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composition in patients with
obesity
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1Liaoning University of Traditional Chinese Medicine, Shenyang, China, 2The A�liated Hospital of

Liaoning University of Traditional Chinese Medicine, Shenyang, China

Introduction: Obesity is an increasingly serious global health concern and is

closely associated with gut dysbiosis and metabolic imbalance. Despite the

considerable research conducted on the gut microbiota and metabolism over

recent years, studies focusing on their correlation with obesity remain limited. In

this study, we sought to characterize the gut microbiota and serum metabolic

profiles of patients with obesity, aiming to identify potential biomarkers and

therapeutic targets for this condition, and explore possible links between altered

amino acid levels and gut microbial composition in its pathophysiology. The

findings may o�er novel insights into obesity prevention and treatment through

microbiota modulation or amino acid regulation.

Methods: Forty adult volunteers with obesity (BMI= 30.9± 2.9 kg/m2) who met

the diagnostic criteria were enrolled in this study. Pregnant or lactating women

and individuals with severe comorbidities were excluded. The control group

comprised 20 subjects with normal weight (BMI= 21.9± 1.7 kg/m2) and without

metabolic disorders, recruited from among outpatients during the same period

andmatched for age and sex. Fecalmicrobiota profilingwas performed using 16S

rRNA sequencing. DNA was extracted from stool samples, and the V3–V4 region

was amplified and sequenced on the Illumina platform. After rigorous quality

control (QC) and chimera removal, e�ective tags were clustered intoOperational

Taxonomic Units (OTUs) based on sequence similarity. Alpha and beta diversity

and intergroup di�erential abundance were assessed, with statistical significance

determined by Welch’s t-test. Serummetabolomic analysis was performed using

standardized sample preparation and QC procedures, followed by LC–MS/MS-

based targeted and untargeted metabolomics. Calibration curves with R² > 0.99

were established, and relative metabolite concentrations were calculated from

peak areas. In total, 28 amino acid metabolites were quantified and used for

subsequent statistical analysis.

Results: Significant di�erences in microbial composition were observed across

multiple taxonomic levels between the controls and patients with obesity. At the

phylum level, Proteobacteria was enriched in the obesity group (AUC = 0.709,

95% CI: 0.569–0.848; p = 0.006). At the class level, Gammaproteobacteria (AUC

= 0.712, 95% CI: 0.573–0.852; p = 0.009) and Erysipelotrichia (AUC = 0.614,

95% CI: 0.471–0.757; p = 0.02) were found to be enriched in obesity. At the

order level, enrichment was observed for Enterobacteriales (AUC = 0.734, 95%

CI: 0.597–0.871; p = 0.008) and Erysipelotrichia (AUC = 0.614, 95% CI: 0.471–

0.757; p = 0.029). At the family level, Enterobacteriaceae (AUC = 0.614, 95%

Frontiers inNutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1648469
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1648469&domain=pdf&date_stamp=2025-10-24
mailto:1784113869@qq.com
https://doi.org/10.3389/fnut.2025.1648469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2025.1648469/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Qi and Wang 10.3389/fnut.2025.1648469

CI: 0.471–0.757; p = 0.003) showed enrichment in obesity. Finally, at the genus

level, Escherichia-Shigella (AUC = 0.71, 95% CI: 0.565–0.855; p = 0.028) was

enriched in obesity, while at the species level, Bacteroides fragilis (AUC = 0.733,

95%CI: 0.593–0.873; p= 0.016) and Parabacteroides distasonis (AUC= 0.61, 95%

CI: 0.466–0.754; p = 0.033) were noted to be enriched. Metabolomic analysis

revealed that in patientswith obesity, the abundance of carnosine (log2FC= 1.16,

FDR= 0.0016, VIP= 0.707), creatinine (log2FC= 0.21, FDR= 0.0009, VIP= 2.02),

and cystine (log2FC = 0.55, FDR = 0.009, VIP = 1.47) was significantly increased

comparedwith that in the controls; in contrast, that of ornithine (log2FC=−0.59,

FDR= 0.0009, VIP= 1.19), citrulline (log2FC=−0.59, FDR= 0.0003, VIP= 0.707),

glycine (log2FC=−0.54, FDR= 0.0003, VIP= 1.41), and serine (log2FC=−0.38,

FDR = 0.0019, VIP = 1.62) was significantly decreased. This suggested that these

metabolites may have potential as early diagnostic biomarkers for obesity.

Conclusions: Obesity is associated with coordinated shifts in specific gut taxa

and serum metabolites, with measurable e�ect sizes and strong discriminatory

performance. Modulating amino acid levels or gut microbiota composition may

represent a promising strategy for obesity prevention and treatment.
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1 Introduction

Obesity is a chronic metabolic disease resulting from a

combination of genetic predisposition, poor dietary habits, and

other contributing factors. It is characterized by excessive fat

accumulation and abnormal weight gain, with Body Mass Index

(BMI) being the most commonly used measure for diagnosing

this condition. Based on the guidelines of the Working Group on

Obesity in China, obesity in Chinese adults is defined as a BMI

≥ 28 kg/m2. This threshold is lower than the WHO international

standard (BMI ≥ 30 kg/m2) due to ethnic differences in body

composition and metabolic responses. The prevalence of obesity is

steadily increasing and is closely associated with the development of

conditions such as cancer (1), hypertension, and type 2 diabetes (2).

The primary cause of obesity is an imbalance between energy intake

and expenditure, with simple obesity accounting for approximately

90% of all cases (3, 4).

