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of Agricultural Sciences, Tianjin, China, *Tianjin Key Laboratory of Agricultural Animal Breeding and
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Introduction: Obesity is caused by excessive storage of adipose tissue and leads
to metabolic disorders. Uridine exerts modulatory effects on lipid metabolism,
but the regulatory mechanism in obesity needs further research.

Methods: In this study, the effects of uridine supplementation on lipid
metabolism were investigated in high-fat diet-induced obese mice. Mice aged
at 8 weeks were randomly grouped to receive a control diet (CON, n = 10) or
a high-fat diet (HF, n = 24). After 6 weeks of feeding, the HF group was further
divided, with half receiving 0.4 mg/mL uridine supplementation in drinking water
(HUR, n = 12) for an additional 4 weeks, while the remaining HF mice continued
without intervention.

Results: The results showed that the uridine supplement reduced the liver weight
and intra-abdominal white adipose tissue weight in obese mice (p < 0.05).
Treatment with uridine and free fatty acid resulted in a significant increase
in late and total apoptosis, accompanied by a decrease in early apoptosis of
mouse liver organoids (p < 0.05). Moreover, uridine lowered serum levels of
triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), leptin,
and liver TG content (p < 0.05). In obese mice fed with uridine, the expression
of key genes involved in lipid transport [activated fatty acid translocase/cd36
(Fat/cd36) and low-density lipid receptor (Ldlr)], pyrimidine de novo synthesis
[dihydroorotate dehydrogenase (Dhodh)l, pyrimidine metabolism [uridine
phosphorylase 2 (Upp2). ribonucleoside-diphosphate reductase subunit M2
(Rrm2), and thymidine kinase 1 (Tk1)] was improved (p < 0.05). Furthermore, liver
metabolomic analysis identified 37 differential metabolites between the HF and
HUR groups, primarily enriched in arachidonic acid metabolism and a-linolenic
acid metabolism.

Discussion: These findings indicated that uridine supplementation can improve
lipid metabolism in obese mice by regulating hepatic gene expression and
metabolic pathways.
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1 Introduction

Obesity is defined as abnormal and excessive fat accumulation
induced by nutritional imbalance (1). It has become a significant public
health issue worldwide over the last four decades. The World Health
Organization (WHO) reported that as of 2022, the global number of
obese people had exceeded 1 billion (2). Obesity may develop and
increase the risk of dyslipidemia, non-alcoholic fatty liver disease,
insulin resistance, cardiovascular disease, and chronic inflammation (3).
Hepatic steatosis can further progress to non-alcoholic steatohepatitis
and eventually lead to end-stage liver diseases such as cirrhosis and liver
cancer (4). A high-fat (HF) diet inhibited hepatic energy expenditure,
induced steatosis and oxidative stress, and was also a widely used model
of obesity (5). Therefore, it is essential to treat obesity and maintain liver
function. The use of natural sources has emerged as a promising strategy
for the prevention and management of obesity, such as natural
polysaccharides, terpenoids, and flavonoids (6, 7).

Uridine, a pyrimidine nucleoside, is abundant in milk, such as
bovine milk (14.67-132.6 pmol/L), caprine milk (17.9-78.5 pmol/L),
ovine milk (67.8-115.3 pmol/L), and human milk (0.5-26 pmol/L)
(8). Notably, physiological regulation established circulating uridine
as a signal of the nutritional status of an organism and suggested a role
for uridine in the control of energy balance (9). Uridine regulates liver
energy homeostasis through promoting the biosynthesis of membrane
phospholipid, enhancing fatty acid $-oxidation and lipid glycosylation,
modulating the protein acetylation profile, and affecting protein
glycosylation (10-12). Recently, it has been reported that plasma
uridine governs energy homeostasis and thermoregulation in a
mechanism involving adipocyte-dependent uridine biosynthesis and
leptin signal (13). Furthermore, activation of uridine production in
adipocytes can enhance lipolysis and invoke a potential anti-obesity
strategy through the induction of a futile biosynthetic cycle (14).

Previous studies have shown that uridine regulates liver fatty acid
composition and lipid metabolism in piglets and mouse models (15, 16).
However, limited data are available on the role of uridine in regulating
lipid metabolism in the context of obesity. It was hypothesized that
uridine administration could alleviate obesity-related lipid metabolic
disorders in obese mice, resulting in reduced body fat content. Therefore,
in the current study, an HF diet-induced obesity model was used to
elucidate the effect of dietary uridine on lipid homeostasis.

