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Caffeine-augmented Sprint 
interval training outcomes in 
obese women: an examination by 
inter-individual analysis on 
physical and physiological 
adaptive responses
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Background: The objective of the present study was to elucidate the impact of 
a 12-week caffeine consumption before sprint interval training on the physical 
and physiological adaptations in obese women.
Methods: Thirty overweight and obese women volunteered and were randomly 
divided into three groups: Caffeine (3 mg·kg−1 body mass, n = 10), Placebo 
(3 mg·kg−1 body mass in cellulose, n = 10), and Control (n = 10). Over 12 weeks, 
subjects in the Caffeine and Placebo groups consumed their supplements three 
times per week, ~60 min before each sprint interval training session. Fat mass, 
lower body strength, and cardiorespiratory fitness were evaluated at baseline 
and after the intervention. Fasting glucose, lipid profiles, and adipokines (leptin, 
adiponectin, and irisin) were measured 48 h before and after the intervention.
Results: Both the Caffeine and Placebo groups exhibited significant 
improvements (p < 0.05) in these variables after 12 weeks of training. The 
Caffeine group showed significantly greater adaptive responses (p < 0.05) than 
the Placebo group in reducing fat mass (SMD = −0.27), enhancing strength 
(SMD = 0.30) and cardiorespiratory fitness (SMD = 0.43), and altering fasting 
glucose (SMD = −0.74), leptin (SMD = −0.23), adiponectin (SMD = 0.18), and 
irisin (SMD = 0.42) after the intervention.
Conclusion: Supplementation of 3 mg·kg −1 body mass caffeine before sprint 
interval training resulted in greater reductions in fat mass and improvements in 
strength and cardiorespiratory fitness, as well as more pronounced changes in 
fasting glucose and adipokines among overweight and obese women.
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1 Introduction

The World Health Organization (WHO) has declared that obesity has nearly tripled since 
1975 worldwide. Rates of overweight and obesity rates continue to rise, classifying obesity as 
a pandemic (1). While dietary intervention remains the most effective approach for weight 
loss (2), physical activity plays a key role in weight management and health improvement (3). 
It is recommended that individuals perform at least 150 min per week of physical activity to 

OPEN ACCESS

EDITED BY

Oleksandr P. Romanchuk,  
Lesya Ukrainka Volyn National University, 
Ukraine

REVIEWED BY

Cesar Osorio-Fuentealba,  
Metropolitan University of Educational 
Sciences, Chile
Christos George Stathis,  
Victoria University, Australia
Mohamed Amine Ltifi,  
University of Gafsa, Tunisia
Soufiane Kaabi,  
Université de Pau et des Pays de l’Adour, 
France

*CORRESPONDENCE

Yang Liu  
 liuyang20210110@163.com

RECEIVED 27 June 2025
ACCEPTED 17 October 2025
PUBLISHED 04 November 2025

CITATION

Zhao X and Liu Y (2025) Caffeine-augmented 
Sprint interval training outcomes in obese 
women: an examination by inter-individual 
analysis on physical and physiological 
adaptive responses.
Front. Nutr. 12:1655449.
doi: 10.3389/fnut.2025.1655449

COPYRIGHT

© 2025 Zhao and Liu. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  04 November 2025
DOI  10.3389/fnut.2025.1655449

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1655449&domain=pdf&date_stamp=2025-11-04
https://www.frontiersin.org/articles/10.3389/fnut.2025.1655449/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1655449/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1655449/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1655449/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1655449/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1655449/full
mailto:liuyang20210110@163.com
https://doi.org/10.3389/fnut.2025.1655449
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1655449


Zhao and Liu� 10.3389/fnut.2025.1655449

Frontiers in Nutrition 02 frontiersin.org

achieve clinically significant weight loss and improve overall 
health (3).

Various training methods improve performance, health, and 
reduce body fat (4–6). Among them, running-based high-intensity 
interval training (HIIT), including short sprints, has shown 
promising results (7). A common HIIT approach is sprint interval 
training (SIT), characterized by maximal-effort sprints interspersed 
with recovery (8, 9). While traditional SIT protocols often use 
20–30 s sprints (e.g., running or cycling), emerging evidence 
indicates that short sprint bouts (<10 s) can produce greater training 
efficiency and meaningful adaptations (8, 9). Short SIT may 
be particularly suitable for overweight populations, as it requires less 
total training time, lowers perceived exertion, and increases 
enjoyment (8, 9) compared with longer interval formats. As a result, 
the implementation of short SIT protocol could be  used as an 
effective approach to produce these benefits, minimize fatigue 
accumulation, and better accommodate participants to prolonged 
maximal efforts (8). Furthermore, this brief-duration of sprint 
intervention has been linked to improvements in VO2max (9), 
reductions in inflammation (10), enhanced insulin sensitivity, and 
decreases in body adiposity (11).