The gut microbiota is increasingly recognized as a key

determinant of human health (5). It is now known to be an

essential component of the intestinal microecosystem, playing

Abbreviations: 16S rRNA, 16S ribosomal RNA gene; SCFAs, Short-Chain

Fatty Acids; AUC, Area under the curve; BCAA, Branched-chain amino acid;

BCAAs, Branched-chain amino acids; FMT, Fecal Microbiota Transplantation;

BMI, Body mass index; CI, Confidence interval; FDR, False discovery rate;

Gln, Glutamine; Glu, Glutamate; Ile, Isoleucine; IQR, Interquartile range;

KEGG, Kyoto Encyclopedia of Genes and Genomes; LC–MS/MS, Liquid

chromatography–tandem mass spectrometry; Leu, Leucine; log2FC, Log2

fold change; m/z, Mass-to-charge ratio; Orn, Ornithine; OTU, Operational

taxonomic unit; PCoA, Principal coordinate analysis; PD, Faith’s phylogenetic

diversity; Phe, Phenylalanine; QC, Quality control; ROC, Receiver operating

characteristic; SD, Standard deviation; TCA, Tricarboxylic acid cycle; Trp,

Tryptophan; Tyr, Tyrosine; Val, Valine; VIP, Variable importance in projection.

a vital role in the regulation of host nutrient absorption, the

maintenance of the intestinal mucosal barrier, and the modulation

of immune functions (6). Studies have shown that a stable gut

microbiota is crucial for preserving intestinal function and overall

health. Changes in the abundance of specific microbial populations

can lead to an increase in the number of pathogenic bacteria

while simultaneously decreasing that of beneficial ones, potentially

leading to the development of obesity. Adipose tissue can release

inflammatory cytokines such as tumor necrosis factor-alpha

(TNF-α), interleukin-1 beta (IL-1β), and IL-6, thereby triggering

systemic inflammatory responses (7). Obesity is increasingly

recognized not only as a metabolic disorder but also as a state

of chronic low-grade systemic inflammation, which may influence

susceptibility to various diseases, including respiratory conditions

(8). This gives rise to a complex “microbiota–metabolism–

inflammation” interaction network, which is considered a key

endogenous mechanism in the pathogenesis of obesity. Alterations

in the composition, diversity, relative abundance, and functional

pathways of gut microbiota may be important contributors to

obesity in adults (9).

In the study of the biological processes underlying obesity,

metabolomics has attracted considerable attention due to its

ability to dynamically reflect the metabolic characteristics of an

organism. Metabolomics is a relatively novel omics approach with

high application value as a systematic tool for investigating the

end-products of biological activities, enabling the comprehensive

analysis of changes in metabolic pathways under both physiological

and pathological conditions (10). Commonly used analytical

metabolomic platforms include mass spectrometry (MS), nuclear

magnetic resonance, liquid chromatography–mass spectrometry

(LC-MS), and gas chromatography–mass spectrometry.

LC-MS is characterized by high sensitivity, broad detection

coverage, and low sample volume requirements. Consequently, this
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platform has become an important tool for studying the metabolic

characteristics of obesity. Quantitatively analyzing metabolites

in biological samples can help establish correlations between

physiological changes and metabolic alterations.

Targeted metabolomics focuses on the detection and analysis

of specific metabolites or metabolic pathways, allowing for an

in-depth exploration of the mechanisms of action of drugs

within defined biochemical routes (11). This approach enables the

isolation of metabolites of interest, thereby reducing interference

from other highly abundant compounds (12). This, in turn, allows

for more precise quantification and the generation of well-defined

and complementary datasets for biological interpretation. It has

evolved into several specialized branches, including functional,

carbohydrate, lipid, and enzyme metabolomics, along with studies

based on specific small molecules or metabolic pathways, such

as those associated with nucleotide metabolism. Functional

metabolomics is employed to uncover molecular mechanisms

underlying interactions between disease-responsive biomarkers

and functional compounds (secondary metabolites). Additionally,

it can contribute to revealing how herbal-derived compounds block

the biosynthesis of key disease-related molecules and modulate

pathogenic biochemical interactions. This approach supports

disease discovery and treatment, offering a modern framework

that supports the systemic therapeutic characteristics of traditional

Chinese medicine (TCM) (13).

Integrating metabolomics with obesity research, particularly

in combination with gut microbiota profiling, can allow the

identification of distinct metabolic patterns in different obesity

phenotypes at the microscopic level as well as the discovery of

potential diagnostic biomarkers and therapeutic targets. In addition

to offering novel perspectives for understanding the mechanisms

underlying the pathology of obesity, such an integrated strategy

also provides a theoretical foundation and technical support for

the development of personalized treatment strategies, as well as

identifying novel targets and approaches for the future clinical

diagnosis and management of obesity.

2 Materials and methods

2.1 Materials

2.1.1 Fecal collection
The spoon provided with the fecal collection cup was used to

collect the innermost portion of the stool sample (no less than 2 g).

The sample was placed in a sterile EP tube, labeled with a serial

number, and preserved in dry ice. The samples were subsequently

stored at−80 ◦C within 2 h for further processing.

2.1.2 Serum collection for metabolomic analysis
Venous blood (5mL) was collected from each subject,

labeled, and centrifuged at 3,000 rpm for 10min at 4 ◦C. After

centrifugation, 1mL of the supernatant, containing serum, was

equally divided into two EP tubes. To ensure the stability and

quality of the serum samples, they were immediately preserved

in dry ice and transferred to a −80 ◦C freezer within 2 h for

subsequent use.

2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria
Participants were included if they (1) met the diagnostic criteria

for obesity, defined as BMI ≥ 28 kg/m2; (2) were able to cooperate

with blood and stool sampling and voluntarily agreed to participate

in the study; (3) were aged between 18 and 80 years, regardless of

gender; and (4) were fully conscious and capable of independently

signing the informed consent form.

2.2.2 Exclusion criteria
The criteria for exclusion included the following: (1) Pregnant

or lactating women; (2) presenting with severe cardiovascular,

cerebrovascular, pulmonary, hepatic, renal, or other major primary

diseases, including complicated cardiovascular conditions or

severe hepatic/renal insufficiency; (3) systemic antibiotic use

within the past 3 months; (4) probiotic, prebiotic, or synbiotic

supplementation within the past 4 weeks; (5) the use of

immunosuppressant or corticosteroid therapy within the past 3

months; (6) diagnosed with a gastrointestinal disease, including

inflammatory bowel disease or celiac disease, or a history of major

gastrointestinal surgery within the past 6 months; (7) history

of alcoholism, use of psychoactive substances, drug abuse, or

drug dependence; (8) recent use of weight-loss drugs or health

supplements; (9) hospitalization within the past month; (10) poor

compliance with or inability to complete the study protocol; or (11)

not meeting the inclusion criteria.

2.2.3 Selection of healthy controls
Healthy controls were recruited from among individuals

attending outpatient clinics during the same period. The

inclusion criteria were BMI 18.5–24 kg/m2, the absence of

underlying metabolic diseases, similar age (±3 years) and gender

distribution to the obese group, and age ≥18 years. All controls

voluntarily participated in the study and provided signed and

informed consent.

