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Introduction: With the growing consumption of oolong tea, concerns regarding
the leaching of toxic elements and rare earth elements (REEs) during brewing
necessitate investigation.

Methods: We analyzed 108 oolong teas of diverse origins and varieties. The
concentrations of six toxic elements (including Pb, Cd, Al) and fifteen REEs were
measured by ICP-MS. The effects of water temperature (90°C, 100°C) and brewing
time (5 seconds to 2 hours) on leaching rates were systematically examined.
Results: High temperature and long brewing time significantly increased (P<0.05)
the leaching of most elements. Tieguanyin tea contained the highest levels of
Pb, Al and REEs. Samples from Fujian province significantly exceeded safety
standards for Pb and Al. Anomalously, the leaching rate of Cd was lower at 100°C
than at 90°C, while the release of scandium (Sc) increased with temperature.
Discussion: This study reveals that brewing conditions are critical for elemental
migration. To minimize the intake of harmful substances, consumers are advised
to shorten the brewing time. We also call for strengthened regulatory standards
for toxic elements and REEs in tea. These findings provide a scientific basis for
guiding safe tea consumption practices.
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1 Introduction

Oolong tea, also known as Qingcha, ranks among the world’s three most famous types of
tea, alongside green tea and black tea. Originating in China, it is classified as one of the six
primary types of tea produced in the country (1). As the birthplace of tea, China is home to
numerous tea-producing regions, with Fujian and Guangdong being particularly renowned
for their oolong tea production. In 2021, China’s oolong tea production reached 287,200 tons,
with domestic consumption at 227,900 tons, making it the second most-consumed type of
tea (2).
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As the birthplace of oolong tea, Fujian Province is renowned for
producing well-known varieties such as Tieguanyin and Dahongpao.
Tieguanyin from Anxi is celebrated for its unique floral aroma and
sweet aftertaste (3), while Dahongpao from Wuyi Mountain is regarded
as the “king of teas” due to its deep, rocky flavor and complexity (4).
Guangdong Province is famous for its Phoenix monocotyledon and
Daffodil teas, with Phoenix Mountain monocotyledon tea from
Chaozhou distinguished by its single-plant harvesting and rich aroma,
offering a diverse range of floral, fruity, and nutty notes (5). The varietal
characteristics of Fujian and Guangdong oolong teas are closely tied to
their regional climatic and soil conditions. This unique “terroir”
influences both the quality of the tea and potentially its leaching
behavior of toxic elements and REEs (6).

Relevant studies have indicated that toxic elements can
accumulate in tea leaves and be released during the leaching
process. Most toxic elements are capable of causing severe health
damage to the human body even at relatively low concentrations
(7). Among these toxic elements, lead, Cd, and Al are particularly
harmful. Lead can impair the nervous system and kidneys, with
children being especially vulnerable due to its potential to hinder
intellectual development (8, 9). Cd is associated with kidney
damage and an increased risk of cancer (10, 11), while long-term
exposure to Al may contribute to neurodegenerative diseases like
Alzheimer’s (12, 13). Cu, manganese, and Ni are essential trace
elements for human health, but excessive intake of these can lead
to adverse health effects. Excessive intake of Cu can lead to liver
and kidney damage, gastrointestinal discomfort, and neurological
issues (14). Manganese toxicity is associated with neurological
impairments, including ataxia and cognitive dysfunction,
particularly in environments with high Mn exposure (15). Ni, a
common allergen, can cause dermatitis with prolonged exposure
to high concentrations, and has been linked to lung and nasal
cancers. Additionally, it can adversely affect cardiovascular and
immune system functions (16).

REEs, which encompass lanthanide elements as well as
yttrium (Y) and scandium (Sc), are contaminants of significant
concern in the environment and food. Their food safety risks
cannot be overlooked. During the tea planting process, REEs can
enter tea plants through pathways such as soil migration,
atmospheric  deposition, and agricultural inputs, and
subsequently accumulate in the leaves (17). Since tea is consumed
directly after brewing, the bioaccessibility of REEs entering the
human body via tea infusion is relatively high, posing potential
dietary exposure and health risks. Relevant studies have shown
that excessive intake of REEs may give rise to health hazards,
including alterations in blood parameters, skin lesions, and
developmental disorders in children (18-20).