Although exercise training is an effective strategy to stimulate 
post-exercise energy expenditure and promote fat loss and overall 
health (3), combining it with nutritional supplements that enhance 
post-exercise thermogenesis may enhance these benefits (12, 13). 
Caffeine, a widely consumed central nervous system stimulant (14), is 
known to enhance thermogenesis, fat oxidation (15), and weight 
management through increased secretion of noradrenaline and 
dopamine (16–18). Previous studies have shown that caffeine 
ingestion before exercise can elevate post-exercise energy expenditure 
by ~27% following 90 min of moderate-intensity exercise (17) and at 
intensities of 75% VO2max (19). Short-term supplementation 
(1–8 weeks) may improve lipid profile, weight management, and 
performance by enhancing post-exercise energy expenditure and 
stimulating sympathetic nervous system activity and/or increasing the 
energetic cost of ventilation (13, 16, 18).

To optimize training adaptations in women, various doses of 
caffeine supplementation have been recommended to elicit adaptive 
responses that produce meaningful gains in physical performance and 
weight managements (12, 13, 17, 19). However, in female populations, 
the ingestion of approximately 3 mg·kg −1 body mass appears optimal 
for improving performance (13, 16). Higher doses, such as 6 mg·kg −1 
body mass, have not demonstrated additional benefits and may 
be  unnecessarily high for obese women (13, 17, 18). Therefore, 
selecting an appropriate dose is essential to enhance physical 
performance and health-related outcomes—including improvements 
in lipid profile and weight management—while minimizing side 
effects such as gastrointestinal discomfort (13). Consequently, 
integrating 3 mg·kg −1 body mass caffeine intake with short SIT may 
be an effective strategy to enhance physical performance and weight 
managements. This approach could have significant practical 
implications for individuals seeking to accelerate fat reduction, 
improve physical performance, optimize lipid profiles, and modulate 
adipokines involved in blood glucose regulation and fat oxidation (18, 
19). However, the specific effects of long-term caffeine 
supplementation combined with short SIT have not been investigated 
previously. Accordingly, the present study aimed to examine the 
effects of chronic caffeine ingestion, administered prior to short SIT 

sessions, on lipid profile, adipokine concentrations, performance 
adaptations, and fat loss in overweight and obese women.

2 Materials and methods

2.1 Ethics approval and study registration

The study involved healthy human participants and was approved 
by the Ethics Committees of the Xi’an Peihua University (EMRT, 
2024.05.12/GT847) and was conducted in accordance with the most 
recent edition of the Declaration of Helsinki. All participants were 
given detailed information regarding the possible risks and 
discomforts associated with the study and were also required to sign 
informed consent agreements.

2.2 Sample size estimation and 
randomization

The sample size calculation was based on an effect size of 0.80 and 
a partial eta squared value of 0.21 from a previous study examining 
the effects of caffeine supplementation and HIIT on health-related 
factors in obese women (17). Using G*Power software (version 3.1.9, 
Universität Düsseldorf, Germany), we determined that a total of 30 
participants was required to achieve 95% power at a significance level 
of 0.05 for F-tests, specifically mixed ANOVA (between-within 
factors). We allocated 10 women to each group. Randomization was 
performed using a computer-generated random number (simple 
randomization) in a 1:1:1 ratio to the Caffeine, Placebo, or Control 
groups. Group assignments were based entirely on chance and were 
unpredictable for both the authors and participants.

2.3 Participants

Participants were thirty overweight and obese women (BMI 
25–40), sedentary (20), and low caffeine consumers (<50 mg/day) (21, 
22) (Table 1). Before participating in the study, the subjects had to 
meet certain criteria. Firstly, they were required to have no previous 
injuries to their lower body. Additionally, their eligibility for training 
was determined by conducting screenings for any potential 
musculoskeletal, neurological, or orthopedic conditions that could 
have affected their ability to participate in the training. It was also 
important that none of the subjects used drugs or therapies for obesity, 
or had chronic diseases, endocrine disorders, or diabetes mellitus, as 

TABLE 1  Participant characteristics.