2.3 Experimental procedure

2.3.1 Gut microbiota analysis
Clinical data and fecal samples were collected from all

participants, including 40 patients with obesity (mean BMI 30.9

± 2.9 kg/m2; mean age 45.4 ± 17.9 years) and 20 healthy

controls (mean BMI 21.9 ± 1.7 kg/m2); mean age 43.4 ± 14.9

years). DNA was extracted from the fecal samples, and the

V3–V4 region of the 16S rRNA gene was amplified by PCR.

Sequencing libraries were constructed and sequenced on the

Illumina platform. Data analysis included microbial abundance,

diversity, and community composition.

2.3.1.1 Sequencing depth and data processing

Raw reads were filtered to remove low-quality sequences.

Paired-end reads were then merged to generate tags, and chimeric

sequences were removed. Operational Taxonomic Units (OTUs)

were clustered at a 97% similarity threshold. Alpha and beta
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diversity analyses, differential taxa determination, and visualization

were performed using QIIME2 (v.2021) and R software (v.4.1.2).

Appropriate statistical tests, including Welch’s t-test, were applied,

with p < 0.05 considered statistically significant.

2.3.2 Metabolomics analysis
Serum samples were collected from all 60 participants (40

patients with obesity and 20 healthy controls). Based on clinical

manifestations and TCM syndrome classification, obese patients

were further categorized into Group A, characterized by liver

qi stagnation and spleen deficiency, and Group B, typified by

blood stasis and phlegm retention. Both targeted and non-

targeted metabolomics analysis were undertaken. For metabolomic

profiling, samples were thawed at 4 ◦C, and 100 µL of serum was

extracted with 1mL of pre-cooled 80% methanol. After vortexing,

sonication, and precipitation, the supernatant was concentrated,

reconstituted in 50% methanol, and centrifuged for LC–MS

analysis. Tomonitor system stability, QC samples were prepared by

pooling equal aliquots of all serum samples. These were injected at

the beginning and end of the sequence, as well as every 12 samples

during the sequence.Metabolites were analyzed using an AB SCIEX

5500QTRAPmass spectrometer in positive ionmode withmultiple

reaction monitoring (MRM). Chromatographic separation was

performed at 40 ◦C and a flow rate of 0.3 mL/min using a binary

mobile phase (0.1% formic acid with 10mM ammonium formate in

water, and acetonitrile with 0.1% formic acid). Data were processed

using MultiQuant software, and metabolite quantification was

achieved against amino acid standards using external calibration

(R² > 0.99).

2.3.2.1 QC strategy

Pooled QC samples were prepared by mixing equal aliquots

from all samples. The QC samples were periodically injected to

monitor instrument stability. The relative standard deviation (RSD)

of detected metabolites in QC samples was <30%, and a principal

component analysis (PCA) confirmed tight clustering, thereby

validating workflow reliability.

2.3.2.2 Compound identification and quantification

Metabolites were identified by comparing retention

times and mass spectra with 42 authentic amino acid and

derivative standards. Calibration curves were established

at five concentrations (0.02, 0.05, 0.2, 0.5, and 1µg/mL)

with R² > 0.99. A total of 28 amino acids and derivatives

were quantified. Significantly altered metabolites and related

pathways were further analyzed to support an investigation into

obesity-related mechanisms.

2.4 Statistical methods

The data relating to gutmicrobiota analysis were analyzed using

SPSS 26.0. For categorical variables, the chi-square test was applied.

Normality was assessed with the Shapiro–Wilk test. Normally

distributed data were expressed as means ± SD and compared

using independent-samples t-tests; non-normally distributed data

were analyzed using the Mann–Whitney U-test. Alpha diversity

indices (Sobs, Chao1, ACE, Simpson, Shannon, Pielou, PD-

tree) were calculated. Beta diversity and species abundance were

visualized using R software, with Welch’s t-test for taxonomic

comparisons. p < 0.05 was considered statistically significant.

MS-DIAL software was employed for metabolomics data

processing, including peak alignment, retention time correction,

and peak area extraction. Metabolite identification was performed

based on accurate mass matching (mass tolerance <10 ppm)

and MS/MS spectral matching (mass tolerance <0.01 Da) against

multiple public databases, including MDB, MassBank, and GNPS,

as well as an in-house standard compound library (BP-DB). Ion

features missing in >50% of samples within a group were excluded

from subsequent analyses. Positive and negative ion datasets were

normalized by total peak area, integrated, and submitted to pattern

recognition using Python software. Data were preprocessed using

unit variance (UV) scaling before statistical analysis. To ensure

system stability, QC samples were evaluated using both base peak

chromatogram (BPC) comparison and PCA of all the samples.

2.5 ROC analysis of di�erential metabolites

Receiver Operating Characteristic (ROC) curve analysis

was used to evaluate the diagnostic potential of significantly

altered metabolites. Logistic regression was applied, with group

classification (obese vs. healthy) as the dependent variable and

the relative abundances of metabolites as independent variables.

Predicted probabilities from the model were used to plot ROC

curves and calculate the area under the curve (AUC). Five-fold

cross-validation was applied to ensure model stability. Metabolites

with an AUC of >0.7 with good reproducibility were identified

as potential biomarkers. All ROC analyses were conducted using

R software.

3 Results

3.1 Correlation between obesity and the
gut microbiota

Studies have shown that the composition of the gut microbiota

in individuals with obesity differs significantly from that in healthy

controls across various taxonomic levels (phylum, class, order,

family, genus, and species). At the phylum level (Figure 1A), the

relative abundance of Proteobacteria (AUC= 0.709, 95%CI: 0.569–

0.848; p= 0.006) was higher in the obesity group than in the normal

control group, suggesting that this phylum was dominant within

the gut microbiota of the former group. In contrast, the relative

abundance of Firmicutes (p = 0.245), Bacteroidetes (p = 0.148),

and Actinobacteria (p= 0.512) was decreased in the obesity group,

although the differences were not statistically significant (all p <

0.05). Notably, these phyla are also considered core components

of the gut microbial community. At the class level (Figure 1B), the

relative abundance of Gammaproteobacteria (AUC = 0.712, 95%

CI: 0.573–0.852; p = 0.009) and Erysipelotrichia (AUC = 0.614,

95%CI: 0.471–0.757; p= 0.02) was higher in the obesity group than

in the normal control group, whereas that of Verrucomicrobiae

(p = 0.863) and Coriobacteriia (p = 0.939) was lower, but again
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FIGURE 1

Di�erences in gut microbiota composition between patients with obesity (hz) and normal controls (zc). Relative abundance profiles of the gut

microbiota at various taxonomic levels. Significant di�erences in abundance were observed in phyla such as Proteobacteria, Firmicutes, and

Bacteroidetes. Di�erences were assessed using Welch’s t-test for taxonomic comparisons; an adjusted p-value of <0.05 was considered significant.