2 Methods and materials
2.1 Experimental animals and diets

Male C57BL/6 ] mice were purchased from SLAC Laboratory
Animal Central (Changsha, China). As suggested by the animal welfare
protocol, all efforts were made to minimize animal suffering and to use
only the number of animals necessary to produce reliable scientific
data. All animals were housed in a climate-controlled room
(temperature, 25 * 2 °C; relative humidity, 45-60%; lighting cycle, 12 h
light/dark cycle with light provided 08:00-20:00) and had free access
to food and drinking water during the duration of the experiments.

After 1 week of adaptation, C57B/6 ] male mice aged at 8 weeks
were randomly divided into the CON group (received control diet,
n = 10), the HF group (received HF diet, n = 12), and the HUR group
(received high-fat diet and supplemented with 0.4 mg/mL uridine in
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drinking water for the last 4 weeks, n = 12) for 10 weeks (17). The
schematic diagram of the animal group and treatment is shown in
Figure 1A. The consumption of feed and drinking water was
measured and recorded daily to calculate the average feed intake and
water intake. The drinking water was renewed every 2 days. An
average of 4.27 + 0.57 mL/d of uridine water was drunk per mouse
in the HUR group (Figure 1C). The control diet consisted of 10%
(kcal%) fat, 20% (kcal%) protein, and 70% (kcal%) carbohydrate
(D12450B; Research Diets, Inc., New Brunswick, NJ, USA); the HF
diet consisted of 60% (kcal%) fat, 20% (kcal%) protein, and 20%
(kcal%) carbohydrate (D12492; Research Diets, Inc.). Uridine (purity
> 99.90%) was provided by Meiya Pharmaceutical Co., Ltd.
(Hangzhou, China). At the end of the experiment, the mice were
sacrificed after being deeply anesthetized. Blood was collected from
the mice by retro-orbital bleeding, centrifuged for 10 min at
16,000 x g, frozen on dry ice, and stored at —80 °C. The liver,
subcutaneous, and intra-abdominal white adipose tissues (including
the epididymal, perirenal, and mesenteric white adipose tissues) were
weighed. The liver was snap-frozen in liquid nitrogen and then stored
at —80 °C for further analysis.

2.2 Mouse liver organoid culture

Mouse duct cells were isolated from mouse liver using a digestion
solution composed of DNase-1 (100 pg/mL; Sigma-Aldrich, St. Louis,
MO, USA), collagenase type XI (125 pg/mL; Sigma-Aldrich, St.
Louis, MO, USA), dispase (125 pg/mL; Thermo Fisher Scientific,
Shanghai, China), and 1% FBS in DMEM. Following isolation, bile
ducts were embedded in Matrigel (BD Bioscience, San Diego, CA,
USA) and seeded in a 24-well plate. Cultures were maintained in
expansion medium, refreshed every 2-3 days, and passaged weekly
at a 1:2-1:4 ratio. The expansion medium consisted of the medium
previously reported (17).

2.3 Free fatty acid preparation

Oleic acid (OA) and palmitic acid (PA) (Sigma-Aldrich, St. Louis,
MO, USA) were complexed with bovine serum albumin (BSA)
(Sigma-Aldrich, St. Louis, MO, USA) and sterile-filtered. The free fatty
acid (FFA) mixture was dissolved in the medium at a final
concentration of 600 pM (OA: PA = 2:1) to induce lipid accumulation
according to our previous research (17).

2.4 Cell apoptosis assay

Mouse liver organoids collected from 12-well plates were digested
into single cells using trypsin, followed by suspension in complete
culture medium and centrifugation. The Annexin V-FITC/PI
apoptosis detection kit was used to detect the apoptosis of uridine
and free fatty acid preparation-treated mouse liver organoids
according to the manufacturer’s instructions (BD Biosciences, San
Diego, CA, USA). Briefly, cells were resuspended in 195 pL of
Annexin V-FITC binding buffer. Then, 5 pL of Annexin V-FITC
reagent was added and gently mixed, followed by incubation on ice
for 10 minutes in the dark. Subsequently, 5 uL of propidium iodide
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FIGURE 1

Effects of uridine on (A) schema showing the animal groups and treatments, (B) average food intake, (C) average water intake, (D) body weight,
(E) body weight at 6 weeks, (F) final body weight, (G) liver weight, (H) subcutaneous white adipose tissue weight, and (I) intra-abdominal white adipose
tissue weight (n = 10-12). CON, control diet group; HF, high-fat diet group; HUR, high-fat diet + 0.4 mg/mL uridine in drinking water for the last

4 weeks. *p < 0.05, **p < 0.01.