Tea-drinking habits vary among individuals, with some
preferring short brewing times of 30 s to 1 min, while others,
particularly in certain regions, favor soaking tea leaves in large
teapots for extended durations. Despite the widespread
consumption and research on oolong tea, limited studies have
examined the leaching of toxic elements and rare earth during
brewing, highlighting the need for further investigation. Most
existing research evaluates the health impact of tea by analyzing
the trace element content in dry tea leaves. However, as
consumers typically consume the brewed tea infusion, assessing
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health risks solely based on the trace element content in dry
leaves may lead to inaccurate conclusions. This study addresses
this gap by analyzing the concentrations of toxic elements and
rare earth in both tea leaves and brewed tea infusions. It also
investigates how brewing time, temperature, and repetition
influence the leaching behavior of these elements in oolong tea.
The findings highlight potential exposure risks to consumers and
provide scientific guidance for minimizing health hazards
associated with tea consumption.

2 Materials and methods
2.1 Sample collection

In 2021, a total of 108 oolong tea samples were collected from
various locations in Guangzhou, including the Yuexiu, Haizhu,
Liwan, Tianhe, Baiyun, Zengcheng, Huadu, Nansha, Conghua,
Luogang districts, and Chaozhou City. The samples primarily
included four varieties: Tieguanyin, Dahongpao, Dancong, and
Narcissus. They were sourced from supermarkets, wholesale
markets, retail stores, and online stores to ensure a diverse
The

Supplementary Table 1.

representation. specific details are provided in

2.2 Sample analysis

The primary objective of this experiment was to measure the
concentrations of toxic elements and REEs in the tea infusions.
The toxic elements analyzed included lead (Pb), cadmium (Cd),
aluminum (Al), copper (Cu), manganese (Mn), and nickel (Ni).
Additionally, 15 REEs were quantified, such as scandium (Sc),
yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr),
and neodymium (Nd), reported collectively as total rare earth.
These elements were selected based on their known health risks
and prevalence in tea. The detection standards adhered to were
the “National Food Safety Standard: Limits of Contaminants in
Food” (GB2762-2022).

2.3 Major instruments and reagents

The Agilent 7,700 Series inductively coupled plasma-mass
spectrometer (ICP-MS) from Agilent Technologies was used for
metal element detection. The acquisition mode was set to mass
spectrometry mode with the following parameters: peak shape
acquisition with 3 points, 3 replicates per scan, 20 scans per
replicate, and a total acquisition time of 28.860 s. Monitoring
parameters and integration times/mass numbers were optimized
for different metal elements: 0.99 s for Al (mass 27) and Sc (mass
45); 0.09 s for Mn (mass 55) and Ni (mass 60); and 0.30 s for all
other elements (Supplementary Table 2 for detection and
quantification limits).

Instrumental plasma parameters were configured as follows:
RF power 1,550 W, RF matching 1.60 V, sampling depth 8.0 mm,
carrier gas flow rate 0.70 L/min, peristaltic pump speed 0.20 rps,
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spray chamber temperature 2 C, and makeup gas flow rate 0.50 L/
min. The collision cell was operated with helium gas at a flow rate
of 3.8 mL/min to minimize polyatomic interferences.

2.3.1 Tea sample preparation and digestion

Collected tea samples were first assigned unique identifiers.
Subsequently, homogenization was performed using a food-grade
grinder, and the material was passed through a 60-mesh sieve to
ensure particle size uniformity. The processed samples were
stored in sealed containers to prevent environmental
contamination. An appropriate amount of the processed tea
sample was accurately weighed and mixed with 100 pL of nitric
acid (1%, v/v). Digestion was carried out using a microwave
digestion system (Ethos 900, Tokyo, Japan) under conditions of
150 C, 50 bar, and 1,000 W for 1 h. After digestion, the sample
was cooled to room temperature. The digestate was then
transferred to a 5 mL polypropylene tube and diluted to 20 mL
with ultrapure water. Finally, the metal element concentrations
were analyzed by ICP-MS.