(A) Phylum level; (B) Class level; (C) Order level; (D) Family level; (E) Genus level; (F) Species level.

not significantly (all p < 0.05). These phyla are also considered

core components of the gut microbial community. At the order

level (Figure 1C), meanwhile, compared with normal controls, the

relative abundances of Enterobacteriales (AUC = 0.734, 95% CI:

0.597–0.871; p = 0.008) and Erysipelotrichia (AUC = 0.614, 95%

CI: 0.471–0.757; p = 0.029) were significantly increased in patients

with obesity, implying that they were predominant within the gut

microbiota of this population. At the family level (Figure 1D),

the dominant families included Lachnospiraceae (p = 0.05),

Ruminococcaceae (p = 0.038), Enterobacteriaceae (p = 0.003),

Bifidobacteriaceae (p = 0.512), and Bacteroidaceae (p = 0.497).

Notably, the elevated abundance of Enterobacteriaceae (AUC =

0.614, 95% CI: 0.471–0.757) in the obesity group may contribute

to gut microbiota imbalance and, thus, obesity development. At

the genus level (Figure 1E), the five most abundant genera were

Escherichia-Shigella (p = 0.028), Faecalibacterium (p = 0.143),
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Bifidobacterium (p = 0.503), Bacteroides (p = 0.483), and Blautia

(p = 0.08). Among them, Escherichia-Shigella (AUC = 0.71, 95%

CI: 0.565–0.855) was significantly less abundant in the obesity

group than in the control group, potentially leading to dysbiosis

and, ultimately, obesity. At the species level (Figure 1F), the top

five species in terms of abundance were Phascolarctobacterium

faecium (p = 0.333), Ruminococcus sp. Marseille-P328 (p = 0.226),

Bifidobacterium longum subsp. longum (p= 0.923), Parabacteroides

distasonis (p = 0.033), and Bacteroides fragilis (p = 0.016). Among

these, Bacteroides fragilis (AUC = 0.733, 95% CI: 0.593–0.873; p =

0.016) and Parabacteroides distasonis (AUC= 0.61, 95% CI: 0.466–

0.754; p = 0.033) were significantly enriched in the obesity group,

highlighting their potential as obesity-specific indicators. The other

three species showed a notable decline in abundance. Combined,

these results suggested that a link may exist between gut microbial

imbalance and obesity onset and progression.

3.1.1 Alpha diversity analysis
In studies on gut microbiota ecology, alpha diversity reflects the

richness, evenness, and overall diversity of microbial communities

within a sample. In this study, we assessed the differences between

the obesity and control groups using several indices, including

the Sobs, Chao1, ACE, Shannon, Simpson, PD-tree, and Pielou

indices. The results demonstrated that, across all indices, the

values observed in the obesity group were consistently lower

than those in the healthy control group. This indicated that

individuals with obesity exhibit reduced microbial diversity and

evenness in their gut microbiota. These findings suggested that a

strong correlation exists between gut microbial diversity and the

development of obesity.

As shown in Figures 2A–C, the Sobs, Chao1, andACE indices of

the obesity group were significantly lower than those of the control

group (p < 0.05), indicating that microbial richness was markedly

reduced in patients with obesity compared with that in healthy

controls (Table 1). As shown in Figure 2G, the Pielou index in the

obesity group was significantly lower than that in the control group

(p < 0.05), implying that the evenness of the gut microbiota was

lower in the former population (Table 1). In addition, as shown

in Figures 2D, E, both the Shannon and Simpson indices were

lower in the obesity group, with the difference in the former (p <

0.05), but not the latter (p > 0.05), reaching statistical significance

(Table 1). Furthermore, the PD-tree index was significantly lower in

the obesity group than in the control group (p < 0.05) (Figure 2F),

indicating that phylogenetic diversity had undergone a notable

decline in patients with obesity (Table 1). Taken together, these

results demonstrated that the gut microbiota of patients with

obesity displays reduced richness, evenness, and overall diversity

relative to healthy controls, suggesting that microbial community

structure is disrupted in obesity.

3.1.2 Beta diversity analysis
To evaluate the overall structural differences of the gut

microbiota between patients with obesity and healthy controls, we

performed principal coordinate analysis (PCoA) based on Bray–

Curtis distances across six taxonomic levels (phylum, class, order,

family, genus, and species) (Table 2). As shown in Figure 3A, at

the phylum level, a clear separation was observed between the

two groups. PCo1 (46.14%) effectively distinguished patients with

obesity from healthy controls, with the obesity group exhibiting

greater intra-group dispersion. A similar pattern was evident at the

class and order levels (PCo1 = 35.77% and 35.70%, respectively).

As illustrated in Figures 3B, C, the obesity group tended to cluster

along the positive axis of PCo1 with a wider interquartile range,

while the control group was mainly concentrated on the negative

axis. Notably, the contribution of PCo2 to group differentiation

increased from the class level onward, with the control group

showing consistently higher medians and broader distributions

along this axis (Figure 3B). Additionally, at the family and genus

levels, as the variance explained by PCo1 decreased (28.48% and

17.31%, respectively), the separation between the groups weakened

(Figures 3D, E). Nevertheless, the obesity group maintained a

persistent shift along the positive side of PCo1 and displayed

greater internal heterogeneity, whereas the control showed an

upward trend along PCo2 with a more dispersed distribution. At

the species level (PCo1 = 12.31%, PCo2 = 10.73%), the overlap

between the groups markedly increased, suggesting that at finer

taxonomic resolution, differences became less pronounced and

were mainly reflected in subtle changes in community positioning

and dispersion rather than distinct clustering (Figure 3F).

