and rice
husk, insoluble inorganic silicates of potassium, magnesium, and
aluminum, and silicate minerals like biotite and feldspar are
all potential sources of soluble silica that these bacteria can
release (17).

In the most fundamental concept of silicate solubilization,
bacteria employ a number of mechanisms to facilitate a multi-step
process. According to many studies (200, 210-212), the process
begins by replacing protons on the mineral surface with charged
cations such as K, Na*, and Ca?*. Then, hydrolysis occurs and
the silica species is detached from the framework. In order for
microbes to break down and dissolve silicates, they are thought to
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The molecular mechanisms behind the silicate solubilising activity reported in bacteria. The silicate solubilisation process is facilitated by several
processes, including the reduction of pH through the production of organic and inorganic acids, the displacement of charged particles at mineral
surfaces, and the synthesis of microbial metabolites, enzymes, and exopolymers.

employ a number of interconnected processes (Figure 8), such as (i)
lowering the pH through the production of inorganic and organic
acids, (ii) synthesis of chelating metabolites, and (iii) engaging
in nucleophilic attack and exchange reactions (213). The primary
mechanism observed is the acidolysis occurring in the vicinity of
microorganisms (214).

5.3.1 Changes in pH due to organic acid
production

An important geochemical phenomenon, the interaction
between organic acids and mineral surfaces has been studied
extensively for decades, especially LMOAs (215). LMOAs are
frequently present in rhizosphere soils, particularly in the layer
immediately adjacent to the soil-root contact (216). The breakdown
of plant roots, fungal remnants, and other organic components
mostly produces these acids (217). Lazo et al. (218) found that
organic acids and their anions can accelerate mineral weathering.
Kong et al. (216) suggested that organic acids can form complexes
with soil elements due to the presence of carbonyl and hydroxyl
functional groups. According to Drever and Stillings (219) and
Lazo et al. (218), there are three primary processes that impact
mineral weathering caused by organic acids: (a) changes in solution
ion speciation, (b) adjustments in solution saturation relative to
the mineral, and (c) disturbance of the dissolution reaction from
equilibrium. Casey et al. (220) described mineral bio weathering
as an acid-base process involving bridging oxygens that occurs
when hydroxyl or hydrogen ions are adsorbed onto the surface of
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minerals. Consequently, the amount of hydroxyl ions and protons
on the surface plays a pivotal role in the release of Si. In the
microenvironment, that microbes create surrounding a mineral,
protons and other organic and inorganic compounds are secreted,
which aid in the breakdown of silicates (200). As a consequence
of released HT exchanging cations within the silicate framework,
a cation exchange complex might form on the surface of the
material. Acidolysis is further expedited when bacteria release both
organic and inorganic acids (221). A high proton content and an
acidic environment make cation replacement easier (222, 223).
A change in the dissolution rate, away from equilibrium, causes
silicates to dissolve more quickly in an acidic environment (200).
The diversity of microbes determines the specific organic acid that
is emitted. There are a number of organic acids that have been
found to dissolve silicates in media that contain quartz, feldspar,
and magnesium trisilicates as sources of Si. These acids include
maleic, succinic, fumaric, gluconic, tartaric, and hydroxy propionic
acids (201, 224). In addition to the organic acids generated by
bacteria, the breakdown of organic matter generates NH3, H,S,
and CO;. These byproducts are easily bio-converted into inorganic
acids by microorganisms such as Thiobacillus, Nitrosomonas, and
Nitrobacter (200). It has been suggested that the creation of
ammonia and amines might cause an increase in the pH of the
surrounding environment, which in turn affects silicates. This
suggests that the production of alkali could be a way for silicates to
be solubilized (225). According to Kutuzova (225) and Rajabipour
etal. (220), silicates can be influenced by changes in environmental
pH caused by the generation of ammonia and amines, suggesting
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that alkali production could be a way for silicates to be solubilized.
In a study conducted by Sheng et al. (227), it was found that Bacillus
globisporus Q12, a type of bacteria that can dissolve silicates,
was able to dissolve K and Si in silicate minerals like muscovite,
biotite, and feldspar. The researchers found that organic acids,
specifically acetic and gluconic acids, were the most effective in
this process. In a different study, Sheng and He (228) found that
SSB-driven illite and feldspar help produce organic acids like malic,
tartaric, gluconic, citric, oxalic, succinic, and 2-ketogluconic acids.
When it comes to solubilizing potassium or silicates, tartaric acid
is by far the most common agent. The local environment and
ionic composition can be altered by microbial deposition near
silicate sources; however, our understanding of the consequences
of ionic strength is lacking on-exchange reactions taking place
on mineral surfaces might be hindered by elevated ionic strength
(229). Speciation on the surface is affected by changes in ionic
strength because of the double layer effect. When the ionic strength
increases, the surface charge becomes more positively charged
at pH levels below pH,,c and more negatively charged at pH
levels above pHzpc. As a result, it speeds up the breakdown
process (230).