Characteristic Caffeine
(n = 10)

Placebo
(n = 10)

Control
(n = 10)

Mean ± SD Mean ± SD Mean ± SD

Age (y) 22.1 ± 2.5 23.5 ± 2.8 22.8 ± 2.1

Height (cm) 165.6 ± 6.5 167.2 ± 4.7 164.6 ± 5.7

Weight (kg) 83.5 ± 5.6 85.8 ± 4.9 84.5 ± 4.4

BMI (kg.m−2) 30.7 ± 2.1 30.8 ± 2.2 31.2 ± 2.3
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confirmed by an internal medicine specialist. Furthermore, the 
subjects had no history of physical activity prior to the start of the 
study and did not experience menstrual disorders such as 
dysmenorrhea, amenorrhea, or strong symptoms associated with 
premenstrual syndrome. To ensure compliance, a health-history 
questionnaire was administered during the participant recruitment 
process to screen for the use of nutritional, drug, and hormonal 
supplements. In addition, participants monitored their menstrual 
cycles and informed the investigator at the onset of menstruation. This 
information was used to schedule all baseline and experimental 
assessments during the late follicular phase, thereby controlling for 
potential hormonal and metabolic variations across the menstrual 
cycle. In accordance with the exclusion and inclusion criteria process, 
22 participants were excluded from a total of 52, resulting in the 
inclusion of 30 participants in the study.

2.4 Experimental design

The current study is a longitudinal investigation with pre/post-test 
design with a duration of 15 weeks including: 1-week for familiarization 
with the training intervention and study aims, 1-week for pre-test, 
12 weeks of training, and 1-week for the post-test. The participants 
underwent assessments of lower body muscular strength, 
cardiorespiratory fitness, and fat mass on two days [Day one (i.e., 
Monday); fat mass and strength, Day 2; (i.e., Wednesday) 
cardiorespiratory fitness] before and after the 12-week training period. 
Furthermore, blood samples were collected 48 h prior to and after the 
completion of the training period to evaluate resting adipokines (such 
as leptin, adiponectin and irisin) and lipid profiles (such as cholesterol, 
HDL, LDL, triglyceride), as well as fasting glucose levels in the morning. 
Both the Caffeine and Placebo groups participated in three 
non-consecutive days of training, specifically on Monday, Wednesday, 
and Friday in the afternoon at 4:00 p.m. while the Control group did not 
perform any physical activity programs and only continued their regular 
daily habits. Participants were instructed to adhere to their nutritional 
recommendations throughout the entire duration of the study.

2.5 Testing procedures

2.5.1 Anthropometry
Body weight was measured to the nearest 0.1 kg using a digital 

scale (Tanita, Tokyo, Japan). Height was assessed to the nearest 0.5 cm 
with a wall-mounted stadiometer (Seca Model 214, Hamburg, 
Germany). Body fat mass (kg) was estimated using bioelectrical 
impedance analysis (Tanita Body Composition Analyzer, Tokyo, 
Japan). BMI was then calculated by dividing the participant’s mass in 
kg by the square of their height in meters.

2.5.2 Lower body muscular strength
To evaluate lower body strength performance, the horizontal leg 

press exercise (Body-Solid, LVLP Leverage Horizontal Leg Press 
Machine) was employed. Lower body strength was estimated from 
submaximal lifts using the standard Kraemer and Fry procedure (22) 
and Brzycki equation (23). Prior to testing their maximum strength, 
participants engaged in a general warm-up including 10 min of light 
running and 10 min of stretching movements. During the strength 

test, the resistance was progressively increased in successive trials until 
the participants could no longer execute a proper lift with full range 
of motion and correct technique for five repetitions. Upon achieving 
a 5RM, the participants’ one-repetition maximum (1RM) was 
calculated using the following formula: 1RM = weight (kg)/1.0278 – 
(5RM × 0.0278) (23). This approach was selected because the 1RM test 
is highly strenuous which can be risky for individuals who are not 
trained in resistance training. During the testing procedure, spotters 
and researchers were present to offer assistance and ensure the safety 
of the participants.

2.5.3 Cardiorespiratory fitness
After a warm-up of 10 min stretching and 5 min treadmill 

running (Technogym, Italy), participants performed an incremental 
treadmill test starting at 3 km·h−1, with speed increased by 2.5% 
every 2 min until volitional exhaustion. Test duration was used to 
estimate VO2peak using the validated formula (24).

