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Integrated gut microbiota and
metabolomic profiling reveals
key associations between amino
acid levels and gut microbial
composition in patients with
obesity

Musen Qi! and Li Wang?*

tLiaoning University of Traditional Chinese Medicine, Shenyang, China, 2The Affiliated Hospital of
Liaoning University of Traditional Chinese Medicine, Shenyang, China

Introduction: Obesity is an increasingly serious global health concern and is
closely associated with gut dysbiosis and metabolic imbalance. Despite the
considerable research conducted on the gut microbiota and metabolism over
recent years, studies focusing on their correlation with obesity remain limited. In
this study, we sought to characterize the gut microbiota and serum metabolic
profiles of patients with obesity, aiming to identify potential biomarkers and
therapeutic targets for this condition, and explore possible links between altered
amino acid levels and gut microbial composition in its pathophysiology. The
findings may offer novel insights into obesity prevention and treatment through
microbiota modulation or amino acid regulation.

Methods: Forty adult volunteers with obesity (BMI = 30.9 + 2.9 kg/mz) who met
the diagnostic criteria were enrolled in this study. Pregnant or lactating women
and individuals with severe comorbidities were excluded. The control group
comprised 20 subjects with normal weight (BMI = 21.9 + 1.7 kg/m?) and without
metabolic disorders, recruited from among outpatients during the same period
and matched for age and sex. Fecal microbiota profiling was performed using 16S
rRNA sequencing. DNA was extracted from stool samples, and the V3-V4 region
was amplified and sequenced on the lllumina platform. After rigorous quality
control (QC) and chimera removal, effective tags were clustered into Operational
Taxonomic Units (OTUs) based on sequence similarity. Alpha and beta diversity
and intergroup differential abundance were assessed, with statistical significance
determined by Welch's t-test. Serum metabolomic analysis was performed using
standardized sample preparation and QC procedures, followed by LC-MS/MS-
based targeted and untargeted metabolomics. Calibration curves with R* > 0.99
were established, and relative metabolite concentrations were calculated from
peak areas. In total, 28 amino acid metabolites were quantified and used for
subsequent statistical analysis.

Results: Significant differences in microbial composition were observed across
multiple taxonomic levels between the controls and patients with obesity. At the
phylum level, Proteobacteria was enriched in the obesity group (AUC = 0.709,
95% Cl: 0.569-0.848; p = 0.006). At the class level, Gammaproteobacteria (AUC
= 0.712, 95% CI: 0.573-0.852; p = 0.009) and Erysipelotrichia (AUC = 0.614,
95% CI: 0.471-0.757; p = 0.02) were found to be enriched in obesity. At the
order level, enrichment was observed for Enterobacteriales (AUC = 0.734, 95%
Cl: 0.597-0.871; p = 0.008) and Erysipelotrichia (AUC = 0.614, 95% Cl: 0.471—-
0.757; p = 0.029). At the family level, Enterobacteriaceae (AUC = 0.614, 95%
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Cl: 0.471-0.757; p = 0.003) showed enrichment in obesity. Finally, at the genus
level, Escherichia-Shigella (AUC = 0.71, 95% Cl: 0.565-0.855; p = 0.028) was
enriched in obesity, while at the species level, Bacteroides fragilis (AUC = 0.733,
95% Cl1:0.593-0.873; p =0.016) and Parabacteroides distasonis (AUC = 0.61, 95%
Cl: 0.466-0.754; p = 0.033) were noted to be enriched. Metabolomic analysis
revealed thatin patients with obesity, the abundance of carnosine (log2FC = 1.16,
FDR =0.0016, VIP = 0.707), creatinine (log2FC = 0.21, FDR = 0.0009, VIP = 2.02),
and cystine (log2FC = 0.55, FDR = 0.009, VIP = 1.47) was significantly increased
compared with that in the controls; in contrast, that of ornithine (log2FC = —0.59,
FDR =0.0009, VIP = 1.19), citrulline (log2FC = —0.59, FDR = 0.0003, VIP = 0.707),
glycine (log2FC = —0.54, FDR = 0.0003, VIP = 1.41), and serine (log2FC = —0.38,
FDR =0.0019, VIP = 1.62) was significantly decreased. This suggested that these
metabolites may have potential as early diagnostic biomarkers for obesity.

Conclusions: Obesity is associated with coordinated shifts in specific gut taxa
and serum metabolites, with measurable effect sizes and strong discriminatory
performance. Modulating amino acid levels or gut microbiota composition may

represent a promising strategy for obesity prevention and treatment.
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1 Introduction

Obesity is a chronic metabolic disease resulting from a
combination of genetic predisposition, poor dietary habits, and
other contributing factors. It is characterized by excessive fat
accumulation and abnormal weight gain, with Body Mass Index
(BMI) being the most commonly used measure for diagnosing
this condition. Based on the guidelines of the Working Group on
Obesity in China, obesity in Chinese adults is defined as a BMI
> 28 kg/m?. This threshold is lower than the WHO international
standard (BMI > 30 kg/m?) due to ethnic differences in body
composition and metabolic responses. The prevalence of obesity is
steadily increasing and is closely associated with the development of
conditions such as cancer (1), hypertension, and type 2 diabetes (2).
The primary cause of obesity is an imbalance between energy intake
and expenditure, with simple obesity accounting for approximately
90% of all cases (3, 4).