5.3.2 Synthesis of chelating metabolites

In addition to acidifying and improving the solubility
of silicates, Organic and inorganic acids can protonate and
hydrolyze them, while concurrently complexing with the cationic
components of silicates, making them possible chelating agents
(201). Microbial metabolites such as extracellular enzymes,
siderophores and other reaction byproducts play a significant
role in silicate dissolution. These microbially excreted metabolites
possess metal complexing properties that can bind with aluminum
and iron in silicates, eventually destabilizing the silicate framework,
thereby increasing the solubility of silicates. Drever and Stillings
(219) reported the formation of oxalate complex due to the reaction
of oxalic acids with Fe and Al This in turn reduces the chemical
activity of the cations in the silicate framework. The dissolution
of silicates resulting from the production of keto-gluconic acid by
bacteria, which complexes and chelates with metals, has also been
reported (201, 231).

Siderophores are low molecular weight organic chelators
characterized by a high and specific affinity for Fe (III).
Siderophore biosynthesis is regulated by iron concentrations,
and siderophores facilitate iron uptake in microbial cells (232).
Bacteria, such as cyanobacteria, fungi, and plants that utilize
phytosiderophores, synthesize siderophores in environments with
low Fe** concentrations (17). Siderophores produced by SSB can
solubilize Si by extracting iron from silicate minerals, as evidenced
in hornblende degradation (233, 234). Phosphate-solubilizing
bacteria (PSB) can also solubilize silicates via siderophores,
potentially affecting the solubilization of Si and phosphorus from
rocks (235).

5.3.3 Nucleophilic attack and exchange
reactions

Stumm (230) found that when ligands are included in the
coordination sphere of metal ions, the reactivity of the other
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molecules of coordinated H,O is enhanced. In general, the
coordinated ligand’s o electron-donating, nucleophilic capacity
causes the water exchange rate to increase. The water exchange
rate is increased by several orders of magnitude when an OH™
ion attacks a hexa-coordinated aquo metal ion nucleophilically
(230). This means that the surface functional groups have been
deprotonated, which increases the reactivity of the -Si-O-bond.
The dissolution process at the surface of the mineral, which is aided
by OH-bonding, deprotonation, or ligand complexation, is known
as depolymerization, or the dissociation of a Si-O-Si link. Surface
hydroxyl group replacement ligands can bind nucleophilically with
metal ions in the surface lattice to form surface crystalline bonds.
Dicarboxylic acids, hydroxy carboxylates, diphenols, EDTA, and
NTA are ligands that contain functional groups with two or
more donor atoms; these ligands can form bi- or multi- dentate
mononuclear surface chelates, which are very efficient. The surface
lattice is negatively charged and surface protonation is enhanced
by the presence of certain ligands. As the surface concentration of
ligand increases, so does the rate of ligand-assisted dissolution. The
surface metal centers can be released into solution more easily when
a bi- or multi- dentate ligand coordinates inside a mononuclear
inner-sphere surface complex, which aids in ligand-facilitated
dissolution (236). Factors of paramount importance include the
surface chelate size and the quantity of donor atoms coordinating
to a particular surface metal center. When it comes to improving
the rate of dissolution of Al-minerals, Furrer and Stumm (237)
reported that the five-membered surface chelate ring of oxalate
is better than the six-membered rings of salicylate and malonate,
as well as the seven-membered rings of succinate and phthalate.
Monodentate organic surface complexes have a negligible effect
on the dissolution of 5-Al,O3. Complex formers generally form
rather weak surface complexes on silica surfaces; nevertheless, the
nucleophilic citrate and oxalate enhance the dissolution rate of
quartz (238).