	 ( ) ( )= × +1 1
2peakVO mL·kg ·min 1.444 Time min 14.99 

2.5.4 Blood sampling and analysis
Fasting blood samples (15 mL) were drawn from the antecubital 

vein into plain evacuated tubes to assess adipokines, lipid profiles, and 
fasting blood sugar. Samples clotted at room temperature for 
25–30 min, were centrifuged at 1500 × g for 10 min, and serum 
aliquots were stored at −80 °C for later analysis. To control for 
circadian variation in hormones and biochemical markers, all blood 
draws were performed after a 10-h fast and 8 h of sleep, between 8:00 
and 9:00 a.m. The photometric End Point method was employed to 
carry out the measurement of cholesterol, HDL, LDL, and triglyceride 
by available kits (Novus Biologicals, USA) using auto-analyser devices 
(Hitachi®, model 704, 902, Japan). For the measurement of glucose 
level, the ELISA kit (Eagle Biosciences, United States) was utilized. In 
addition, serum leptin and adiponectin (R&D Systems, Inc. 
Minneapolis, MN), as well as irisin (Phoenix Pharmaceuticals, Inc., 
Burlingame, CA) levels were evaluated by available ELISA kits in 
duplicate. The coefficient of variation (CV) was assessed to determine 
the intra-assay variance, which needed to be less than 5%.

2.5.5 Control of diet and physical activity
Participants maintained usual diet and physical activity, 

documented 3-day food intake using COMP EAT 4.0 (~20% protein, 
55% carbs, 25% fat), and abstained from alcohol, caffeine, and 
vigorous activity 24 h before testing. Throughout the 12-week 
intervention, adherence to baseline dietary habits was carefully 
maintained through scheduled personal interviews at follow-up visits 
and consistent daily reminders, supporting high compliance and 
limiting dietary variation that could influence study outcomes.

2.5.6 Caffeine supplementation
Throughout the 12-week intervention period, participants in the 

Caffeine and Placebo groups received 3 mg.kg−1 caffeine (100% purity, 
Bulk Powders, United Kingdom) or placebo (cellulose), 1 h before 
training session, capsules identical in appearance (25). All participants 
were instructed to take the capsules with 100 cc of juice. It is important 
to highlight that the capsules were devoid of any labeling regarding 
their contents, ensuring that both the researchers and participants 
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remained blind to the composition until the conclusion of the study. 
The placebo was designed to be visually and taste-wise indistinguishable 
from the active supplement and was provided in the same format. 
Participants were required to ingest their assigned supplements before 
each training session, with both the supplement and placebo distributed 
on a weekly basis. At the end of each week, participants were obligated 
to return all packets, regardless of whether they were used or not.

2.6 Training program

All participants maintained their regular physical activity routines. 
The Control group refrained from engaging in any structured physical 
activity programs and continued with their usual daily activities. In 
contrast, participants in the Caffeine and Placebo groups followed a 
training regimen specifically designed for obese women, consisting of 
3x/week, 3 sets of 10 × 5-s sprints (i.e., all-out condition), 25-s recovery 
between sprints (i.e., self-paced running or walking), 3-min rest 
between sets (i.e., walking and stretching) for 12 weeks (8, 26). The 
choice of 5-s all-out sprints was informed by evidence that short-
duration SIT protocols require less total training time, reduce perceived 
exertion, and increase exercise enjoyment compared with longer 
intervals (8, 9). Such attributes are particularly valuable in overweight 
and obese populations, where initial exercise tolerance, musculoskeletal 
load, and adherence may be limiting factors (19). Furthermore, brief 
supramaximal sprints help minimize excessive fatigue accumulation, 
allowing participants to deliver consistent maximal efforts and 
progressively adapt to high-intensity work without undue strain (8). 
Every training session began with a 15-min warm-up (including 5 min 
of running and 10 min of stretching and ballistic movements) and 
ended with a 10-min cool-down. All training took place on a wooden-
court gym floor maintained at 27–28 °C and 45–55% humidity, under 
close supervision from a qualified strength and conditioning coach and 
a researcher to ensure adherence to the protocol.

2.7 Statistical analysis

Data are presented as mean ± SD. Normality was assessed using the 
Shapiro–Wilk test. A 3 (group) × 2 (time) ANOVA was used to detect 
significant differences. Significant differences were followed by 
Bonferroni post hoc tests while controlling for type I errors. Hedges’ g 
was used to calculate effect sizes (ES), which were categorized as trivial 
(< 0.20), small (0.20–0.60), moderate (0.60–1.20), large (1.20–2.00), or 
very large (> 2.00). The 95% confidence interval (CI) was reported as 
well (27). The significance level was set at 0.05. Individual percent 
changes (%Δ) were calculated as (post-pre)/pre × 100. CV (ratio of SD 
to the mean) and individual residuals (as the squared root of the squared 
difference between the individual and mean values) were used to 
evaluate inter-individual variability in responses to the intervention.