(PI) staining solution was added, and the cells were further incubated
for 15 minutes at room temperature in the dark. Finally, 200 pL of
binding buffer was added prior to flow cytometry analysis. The ratio
of apoptotic cells was determined using a FACS instrument (BD
FACSCanto 1II, San Diego, CA, USA). Cells exhibiting PI-negative
and Annexin V-FITC-positive staining were considered to be in the
early stages of apoptosis, whereas cells with positivity for both PI and
Annexin V-FITC were identified as late apoptotic.

2.5 Biochemical analyses

The concentrations of serum triglycerides (TG), total cholesterol
(TC), and high-density lipoprotein (HDL) were determined by an
Automated Biochemistry Analyzer (Synchron CX Pro, Beckman
Coulter, Fullerton, CA, USA) according to the commercial kits and
manufacturer’s instructions (Beijing Chemclin Biotech Co., Ltd.,
Beijing, China). The serum leptin was assayed using mouse leptin
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ELISA kits (CUSABIO Co., Ltd., Wuhan, China) according to the
manufacturer’s instructions.

Liver tissue samples were isolated after mice were killed by cervical
dislocation, rinsed with 0.9% NaCl, snap-frozen in liquid nitrogen, and
stored at —80 °C until further analysis. The concentrations of liver TG
and total protein were determined by a multimode reader (Tecan
Trading AG, Switzerland) based on the commercial assay kits provided
by Applygen Technologies Inc. (Beijing, China) for the tissue TG
content assay kit and the trace protein quantification kit (BCA method).

2.6 RNA isolation and quantification of
gene expression

Total RNA was isolated from the liver tissue using Trizol Reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions. RNA concentrations and A260/A280 ratios were
determined on a NanoDrop ND-1000 spectrophotometer (Thermo
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TABLE 1 Primers used for quantitative reverse transcription PCR.

Forward primer 5'-3'

Reverse primer 5'-3’

10.3389/fnut.2025.1651993

Product
length

Accession
number

Fat/cd36 ACGCAGCCTCCTTTCCACCTTT CGAACACAGCGTAGATAGACCTGCA NM_001159558.1 90
Ldlr CCACAGAACTGCCAGGGCCG GAATTCATCAGGTCGGCAGGT NM_001252659.1 186
Vidlr GAGCCCCTGAAGGAATGCC CCTATAACTAGGTCTTTGCAGATATGG XM_021212964.2 83
Cad AGAAAGGGACAGAGCCGTCAG ATCCAGAGCACAGATCCGAGG XM_006504092.3 128
Dhodh CGTTCGGCTGTCCAATCAAC GTAGAAATGGTCGTCCCCCG NM_020046.3 233
Umps GGCGACAGTTATCTGCTCAGC CGTCCTCAATGACCAGACAGG NM_009471.3 131
Upp2 CGGTTGGAGGGAGATGGAGAA AATGGAAATGGAGGGGATGCC XM_006498411.3 123
Rrm2 CTGTTTCTATGGCTTCCAAAT TTCTTCTTCACACAAGGCATT NM_009104.2 141
Cmpk2 CTGCTTAACTCTGCGGTGTTC CTTTCTGGACCTCCTTTGGGC NM_020557.4 130
Tkl CGGAGAGTGTGGTGAAGCTCA CACGGAGTGATACTTGTCGGC XM_006533150.3 125
Tk2 TCCAAGACCCCATCACTCTCTC TGACTTCTTCATGCTCGTGGTC XM_006533150.3 125
Gapdh TTGTGATGGGTGTGAACCACGA TCTTCTGGGTGGCAGTGATGG NM_008084.2 168

Fat/cd36, fatty acid translocase; Ldlr, low-density lipid receptor; V1dlr, very low-density lipoprotein receptor; Cad, carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and
dihydroorotase; Dhodh, dihydroorotate dehydrogenase; Umps, uridine monophosphate synthetase, Upp2, uridine phosphorylase 2, Rrm2, ribonucleoside-diphosphate reductase subunit M2;
Cmpk2, cytidine/uridine monophosphate kinase 2; Tk1, thymidine kinase 1, and Tk2, thymidine kinase 2.