Collectively, these findings indicated that, compared with

healthy individuals, patients with obesity displayed significant

differences in gut microbial community structure, which were

most pronounced at higher taxonomic levels and primarily

captured by PCo1. The obesity group consistently exhibited

greater heterogeneity and a rightward shift on PCo1, while the

control group showed a systematic elevation on PCo2 starting

from the class level. These patterns suggested that obesity-

related alterations in the gut microbiota are more robust and

stable at higher taxonomic ranks, whereas at the species level,

differences are diminished, primarily reflecting variability in

community distribution.

Studies by Lehtonen H, Serkova N. J., and colleagues have

shown that the gut microbiota composition of individuals with

obesity differs significantly from that of healthy controls, with

imbalances spanning multiple taxonomic levels from phylum

to species (14, 15). We found that in patients with obesity,

the Sobs, Chao1, ACE, Simpson, Shannon, Pielou, and PD-

tree indexes were all markedly lower than those of healthy

individuals, indicating that richness, evenness, and overall diversity

of the gut microbiota were decreased in the former group.

Notably, Proteobacteria were significantly enriched in individuals

with obesity, while Firmicutes, Bacteroidetes, and Actinobacteria

showed a non-significant decreasing trend in abundance. At the

class and order levels, Gammaproteobacteria, Erysipelotrichia, and

Enterobacteriales showed significant enrichment in the obesity

group, potentially leading to intestinal homeostasis disruption. At

the family and genus levels, the abundance of Enterobacteriaceae

was markedly elevated in the obesity group, whereas that of

Escherichia-Shigella was significantly reduced. At the species level,

Bacteroides fragilis and Parabacteroides distasonis were more

abundant in individuals with obesity, indicating that theymay serve

as obesity-related microbial indicators.
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FIGURE 2

Alpha diversity indices of the gut microbiota in the obesity (hz) and control groups (zc). Sobs, Chao1, ACE, Shannon, Pielou, and PD-tree index values

were significantly lower in the obesity group than in the control group (p < 0.05), whereas the Simpson index remained unchanged (p > 0.05). This

indicated that richness, evenness, and phylogenetic diversity were reduced in patients with obesity. (A) Sobs; (B) Chao1; (C) ACE; (D) Shannon;

(E) Simpson; (F) PD tree; (G) Pielou.

In summary, we found notable differences in the distribution,

richness, and evenness of the gut microbiota between individuals

with obesity and healthy controls. Significant variations were

observed in taxonomic groups such as Proteobacteria, Clostridiales,

Lachnospiraceae, Enterobacteriaceae, and Escherichia-Shigella,

highlighting their potential to serve as biomarkers for

obesity as well as targets for disease prevention, diagnosis,

and treatment.
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FIGURE 3

Beta-diversity of the gut microbiota between patients with obesity (hz) and healthy controls (zc) based on Bray–Curtis distances. PCoA plots show a

clear separation between the two groups from the phylum to the order level, with the obesity group exhibiting greater heterogeneity. Boxplots

further confirmed significant di�erences in PCo1/PCo2 distributions, while separation became less pronounced at finer taxonomic levels. (A) Phylum

Level; (B) Class Level; (C) Order Level; (D) Family Level; (E) Genus Level; (F) Species Level.
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TABLE 1 Alpha-diversity in obese patients and healthy controls.

Index p

Sob 0.000016∗∗

Chao1 0.0000029∗∗

ACE 0.0000028∗∗

Pielou 0.0026∗

Simpson 0.0108

Shannon 0.0006∗∗

PD-tree 0.0001∗

Statistical analysis of alpha-diversity differences between patients with obesity and healthy

controls. Welch’s t-test was applied for group comparisons, with p-values shown.
∗p < 0.05 indicates significant differences, ∗∗p < 0.01 indicates highly significant differences.

TABLE 2 Beta-diversity across taxonomic levels in obese patients and

healthy controls.

Level p

Phylum 3.7293E−13∗∗

Class 2.9752E−17∗∗

Order 2.8466E−18∗∗

Family 4.9629E−19∗∗

Genus 6.3120E−14∗∗

Species 4.2792E−16∗∗

Statistical analysis of beta diversity differences between patients with obesity and healthy

controls across taxonomic levels (phylum to species) based on Bray–Curtis distances. Welch’s

t-test was applied for group comparisons, with p-values shown.
∗p < 0.05 indicates significant differences, ∗∗p < 0.01 indicates highly significant differences.

3.2 Analysis of the correlation between
obesity and changes in the metabolome

Differences in the abundance of metabolites and their

corresponding main metabolic pathways between the obesity and

healthy control groups were analyzed using non-targeted LC-

MS. Metabolomics studies have identified key metabolic pathways

associated with obesity, including those associated with lipid,

amino acid, glucose, phospholipid, and gut microbial metabolism

(16–18). In this study, the metabolite categories showing the

greatest differences in abundance between the obesity and control

groups were amino acids and derivatives, fatty acyls, and carboxylic

acids and derivatives (Figures 4A, B, 5A, B).

Given that the non-targeted metabolomic analysis showed

that differential metabolites were predominantly enriched in

amino acid metabolism pathways, we next undertook a targeted

analysis of amino acid metabolites. Based on a priori thresholds

(VIP > 1.0, |log2FC| ≥ 0.5, FDR < 0.05), amino acid-

related alterations predominated across both comparisons (Group

A or Group B vs. controls). In the comparison between

Group A and the controls, significant increases in abundance

were observed for aminoadipic acid (log2FC = 0.68), 3-

methylhistidine (=0.57), cystine (=0.55), carnosine (=0.54),

and hydroxyproline (=0.52), while ornithine contents were

decreased (=-0.59). In the Group B vs. controls comparison,

carnosine showed a marked increase in abundance (=1.16;

highest VIP), whereas the abundances of citrulline (=-0.59),

ornithine (=-0.57), asparagine (=-0.57), and glycine (=-0.54) were

reduced. Together with concordant, albeit sub-threshold, shifts

in serine (downregulation), proline, alanine, tyrosine, arginine,

and glutamate (upregulation) levels, these findings indicated

that Group B patients experienced an attenuation of the urea

cycle/NO pathway and a reduction in one-carbon/glutathione

capacity (downregulation of ornithine, citrulline, glycine, and

serine), alongside intensified lysine catabolism/oxidative stress

and extracellular-matrix remodeling (upregulation of aminoadipic

acid and hydroxyproline). Furthermore, our data suggested that

muscle protein turnover was increased in Group A patients,

as reflected by increased 3-methylhistidine and creatinine levels,

while the histidine/carnosine buffering/antioxidant response was

accentuated in patients in Group B, as evidenced by the observed

upregulation of carnosine and cystine contents, with carnosine

showing higher discriminative weight. Collectively, increases in the

abundance of aminoadipic acid, hydroxyproline, and carnosine,

along with decreases in that of ornithine, citrulline, glycine, and

serine, define a coherent amino acid signature distinguishing

obesity in this cohort (Figures 6A1–B2).