3 Results

Before the intervention, no significant differences were observed 
among groups (p > 0.05). All participants in the training groups 
attended all sessions and reported no injuries or caffeine-related 
side effects.

Following a 12-week intervention period, the Control group did 
not display any changes in the measured variables. In contrast, both 
the Caffeine and Placebo groups revealed significant differences when 
compared to the Control group across all variables (p = 0.001). Both 
the Caffeine and Placebo groups experienced significant changes 
(p = 0.001) in all variables post-intervention, with ESs ranging from 
trivial to large. Regarding the lipid profile, both the Caffeine and 
Placebo groups demonstrated similar changes after the training 
period, and no significant group by time interaction was observed 
between the training groups (p = 0.984–0.127; Table 2).

After 12 weeks, the Caffeine group showed more pronounced 
adaptations than the Placebo group across most measured variables 
including fat mass (standard mean difference (SMD) = −0.27, 95% 
CI = −1.15 to 0.61, Small difference, p = 0.047; Figure 1), strength 
(SMD = 0.30, 95% CI = −0.60 to 1.16, Small difference, p = 0.042; 
Figures  2A), VO2peak (SMD = 0.43, 95% CI = −0.48 to 1.29, Small 
difference, p = 0.011; Figures 2B), fasting glucose (SMD = −0.74, 95% 
CI = −1.65 to 0.16, Moderate difference, p = 0.018; Table 1), leptin 
(SMD = −0.23, 95% CI = −1.10 to 0.66, Small difference, p = 0.037; 
Figures 3A), adiponectin (SMD = 0.18, 95% CI = −0.71 to 1.05, Trivial 
difference, p = 0.049; Figures  3B), and irisin (SMD = 0.42, 95% 
CI = −0.48 to 1.29, Small difference, p = 0.021; Figures 3C) after the 
12-week intervention.

As shown in Table 3, the Caffeine group indicated more changes 
(i.e., ∆%) in fat mass, strength, VO2peak, fasting glucose, leptin, 
adiponectin, and irisin after the 12-week intervention and these 
changes were related to lower IRs in ∆% and CVs, which indicating 
more consistency in adaptive responses than the Placebo group.

4 Discussion

This study investigated whether short SIT combined with caffeine 
supplementation produces greater physiological adaptations than SIT 
with placebo in overweight and obese women. Over 12 weeks, both 
groups showed beneficial changes; however, consuming 3 mg·kg−1 
caffeine one hour before each session led to greater fat mass reduction, 
strength and cardiorespiratory fitness gains, improved fasting glucose, 
and enhanced adipokine profiles. These findings suggest caffeine may 
potentiate SIT-induced adaptations, offering a practical, low-cost 
strategy to improve body composition and metabolic health in this 
population. Nonetheless, small effect sizes for some outcomes may 
limit their long-term clinical impact.

In line with previous studies, different forms of aerobic exercise—
especially HIIT—are effective in reducing body fat among young 
women who are overweight or obese (11, 28). The reduction in fat 
mass after SIT may be due to elevated catecholamines and growth 
hormone, which trigger the breakdown of stored fat (lipolysis), along 
with increased mitochondrial biogenesis that enhances the body’s 
capacity to use fat for energy (29). In our study, caffeine intake before 
SIT yielded greater adaptations than placebo, likely due to its 
thermogenic effects (12, 17). Furthermore, caffeine may enhance fat 
loss by increasing energy expenditure, stimulating thermogenesis (15), 
and antagonizing adenosine receptors in muscle and the central 
nervous system, thereby elevating sympathetic activity (14, 30). As 
these pathways were not measured directly, they remain plausible 
mechanisms supported by prior evidence rather (11, 17, 28, 29) than 
confirmed causal factors.
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Over 12 weeks, short SIT improved strength performance, 
though effect sizes were small, indicating modest benefits for 
enhancing strength gains. Similar benefits have been attributed to 
neuromuscular adaptations (31), while shorter interventions may 
be  less effective; for example, Song and Deng (32) reported no 
strength gains after 6 weeks of SIT in basketball players, 
highlighting the roles of program duration and participant fitness 
level. SIT can enhance neuromuscular function through greater 
motor unit recruitment, improved intra- and inter-muscular 
coordination, and better storage and use of elastic potential energy 
(26). It may also induce muscular hypertrophy, contributing to 

strength gains (33). Moreover, the Caffeine group showed small ES 
but greater strength gains than the Placebo group, possibly due to 
enhanced muscle fiber activation and increased calcium release 
during exercise (13). It seems that caffeine consumption before 
training can influence both central and peripheral adenosine 
receptors, boosting central drive and reducing pain and fatigue 
sensations (14). It also increases serotonin release in the cerebral 
cortex, enhancing sympathetic activity while reducing inhibitory 
neural input (15, 17). These effects may heighten arousal during 
SIT, further stimulating muscle fiber recruitment and promoting 
greater strength adaptations (18).