Exactly 2.000 g of tea leaves were weighed into a 200 mL
beaker, and 100 mL of drinking water at a specified temperature
(90°C or 100°C) was added. After steeping for 5s, the first
infusion was decanted into a 500 mL sampling bottle,
while the tea residue was retained in the beaker. Then, 100 mL of
fresh hot water at the same temperature was added to the residue
for successive extraction periods of 5, 1 min, 5 min, 10 min,
30 min, and 2 h. Each infusion was collected into separate
500 mL sampling bottles. A blank control was prepared by
steeping 100 mL of hot water for 5 s. For analysis, 10 mL of the
second infusion was mixed with 100 pL of nitric acid (1%, v/v).
Subsequent digestion and analysis steps were identical to those

described for the tea leaf samples.

2.4 Experimental design

Following common oolong tea brewing methods reported in
literature (21, 22), two brewing temperatures were selected: 90°C
and 100°C. Precisely, 2.000 g of tea leaves were thoroughly mixed
and brewed in 100 mL of natural mineral water at the designated
temperatures. For the initial infusion, the tea was brewed for 5 s,
after which the liquid was collected as the ‘first infusion, and the
residual tea leaves remained in the beaker. The leaves were
subsequently re-brewed for varying infusion durations (5 s, 1 min,
5 min, 10 min, 30 min, and 2 h). Each infusion was collected
separately, with the second infusion poured into a dedicated 500 mL
sampling bottle, and the residual tea leaves left in the beaker after
each infusion. The trace element content in each collected infusion
was analyzed using ICP-MS. For accuracy and reliability, three
parallel samples were prepared and measured for each infusion time.

2.5 Statistical analysis

Data were organized using Excel 2021 and analyzed with SPSS
Statistics 29. Due to the non-norminal distribution of data,
nonparametric tests were applied for group comparisons, with a
significance level set at p < 0.05. The content of REEs in both tea
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leaves and tea infusions was determined using the methods
described earlier. The leaching rate was calculated using the formula:

Leaching rate = (Leached content of REEs in tea infusion/
Total content of REEs in tea sample) x 100%.

3 Results

3.1 Differences in element contents
among different oolong tea varieties

Among the four main oolong tea varieties (Tieguanyin,
Dahongpao, Dancong, and others) tested in this study, there were
significant differences in the contents of toxic elements and REEs
(except for Cd, p <0.001). As shown in Table 1 Tieguanyin
exhibited the highest content levels for all detected elements. Its
Pb content reached 0.533 + 0.306 mg/kg, which was significantly
higher than that of Dahongpao (0.491 + 0.259 mg/kg) and
Dancong (0.247 + 0.175 mg/kg). Notably, the Al content in
Tieguanyin was as high as 1549.514 + 2736.48 mg/kg, far
exceeding that of other varieties. In terms of REEs, Tieguanyin
also had the highest content of total rare earth oxides (TREO).
Specifically, the contents of Sc, La, and Ce in Tieguanyin were
3.704, 0.542, and 0.511 mg/kg, respectively.