Fisher Scientific, Wilmington, DE, USA). The total RNA was reverse-
transcribed into cDNA using the PrimeScript™ RT reagent kit (Takara
Biomedical Technology, Japan). Quantitative real-time RT-PCR (qRT-
PCR) was performed with SYBR Green I Dye (Thermo Fisher
Scientific, New York, USA) using the LightCycler 48011 real-time PCR
system (Roche, Basel, Switzerland). The PCR cycling conditions were
as follows: 95 °C for 5 min and 98 °C for 2 min, followed by 40 cycles
of 5sat98 °C, 5sat 60 °C, 10 s at 95 °C, and a final step of 1 s at 65
°C. The primers for the genes are listed in Table 1. The gene expression
results were expressed as the mean relative mRNA level (18).

2.7 Liver untargeted metabolomic analyses

Samples that contained 100 mg of liver tissue powder were cryo-
weighed, and 80% methanol (v/v H20) was added at a ratio of 300 pL
dissolver/100 mg tissue. The samples were shaken for 20 min at room
temperature and centrifuged at 14,000 xg for 15min at
4 °C. Supernatants were filtered (0.2 pm) and stored at —20 °C until
the next analysis. LC-MS/MS analyses were performed using a
Thermo Vanquish UHPLC with an Accucore Vanquish C18 column
(50 x 2.0 mm, 1.5 pm) (19). The mobile phases of solutions A and B
were composed of 95% acetonitrile with 0.1% formic acid and 10 mM
ammonium acetate and 50% acetonitrile with 0.1% formic acid and
10 mM ammonium acetate in the positive mode. The flow rate was at
300 pL/min, which consisted of 2% B for 1 min, 50% B for 16 min,
50% B for 0.5 min, 2% B for 0.5 min, and 2% B for 2 min.

For the mass spectrometric assay, a mass spectrometer detector
QE HF-X (Thermo Fisher Scientific Inc., Massachusetts, CA, USA)
was used to analyze the metabolite ions. Electrospray ionization (ESI)
settings are as follows: spray voltage: 3.2 kV; sheath gas flow rate: 35
arb; aux gas flow rate: 10 arb; and capillary temperature:
320 °C. Estimation was performed in positive and negative modes
with a scan time of 20 min. MS/MS secondary scan is a data-
dependent scan. Spectral data from all peaks were accumulated in the
range of 100-1,500 m/z. Molecular formulas were determined by
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using Xcalibur™ software (Thermo Fisher Scientific, New York, USA),
and the identification of constituent substances was performed by
Compound Discoverer software, which was confirmed by searching
online libraries of mzVault, ChemSpider, and mzCloud.

Processed datasets were analyzed by multivariate statistical
analysis using SIMCA+13.0 (Umetrics, Umea, Sweden). Partial least
squares discriminant analysis (PLS-DA) was used to visualize
discrimination among samples. The quality of PLS-DA models was
evaluated by R*Y and Q7 the goodness of fit measure was quantified
by R?Y; and the predictive ability was indicated by Q> Validation and
reliability of PLS-DA models were rigorously confirmed by a
permutation test (n=200). For identification of metabolites
contributing to the discrimination, the intensity differences of
metabolites with a variable importance in the projection value
(VIP) > 1.0, showing high relevance for explaining the differences
among sample groups, were analyzed using t-tests (p < 0.05).
Metabolic pathway analysis was employed using the MetaboAnalyst,
and metabolites that showed significant change were mapped to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

2.8 Statistical analysis
The data were expressed as mean * standard error of mean (SEM),
and the results were analyzed using one-way ANOVA, followed by the

LSD test using SPSS 22.0. Differences were considered statistically
significant at p < 0.05.