The gut microbiota is increasingly recognized as a key
determinant of human health (5). It is now known to be an
essential component of the intestinal microecosystem, playing

Abbreviations: 16S rRNA, 16S ribosomal RNA gene; SCFAs, Short-Chain
Fatty Acids; AUC, Area under the curve; BCAA, Branched-chain amino acid;
BCAAs, Branched-chain amino acids; FMT, Fecal Microbiota Transplantation;
BMI, Body mass index; Cl, Confidence interval; FDR, False discovery rate;
Gln, Glutamine; Glu, Glutamate; lle, Isoleucine; IQR, Interquartile range;
KEGG, Kyoto Encyclopedia of Genes and Genomes; LC-MS/MS, Liquid
chromatography—tandem mass spectrometry; Leu, Leucine; log,FC, Log2
fold change; m/z, Mass-to-charge ratio; Orn, Ornithine; OTU, Operational
taxonomic unit; PCoA, Principal coordinate analysis; PD, Faith's phylogenetic
diversity; Phe, Phenylalanine; QC, Quality control; ROC, Receiver operating
characteristic; SD, Standard deviation; TCA, Tricarboxylic acid cycle; Trp,

Tryptophan; Tyr, Tyrosine; Val, Valine; VIP, Variable importance in projection.
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a vital role in the regulation of host nutrient absorption, the
maintenance of the intestinal mucosal barrier, and the modulation
of immune functions (6). Studies have shown that a stable gut
microbiota is crucial for preserving intestinal function and overall
health. Changes in the abundance of specific microbial populations
can lead to an increase in the number of pathogenic bacteria
while simultaneously decreasing that of beneficial ones, potentially
leading to the development of obesity. Adipose tissue can release
inflammatory cytokines such as tumor necrosis factor-alpha
(TNF-a), interleukin-1 beta (IL-1B), and IL-6, thereby triggering
systemic inflammatory responses (7). Obesity is increasingly
recognized not only as a metabolic disorder but also as a state
of chronic low-grade systemic inflammation, which may influence
susceptibility to various diseases, including respiratory conditions
(8). This gives rise to a complex “microbiota-metabolism-
inflammation” interaction network, which is considered a key
endogenous mechanism in the pathogenesis of obesity. Alterations
in the composition, diversity, relative abundance, and functional
pathways of gut microbiota may be important contributors to
obesity in adults (9).

In the study of the biological processes underlying obesity,
metabolomics has attracted considerable attention due to its
ability to dynamically reflect the metabolic characteristics of an
organism. Metabolomics is a relatively novel omics approach with
high application value as a systematic tool for investigating the
end-products of biological activities, enabling the comprehensive
analysis of changes in metabolic pathways under both physiological
and pathological conditions (10). Commonly used analytical
metabolomic platforms include mass spectrometry (MS), nuclear
magnetic resonance, liquid chromatography-mass spectrometry
(LC-MS), and gas chromatography-mass spectrometry.

LC-MS is characterized by high sensitivity, broad detection
coverage, and low sample volume requirements. Consequently, this
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platform has become an important tool for studying the metabolic
characteristics of obesity. Quantitatively analyzing metabolites
in biological samples can help establish correlations between
physiological changes and metabolic alterations.

Targeted metabolomics focuses on the detection and analysis
of specific metabolites or metabolic pathways, allowing for an
in-depth exploration of the mechanisms of action of drugs
within defined biochemical routes (11). This approach enables the
isolation of metabolites of interest, thereby reducing interference
from other highly abundant compounds (12). This, in turn, allows
for more precise quantification and the generation of well-defined
and complementary datasets for biological interpretation. It has
evolved into several specialized branches, including functional,
carbohydrate, lipid, and enzyme metabolomics, along with studies
based on specific small molecules or metabolic pathways, such
as those associated with nucleotide metabolism. Functional
metabolomics is employed to uncover molecular mechanisms
underlying interactions between disease-responsive biomarkers
and functional compounds (secondary metabolites). Additionally,
it can contribute to revealing how herbal-derived compounds block
the biosynthesis of key disease-related molecules and modulate
pathogenic biochemical interactions. This approach supports
disease discovery and treatment, offering a modern framework
that supports the systemic therapeutic characteristics of traditional
Chinese medicine (TCM) (13).

Integrating metabolomics with obesity research, particularly
in combination with gut microbiota profiling, can allow the
identification of distinct metabolic patterns in different obesity
phenotypes at the microscopic level as well as the discovery of
potential diagnostic biomarkers and therapeutic targets. In addition
to offering novel perspectives for understanding the mechanisms
underlying the pathology of obesity, such an integrated strategy
also provides a theoretical foundation and technical support for
the development of personalized treatment strategies, as well as
identifying novel targets and approaches for the future clinical
diagnosis and management of obesity.

2 Materials and methods
2.1 Materials

2.1.1 Fecal collection

The spoon provided with the fecal collection cup was used to
collect the innermost portion of the stool sample (no less than 2 g).
The sample was placed in a sterile EP tube, labeled with a serial
number, and preserved in dry ice. The samples were subsequently
stored at —80 °C within 2 h for further processing.

2.1.2 Serum collection for metabolomic analysis

Venous blood (5mL) was collected from each subject,
labeled, and centrifuged at 3,000 rpm for 10 min at 4 °C. After
centrifugation, 1 mL of the supernatant, containing serum, was
equally divided into two EP tubes. To ensure the stability and
quality of the serum samples, they were immediately preserved
in dry ice and transferred to a —80 °C freezer within 2h for
subsequent use.
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2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria

Participants were included if they (1) met the diagnostic criteria
for obesity, defined as BMI > 28 kg/m?; (2) were able to cooperate
with blood and stool sampling and voluntarily agreed to participate
in the study; (3) were aged between 18 and 80 years, regardless of
gender; and (4) were fully conscious and capable of independently
signing the informed consent form.

2.2.2 Exclusion criteria

The criteria for exclusion included the following: (1) Pregnant
or lactating women; (2) presenting with severe cardiovascular,
cerebrovascular, pulmonary, hepatic, renal, or other major primary
diseases, including complicated cardiovascular conditions or
severe hepatic/renal insufficiency; (3) systemic antibiotic use
within the past 3 months; (4) probiotic, prebiotic, or synbiotic
supplementation within the past 4 weeks; (5) the use of
immunosuppressant or corticosteroid therapy within the past 3
months; (6) diagnosed with a gastrointestinal disease, including
inflammatory bowel disease or celiac disease, or a history of major
gastrointestinal surgery within the past 6 months; (7) history
of alcoholism, use of psychoactive substances, drug abuse, or
drug dependence; (8) recent use of weight-loss drugs or health
supplements; (9) hospitalization within the past month; (10) poor
compliance with or inability to complete the study protocol; or (11)
not meeting the inclusion criteria.