3.2 Comparison of element contents in
oolong tea from different producing
regions

Elemental analysis of tea samples from the three major
producing regions (Fujian, Guangdong, and Taiwan) revealed
significant regional differences (p < 0.001), with specific results
presented in Table 2 and Supplementary Figure 2. Oolong tea
produced in Fujian Province exhibited the highest level of
elemental enrichment. The average Pb content of Fujian tea was
0.524 + 0.310 mg/kg, which was significantly higher than that of
samples from Guangdong (0.266 + 0.200 mg/kg) and Taiwan
(0.142 + 0.130 mg/kg). A consistent trend was observed for Al
content: the Al content in Fujian tea was 1275.031 + 2269.000 mg/
kg, whereas those in Guangdong and Taiwan teas were 634.868
and 711.000 mg/kg, respectively. Similarly, the content of TREO
in Fujian-produced tea (2.988 + 3.000 mg/kg) was significantly
higher than that in samples from Guangdong (1.178 + 1.200 mg/
kg) and Taiwan (0.385 + 0.300 mg/kg). In contrast, no statistically
significant difference in Cd content was detected among the three
producing regions (p = 0.131).

3.3 Leaching behavior under different
temperatures and brewing durations

Brewing temperature had a significant impact on the leaching
behavior of most elements (Table 3; Supplementary Figure 1).
However, when the brewing time was fixed, temperature (90°C
vs. 100°C) showed no significant effect on the leaching amounts
of Pb, Al, Cu, Mn, and Ni (p > 0.05). Across all brewing durations,
the leaching amount of Cd at 100°C was significantly lower than
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TABLE 1 Comparison of leached toxic elements and REEs in different varieties of oolong tea leaves.

10.3389/fnut.2025.1656046

Element Variety
Red Robe Dancong Tieguanyin

Pb (mg/kg) 0.491 + 0.259 0.247 +0.175 0.533 + 0.306 0.414 +0.343 <0.001
Cd (mg/kg) 0.029 +0.012 0.028 + 0.026 0.028 + 0.025 0.022 +0.016 0.304
Al (mg/kg) 909.92 + 318.22 453.27 + 282.65 1549.51 + 2736.48 754.56 + 352.25 <0.001
Sc (mg/kg) 2.031 +2.031 1.144 +0.752 3.704 + 2.966 1.191 + 1.191 <0.001
Y (mg/kg) 0.039 +0.022 0.023 +0.015 0.055 % 0.035 0.035 +0.035 <0.001
La (mg/kg) 0.303 + 0.366 0.151 +0.183 0.542 + 0.546 0.153 +0.153 <0.001
Ce (mg/kg) 0.269 + 0.269 0.142 +0.142 0.511+0.511 0.163 + 0.163 <0.001
Pr (mg/kg) 0.555 % 0.555 0.370 = 0.370 1.020 + 1.020 0.333 +0.333 <0.001
Nd (mg/kg) 0.053 + 0.053 0.027 +0.027 0.101 % 0.101 0.033 +0.033 <0.001
Sm (mg/kg) 0.219 £0.219 0.111 £ 0.111 0.414 £ 0.414 0.136 £ 0.136 <0.001
Eu (mg/kg) 0.040 = 0.040 0.020 + 0.020 0.073 +0.073 0.025 +0.025 <0.001
Gd (mg/kg) 0.010 +0.010 0.004 + 0.004 0.016 + 0.016 0.006 + 0.006 <0.001
Tb (mg/kg) 0.043 +0.043 0.020 + 0.020 0.075 + 0.075 0.025 + 0.025 <0.001
Dy (mg/kg) 0.007 + 0.007 0.003 = 0.003 0.012 +0.012 0.004 = 0.004 <0.001
Ho (mg/kg) 0.045 + 0.045 0.021 +0.021 0.076 + 0.076 0.023 +0.023 <0.001
Er (mg/kg) 0.009 = 0.009 0.005 + 0.005 0.017 +0.017 0.005 + 0.005 <0.001
Tm (mg/kg) 0.031 +0.031 0.016 = 0.016 0.056 % 0.056 0.015 +0.015 <0.001
Yb (mg/kg) 0.005 + 0.005 0.003 £ 0.003 0.009 % 0.009 0.003 + 0.003 <0.001
Lu (mg/kg) 0.036 +0.036 0.021 +0.021 0.069 % 0.069 0.018 +0.018 <0.001
TREO (mg/kg) 0.491 + 0.259 0.247 +0.175 0.533 + 0.306 0.414 + 0.343 <0.001

TREO stands for Total rare earth. This abbreviation is used consistently in all subsequent tables and figures.