3 Results and discussion

3.1 Effects of uridine on body weight, food,
and water intake in obese mice

During the experiment, the average food and water intake of
the HF group was significantly lower than that of the CON group
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(p < 0.05; Figures 1B, C). However, the water intake was significantly
increased in the HUR group compared with the HF group
(p < 0.05). The body weight of mice during 10 weeks is shown in
Figure 1D, and the initial body weight of mice was approximately
22 g. The body weights of mice both in the HF group (32.7 g) and
the HUR group (32.5 g) exhibited a significant increase of over 20%
compared to the CON group (26.2 g) at the 6th week (p < 0.01;
Figure 1E), confirming the successful induction of obesity.
Compared with the HF group (40.3 g), the final body weight at the
10th week of mice in the HUR group (38.8 g) showed a significant
decrease (p < 0.05; Figure 1F). Obesity induces excessive storage of
adipose tissue and leads to excessive accumulation of fat in other
tissues, thereby posing a risk of developing metabolic disorders
(20). A previous study showed that postprandial uridine metabolism
was altered by obesity (21). The supplementation of uridine during
both day and night significantly reduced body weight gain in the
HF diet-fed mice (15). In the present study, supplementing with
uridine through drinking water throughout the day also showed a
decrease in body weight in HF diet mice. It may be suggested that
the effect of uridine on the body weight of HF diet mice was not
affected by the time of administration.

3.2 Effects of uridine on liver and adipose
tissue weights in obese mice

Obesity induced by HF diet feeding in mice is typically characterized
by dysregulated lipid metabolism and impaired liver function (22). The
weight of the liver, subcutaneous white adipose tissues, and intra-
abdominal white adipose tissues of mice in the HF group was higher
than that in the CON group (p < 0.01; Figures 1G-I). As the primary
site for carbohydrate and lipid biosynthesis, the liver plays a central role
in regulating systemic glucose and lipid flux (23, 24). Notably, the HUR
group presented a lower liver weight and intra-abdominal adipose tissue
weight than the HF group (p < 0.05), although these parameters
remained significantly different from those in the CON group
(p < 0.05). These results indicated that uridine supplementation can
ameliorate adipose tissue accumulation induced by HF feeding, but it is
not sufficient to fully restore it to the same level as the CON group.

3.3 Effects of uridine on cell apoptosis in
mouse liver organoids

Mouse liver organoids were successfully cultured from mouse
liver samples (Figure 2A). Following enzymatic digestion, bile duct
fragments were observed in the supernatant. After 14 h of culture,
biliary epithelial cells began to reorganize, forming spherical
structures. By 72h, complete reorganization resulted in the
emergence of organoids displaying characteristic spherical
morphology within Matrigel. The liver organoids could be stably
cultured in expansion medium from passage 1 to passage 10,
maintaining similar morphology with occasional folding and
budding. After passaging,
proliferation and showed strong proliferative activity by 5-Ethynyl-

organoids demonstrated rapid
2’-deoxyuridine (EDU) staining. The mouse liver organoids were
seeded into 12-well plates with a density of 1 x 10° cells/well for 24 h

and incubated with FFA for 24 h and then with uridine for 48 h. The
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results of apoptosis analysis using flow cytometry showed that FFA
treatment did not affect the apoptosis rate of liver organoid cells
(Figures 2B,C). However, the addition of uridine alongside FFA
treatment significantly increased the proportions of total apoptosis
and late apoptosis while decreasing the proportion of early apoptosis
(p <0.05). Liver homeostasis is achieved by a tightly regulated
steady state in cell turnover involving proliferation and apoptosis of
hepatocytes. Increased numbers of apoptotic hepatocytes and
apoptosis-associated degradation products were detected in NASH
patients (25). Hepatocytes and bile duct cells are the first hepatic cell
types to enter the cell cycle and proceed to mitosis. Proliferation
subsides by days 5-7, while during the peak proliferation period,
triglycerides accumulate in hepatocytes for 2-3 days (26). A
previous study reported that 1 mM uridine significantly suppressed
lipid accumulation induced by FFA exposure in the liver organoids
(17). Similarly, uridine promotes the renewal of intestinal cells, and
50 mM uridine significantly promotes apoptosis of IPEC-]J2 cells
(27). The 1 mM and 10 mM uridine also inhibit the germination of
intestinal organoids and suppress the stemness of intestinal stem
cells, and this effect may be mediated through the mTOR pathway
(28). The uridine exhibited higher distribution of G1/M phase of the
cell cycle at 400 M compared with 0 M and reduced S-phases of the
cell cycle compared with 0 and 100 M (p < 0.05) (29). It indicated
that uridine is involved in the regulation of stem cell stemness and
cell proliferation, regulating cell renewal.