2.2.3 Selection of healthy controls

Healthy controls were recruited from among individuals
attending outpatient clinics during the same period. The
inclusion criteria were BMI 18.5-24 kg/m?, the absence of
underlying metabolic diseases, similar age (£3 years) and gender
distribution to the obese group, and age >18 years. All controls
voluntarily participated in the study and provided signed and
informed consent.

2.3 Experimental procedure

2.3.1 Gut microbiota analysis

Clinical data and fecal samples were collected from all
participants, including 40 patients with obesity (mean BMI 30.9
+ 29 kg/m? mean age 454 & 17.9 years) and 20 healthy
controls (mean BMI 21.9 £ 1.7 kg/m?); mean age 43.4 + 14.9
years). DNA was extracted from the fecal samples, and the
V3-V4 region of the 16S rRNA gene was amplified by PCR.
Sequencing libraries were constructed and sequenced on the
Mlumina platform. Data analysis included microbial abundance,
diversity, and community composition.

2.3.1.1 Sequencing depth and data processing

Raw reads were filtered to remove low-quality sequences.
Paired-end reads were then merged to generate tags, and chimeric
sequences were removed. Operational Taxonomic Units (OTUs)
were clustered at a 97% similarity threshold. Alpha and beta
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diversity analyses, differential taxa determination, and visualization
were performed using QIIME2 (v.2021) and R software (v.4.1.2).
Appropriate statistical tests, including Welch’s ¢-test, were applied,
with p < 0.05 considered statistically significant.

2.3.2 Metabolomics analysis

Serum samples were collected from all 60 participants (40
patients with obesity and 20 healthy controls). Based on clinical
manifestations and TCM syndrome classification, obese patients
were further categorized into Group A, characterized by liver
qi stagnation and spleen deficiency, and Group B, typified by
blood stasis and phlegm retention. Both targeted and non-
targeted metabolomics analysis were undertaken. For metabolomic
profiling, samples were thawed at 4 °C, and 100 L of serum was
extracted with 1 mL of pre-cooled 80% methanol. After vortexing,
sonication, and precipitation, the supernatant was concentrated,
reconstituted in 50% methanol, and centrifuged for LC-MS
analysis. To monitor system stability, QC samples were prepared by
pooling equal aliquots of all serum samples. These were injected at
the beginning and end of the sequence, as well as every 12 samples
during the sequence. Metabolites were analyzed using an AB SCIEX
5500 QTRAP mass spectrometer in positive ion mode with multiple
reaction monitoring (MRM). Chromatographic separation was
performed at 40 °C and a flow rate of 0.3 mL/min using a binary
mobile phase (0.1% formic acid with 10 mM ammonium formate in
water, and acetonitrile with 0.1% formic acid). Data were processed
using MultiQuant software, and metabolite quantification was
achieved against amino acid standards using external calibration
(R* > 0.99).

2.3.2.1 QC strategy

Pooled QC samples were prepared by mixing equal aliquots
from all samples. The QC samples were periodically injected to
monitor instrument stability. The relative standard deviation (RSD)
of detected metabolites in QC samples was <30%, and a principal
component analysis (PCA) confirmed tight clustering, thereby
validating workflow reliability.

2.3.2.2 Compound identification and quantification

Metabolites identified by
times and mass spectra with 42 authentic amino acid and
derivative standards. Calibration curves were established
at five concentrations (0.02, 0.05, 0.2, 0.5, and 1ug/mL)
with R* > 0.99. A total of 28 amino acids and derivatives

were comparing retention

were quantified. Significantly altered metabolites and related
pathways were further analyzed to support an investigation into
obesity-related mechanisms.

2.4 Statistical methods

The data relating to gut microbiota analysis were analyzed using
SPSS 26.0. For categorical variables, the chi-square test was applied.
Normality was assessed with the Shapiro-Wilk test. Normally
distributed data were expressed as means £+ SD and compared
using independent-samples t-tests; non-normally distributed data
were analyzed using the Mann-Whitney U-test. Alpha diversity
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indices (Sobs, Chaol, ACE, Simpson, Shannon, Pielou, PD-
tree) were calculated. Beta diversity and species abundance were
visualized using R software, with Welch’s t-test for taxonomic
comparisons. p < 0.05 was considered statistically significant.
MS-DIAL software was employed for metabolomics data
processing, including peak alignment, retention time correction,
and peak area extraction. Metabolite identification was performed
based on accurate mass matching (mass tolerance <10 ppm)
and MS/MS spectral matching (mass tolerance <0.01 Da) against
multiple public databases, including MDB, MassBank, and GNPS,
as well as an in-house standard compound library (BP-DB). Ion
features missing in >50% of samples within a group were excluded
from subsequent analyses. Positive and negative ion datasets were
normalized by total peak area, integrated, and submitted to pattern
recognition using Python software. Data were preprocessed using
unit variance (UV) scaling before statistical analysis. To ensure
system stability, QC samples were evaluated using both base peak
chromatogram (BPC) comparison and PCA of all the samples.

2.5 ROC analysis of differential metabolites

Receiver Operating Characteristic (ROC) curve analysis
was used to evaluate the diagnostic potential of significantly
altered metabolites. Logistic regression was applied, with group
classification (obese vs. healthy) as the dependent variable and
the relative abundances of metabolites as independent variables.
Predicted probabilities from the model were used to plot ROC
curves and calculate the area under the curve (AUC). Five-fold
cross-validation was applied to ensure model stability. Metabolites
with an AUC of >0.7 with good reproducibility were identified
as potential biomarkers. All ROC analyses were conducted using
R software.