5.3.4 Exopolymers and enzymes

Silicate-solubilizing bacteria generate extracellular proteins and
polysaccharides that create biofilms surrounding their colonies
(239). These biofilms facilitate microbial adhesion to mineral
surfaces and affect mineral dissolution. They establish a micro-
environment that minimizes the loss of protons, ligands, and
organic acids (200). Biofilms possess water retention properties,
hence promoting mineral weathering. Elements of the bacterial
cell membrane, including lipopolysaccharides, peptidoglycan, and
teichoic acids, can interact with silicate ions for solubilization
(240). Engineered gluconic acid synthesis and excellent dissolving
of poorly soluble calcium phosphates were achieved by cloning
the gabY gene from Pseudomonas cepacia. This process shed
light on the genetic principles of mineral solubilization (241).
When it comes to solubilizing Si, Bist et al. (242) have shown
that acidic phosphatase activity and organic acid generation are
functionally related. New developments in high-throughput whole
genome sequencing have made it possible to identify the genes
that play a role in the metabolic pathways of acids, exopolymers,
membrane transporters, and silicate-solubilizing ligands (200). For
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weathering of silicate minerals, these phenomena can be studied in
greater detail.

6 Methods of Si-rich agro-wastes
applications

Si-rich agro-waste, derived from crop residues such as rice
husk, rice straw, wheat straw, sugarcane bagasse, corn stover etc.
provides a sustainable source of plant-available Si to enhance crop
productivity and stress tolerance (243). The effectiveness of these
residues depends not only on their Si content but also on the
application method, which influences Si solubilization, nutrient
dynamics, and interaction with soil contaminants such as As.

6.1 Direct soil incorporation of raw
biomass

Unprocessed crop residues are chopped and incorporated into
soil before planting. Their subsequent decomposition releases
soluble Si (H4SiO4) via microbial mineralization (191). Si
accumulates in the rhizosphere, enhancing uptake by plant roots.
This process although enhances soil organic carbon and microbial
activity, the release of Si is slow and initial nitrogen immobilization
during decomposition may occur, therefore, suitable for long-
duration crops. Seyfferth et al. (244) observed that rice husk
incorporation to soil (1% w/w) decreased grain As by 25-50% and
straw As by at least 50%, and increased straw and husk Si by 25-
60% without affecting yield in three different rice cultivars. Mamud
et al. (245) conducted a study in Meghna Estuarine floodplain of
Bangladesh which is known for its As laden groundwater and found
out that in the Pleistocene terrace soils, fresh rice husk (1% w/w)
reduced As in grain, husk, and straw by 36-40%, 36-41%, and 42—
45%, respectively and in the Holocene floodplain soils, by 39-45%,
55-58%, and 50-51%, respectively.

6.2 Application of agrowaste in combusted
form

Depending on the process of combustion two types of
amendment can be derived from agrowastes. Open-air burning or
controlled combustion of biomass in presence of oxygen at higher
temperature produces ash such as RHA or sugarcane bagasse ash,
can be applied directly to the field (246). Ash contains amorphous
silica which dissolves in water to release monosilicic acid (173).
Ash can also co-precipitate As and bind other heavy metals.
Biomass, when pyrolyzed at controlled temperature (350-600 °C)
and oxygen environment, produces biochar. Biochar retains Si in a
reactive form and serves as a slow-release Si source (247). It also
improves cation exchange capacity and As adsorption due to its
porous structure. Several studies show the advantage of ash and
biochar over direct incorporation of residue. Penido et al. (248)
observed that both RHA and rice straw ash (RSA) amended soils
had low As levels at or less than 0.2 uM L. Soils supplemented
with fresh husk (FH), whether whole or powdered, exhibited
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marginally increased solution-phase Concentrations varied from
0.2 to less than 0.6 uM L~! for FH whole and from 0.2 to 0.5 uM
L~! for FH powder amended soils. The solution phase exhibited
concentrations approximately nine times greater in fresh straw
amended soils compared to those amended with FH, RSA, or RHA,
ranging from 1.0 to 1.8 WM L™!. Leksungnoen et al. (90) evaluated
biochar and ash formed from Si-rich rice husk and showed that rice
husk biochar and RHA (64% w/w) effectively reduced inorganic
As buildup in rice grain to 0.27-0.29mg kg~!, representing
a 20-24% reduction compared to the control. Moreover, RHA
substantially reduced grain-As(V) concentrations. Wang et al.
(249) documented a 15.9-40.5% reduction in pore water As from
tillering to harvest of rice, attributed to the application of Si-rich
RHA in comparison to rice husk. The sequestration of As in the
soil solid phase and root plaque rose by 8.0% and 26.9% with the
application of RHA, likely due to the co-precipitation of iron and As
facilitated by the liming effect of RHA, which was associated with
a significant reduction in As transit. The inorganic As content in
white rice diminished from 0.36 mg kg™! in the control group to
0.24 mg kg~! with rice husk and 0.17 mg kg~! with Si-rich RHA,
underscoring the efficacy of Si-rich RHA compared to rice husk.
Kumarathilaka et al. (250) found that iron-modified Si-rich rice hull
biochar (Fe-RBC) under intermittent flooding reduced As buildup
in rice roots, shoots, husks, and unpolished grains by 62%, 37%,
79%, and 59%, respectively, in comparison to the standard flooded
treatment. Limmer et al. (78) found a reduced concentration of
straw and root As from 0.65 and 11.2mg kg~! in husk treated
plants to 0.57 and 7.4 mg kg™!, respectively in charred rice husk
treated plants. Maximum reduction (70.6%) in dimethylarsinic acid
content in panicles was found in high-Si rice straw biochar applied
pots followed by low-Si rice straw biochar applied pots (60.2%
reduction) as compared to control (251).