3.2.1 ROC analysis
ROC analysis of the differentially abundant metabolites

identified substances such as dibutyl phthalate, phthalic

anhydride, eucalyptol, vitamin K1, tripropylphosphate,

glycine, 2-chloroacetamide, phosphatidylinositol PI(16:0/18:2),

acetylcarnitine, PI(18:0/20:4), lysine, and 2-chloroacetamide

as obesity-specific markers, capable of distinguishing between

patients with obesity and healthy controls (Figure 7).

3.2.2 Heatmap analysis
Based on the quantitative profiling of 48 amino acids, heatmaps

were generated for the two comparison groups (Group A or

B vs. controls), providing sample-level confirmation of robust

differences between patients with obesity and healthy controls.

After Z-score standardization and unsupervised hierarchical

clustering, patient samples were separated from control samples

along the column dendrogram. As shown in Figure 8A, the

abundance of carnosine, 3-methylhistidine, and creatinine

was generally higher in Group A than in the control group,

whereas that of ornithine, citrulline, glycine, and serine was

lower. Histidine and L-homoserine contents also tended to

decrease in Group A patients. Meanwhile, aminoadipic acid

and hydroxyproline were enriched in a subset of patients. The

same primary pattern was observed for the Group B vs. controls

comparison, but with a more uniform increase in the abundance

of carnosine; glycine, serine, citrulline, and ornithine levels were

largely reduced in Group B patients; phenylalanine, tyrosine,

and tryptophan displayed modest enrichment in a minority

of patients; and asparagine and glutamine contents tended to

be lower (Figure 8B). These heatmap patterns agreed with the

targeted metabolomics results and indicated that both the urea

cycle/NO and one-carbon/glutathione axes were downregulated

in obesity (indicated by lower levels of ornithine, citrulline,

glycine, and serine), whereas lysine degradation/oxidative

Frontiers inNutrition 09 frontiersin.org

https://doi.org/10.3389/fnut.2025.1648469
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Qi and Wang 10.3389/fnut.2025.1648469

FIGURE 4

Metabolite categories displaying di�erential abundance between the obesity and control groups. (A) The relative abundance of di�erential metabolite

categories between patients in Group A (characterized by liver qi stagnation and spleen deficiency) and healthy controls. (B) The relative abundance

of di�erential metabolite categories between patients in Group B (characterized by blood stasis and phlegm retention) and healthy controls. The

color blocks on the right indicate metabolite categories. Di�erential metabolites were identified using multivariate analysis with the criteria VIP > 1.0,

|log2FC| ≥ 0.5, and FDR < 0.05.

stress and extracellular-matrix remodeling were enhanced

(evidenced by higher aminoadipic acid, hydroxyproline, and

carnosine abundance). Overall, the increases in the contents of

carnosine, 3-methylhistidine, creatinine, aminoadipic acid, and

hydroxyproline, coupled with decreases in those of ornithine,

citrulline, glycine, and serine, define a coherent amino acid

signature that not only provides evidence of lipid-metabolic

imbalance and dysregulated inflammatory control in obesity, but

also identifies potential biomarkers and therapeutic targets for

this condition.

3.2.3 KEGG analysis
Differential metabolites (VIP > 1.0, |log2FC| ≥ 0.5, FDR

< 0.05) were subjected to KEGG enrichment analysis and

then mapped to the amino acid biosynthesis pathway (KEGG

map01230), which represented the most enriched pathway

in this study (Figure 9). This pathway links glycolysis/TCA

intermediates (3-phosphoglycerate, pyruvate, oxaloacetate, 2-

oxoglutarate) to branches for aromatic amino acids (tryptophan,

tyrosine, phenylalanine), branched-chain amino acids (BCAAs)

(valine, leucine, isoleucine), and the glutamate/glutamine–

ornithine/arginine–proline axis. In Group A (obesity), the

abundance of tryptophan, tyrosine, isoleucine, and glutamine

was elevated, whereas that of phenylalanine, valine, leucine,

and ornithine was reduced within the pathway. This

pattern was suggestive of an imbalanced carbon flow at the

shikimate/chorismate node (reflected in Trp/Tyr upregulation

with Phe downregulation), persistent suppression of the BCAA

module (downregulation of Val/Leu), and a potential bottleneck

at the urea cycle interface (downregulation of ornithine), with

compensatory nitrogen buffering (glutamine upregulation). In

Group B (obesity), the contents of tyrosine, phenylalanine, and

glutamate were increased, whereas those of tryptophan, valine,

and leucine were decreased, indicating that the Tyr/Phe arm

was activated with concurrent Trp constraint and recurrent

BCAA attenuation.
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FIGURE 5

Volcano plots of the di�erential metabolites. (A) Patients in Group A (characterized by liver qi stagnation and spleen deficiency) vs. healthy controls.

(B) Patients in Group B (characterized by blood stasis and phlegm retention) vs. healthy controls. Each dot represents a metabolite (x-axis: log2FC,

y-axis: –log10p); dot size indicates VIP score. Blue and red denote down- and upregulated metabolites, respectively, while gray indicates no

significant change.

BCAA biosynthetic/turnover signals were consistently

downregulated in both obesity groups (A and B), whereas

aromatic branches diverged. Together, these pathway-level

changes corroborated the targeted quantitation results and

indicate that amino acid metabolism undergoes reprogramming

in obesity, involving redistribution at the aromatic branch

point and remodeling of the glutamate–ornithine axis.

These findings provide mechanistic insights for guiding

stratified nutritional or microbiota-directed interventions

targeting BCAA and aromatic amino acid metabolism in

obesity subtypes.