3 Results

3.1 Correlation between obesity and the
gut microbiota

Studies have shown that the composition of the gut microbiota
in individuals with obesity differs significantly from that in healthy
controls across various taxonomic levels (phylum, class, order,
family, genus, and species). At the phylum level (Figure 1A), the
relative abundance of Proteobacteria (AUC = 0.709, 95% CI: 0.569-
0.848; p = 0.006) was higher in the obesity group than in the normal
control group, suggesting that this phylum was dominant within
the gut microbiota of the former group. In contrast, the relative
abundance of Firmicutes (p = 0.245), Bacteroidetes (p = 0.148),
and Actinobacteria (p = 0.512) was decreased in the obesity group,
although the differences were not statistically significant (all p <
0.05). Notably, these phyla are also considered core components
of the gut microbial community. At the class level (Figure 1B), the
relative abundance of Gammaproteobacteria (AUC = 0.712, 95%
CI: 0.573-0.852; p = 0.009) and Erysipelotrichia (AUC = 0.614,
95% CI: 0.471-0.757; p = 0.02) was higher in the obesity group than
in the normal control group, whereas that of Verrucomicrobiae
(p = 0.863) and Coriobacteriia (p = 0.939) was lower, but again
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Differences in gut microbiota composition between patients with obesity (hz) and normal controls (zc). Relative abundance profiles of the gut
microbiota at various taxonomic levels. Significant differences in abundance were observed in phyla such as Proteobacteria, Firmicutes, and
Bacteroidetes. Differences were assessed using Welch's t-test for taxonomic comparisons; an adjusted p-value of <0.05 was considered significant.
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not significantly (all p < 0.05). These phyla are also considered
core components of the gut microbial community. At the order
level (Figure 1C), meanwhile, compared with normal controls, the
relative abundances of Enterobacteriales (AUC = 0.734, 95% CI:
0.597-0.871; p = 0.008) and Erysipelotrichia (AUC = 0.614, 95%
CI: 0.471-0.757; p = 0.029) were significantly increased in patients
with obesity, implying that they were predominant within the gut
microbiota of this population. At the family level (Figure 1D),
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the dominant families included Lachnospiraceae (p = 0.05),
Ruminococcaceae (p = 0.038), Enterobacteriaceae (p = 0.003),
Bifidobacteriaceae (p = 0.512), and Bacteroidaceae (p = 0.497).

Notably, the elevated abundance of Enterobacteriaceae (AUC =
0.614, 95% CI: 0.471-0.757) in the obesity group may contribute
to gut microbiota imbalance and, thus, obesity development. At
the genus level (Figure 1E), the five most abundant genera were
Escherichia-Shigella (p = 0.028), Faecalibacterium (p = 0.143),
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Bifidobacterium (p = 0.503), Bacteroides (p = 0.483), and Blautia
(p = 0.08). Among them, Escherichia-Shigella (AUC = 0.71, 95%
CIL: 0.565-0.855) was significantly less abundant in the obesity
group than in the control group, potentially leading to dysbiosis
and, ultimately, obesity. At the species level (Figure 1F), the top
five species in terms of abundance were Phascolarctobacterium
faecium (p = 0.333), Ruminococcus sp. Marseille-P328 (p = 0.226),
Bifidobacterium longum subsp. longum (p = 0.923), Parabacteroides
distasonis (p = 0.033), and Bacteroides fragilis (p = 0.016). Among
these, Bacteroides fragilis (AUC = 0.733, 95% CI: 0.593-0.873; p =
0.016) and Parabacteroides distasonis (AUC = 0.61, 95% CI: 0.466—
0.754; p = 0.033) were significantly enriched in the obesity group,
highlighting their potential as obesity-specific indicators. The other
three species showed a notable decline in abundance. Combined,
these results suggested that a link may exist between gut microbial
imbalance and obesity onset and progression.

3.1.1 Alpha diversity analysis

In studies on gut microbiota ecology, alpha diversity reflects the
richness, evenness, and overall diversity of microbial communities
within a sample. In this study, we assessed the differences between
the obesity and control groups using several indices, including
the Sobs, Chaol, ACE, Shannon, Simpson, PD-tree, and Pielou
indices. The results demonstrated that, across all indices, the
values observed in the obesity group were consistently lower
than those in the healthy control group. This indicated that
individuals with obesity exhibit reduced microbial diversity and
evenness in their gut microbiota. These findings suggested that a
strong correlation exists between gut microbial diversity and the
development of obesity.

As shown in Figures 2A-C, the Sobs, Chaol, and ACE indices of
the obesity group were significantly lower than those of the control
group (p < 0.05), indicating that microbial richness was markedly
reduced in patients with obesity compared with that in healthy
controls (Table 1). As shown in Figure 2G, the Pielou index in the
obesity group was significantly lower than that in the control group
(p < 0.05), implying that the evenness of the gut microbiota was
lower in the former population (Table 1). In addition, as shown
in Figures 2D, E, both the Shannon and Simpson indices were
lower in the obesity group, with the difference in the former (p <
0.05), but not the latter (p > 0.05), reaching statistical significance
(Table 1). Furthermore, the PD-tree index was significantly lower in
the obesity group than in the control group (p < 0.05) (Figure 2F),
indicating that phylogenetic diversity had undergone a notable
decline in patients with obesity (Table 1). Taken together, these
results demonstrated that the gut microbiota of patients with
obesity displays reduced richness, evenness, and overall diversity
relative to healthy controls, suggesting that microbial community
structure is disrupted in obesity.

3.1.2 Beta diversity analysis

To evaluate the overall structural differences of the gut
microbiota between patients with obesity and healthy controls, we
performed principal coordinate analysis (PCoA) based on Bray-
Curtis distances across six taxonomic levels (phylum, class, order,
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family, genus, and species) (Table 2). As shown in Figure 3A, at
the phylum level, a clear separation was observed between the
two groups. PCol (46.14%) effectively distinguished patients with
obesity from healthy controls, with the obesity group exhibiting
greater intra-group dispersion. A similar pattern was evident at the
class and order levels (PCol = 35.77% and 35.70%, respectively).
As illustrated in Figures 3B, C, the obesity group tended to cluster
along the positive axis of PCol with a wider interquartile range,
while the control group was mainly concentrated on the negative
axis. Notably, the contribution of PCo2 to group differentiation
increased from the class level onward, with the control group
showing consistently higher medians and broader distributions
along this axis (Figure 3B). Additionally, at the family and genus
levels, as the variance explained by PCol decreased (28.48% and
17.31%, respectively), the separation between the groups weakened
(Figures 3D, E). Nevertheless, the obesity group maintained a
persistent shift along the positive side of PCol and displayed
greater internal heterogeneity, whereas the control showed an
upward trend along PCo2 with a more dispersed distribution. At
the species level (PCol = 12.31%, PCo2 = 10.73%), the overlap
between the groups markedly increased, suggesting that at finer
taxonomic resolution, differences became less pronounced and
were mainly reflected in subtle changes in community positioning
and dispersion rather than distinct clustering (Figure 3F).