6.3 Composted or co-composted Si-rich
biomass

Crop residues are composted alone or co-composted with
nitrogen-rich material (e.g., animal manure) to produce stable
organic fertilizer enriched with Si. Microbial culture like PSB, SSB,
and potash mobilizing bacteria can also be added for faster release
of nutrients. Composting enhances Si bioavailability by degrading
the phytolith matrix and increasing microbial solubilization (252).
Khanam et al. (10) observed rice straw compost (RSC) significantly
reduced (32.5% reduction) bioavailable As (NaHCO3 extractable)
content compared to other amendments. The combination of
SSB+RSC caused a further reduction by 38.7% in soil. The
application of SSB4+RSC resulted in a greater reduction in roots,
shoot, and grains with the value of 49.4%, 34.2%, and 53.2%,
respectively. The SSB+RSC treatment resulted in the highest
transfer rates of As from soil to root and from shoot to grain
were found to be the lowest (3.4 and 0.16, respectively) with
SSB+RSC followed by RSC (4.0, 0.20). Yamaguchi et al. (253)
reported that in lime + 2,250 g m~2 rice compost applied site, the
pseudototal As concentration in the soils after 97 cycles of rice
cultivation was approximately 60% of that in the plots without
annual compost application. As concentration in the shoots and
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TABLE 8 Different methods of extracting silica from agro-waste [adopted from Seghir et al. (254); Setiawan and Chiang (243)].

10.3389/fnut.2025.1657640

Raw material  Extraction Extraction Product Average silica  Silica purity References
method condition particle size (wt %)

Rice husk Hydrothermal Ethanol 180 °C, 0.1 Amorphous silica 101 m? g~! of (300)
extraction MPa, 24h specific surface area

Sorghum husk Hydrothermal 1MHCL, 120 °C, Amorphous silica spherical, saddle, (301)
extraction 0.1 MPa,2h and dumbbell shape

Rice husk Combustion in 600 °C,2h Amorphous silica 0.50-0.70 pm 95.77 (144)
muffle furnace

Rice straw Combustion 500°C, 8h Amorphous silica 72.60 (302)

Coconut husk 5N H,SO4 700°C,3h Crystalline silica 91.76 (303)
treatment,
Combustion

Pine cone 3M H,S0y,, 600 °C SiO, NPs 37nm (304)
Thermal
decomposition

Rice husk ash Acid precipitation HCI washing before Amorphous silica 0.50-0.70 pm 99.2% (144)
method extraction, 60 °C

Rice husk ash Acid precipitation 80°C Amorphous silica 10-15nm 98.9% (305)
technique

Paddy straw Acid precipitation Acid wash, 37 °C Nano-silica 15-20 nm (306)

‘Wheat straw Leaching in a 10% 4:1 (v:v) mixture of Amorphous 75-320 nm (307)
(v/v) HNO; and nitric and sulphuric hydrated silica
calcination acid washing,

400-700 °C

Sugarcane bagasse Calcination in a 1M HCl washing, Crystalline SiO, for 25.0, 6.84 and 30.21,29.51 and (308, 314)

(SCB), corn stalk Thermolyne SCB was calcined at SCB and CS and 3.79nm for SCB, CS 31.4% for SCB, CS

(CS), and rice husk muffle furnace 950 °C, 4h, CS at amorphous for RH and RH, and RH,

(RH) 550 °C, 4.5h, and respectively respectively

RH at 500 °C, 4 h

Olive stone Alkali leaching 10% HCl wash, Crystalline silica 15-68 nm (309)
process Ambient temp

Olive stones Alkali leaching Acid wash, 900 °C Crystalline silica 15-68 nm (310)
extraction method

Cassava periderm Sol-gel method 0.1 M HC], 700 °C Silica nanoparticles 62.69 nm (311)

Teff straw Sol-Gel method Acid wash, 900 °C Biosilica >99% (312)

Palm kernel shell Sol-gel method 750 °C Amorphous silica 50-98 nm (313)

ash nanoparticle

panicles of rice plants was consistently lowest in the lime +
2,250 g m~2 rice compost applied plots for last 6 years (92nd to
97th cropping).