TABLE 2  Changes in lipid profile and fasting glucose from pre- to post-training for the groups (mean ± SD).

Variables PRE POST Interaction effect Hedge’s g (95% CI)

HDL (mg/dL−1)

 � Caffeine 46.7 ± 5.1 48.8 ± 5.4* 0.38 (−0.50 to 1.27) Small

 � Placebo 47.3 ± 3.9 48.9 ± 4.5* p = 0.001 0.36 (−0.52 to 1.25) Small

 � Control 46.4 ± 5.4 46.5 ± 5.4 0.02 (−0.86 to 0.89) Trivial

LDL (mg/dL−1)

 � Caffeine 108.0 ± 8.5 102.3 ± 8.2* −0.65 (−1.55 to 0.25) Moderate

 � Placebo 105.6 ± 9.7 100.3 ± 8.0* p = 0.001 −0.57 (−1.47 to 0.32) Small

 � Control 104.9 ± 10.4 105.4 ± 10.2 0.05 (−0.83 to 0.92) Trivial

Triglyceride (mg/dL−1)

 � Caffeine 102.7 ± 7.6 97.3 ± 7.7* −0.68 (−1.58 to 0.23) Moderate

 � Placebo 101.3 ± 9.9 97.1 ± 9.6* p = 0.001 −0.41 (−1.30 to 0.47) Small

 � Control 100.5 ± 10.1 101.1 ± 9.8 0.06 (−0.82 to 0.93) Trivial

Cholesterol (mg/dL−1)

 � Caffeine 169.2 ± 11.3 158.4 ± 11.4* −0.91 (−1.83 to 0.01) Moderate

 � Placebo 170.7 ± 13.5 161.1 ± 12.6* p = 0.001 −0.70 (−1.61 to 0.20) Moderate

 � Control 170.9 ± 12.5 171.1 ± 12.0 0.02 (−0.86 to 0.89) Trivial

Fasting glucose (mg/dL−1)

 � Caffeine 102.6 ± 4.5 95.2 ± 3.0*† −1.85 (−2.90 to 0.81) Large

 � Placebo 101.5 ± 5.2 97.9 ± 3.9* p = 0.001 −0.75 (−1.66 to 0.16) Moderate

 � Control 100.4 ± 5.1 101.1 ± 5.5 0.13 (−0.75 to 1.00) Trivial

*Denotes significant differences compared to PRE and Control. †denotes significant differences compared to Placebo.

FIGURE 1

Changes in fat mass from pre to post-intervention in the groups (mean ± SD). *Significant differences vs. pre-intervention and Control (p = 0.001). Line 
indcates significant differences between Caffeine and Placebo group.
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Both Caffeine and Placebo groups showed significant and 
moderate ESs in improving VO2peak, consistent with reports that SIT 
and short SIT improve aerobic fitness (5, 8, 9). In sedentary overweight 
and obese women, these gains likely reflect central adaptations in 
oxygen transport and peripheral improvements in muscular oxygen 
utilization (32, 34). Caffeine supplementation (3 mg·kg−1) before SIT 
produced greater VO2peak enhancements, suggesting added benefits 
for this population. Possible mechanisms include caffeine metabolism 
to theobromine, a vasodilator that increases oxygen and nutrient 
delivery to brain and muscle (14, 35), and paraxanthine, which 
elevates circulating glycerin and fatty acids as energy substrates (36). 
Caffeine may also promote calcium release, activating glycogen 
phosphorylase B and enabling aerobic exercise at lower perceived 
exertion and fatigue (37) (Figure  4). These mechanisms remain 
plausible literature-based explanations, as they were not directly 
measured in this study and should be examined in future to clarify the 
exact effects of biochemical responses to caffeine supplementation and 
short SIT intervention in overweight and obese women.