Collectively, these findings indicated that, compared with
healthy individuals, patients with obesity displayed significant
differences in gut microbial community structure, which were
most pronounced at higher taxonomic levels and primarily
captured by PCol. The obesity group consistently exhibited
greater heterogeneity and a rightward shift on PCol, while the
control group showed a systematic elevation on PCo2 starting
from the class level. These patterns suggested that obesity-
related alterations in the gut microbiota are more robust and
stable at higher taxonomic ranks, whereas at the species level,
differences are diminished, primarily reflecting variability in
community distribution.

Studies by Lehtonen H, Serkova N. J., and colleagues have
shown that the gut microbiota composition of individuals with
obesity differs significantly from that of healthy controls, with
imbalances spanning multiple taxonomic levels from phylum
to species (14, 15). We found that in patients with obesity,
the Sobs, Chaol, ACE, Simpson, Shannon, Pielou, and PD-
tree indexes were all markedly lower than those of healthy
individuals, indicating that richness, evenness, and overall diversity
of the gut microbiota were decreased in the former group.
Notably, Proteobacteria were significantly enriched in individuals
with obesity, while Firmicutes, Bacteroidetes, and Actinobacteria
showed a non-significant decreasing trend in abundance. At the
class and order levels, Gammaproteobacteria, Erysipelotrichia, and
Enterobacteriales showed significant enrichment in the obesity
group, potentially leading to intestinal homeostasis disruption. At
the family and genus levels, the abundance of Enterobacteriaceae
was markedly elevated in the obesity group, whereas that of
Escherichia-Shigella was significantly reduced. At the species level,
Bacteroides fragilis and Parabacteroides distasonis were more
abundant in individuals with obesity, indicating that they may serve
as obesity-related microbial indicators.
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FIGURE 2
Alpha diversity indices of the gut microbiota in the obesity (hz) and control groups (zc). Sobs, Chaol, ACE, Shannon, Pielou, and PD-tree index values
were significantly lower in the obesity group than in the control group (p < 0.05), whereas the Simpson index remained unchanged (p > 0.05). This
indicated that richness, evenness, and phylogenetic diversity were reduced in patients with obesity. (A) Sobs; (B) Chaol; (C) ACE; (D) Shannon;
(E) Simpson; (F) PD tree; (G) Pielou.

In summary, we found notable differences in the distribution,
richness, and evenness of the gut microbiota between individuals
with obesity and healthy controls. Significant variations were
observed in taxonomic groups such as Proteobacteria, Clostridiales,
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Lachnospiraceae, Enterobacteriaceae, and Escherichia-Shigella,
highlighting their potential to biomarkers for
obesity as well as targets for disease prevention, diagnosis,

serve as

and treatment.
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TABLE 1 Alpha-diversity in obese patients and healthy controls.

Sob 0.000016**
Chaol 0.0000029**
ACE 0.0000028"*
Pielou 0.0026*
Simpson 0.0108
Shannon 0.0006**
PD-tree 0.0001*

Statistical analysis of alpha-diversity differences between patients with obesity and healthy
controls. Welch’s t-test was applied for group comparisons, with p-values shown.
*p < 0.05 indicates significant differences, **p < 0.01 indicates highly significant differences.

TABLE 2 Beta-diversity across taxonomic levels in obese patients and
healthy controls.

Phylum 3.7293E—13**
Class 2.9752E—17**
Order 2.8466E—18"
Family 4.9629E—19**
Genus 6.3120E—14**
Species 4.2792E—16™

Statistical analysis of beta diversity differences between patients with obesity and healthy
controls across taxonomic levels (phylum to species) based on Bray-Curtis distances. Welch’s
t-test was applied for group comparisons, with p-values shown.

*p < 0.05 indicates significant differences, **p < 0.01 indicates highly significant differences.

3.2 Analysis of the correlation between
obesity and changes in the metabolome

Differences in the abundance of metabolites and their
corresponding main metabolic pathways between the obesity and
healthy control groups were analyzed using non-targeted LC-
MS. Metabolomics studies have identified key metabolic pathways
associated with obesity, including those associated with lipid,
amino acid, glucose, phospholipid, and gut microbial metabolism
(16-18). In this study, the metabolite categories showing the
greatest differences in abundance between the obesity and control
groups were amino acids and derivatives, fatty acyls, and carboxylic
acids and derivatives (Figures 4A, B, 5A, B).

Given that the non-targeted metabolomic analysis showed
that differential metabolites were predominantly enriched in
amino acid metabolism pathways, we next undertook a targeted
analysis of amino acid metabolites. Based on a priori thresholds
(VIP > 1.0, [log2FC| > 0.5, FDR < 0.05), amino acid-
related alterations predominated across both comparisons (Group
A or Group B vs. controls). In the comparison between
Group A and the controls, significant increases in abundance
were observed for aminoadipic acid (log2FC = 0.68), 3-
methylhistidine (=0.57), cystine (=0.55), carnosine (=0.54),
and hydroxyproline (=0.52), while ornithine contents were
decreased (=-0.59). In the Group B vs. controls comparison,
carnosine showed a marked increase in abundance (=1.16;
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highest VIP), whereas the abundances of citrulline (=-0.59),
ornithine (=-0.57), asparagine (=-0.57), and glycine (=-0.54) were
reduced. Together with concordant, albeit sub-threshold, shifts
in serine (downregulation), proline, alanine, tyrosine, arginine,
and glutamate (upregulation) levels, these findings indicated
that Group B patients experienced an attenuation of the urea
cycle/NO pathway and a reduction in one-carbon/glutathione
capacity (downregulation of ornithine, citrulline, glycine, and
serine), alongside intensified lysine catabolism/oxidative stress
and extracellular-matrix remodeling (upregulation of aminoadipic
acid and hydroxyproline). Furthermore, our data suggested that
muscle protein turnover was increased in Group A patients,
as reflected by increased 3-methylhistidine and creatinine levels,
while the histidine/carnosine buffering/antioxidant response was
accentuated in patients in Group B, as evidenced by the observed
upregulation of carnosine and cystine contents, with carnosine
showing higher discriminative weight. Collectively, increases in the
abundance of aminoadipic acid, hydroxyproline, and carnosine,
along with decreases in that of ornithine, citrulline, glycine, and
serine, define a coherent amino acid signature distinguishing
obesity in this cohort (Figures 6A1-B2).