Metabolomics studies have shown that the serum levels

of key amino acids and small-molecule metabolites, including

carnosine, 3-methylhistidine, creatinine, ornithine, histidine,
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FIGURE 6

Targeted amino acid metabolomic profiling by LC–MS in patients with obesity and healthy controls. (A) Group A vs. controls. (A1) Bar plot of amino

acids ranked by log2FC in Group A; the x-axis shows log2FC, with positive values indicating higher levels, and negative values indicating lower levels.

(A2) Bubble plot of the same features; the x-axis shows log2FC, bubble size reflects VIP, and color denotes up- or downregulation. (B) Group B vs.

controls. (B1) Bar plot of amino acids ranked by log2FC for Group B. (B2) Bubble plot as in (A2) for Group B. Di�erential metabolites were defined

using VIP > 1.0, |log2FC| ≥ 0.5, and FDR < 0.05 as the criteria.

citrulline, cystine, glycine, and serine, are significantly altered in

individuals with obesity (19). Elevated creatinine abundance may

reflect obesity-related changes in muscle metabolism or a potential

burden on renal function. The identification of creatinine, a

product of muscle metabolism, as an obesity-specific marker

suggests that kidney impairment may be an early indicator in

the development of obesity, highlighting the importance of

prompt and regular renal function monitoring in patients with

this condition. The accumulation of adipose tissue in obesity

may induce localized inflammatory responses, making carnosine

a potential obesity-specific indicator. 3-Methylhistidine has

notable blood lipid-lowering effects, thereby influencing lipid

metabolism, and also participates in the regulation of thyroid

function. Ornithine helps reduce cholesterol levels and serves

as an antagonistic factor during obesity progression, alongside

participating in primary bile acid metabolism and detoxification.

Its elevated expression in obese individuals may be related to

diet or its induction through fat accumulation. Histidine is an

essential amino acid with a dual role in modulating inflammation

and promoting vasodilation. It has strong regulatory effects on

obesity, which provide valuable insights into the prevention

of cardiovascular diseases and obesity-related complications.

Citrulline regulates physiological functions and helps manage

blood glucose and lipid levels. Cystine neutralizes toxins and

promotes cellular oxidation, thereby influencing metabolic

processes involved in obesity.

4 Discussion

The human gut harbors a vast microbial ecosystem, collectively

known as the gut microbiota. Over 99% of the human gut

microbiota consists of the phyla Firmicutes, Actinobacteria,

Bacteroidetes, and Proteobacteria (20). In this study, we found

that the abundance of Bacteroidetes was decreased, while that of

Firmicutes was increased in patients with obesity. As noted by
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FIGURE 7

Receiver operating characteristic (ROC) curves of the di�erential metabolites capable of distinguishing patients with obesity from healthy controls.

(A1) Acetoacetaldehyde; (A2) PI(16:0/18:2); (A3) PI(18:0/20:4); (A4) 2-Chloroacetamide; (A5) Phthalic anhydride; (A6) Vitamin K1; (A7) Eudesmin;

(A8) Tri(butoxyethyl)phosphate; (A9) Dibutyl phthalate; (A10) 3-Aminoisobutyraldehyde; (B1) Acetylcarnitine; (B2) 2-Ethylpropanedioylcarnitine;

(B3) PI(18:0/20:4); (B4) Tri(butoxyethyl)phosphate; (B5) Fructosyl-lysine.
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FIGURE 8

Heatmaps of targeted amino acid metabolomic profiles. (A) Group A vs. controls. Comparison of the targeted amino acid (and derivatives)

metabolomic profiles between obesity cohort A (GY, n = 20) and healthy controls (N, n = 20). Rows are metabolites; columns are individual study

participants. Values were row-standardized (Z-scores). Color scale: red denotes higher relative abundance, blue signifies lower relative abundance.

The left dendrogram shows unsupervised hierarchical clustering; the side strip shows the chemical class (green: amino acid; pink: amino acid and

derivatives). (B) Group B vs. controls. Comparison of the targeted amino acid (and derivatives) metabolomic profiles between obesity cohort B (XT, n

= 20) and healthy controls (N, n = 20). Display conventions are identical to (A).

Patrice et al. (21), short-chain fatty acids(SCFAs) play a crucial role

in gut microbiota metabolism. Gut dysbiosis leads to an increase

in short-chain fatty acid production. Reduced Bacteroidetes

abundance is associated with decreased production of acetate and

propionate, which reduces the ability of the host to break down

dietary fiber. Meanwhile, elevated Firmicutes abundance enhances

butyrate production, which accelerates fat breakdown and energy

absorption. Pinart et al. (22) showed that under similar conditions,

germ-free mice that received gut microbiota from wild-type mice

displayed a 60% increase in body fat. Furthermore, when gut

microbiota from obese human adults was transplanted into germ-

free mice, the mice also experienced an increase in body weight.

DeGroot et al. (23) found that obese populations exhibit a higher

abundance of bacteria that are efficient at energy capture, such as

Lactobacillus, Escherichia coli, and Bacteroides. Furthermore, the

abundance of Bifidobacterium, which can exert positive effects on

gut function, was reported to be lower in obese than in non-

obese individuals. Furthermore, the Firmicutes/Bacteroidetes ratio

in obese populations is higher than that in normal controls, leading

to metabolic disorders related to fat deposition in the host.

In this study, metabolomic analysis of patients with obesity

showed that several differential metabolites were linked to aromatic

amino acids and branched-chain amino acids (BCAAs), supporting

an interaction between the gut microbiota and host amino-

acid metabolism. The findings indicate that the microbiota

exerts a substantial influence on circulating BCAA levels (valine,

leucine, isoleucine); shifts in community structure—particularly

the reduced abundance of Bacteroides observed in obesity—may
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FIGURE 9

Mapping of the di�erential metabolites to the KEGG amino acid biosynthetic pathway (map01230). We selected the pathway with the largest number

of enriched entries. This pathway diagram illustrates the modular architecture of the biosynthesis routes for 20 amino acids. Colored nodes denote

metabolites identified as di�erentially abundant. In the between-group comparison, tryptophan,tyrosine, and glutamine show upward trends within

the pathway, whereas valine, leucine and ornithine show downward trends. Di�erential abundance was defined using VIP > 1.0, |log2FC| ≥ 0.5, and

FDR < 0.05 as criteria. KEGG enrichment analysis identified amino acid biosynthesis as the most enriched pathway.

underlie the elevated serum concentrations of aromatic amino

acids and BCAAs. Moreover, glutamate, an amino acid that clearly

distinguished obese patients from healthy controls, was positively

correlated with the genus Ruminococcus and negatively correlated

with glutamine. This further suggests that the abundance of specific

taxa is associated with circulating amino-acid levels and may

directly participate in amino-acid metabolism. Serum glutamate

also showed a negative correlation with Bacteroides, implying that

depletion of Bacteroides in obesity may contribute to increased

glutamate levels. Taken together, these results indicate that amino-

acid metabolism by specific gut microbes may modulate circulating

amino acids linked to obesity and its metabolic complications.