TABLE 2 Comparison of leached toxic elements and rare earth in oolong tea leaves from different regions.

Region
Element
Guangdong Taiwan
Pb (mg/kg) 0.524 £ 0.310 0.266 + 0.200 0.142 £ 0.130 <0.001
Cd (mg/kg) 0.031 £0.018 0.025 £ 0.016 0.017 £0.018 0.131
Al (mg/kg) 1275.031 £ 2269.000 634.868 + 1536.000 711.000 + 327.000 <0.001
Sc (mg/kg) 0.048 £ 0.034 0.026 £ 0.016 0.017 £0.011 <0.001
Y (mg/kg) 0.436 + 0.580 0.158 £0.170 0.050 £ 0.012 <0.001
La (mg/kg) 0.407 £ 0.560 0.147 £ 0.180 0.061 + 0.045 <0.001
Ce (mg/kg) 0.829 +0.820 0.369 + 0.340 0.083 £ 0.039 <0.001
Pr (mg/kg) 0.080 £ 0.090 0.028 £ 0.030 0.012 £ 0.008 <0.001
Nd (mg/kg) 0.330 £ 0.350 0.116 £ 0.120 0.052 £ 0.020 <0.001
Sm (mg/kg) 0.059 + 0.060 0.021 £ 0.020 0.010 £ 0.005 <0.001
Eu (mg/kg) 0.013 £0.010 0.005 £ 0.004 0.003 £ 0.001 <0.001
Gd (mg/kg) 0.061 + 0.060 0.021 £ 0.020 0.010 £ 0.005 <0.001
Tb (mg/kg) 0.010 £ 0.010 0.003 £ 0.003 0.002 £ 0.001 <0.001
Dy (mg/kg) 0.062 £ 0.070 0.023 £0.030 0.007 +0.003 <0.001
Ho (mg/kg) 0.013 £0.010 0.005 £ 0.005 0.002 £ 0.001 <0.001
Er (mg/kg) 0.045 + 0.060 0.017 £ 0.020 0.004 £ 0.002 <0.001
Tm (mg/kg) 0.007 £ 0.010 0.003 £ 0.003 0.002 £ 0.001 <0.001
Yb (mg/kg) 0.054 £ 0.070 0.023 £0.030 0.003 £ 0.001 <0.001
Lu (mg/kg) 0.009 £ 0.010 0.004 £ 0.004 0.002 £+ 0.001 <0.001
TREO (mg/kg) 2.988 + 3.000 1.178 + 1.200 0.385 + 0.300 <0.001
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TABLE 3 Comparison of toxic element leaching amounts at different brewing temperatures.

Toxic element content

Temperature
Pb (pg/L) Cd (pg/L) Al (mg/L) Cu (mg/L) Mn (mg/L) Ni (mg/L)
55 0.179 0.064°* 0.535 0.006 0.437 0.004
1 min 0.282 0.061%* 0.806 0.008 0.677 0.006
5 min 0.457 0.069 1.635 0.015 1.193 0.012
90°C 10 min 0.504 0.0 2216 0.018 1.541 0.016
30 min 0.578 0.075%# 3.294 0.023 2.267 0.021
120 min 0.662 00817 4713 0.036 3.538 0.032
P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
55 0.143 0.046%* 0.401 0.005 0.409 0.004
1 min 0.296 0.051%* 0.849 0.008 0.804 0.008
5 min 0.572 0.062 1.809 0.012 1375 0.013
100°C 10 min 0.658 0.061%#5 245 0.015 1.737 0.017
30 min 0.572 0.061%% 3.634 0.021 2.653 0.023
120 min 0.709 0064 4361 0.03 3.369 0.029
P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

*P < 0.05, **P < 0.01, and ***P < 0.001 in comparison of the same brewing time.

that at 90°C. The effect of temperature on REEs leaching
exhibited (Table  4;
Supplementary Figure 2). The leaching of Sc increased with rising

element-specific ~ characteristics
temperature, while the leaching amount of Y at 100°C was
generally lower than that at 90°C. No significant differences in
the leaching amounts of other REEs were observed between the
two temperatures.