3.2.1 ROC analysis

ROC analysis of the differentially abundant metabolites
identified substances dibutyl phthalate, phthalic
anhydride, eucalyptol, vitamin K1, tripropylphosphate,
glycine, 2-chloroacetamide, phosphatidylinositol PI(16:0/18:2),
PI(18:0/20:4), lysine, and 2-chloroacetamide
as obesity-specific markers, capable of distinguishing between

such as

acetylcarnitine,

patients with obesity and healthy controls (Figure 7).

3.2.2 Heatmap analysis

Based on the quantitative profiling of 48 amino acids, heatmaps
were generated for the two comparison groups (Group A or
B vs. controls), providing sample-level confirmation of robust
differences between patients with obesity and healthy controls.
After Z-score standardization and unsupervised hierarchical
clustering, patient samples were separated from control samples
along the column dendrogram. As shown in Figure 8A, the
abundance of carnosine, 3-methylhistidine, and creatinine
was generally higher in Group A than in the control group,
whereas that of ornithine, citrulline, glycine, and serine was
lower. Histidine and L-homoserine contents also tended to
decrease in Group A patients. Meanwhile, aminoadipic acid
and hydroxyproline were enriched in a subset of patients. The
same primary pattern was observed for the Group B vs. controls
comparison, but with a more uniform increase in the abundance
of carnosine; glycine, serine, citrulline, and ornithine levels were
largely reduced in Group B patients; phenylalanine, tyrosine,
and tryptophan displayed modest enrichment in a minority
of patients; and asparagine and glutamine contents tended to
be lower (Figure 8B). These heatmap patterns agreed with the
targeted metabolomics results and indicated that both the urea
cycle/NO and one-carbon/glutathione axes were downregulated
in obesity (indicated by lower levels of ornithine, citrulline,
serine),

glycine, and whereas lysine degradation/oxidative
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[log2FC| > 0.5, and FDR < 0.05.

Metabolite categories displaying differential abundance between the obesity and control groups. (A) The relative abundance of differential metabolite
categories between patients in Group A (characterized by liver gi stagnation and spleen deficiency) and healthy controls. (B) The relative abundance
of differential metabolite categories between patients in Group B (characterized by blood stasis and phlegm retention) and healthy controls. The
color blocks on the right indicate metabolite categories. Differential metabolites were identified using multivariate analysis with the criteria VIP > 1.0,
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stress and extracellular-matrix remodeling were enhanced
(evidenced by higher aminoadipic acid, hydroxyproline, and
carnosine abundance). Overall, the increases in the contents of
carnosine, 3-methylhistidine, creatinine, aminoadipic acid, and
hydroxyproline, coupled with decreases in those of ornithine,
citrulline, glycine, and serine, define a coherent amino acid
signature that not only provides evidence of lipid-metabolic
imbalance and dysregulated inflammatory control in obesity, but
also identifies potential biomarkers and therapeutic targets for

this condition.

3.2.3 KEGG analysis

Differential metabolites (VIP > 1.0, |logzFC| > 0.5, FDR
< 0.05) were subjected to KEGG enrichment analysis and
then mapped to the amino acid biosynthesis pathway (KEGG
map01230), which represented the most enriched pathway
in this study (Figure9). This pathway links glycolysis/TCA
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intermediates (3-phosphoglycerate, pyruvate, oxaloacetate, 2-
oxoglutarate) to branches for aromatic amino acids (tryptophan,
tyrosine, phenylalanine), branched-chain amino acids (BCAAs)
(valine, leucine, isoleucine), and the glutamate/glutamine-
ornithine/arginine-proline axis. In Group A (obesity), the
abundance of tryptophan, tyrosine, isoleucine, and glutamine
was elevated, whereas that of phenylalanine, valine, leucine,
and ornithine was reduced within the pathway. This
pattern was suggestive of an imbalanced carbon flow at the
shikimate/chorismate node (reflected in Trp/Tyr upregulation
with Phe downregulation), persistent suppression of the BCAA
module (downregulation of Val/Leu), and a potential bottleneck
at the urea cycle interface (downregulation of ornithine), with
compensatory nitrogen buffering (glutamine upregulation). In
Group B (obesity), the contents of tyrosine, phenylalanine, and
glutamate were increased, whereas those of tryptophan, valine,
and leucine were decreased, indicating that the Tyr/Phe arm
was activated with concurrent Trp constraint and recurrent

BCAA attenuation.
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BCAA biosynthetic/turnover signals were consistently
downregulated in both obesity groups (A and B), whereas
aromatic branches diverged. Together, these pathway-level
changes corroborated the targeted quantitation results and
indicate that amino acid metabolism undergoes reprogramming
in obesity, involving redistribution at the aromatic branch

point and remodeling of the

glutamate-ornithine axis.
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These
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findings provide mechanistic insights for
microbiota-directed  interventions
targeting BCAA and aromatic amino acid metabolism in
obesity subtypes.