3.4 Effects of uridine on serum lipids and
leptin in obese mice

Typical dyslipidemia of obesity includes elevated serum TG and
TC (30, 31). In addition, the obesity level was consistent with the
change of serum leptin, which was significantly increased after
12 weeks of HF feeding (32). As shown in Figure 3, consumption of an
HEF diet led to higher serum TG, TC, HDL, and leptin content than that
in the CON group (p < 0.05). However, this increase was significantly
decreased by the uridine supplement in obese mice (p < 0.05). Fasting-
induced increases of plasma uridine occurred concurrently with high
levels of lipolysis (13). Activation of uridine production in adipocytes
can promote lipolysis, which suggests that uridine helps to alleviate
obesity-related lipid metabolic disorder (14). Consistently, it has been
reported that through the elevation of circulating uridine, Lactobacillus
MRI1 alleviates high-carbohydrate diet-induced hepatic lipid
accumulation and oxidative stress (33). Similarly, a uridine supplement
decreased hepatic lipid, serum glucose, triglyceride, and cholesterol in
Nile tilapia with a high-carbohydrate diet (34).

3.5 Effects of uridine on TG content and
lipid transporters in the liver of obese mice

As shown in Figure 4, the HF diet increased the hepatic TG
content of mice, and activated fatty acid translocase /cd36 (Fat/
cd36) gene expression but inhibited low-density lipid receptor
(Ldlr) mRNA levels when compared with those in the CON group
(p < 0.05). Conversely, uridine supplementation significantly
decreased the liver TG content and Fat/cd36 expression and
increased Ldlr expression in the liver of obese mice from the HUF
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group (p < 0.05). Oil red staining also showed that mice in the HF
group presented greater lipid droplets in the liver when compared
with those in the CON group, and uridine supplementation
weakened the hepatic lipid droplet production in the HF group
(Figure 4E).
dyslipidemia of obese mice after 4 weeks of administration, which

Importantly, uridine alleviated this typical

was consistent with previous reports that uridine supplementation
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affected liver lipid accumulation (10, 35-37). The liver is involved
in the uptake and secretion of fatty acids and TG (38). Fat/cd36 is
an important regulator of tissue free fatty acid (FFA) uptake from
plasma and increases in the livers of obese subjects (23).
Hepatocyte-specific deletion of Cd36 protects against liver lipid
accumulation induced by the HF diet in mice (39). In addition,
Ldlr mRNA expression levels were decreased significantly following
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HF in the liver (40). Therefore, uridine supplementation may
restore liver TG by regulating the expression of Fat/cd36 and Ldlr
genes in obese mice fed with an HF diet.

3.6 Effects of uridine on the relative gene
expression related to pyrimidine de novo
synthesis and metabolism in obese mice

The relative gene expression related to pyrimidine metabolism
in the liver is noted (Figure 5). Consumption of an HF diet
significantly decreased dihydroorotate dehydrogenase (Dhodh),
uridine monophosphate synthetase (UMPS), uridine phosphorylase
2 (Upp2), ribonucleoside-diphosphate reductase subunit M2
(Rrm2), and thymidine kinase 1 (TkI) gene expression levels when
compared with those in the CON group (p < 0.05). Especially, the
expression of Dhodh, Upp2, Rrm2, and Tk1 was higher in the HUR
group than in the HF group (p < 0.05). Particularly, pyrimidine
metabolism was abnormal in obese mice, such as low expression of
UDP synthesis and conversion-related genes in the hypothalamus
(41). Similarly, plasma uridine was significantly elevated after
fasting for 4-24 h in healthy mice, but not in HF diet mice (13).
Consistent with pyrimidine metabolism abnormalities observed in
obese mice, our study revealed decreased expression of hepatic
genes involved in pyrimidine metabolism and de novo synthesis,
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which was ameliorated by uridine supplementation, further
supporting the regulatory role of uridine in metabolic disturbances
induced by HFD.

3.7 Effects of uridine on liver metabolomics
in obese mice

A total of 443 known metabolites, including 239 in the positive
ion mode and 205 in the negative ion mode, were identified in the
liver of mice using LC-MS metabolomic analysis. The clustering
analyses based on partial least squares discriminant analysis (PLS-DA)
were used to discriminate the metabolic profiles among groups
(Figure 6). Subsequently, the permutation test verified that the model
was not “over-fitting” The samples in the CON, HE, and HUR groups
were separated in both positive and negative ion modes, indicating
that the overall metabolic state of the mice changed after treatment.
For further analysis, the candidate markers were selected by
examining the volcano plot and considering a fold-change (FC)
threshold of 1.5, VIP > 1, and p-value less than 0.05 (Figure 7). There
were 88 differential metabolites between the CON and HF groups,
100 between the CON and HUR groups, and 37 between the HF and
HUR groups. To further understand the metabolic pathways in the
HUR group mice (Figure 8), metabolic pathway analyses of 37
different enriched metabolites were performed using MetaboAnalyst
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FIGURE 4
Effects of uridine on (A) liver TG content, (B) Fat/cd36 gene expression, (C) Ldlr gene expression, (D) Vldlr gene expression, and (E) Oil red staining of
the liver (n = 10-12). Fat/cd36, fatty acid translocase; Ldlr, low-density lipid receptor; VIdlr, very low-density lipoprotein receptor; CON, control diet
group; HF, high-fat diet group; HUR, high-fat diet + 0.4 mg/mL uridine in drinking water for the last 4 weeks. *p < 0.05, **p < 0.01.