Liu et al. (24) analyzed the correlation between gut microbiota

composition and metabolite profiles in obese patients and found

Frontiers inNutrition 15 frontiersin.org

https://doi.org/10.3389/fnut.2025.1648469
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Qi and Wang 10.3389/fnut.2025.1648469

that tyrosine, phenylalanine, and glutamate abundance was

closely related to changes in the microbiome in obesity. The

authors further showed that changes in the gut microbiota,

particularly a reduction in Bacteroides species in obese

individuals, were associated with elevated concentrations of

aromatic amino acids (tyrosine, phenylalanine, tryptophan)

and BCAAs (leucine, isoleucine, valine) in the circulation.

This shows that gut microbiota synergistically contribute to

the development of obesity through their influence on host

metabolic processes.

Combined analysis revealed that specific bacterial genera,

such as Bacteroides, in the obese population were significantly

correlated with amino acid metabolite contents, suggesting

that the microbiota may directly or indirectly regulate host

amino acid metabolic pathways (25). Compared with lean

individuals, the gut microbiota in individuals with obesity

showed significant enrichment of pathways related to amino

acid metabolism, such as the biosynthesis of phenylalanine,

tyrosine, and tryptophan, as well as glutamine and glutamate

transport systems. Conversely, there was a reduction in the

abundance of microbial genes associated with the degradation

of valine, leucine, and isoleucine. This indicates that the gut

microbiota in obese individuals has an elevated potential for

synthesizing aromatic amino acids and BCAAs. These data

suggest that the gut microbiota in the obese population not only

enhances carbohydrate utilization but also potentially promotes

the synthesis of pro-inflammatory factors and aromatic and

BCAAs. This microbiota-metabolite network provides a theoretical

basis for the development of metabolism-targeted therapeutic

strategies, such as probiotics and dietary interventions, aimed at

microbiota modulation.

Our data further showed that Enterobacteriales were markedly

enriched in obese individuals, likely due to chronic inflammation,

whereas the abundance of Clostridiales, considered a beneficial

bacterial group, was reduced in obesity. 3-Methylhistidine,

a specific biomarker of muscle protein breakdown, is also

involved in inflammation and thyroid function regulation.

Given the rising recognition of depression as a major driver

of obesity, 3-methylhistidine may additionally serve as an

emotion-related indicator. The increase in its abundance in

obesity could promote a compensatory decrease in that of

Firmicutes and Clostridiales. Carnosine exhibits antioxidant, anti-

glycation, and anti-inflammatory properties. Chronic low-grade

inflammation is a central feature of obesity, especially at the

intestinal level. The elevated levels of carnosine observed in

obesity likely reflect such inflammatory responses. Furthermore,

the abundance of Selenomonadales was significantly increased

in obese individuals, potentially contributing to altered gut

permeability (“leaky gut”) through their metabolic products,

further promoting low-grade chronic inflammation. Moreover,

histidine concentrations were found to be significantly decreased

in individuals with obesity compared to those in normal-

weight controls. Reduced histidine levels have been associated

with enhanced inflammation and disrupted nitrogen metabolism.

Bifidobacteriales may influence histidine levels, thereby affecting

gut barrier function and perpetuating chronic inflammation,

ultimately contributing to the development of obesity (26,

27).

4.1 Clinical implications and potential
directions for intervention

Our results suggested that the gut microbiota and metabolomic

profiles may serve as early diagnostic markers and therapeutic

targets for obesity-related diseases (27). Body weight can

be regulated by modulating gut microbiota composition and

serumamino acid levels, potentially preventing the development

of metabolic diseases (28). Similarly, dietary adjustments that

modulate microbiota composition may also lead to weight loss.

Future research could explore interventions for obesity through

precision nutrition, fecal microbiota transplantation (FMT), or

synthetic microbiota approaches to modulate the microbiome.

5 Limitations and future prospects

This study has several limitations. First, the relatively modest

sample size (n = 60) may limit the generalizability of our findings.

Second, although strict inclusion criteria were applied—such as

the exclusion of recent antibiotic or probiotic users—we did

not systematically record participants’ dietary intake, physical

activity levels, or other detailed lifestyle habits. Moreover, potential

confounding factors such as sex, diet, and medication use, which

are known to influence gut microbiota and metabolic profiles, were

not fully controlled or examined through subgroup analyses. These

uncontrolled variables may have contributed to inter-individual

variability and influenced the observed microbial and metabolomic

patterns. Additionally, the use of 16S rRNA sequencing limits

taxonomic resolution at the species level and lacks the capacity

for robust functional prediction. Future research should employ

metagenomic sequencing and multi-omics approaches, alongside

larger, well-stratified cohorts and intervention trials to validate

our findings, control for lifestyle-related confounders, and explore

underlying causal relationships.

6 Conclusions

From phylum to species, obese individuals exhibited marked

dysbiosis, characterized by enrichment of Proteobacteria and

related clades (e.g., Gammaproteobacteria, Enterobacteriales, and

Enterobacteriaceae) and shifts in the composition of some

putatively beneficial taxonomic groups, such as Escherichia–

Shigella lineages and several species. These taxonomic groups may

serve as biomarkers of obesity and potential therapeutic targets.

Untargeted metabolomics analysis indicated that differential

metabolites were concentrated in amino acids, fatty acids, and

carboxylic acids. Targeted amino acid profiling further confirmed

that the contents of carnosine, creatinine, ornithine, citrulline,

glycine, cystine, and serine underwent significant alterations in

obesity, implicating amino acid metabolic imbalance in this

condition. Integration of microbiome and metabolome data

indicated that obesity-related disturbances primarily involve

dysregulated lipid metabolism and heightened inflammatory

responses, with shifts in amino acid metabolism potentially

contributing to obesity via the modulation of inflammation and

energy metabolism.
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