Metabolomics studies have shown that the serum levels
of key amino acids and small-molecule metabolites, including

carnosine, 3-methylhistidine, creatinine, ornithine, histidine,

guiding
or
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FIGURE 6
Targeted amino acid metabolomic profiling by LC—MS in patients with obesity and healthy controls. (A) Group A vs. controls. (A1) Bar plot of amino
acids ranked by log2FC in Group A; the x-axis shows log2FC, with positive values indicating higher levels, and negative values indicating lower levels.
(A2) Bubble plot of the same features; the x-axis shows log2FC, bubble size reflects VIP, and color denotes up- or downregulation. (B) Group B vs.
controls. (B1) Bar plot of amino acids ranked by log2FC for Group B. (B2) Bubble plot as in (A2) for Group B. Differential metabolites were defined
using VIP > 1.0, |log2FC| > 0.5, and FDR < 0.05 as the criteria.

citrulline, cystine, glycine, and serine, are significantly altered in
individuals with obesity (19). Elevated creatinine abundance may
reflect obesity-related changes in muscle metabolism or a potential
burden on renal function. The identification of creatinine, a
product of muscle metabolism, as an obesity-specific marker
suggests that kidney impairment may be an early indicator in
the development of obesity, highlighting the importance of
prompt and regular renal function monitoring in patients with
this condition. The accumulation of adipose tissue in obesity
may induce localized inflammatory responses, making carnosine
a potential obesity-specific indicator. 3-Methylhistidine has
notable blood lipid-lowering effects, thereby influencing lipid
metabolism, and also participates in the regulation of thyroid
function. Ornithine helps reduce cholesterol levels and serves
as an antagonistic factor during obesity progression, alongside
participating in primary bile acid metabolism and detoxification.
Its elevated expression in obese individuals may be related to
diet or its induction through fat accumulation. Histidine is an
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essential amino acid with a dual role in modulating inflammation
and promoting vasodilation. It has strong regulatory effects on
obesity, which provide valuable insights into the prevention
of cardiovascular diseases and obesity-related complications.
Citrulline regulates physiological functions and helps manage
blood glucose and lipid levels. Cystine neutralizes toxins and
promotes cellular oxidation, thereby influencing metabolic
processes involved in obesity.

4 Discussion

The human gut harbors a vast microbial ecosystem, collectively
known as the gut microbiota. Over 99% of the human gut
microbiota consists of the phyla Firmicutes, Actinobacteria,
Bacteroidetes, and Proteobacteria (20). In this study, we found
that the abundance of Bacteroidetes was decreased, while that of
Firmicutes was increased in patients with obesity. As noted by
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Receiver operating characteristic (ROC) curves of the differential metabolites capable of distinguishing patients with obesity from healthy controls.
(A1) Acetoacetaldehyde; (A2) PI(16:0/18:2); (A3) PI(18:0/20:4); (A4) 2-Chloroacetamide; (A5) Phthalic anhydride; (A6) Vitamin K1; (A7) Eudesmin;
(A8) Tri(butoxyethyl)phosphate; (A9) Dibutyl phthalate; (A10) 3-Aminoisobutyraldehyde; (B1) Acetylcarnitine; (B2) 2-Ethylpropanedioylcarnitine;
(B3) PI(18:0/20:4); (B4) Tri(butoxyethyl)phosphate; (B5) Fructosyl-lysine.
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FIGURE 8

Heatmaps of targeted amino acid metabolomic profiles. (A) Group A vs. controls. Comparison of the targeted amino acid (and derivatives)
metabolomic profiles between obesity cohort A (GY, n = 20) and healthy controls (N, n = 20). Rows are metabolites; columns are individual study
participants. Values were row-standardized (Z-scores). Color scale: red denotes higher relative abundance, blue signifies lower relative abundance.
The left dendrogram shows unsupervised hierarchical clustering; the side strip shows the chemical class (green: amino acid; pink: amino acid and
derivatives). (B) Group B vs. controls. Comparison of the targeted amino acid (and derivatives) metabolomic profiles between obesity cohort B (XT, n
= 20) and healthy controls (N, n = 20). Display conventions are identical to (A).
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Patrice et al. (21), short-chain fatty acids(SCFAs) play a crucial role
in gut microbiota metabolism. Gut dysbiosis leads to an increase
in short-chain fatty acid production. Reduced Bacteroidetes
abundance is associated with decreased production of acetate and
propionate, which reduces the ability of the host to break down
dietary fiber. Meanwhile, elevated Firmicutes abundance enhances
butyrate production, which accelerates fat breakdown and energy
absorption. Pinart et al. (22) showed that under similar conditions,
germ-free mice that received gut microbiota from wild-type mice
displayed a 60% increase in body fat. Furthermore, when gut
microbiota from obese human adults was transplanted into germ-
free mice, the mice also experienced an increase in body weight.
DeGroot et al. (23) found that obese populations exhibit a higher
abundance of bacteria that are efficient at energy capture, such as
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Lactobacillus, Escherichia coli, and Bacteroides. Furthermore, the
abundance of Bifidobacterium, which can exert positive effects on
gut function, was reported to be lower in obese than in non-
obese individuals. Furthermore, the Firmicutes/Bacteroidetes ratio
in obese populations is higher than that in normal controls, leading
to metabolic disorders related to fat deposition in the host.

In this study, metabolomic analysis of patients with obesity
showed that several differential metabolites were linked to aromatic
amino acids and branched-chain amino acids (BCAAs), supporting
an interaction between the gut microbiota and host amino-
acid metabolism. The findings indicate that the microbiota
exerts a substantial influence on circulating BCAA levels (valine,
leucine, isoleucine); shifts in community structure—particularly
the reduced abundance of Bacteroides observed in obesity—may
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FIGURE 9

Mapping of the differential metabolites to the KEGG amino acid biosynthetic pathway (map01230). We selected the pathway with the largest number
of enriched entries. This pathway diagram illustrates the modular architecture of the biosynthesis routes for 20 amino acids. Colored nodes denote
metabolites identified as differentially abundant. In the between-group comparison, tryptophan,tyrosine, and glutamine show upward trends within
the pathway, whereas valine, leucine and ornithine show downward trends. Differential abundance was defined using VIP > 1.0, |log>FC| > 0.5, and
FDR < 0.05 as criteria. KEGG enrichment analysis identified amino acid biosynthesis as the most enriched pathway.