Both Caffeine and Placebo groups experienced beneficial transfer 
effects from short SIT, improving lipid profiles in overweight and 
obese women after 12 weeks. These findings align with previous 
reports on the positive effects of various HIIT formats on lipid profile 
management (4, 34). Such improvements may stem from increased 
mRNA expression of PPARγ and PGC-1α in muscle and adipose 

tissue (38), which, together with SIT-induced aerobic metabolic 
conditioning, enhances lipoprotein lipase activity to stimulate 
oxidative pathways and modify lipid profiles (39). Caffeine ingestion 
before SIT produced no further lipid-related adaptations, consistent 
with earlier research (40). This absence of additional caffeine-induced 
lipid changes suggests that caffeine’s ergogenic effects may not extend 
to lipid metabolism under normal baseline lipid conditions (41). One 
possible explanation for the lack of further changes could be  the 
participants’ normal lipid levels, insufficient supplementation 
duration, or the specific demands of short SIT. This underscores the 
need for further research in populations with dyslipidemia to assess 
whether caffeine influences lipid profiles in a clinically meaningful way.

Both Caffeine and Placebo groups showed significant reductions 
in fasting glucose after 12 weeks, consistent with evidence that HIIT 
improves glucose metabolism in overweight and obese individuals (4, 
42). Such benefits likely involve increased glucose transport to active 
muscle fibers, activation of protein kinase B, and greater GLUT4 
expression, which together promote muscle glucose uptake for energy 
production (43). Adaptive responses in adipokines—higher irisin and 
adiponectin and lower leptin—also paralleled improved glucose 
control (44). The Caffeine group (3 mg·kg−1 before SIT) achieved 
trivial to small greater improvements in fasting glucose and adipokine 
profiles than Placebo (45, 46). Although the observed differences 
reached statistical significance, their practical or clinical importance 

FIGURE 2

Changes in strength (A) and cardiorespiratory fitness (B) from pre to post-intervention in the groups (mean ± SD). *Significant differences vs. pre-
intervention and Control (p = 0.001). Line indcates significant differences between Caffeine and Placebo group.
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for individuals who do not have underlying metabolic disorders is 
likely minimal. Such findings, therefore, should be  interpreted 
cautiously and warrant further investigation in future studies—
particularly in populations at risk or with existing metabolic 
impairments—to determine whether these adaptations translate into 
meaningful health benefits.

The mechanisms underlying caffeine’s influence on adipokine 
adaptations may be linked to its direct effects on adipocytes (46–48). 
Evidence suggests that caffeine can upregulate peroxisome proliferator-
activated receptor γ (PPARγ), a key regulator of adipocyte 
differentiation and maintenance, thereby facilitating increased 
adiponectin production (46, 47). Caffeine also activates calcium 
signaling pathways and PGC-1α in skeletal muscle, stimulating irisin 
release (47). Furthermore, caffeine intake may reduce leptin resistance 
and enhance leptin sensitivity, contributing to the observed decrease in 
leptin levels over the 12-week intervention (49, 50). Collectively, these 

pathways suggest that participants consuming 3 mg·kg−1 caffeine prior 
to each SIT session experienced cellular adaptations leading to higher 
adiponectin and irisin levels, coupled with lower leptin, ultimately 
improving glucose regulation via GLUT4 activation (45, 49) (Figure 5). 
These interpretations are based on prior literature and should 
be regarded as plausible mechanistic hypotheses requiring confirmation 
through direct biochemical measurements in future studies.

This research employed an innovative approach for analyzing 
data to gain insights into individual responses to caffeine 
supplementation and short SIT. Rather than simply presenting mean 
values with SDs and ESs, employing IRs in ∆% and CVs allows for a 
clearer understanding of how participants responded to the training 
and supplementation, as well as the uniformity of these responses 
among subjects. To our knowledge, previous studies on SIT or 
caffeine supplementation in similar populations have not computed 
or reported IRs and CVs for adaptive outcomes, making this a novel 

FIGURE 3

Changes in leptin (A), adiponectin (B) and irisin (C) from pre to post-intervention in the groups (mean ± SD). *Significant differences vs. pre-
intervention and Control (p = 0.001). Line indcates significant differences between Caffeine and Placebo group.
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FIGURE 4

The mechanisms of caffeine in improving cardirespiratory fitness.

FIGURE 5

The mechanisms of caffeine in glucose regulation.

methodological contribution. The findings of this study indicate that 
caffeine supplementation not only led to greater reductions in fat 
mass, fasting glucose levels, and increases in irisin and adiponectin, 
but also resulted in lower levels of leptin, and the caffeine group 
exhibited more consistent adaptations, as evidenced by lower IRs and 
CVs compared to the placebo group. Lower CVs and IRs indicate 
that participants responded more uniformly to caffeine 
supplementation combined with SIT, suggesting greater predictability 
of performance and physiological adaptations and reduced variability 
in individual responses — a characteristic of practical relevance for 
practitioners working with obese and overweight women to optimize 
training outcomes in these populations. This aligns with the broader 
literature on individual variability in responsiveness to exercise and 
nutritional supplementation, while extending it by quantifying 
response consistency with IRs and CVs. These insights may have 
practical applications for tailoring interventions to improve 
individual responsiveness. Consequently, the combination of short 
SIT with caffeine supplementation elicited more consistent 
adaptations than those observed with placebo in overweight and 
obese women.