Regardless of the brewing temperature (90°C or 100°C),
prolonging the brewing time significantly increased the leaching
amounts of all toxic elements and REEs (p < 0.001). As shown in
Table 3, the leaching amounts of toxic elements (Pb, Cd, Al, Cu, Mn,
Ni) exhibited a continuous increasing trend from 5s to 2 h. For
instance, at 90°C, the leaching amount of Pb increased from
0.179 pg/L at 5's to 0.662 pg/L at 2 h. The leaching pattern of REEs
was similar (Table 4). The leaching rate of TREO reached a peak in
the initial brewing stage (5-10 min), after which the growth rate
slowed down and gradually stabilized. The leaching rate of Sc
remained at a relatively high level under both temperatures.

3.4 Analysis of leaching rate

Analysis of the leaching rate further confirmed the
aforementioned findings (Figures 1, 2). The overall leaching rate
at the higher temperature (100°C) was higher than that at
90°C. Most elements leached most rapidly within the first
5-10 min of brewing, after which the leaching kinetic curves
gradually flattened. Notably, although the absolute leaching
amount of Cd at 100°C was relatively low, its leaching dynamics
were similar to those of other elements, increasing with the
extension of time. The leaching rates of REEs at 100°C were also
significantly higher than those at 90°C, especially within the
critical time window of 5-10 min.

Frontiers in Nutrition

4 Discussion

This study systematically examined how infusion temperature
and time influence the leaching of toxic elements and REEs from
oolong tea. The release of Pb, Al, Cu, Mn, and Ni increased
steadily as the brewing time was extended, peaking at the
120-min mark. This trend is consistent with earlier findings that
extended steeping enhances heavy metal migration (23, 24), in
contrast, cadmium showed reduced release at 100°C, while
scandium exhibited greater release, suggesting element-specific
behaviors under thermal conditions. Such atypical patterns are
partly explained by strong binding of Cd to polyphenols or
proteins, which can reduce its solubility at higher temperatures
(25-28). These results emphasize the importance of both
elemental speciation and organic matrix composition in shaping
leaching patterns.

This study found that varietal and regional effects were also
evident. Tieguanyin contained the highest Pb, Al and total REEs,
while Dahongpao, Dancong and Narcissus showed lower
concentrations. Regionally, Fujian teas exhibited greater
enrichment of Pb, Al and REEs than Guangdong and Taiwan
samples, in line with evidence that soil geochemistry and
cultivation practices significantly influence contaminant
accumulation (29, 30). Such differences highlight the need to
account for terroir and production conditions when assessing
health risks associated with tea consumption.

Kinetic analysis indicated that most elements leached most
rapidly within the first 5-10 min, followed by slower increases
and eventual plateauing. This early-phase acceleration agrees
with reports that initial brewing dominates elemental transfer
(23, 24). The divergent responses of Cd and Sc further underscore
the need to treat individual elements separately when assessing
infusion chemistry.
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TABLE 4 Comparison of rare earth oxide leaching amounts at different brewing temperatures (Unit: ug/L).