Saccharopine

underlie the elevated serum concentrations of aromatic amino
acids and BCAAs. Moreover, glutamate, an amino acid that clearly
distinguished obese patients from healthy controls, was positively
correlated with the genus Ruminococcus and negatively correlated
with glutamine. This further suggests that the abundance of specific
taxa is associated with circulating amino-acid levels and may
directly participate in amino-acid metabolism. Serum glutamate
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also showed a negative correlation with Bacteroides, implying that
depletion of Bacteroides in obesity may contribute to increased
glutamate levels. Taken together, these results indicate that amino-
acid metabolism by specific gut microbes may modulate circulating
amino acids linked to obesity and its metabolic complications.

Liu et al. (24) analyzed the correlation between gut microbiota
composition and metabolite profiles in obese patients and found

frontiersin.org


https://doi.org/10.3389/fnut.2025.1648469
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Qi and Wang

that tyrosine, phenylalanine, and glutamate abundance was
closely related to changes in the microbiome in obesity. The
authors further showed that changes in the gut microbiota,
particularly a reduction in Bacteroides species in obese
individuals, were associated with elevated concentrations of
aromatic amino acids (tyrosine, phenylalanine, tryptophan)
and BCAAs (leucine, isoleucine, valine) in the circulation.
This shows that gut microbiota synergistically contribute to
the development of obesity through their influence on host
metabolic processes.

Combined analysis revealed that specific bacterial genera,
such as Bacteroides, in the obese population were significantly
correlated with amino acid metabolite contents, suggesting
that the microbiota may directly or indirectly regulate host
amino acid metabolic pathways (25). Compared with lean
individuals, the gut microbiota in individuals with obesity
showed significant enrichment of pathways related to amino
acid metabolism, such as the biosynthesis of phenylalanine,
tyrosine, and tryptophan, as well as glutamine and glutamate
transport systems. Conversely, there was a reduction in the
abundance of microbial genes associated with the degradation
of valine, leucine, and isoleucine. This indicates that the gut
microbiota in obese individuals has an elevated potential for
synthesizing aromatic amino acids and BCAAs. These data
suggest that the gut microbiota in the obese population not only
enhances carbohydrate utilization but also potentially promotes
the synthesis of pro-inflammatory factors and aromatic and
BCAAs. This microbiota-metabolite network provides a theoretical
basis for the development of metabolism-targeted therapeutic
strategies, such as probiotics and dietary interventions, aimed at
microbiota modulation.

Our data further showed that Enterobacteriales were markedly
enriched in obese individuals, likely due to chronic inflammation,
whereas the abundance of Clostridiales, considered a beneficial
bacterial group, was reduced in obesity. 3-Methylhistidine,
a specific biomarker of muscle protein breakdown, is also
involved in inflammation and thyroid function regulation.
Given the rising recognition of depression as a major driver
of obesity, 3-methylhistidine may additionally serve as an
emotion-related indicator. The increase in its abundance in
obesity could promote a compensatory decrease in that of
Firmicutes and Clostridiales. Carnosine exhibits antioxidant, anti-
glycation, and anti-inflammatory properties. Chronic low-grade
inflammation is a central feature of obesity, especially at the
intestinal level. The elevated levels of carnosine observed in
obesity likely reflect such inflammatory responses. Furthermore,
the abundance of Selenomonadales was significantly increased
in obese individuals, potentially contributing to altered gut
permeability (“leaky gut”) through their metabolic products,
further promoting low-grade chronic inflammation. Moreover,
histidine concentrations were found to be significantly decreased
in individuals with obesity compared to those in normal-
weight controls. Reduced histidine levels have been associated
with enhanced inflammation and disrupted nitrogen metabolism.
Bifidobacteriales may influence histidine levels, thereby affecting
gut barrier function and perpetuating chronic inflammation,
ultimately contributing to the development of obesity (26,
27).
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4.1 Clinical implications and potential
directions for intervention

Our results suggested that the gut microbiota and metabolomic
profiles may serve as early diagnostic markers and therapeutic
targets for obesity-related diseases (27). Body weight can
be regulated by modulating gut microbiota composition and
serumamino acid levels, potentially preventing the development
of metabolic diseases (28). Similarly, dietary adjustments that
modulate microbiota composition may also lead to weight loss.
Future research could explore interventions for obesity through
precision nutrition, fecal microbiota transplantation (FMT), or

synthetic microbiota approaches to modulate the microbiome.

5 Limitations and future prospects

This study has several limitations. First, the relatively modest
sample size (n = 60) may limit the generalizability of our findings.
Second, although strict inclusion criteria were applied—such as
the exclusion of recent antibiotic or probiotic users—we did
not systematically record participants’ dietary intake, physical
activity levels, or other detailed lifestyle habits. Moreover, potential
confounding factors such as sex, diet, and medication use, which
are known to influence gut microbiota and metabolic profiles, were
not fully controlled or examined through subgroup analyses. These
uncontrolled variables may have contributed to inter-individual
variability and influenced the observed microbial and metabolomic
patterns. Additionally, the use of 16S rRNA sequencing limits
taxonomic resolution at the species level and lacks the capacity
for robust functional prediction. Future research should employ
metagenomic sequencing and multi-omics approaches, alongside
larger, well-stratified cohorts and intervention trials to validate
our findings, control for lifestyle-related confounders, and explore
underlying causal relationships.

6 Conclusions

From phylum to species, obese individuals exhibited marked
dysbiosis, characterized by enrichment of Proteobacteria and
related clades (e.g., Gammaproteobacteria, Enterobacteriales, and
Enterobacteriaceae) and shifts in the composition of some
putatively beneficial taxonomic groups, such as Escherichia-
Shigella lineages and several species. These taxonomic groups may
serve as biomarkers of obesity and potential therapeutic targets.
Untargeted metabolomics analysis indicated that differential
metabolites were concentrated in amino acids, fatty acids, and
carboxylic acids. Targeted amino acid profiling further confirmed
that the contents of carnosine, creatinine, ornithine, citrulline,
glycine, cystine, and serine underwent significant alterations in
obesity, implicating amino acid metabolic imbalance in this
condition. Integration of microbiome and metabolome data
indicated that obesity-related disturbances primarily involve
dysregulated lipid metabolism and heightened inflammatory
responses, with shifts in amino acid metabolism potentially
contributing to obesity via the modulation of inflammation and
energy metabolism.
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