This study has several limitations that should be considered when 
interpreting the findings. First, the study’s sample size was modest 
(n = 10), which may limit the generalizability of the findings. 
Nonetheless, an a priori power analysis confirmed that this number was 
sufficient to achieve the desired statistical power (17). Additionally, the 
cohort was restricted to young, sedentary, overweight or obese women, 
which limits the applicability of the findings to other populations such 
as men, older adults, trained individuals, or those with different body 
composition or health status. Although the placebo was designed to 
be  indistinguishable from the active intervention in terms of 

appearance, texture, and taste, we did not conduct a formal assessment 
of blinding efficacy (e.g., asking participants to guess their group 
allocation). The absence of such evaluation limits our ability to confirm 
the success of blinding and may introduce the possibility of bias in the 
interpretation of outcomes. Furthermore, the absence of direct 
biochemical and neuromuscular assessments related to the proposed 
mechanisms underlying the observed changes prevents definitive 
conclusions about the physiological pathways involved. Future research 
with larger, more diverse populations and comprehensive mechanistic 
testing is warranted to confirm and extend these findings.

https://doi.org/10.3389/fnut.2025.1655449
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhao and Liu� 10.3389/fnut.2025.1655449

Frontiers in Nutrition 09 frontiersin.org

5 Conclusion

Our findings suggest that short SIT is an effective approach for 
eliciting physiological adaptations in women with overweight and 
obesity. When combined with caffeine supplementation, these 
adaptations may be further enhanced, including possible reductions 
in fat mass, gains in strength, improvements in cardiorespiratory 
fitness, and more favorable regulation of fasting glucose and 
adipokine profiles. In light of these outcomes, caffeine 
supplementation alongside training appears to promote more 
consistent and potentially greater improvements in performance, 
body composition, and other physiological markers than placebo, 

indicating its promise as a targeted ergogenic strategy in similar 
populations and training modalities, while acknowledging that the 
modest effect sizes and limited sample warrant 
cautious interpretation.
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TABLE 3  ∆% and inter-individual variability in the variable measured for 
the caffeine and placebo groups following the 12-week intervention.

Variables ∆% IRs CV (%)

Fat mass (kg)

 � Caffeine −4.7 ± 1.1* 0.96 −23.7

 � Placebo −2.5 ± 1.4 1.11 −58.6

Strength (kg)

 � Caffeine 5.5 ± 0.9* 0.77 16.6

 � Placebo 2.1 ± 1.4 1.15 66.2

VO2peak (ml.kg−1.min−1)

 � Caffeine 9.1 ± 2.9* 2.21 31.9

 � Placebo 5.3 ± 2.8 2.41 54.1

HDL (mg/dL−1)

 � Caffeine 4.4 ± 1.7 1.45 38.2

 � Placebo 3.3 ± 2.3 1.70 69.6

LDL (mg/dL−1)

 � Caffeine −5.2 ± 1.5 1.15 −29.2

 � Placebo −4.9 ± 2.5 1.85 −51.2

Triglyceride (mg/dL−1)

 � Caffeine −5.2 ± 1.3 1.05 −25.7

 � Placebo −4.2 ± 1.5 1.14 −36.6

Cholesterol (mg/dL−1)

 � Caffeine −6.4 ± 1.5 1.25 −23.8

 � Placebo −5.2 ± 2.1 1.35 −39.2

Fasting glucose (mg/dL−1)

 � Caffeine −7.1 ± 3.4* 1.82 −44.1

 � Placebo −3.4 ± 3.6 2.06 −106.7

Irisin (ng/mL−1)

 � Caffeine 6.4 ± 1.6* 1.37 25.8

 � Placebo 3.1 ± 1.8 1.41 59.4

Adiponectin (ng/mL−1)

 � Caffeine 8.7 ± 1.7* 1.40 20.1

 � Placebo 4.6 ± 2.2 1.76 47.4

Leptin (ng/mL−1)

 � Caffeine −5.2 ± 2.3* 1.87 −44.1

 � Placebo −2.8 ± 2.8 1.91 −100.1

*Significant differences compared with the placebo (p < 0.05).
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