6.4 Extraction of silica from agrowaste

Silica (SiO3) is well known as a precursor for many applied
forms of Si like calcium silicate, sodium silicate, silicic acid,
silica nanoparticles (SiO, NPs), silica gel etc. These materials can
be directly incorporated by soil applied or foliar spray and get
rapidly absorbed through roots or stomata. Production of SiO,
from agricultural wastes can be accomplished in three different
ways: chemical treatment, thermal treatment, or microbiological
treatment (254). Different extraction methods with their final
product has been depicted in Table 8.
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7 Conclusion

The increasing generation of agro-wastes, necessitated by the
need to sustain a rapidly expanding global population, poses
both challenges and opportunities for sustainable agricultural
management. The improper disposal of these wastes, particularly
through residue burning, has considerable environmental and
public health consequences. At the same time, these wastes
represent a valuable, underutilized resource for improving soil
fertility, particularly in regions facing heavy metal and metalloid
contamination such as arsenic (As) which poses significant risks
to soil health and food security, especially in the rice-cultivated
areas of the Ganges-Brahmaputra-Meghna plain. Arsenic not
only threatens human health but also disrupts the uptake of
essential plant nutrients, diminishing crop quality and exacerbating
malnutrition risks.
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Various remediation strategies have been explored to address
these challenges, including physical, chemical, and biological
approaches. This review highlights the potential of silicon (Si)
and silicate-solubilizing microorganisms (SSM) in mitigating As
toxicity. Si and arsenite (As™) utilize the same uptake transporters
(Lsil and Lsi2), enabling Si to competitively inhibit As absorption
in plants. Additionally, Si application promotes the formation of
iron plaques around roots, serving as a barrier to As translocation
by adsorbing or co-precipitating As in the rhizosphere. However,
low solubility of Si in neutral soil makes it difficult to lessen
the toxicity and buildup of As. One potential strategy is to
employ consortia of silicate-solubilizing microorganisms (SSM)
and agro-wastes that are rich in Si. Soil fertility is improved,
the biogeochemical Si cycle is optimized, and optimal orthosilicic
acid concentrations are maintained by these bio-fertilizers; as
a result, agriculture can thrive even when As is present. No
matter how high the As levels are, SSM tolerant to As toxicity
can still promote rice development since they dissolve silicates
and also increase the solubilization of phosphate and potassium.
Also, agricultural residues that are rich in silicates can be bio-
converted or decomposed into a bioavailable Si form more quickly
with the help of SSM. This consortia based application not only
mitigates As toxicity but also enhances plant resilience to biotic and
abiotic stresses, and decreases dependence on expensive inorganic
Si fertilizers.

The combination of SSM and Si-rich agro-wastes presents a
sustainable, cost-effective, and environmentally friendly alternative
to traditional remediation methods. This approach recognizes
agro-wastes as a resource instead of a disposal issue, aligning
with circular economy principles and enhancing environmental
sustainability and public health protection.

8 Future perspective

Future field validation of SSM-Si agro-waste consortia across
various soil types and agro-climatic areas is essential. The selection
of microbial strains and the formation of consortia are necessary
to improve silicate solubilisation, nutrient mobilization, and
arsenic mitigation efficiency, alongside the standardization
of silicon-rich agro-waste processing to provide uniform
bioavailability and scalability for farm-level implementation.
Comprehensive Long-term studies evaluating the effects on
soil health, carbon sequestration, and agricultural yield in
As-contaminated environments are necessary to corroborate
laboratory findings. Pathways for the commercialization of cost-
effective bioformulations accessible to resource-limited farmers
should be established. Farmers will increasingly be able to adopt
SSM-enriched agro-waste amendments as a low-cost alternative to
conventional silicon fertilizers, thereby enhancing crop yields and
nutritional quality even under arsenic-contaminated conditions.
The agricultural industry can transform silicon-rich residues
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into standardized biofertilizer formulations, creating sustainable
value chains while simultaneously reducing the harmful practice
of residue burning. Policymakers and extension agencies are
expected to play a critical role in mainstreaming this approach as a
climate-smart, circular agriculture solution, ensuring food security
while safeguarding environmental and public health.
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