Temperature Brewing Rare earth content
Hie Sm  Eu Tb

55 0316 0.1027* 0.038 0.086 0.009 0.038 0.007 0.009 0.009 0.001 0.011 0.003 0.009* 0.001 0.011 0.002 0.921

1 min 0.322 0.11 0.046 0.114 0.01 0.043 0.009 0.009 0.01 0.002 0.011 0.003 0.01 0.002 0.014 0.002 0.996

5 min 0.342%% 0.162 0.066 0.174 0.015 0.071 0.014 0.009 0.016 0.003 0.017 0.004 0.015 0.003 0.019 0.003 1213

90°C 10 min 0.358% 0212 0.08 0.193 0.018 0.075 0.015 0.009 0.018 0.003 0.023 0.006 0.02 0.004 0.027 0.005 1.445

30 min 0.391%% 0.249 0.099 0.237 0.021 0.099 0.019 0.009 0.022 0.004 0.026 0.006 0.024 0.004 0.03 0.005 1.798

120 min 0.444 0.305 0.113 0.311 0.027 0.117 0.024 0.011 0.028 0.005 0.032 0.008 0.026 0.005 0.034 0.006 1.998

P-value <0.001 <0.001 <0.001 | <0.001 | <0.001 | <0.001 = <0.001 | 0299  <0.001 & <0.001 | <0.001  <0.001  <0.001  <0.001 | <0.001 | <0.001 <0.001

55 0.321 0.0827%* 0.033 0.076 0.007 0.031 0.006 0.009 0.007 0.001 0.008 0.002 0.007* 0.001 0.008 0.001 0.865

1 min 0.332 0.099 0.051 0.111 0.01 0.047 0.009 0.009 0.01 0.001 0.011 0.003 0.009 0.002 0.012 0.002 1.015

5 min 0.365%* 0.133 0.067 0.164 0.015 0.064 0.012 0.009 0.013 0.002 0.016 0.004 0.012 0.002 0.017 0.003 1.254

100°C 10 min 0.379* 0.15 0.077 0.195 0.017 0.07 0.013 0.009 0.016 0.002 0.019 0.004 0.015 0.003 0.018 0.003 1.392

30 min 0.417%% 0.239 0.113 0.275 0.023 0.102 0.02 0.01 0.022 0.003 0.025 0.006 0.023 0.004 0.027 0.005 1.788

120 min 0.453 0.281 0.118 0.299 0.027 0.12 0.025 0.01 0.028 0.004 0.031 0.008 0.027 0.005 0.034 0.005 2.036

P-value <0.001 <0.001 <0.001 | <0.001 | <0.001 | <0.001  <0.001 | 0938  <0.001 | <0.001 | <0001  <0.001  <0.001  <0.001 | <0.001 | <0.001 <0.001

#P < 0.05, #*P < 0.01 and ***P < 0.001 in comparison of the same brewing time.
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The experimental design do not fully replicate consumer
practices of repeated short infusions. Furthermore, the present
leached but
gastrointestinal bioaccessibility, which may lead to differences

measurements reflect concentrations not
between leaching potential and actual absorbed dose.

The limitation of this study is its exclusion of sequential
infusion models and in vitro digestion systems. Therefore, future
studies should expand to include these, with a focus on clarifying
the chemical speciation of Cd, Sc and other elements that exhibit
non-linear responses to temperature. Broader geographic and
temporal sampling will also be important for improving
generalizability. Despite these limitations, this study provides
detailed kinetic evidence on toxic element and REE release,
demonstrating how varietal, regional and infusion factors
collectively shape contaminant migration from tea leaves
to infusion.

5 Conclusion

This study revealed distinct varietal and regional differences
in elemental enrichment. Tieguanyin contained the highest
concentrations of Pb, Al and REEs, and teas from Fujian showed
significantly higher levels than those from Guangdong and
Taiwan. Infusion experiments demonstrated that Pb, Al, Cu, Mn,
and Ni increased with steeping time, with the most rapid release
occurring within the first 5-10 min. Cd showed lower release at
100°C than at 90°C, whereas Sc displayed higher release at 100°C.

These findings demonstrate that varietal traits, geographic
origin and infusion kinetics jointly shape contaminant migration
from tea leaves to infusions. While current national standards,
including GB2762-2022 and GB5749-2022, define baseline limits,

Frontiers in Nutrition 07

the variability observed here highlights the need for continued
surveillance and possible refinement to ensure consumer safety.
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Comparison of rare earth oxide precipitation rates under different conditions.
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