5.0." The HUR group metabolites revealed several metabolism
pathways, including a-linolenic acid metabolism, linoleic acid
metabolism, arachidonic acid metabolism, and purine metabolism,
compared with the HF group.

Metabolomics measures metabolic changes in the liver, and fatty
acids (a-linoleic acid and arachidonic acid) can reduce hepatic
steatosis and improve liver function in HF diet-fed mice (42, 43). In
addition, dietary nucleotides affected levels of linoleic and
arachidonic acid in rats with liver cirrhosis (44). Similarly, uridine

1 https://www.metaboanalyst.ca/
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supplements increased the percentage of polyunsaturated fatty acids
in the liver (15). In the current study, the levels of a-linolenic acid and
12(S)-HPETE were higher in the HUR group than in the HF group,
and uridine restored the decrease of arachidonic acid caused by HF
diet feeding. It revealed that unsaturated fatty acids play an important
role in the regulation of liver lipid metabolism disorder by uridine.
Testosterone is a metabolic hormone that regulates the expression of
key targets of lipid and glucose metabolism and may reduce fat
deposition in the liver (45). In this study, the HF diet decreased the
testosterone level in the liver, and uridine restored it to normal levels.
Uridine metabolism affected the levels of adenosine; the deletion of
uridine phosphorylase (an enzyme that catalyzes the phosphorolysis
of uridine into uracil) increased adenosine to a lesser extent (46).
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FIGURE 5
Effects of uridine on the relative expression of (A) pyrimidine de novo synthesis and (B) pyrimidine metabolism genes in the liver (n = 10-12). Cad,
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monophosphate kinase 2; Tk1, thymidine kinase 1, and Tk2, thymidine kinase 2; CON, control diet group; HF, high-fat diet group; HUR, high-fat diet +
0.4 mg/mL uridine in drinking water for the last 4 weeks. *p < 0.05, **p < 0.01.

Notably, hypoxanthine (an adenosine metabolite) showed impaired ~ functional validation of differential metabolites and study of

rhythmicity due to the decrease in peak concentration at ZT8 in the = nucleotide metabolism pathways discovered in this experiment.
HEF group (47). The results showed that uridine alleviated the decrease
of adenosine and hypoxanthine induced by the HF diet. It may
suggest that there is an interactive effect on the metabolism of 4 Conclusion
different kinds of nucleosides or nucleobases. In addition, the levels
of chenodeoxyglycocholic acid and taurodeoxycholic acid were In summary, uridine supplementation exerted significant anti-

altered by nucleotide supplementation in alcohol-treated rats (48).  obesity effects in diet-induced obese mice, including reductions in

The results from the present study also showed that uridine affected
the level of taurochenodeoxycholic acid. Further mechanism research
can be conducted using the mouse liver organoid model, such as
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final body weight, intra-abdominal white adipose tissue
weight, and serum and liver lipid accumulation. In addition, uridine
administration modulated the expression of genes involved in lipid
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FIGURE 8

Heatmap of the abundance of liver differential metabolites between the HUR and HF groups (A); overview of metabolic pathway analysis (B). CON, control
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acid; LysoPl, lysophosphatidylinositol; DAG, diacylglycerol; TG, triacylglycerol. * HFD vs. CON p < 0.05; #HUR vs. CON p < 0.05; AHUR vs. HFD p < 0.05.

transport and pyrimidine metabolism. Furthermore, metabolomic
analysis revealed significant alterations in liver metabolites,
particularly those associated with arachidonic acid and a-linolenic
acid metabolism. These findings collectively demonstrate that
uridine ameliorates HF diet-induced obesity by modulating hepatic
lipid and nucleoside metabolism.
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