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provided the original author(s) and the Background: Lactic acid bacteria (LAB) play a central role in the food industry due
copyright owner(s) are credited and that the to their ability to produce beneficial metabolites and enhance the technological
original publication in this journal is cited, in . . .

accordance with accepted academic and sensory qualities of fermented products. Additionally, they contribute to
practice. No use, distribution or reproduction human health by supporting immune function and maintaining gut microbiota
is permitted which does not comply with balance through probiotic effects. This study aimed to isolate and characterize

these terms. LAB from dromedary camel milk (DCM) collected in semi-arid regions of Algeria,

evaluating their technological functionalities and antimicrobial activities.
Methods: A total of 31 LAB strains were isolated from raw DCM samples. Strains
were identified using MALDI-TOF MS and characterized for acidification kinetics,
lipolytic, proteolytic, and amylolytic activities, exopolysaccharide (EPS) and acetoin
production, and antimicrobial properties against common foodborne pathogens.
Results: Four species were identified, with Enterococcus italicus reported for the
first time in this environment. Significant inter-strain variability (p < 0.0001) was
observed in all tested properties. Three strains (BLC9, BLC12, BLC14) acidified milk
rapidly to pH 4.6 within 12 h. Proteolytic activity was detected in 87.10% of strains,
while EPS and acetoin were produced by 29.03 and 48.39%, respectively. Lipolytic
and amylolytic activities were generally weak. Notably, 74.19% of the strains
exhibited antimicrobial activity, inhibiting at least one pathogen, with inhibition
zones varying significantly (p < 0.0001).

Conclusion: Dromedary camel milk from Algerian semi-arid regions represents
a rich source of LAB strains with promising technological and antimicrobial
potential. These native isolates could be further developed for use in additive-free
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fermented foods and natural biopreservation systems, supporting sustainable
and functional food innovation.
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lactic acid bacteria (LAB), dromedary camel milk, technological properties,
antimicrobial activity, MALDI-TOF MS, microbial diversity

1 Introduction

The production of a wide range of fermented foods relies on the
use of starter cultures—microbial consortia introduced into raw
substrates to initiate and direct fermentation. Among these, lactic
acid bacteria (LAB) play a pivotal role. Historically, being used for
millennia in food preservation, LAB enhance shelf life and
microbiological safety primarily through acidification and
competitive exclusion of spoilage organisms and pathogens (1, 2).

Beyond their preservative functions, LAB are now widely
recognized for their functional and technological potential. Through
their diverse metabolic activities, LAB synthesize an array of bioactive
metabolites that influence the texture, flavor, and nutritional quality
of fermented foods, while also contributing to host health (3, 4).
Their status as Generally Recognized As Safe (GRAS) and Qualified
Presumption of Safety (QPS) further supports their broad acceptance
and utilization across the food industry (5).

LAB possess a rich enzymatic repertoire, including proteases,
peptidases, ureases, lipases, amylases, esterases, and phenol oxidases,
enabling the hydrolysis of complex substrates such as polysaccharides,
proteins, and lipids. They are also capable of metabolizing dietary
fibers and aromatic precursors, producing diverse secondary
metabolites such as short-chain fatty acids, biogenic amines,
bacteriocins, vitamins, exopolysaccharides (EPS), organic acids, and
carbon dioxide. These attributes make LAB highly relevant to both
food quality improvement and biological safety enhancement (6-8).

The exploration of LAB from non-conventional, underexplored
habitats represents a promising frontier in microbial biotechnology,
with potential applications in the development of novel functional
foods and natural biopreservatives (9).

The dromedary camel (Camelus dromedarius), well-adapted to
arid and semi-arid climates, produces milk notable for its rich
composition in proteins, vitamins, minerals, and bioactive
molecules with reported health benefits (10, 11). Camel milk has
also gained attention as a potential source of unique microbial
strains with functional and technological relevance (12).

In Algeria, dromedary camel milk (DCM) is traditionally
consumed raw or fermented by nomadic populations. Its unique
biochemical profile, including high levels of lysozyme,
lactoperoxidase, lactoferrin, and LAB-produced bacteriocins,
suggests a high antimicrobial potential (13). Despite this, the LAB
microbiota of DCM remains relatively underexplored.

In this study, 31 strains of LAB were isolated from raw dromedary
milk from semi-arid regions of Algeria and identified by both phenotypic
methods and MALDI-TOF MS mass spectrometry. These strains were
then evaluated for their technological and antimicrobial potential against
seven pathogens. The objective was to identify promising candidate
strains for future applications in food biotechnology and biopreservation.
This atypical dairy matrix, rich in bioactive compounds, provides a

favorable ecological niche for selecting strains of interest.

2 Materials and methods
2.1 Origin and collection of milk samples

To begin the sample collection process, 10 (n = 10) milk samples
were taken from dromedary camels (Camelus dromedarius). These
animals were sourced from farms located in a semi-arid environment,
specifically Khattouti Sed El Djir, Ain El Hadjel, Maarif, Chellal, and
Ouled Madhi, within the M’Sila province of central Algeria. The camels
were selected based on their health status and lactation period on each
farm (Figure 1; Table 1). This region lies at the confluence of the Tell Atlas
and Hodna Basin and represents a typical semi-arid ecosystem. Sampling
was conducted over a three-year period, from May 2019 to May 2022. To
ensure sample representativeness, pooled milk samples were obtained
from multiple camels within each herd. Milking was carried out
manually using traditional practices. For each sampling event,
approximately 1 liter of raw milk was aseptically collected into sterile
glass bottles. Samples were immediately stored in insulated containers
with ice packs and transported to the laboratory under chilled conditions
for further microbiological and physicochemical analyses (14).

FIGURE 1

Collection of dromedary camel milk (DCM) samples from semi-arid regions of Algeria.
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TABLE 1 Characteristics of dromedary camel milk (DCM) samples collected in the semi-arid regions of Algeria.

Samples Regions Number of camels Approximate age Date Season
S.01 Khattouti Sed El Djir 8 4 to 6 years 19/05/2019 Summer
S.02 Maarif 6 6 to 10 years 15/07/2019 Summer
S.03 Maarif 6 6 to 10 years 28/07/2019 Summer
S.04 Ain El Hadjel 10 5to 9 years 06/08/2019 Summer
S.05 Chellal 4 4 to 12 years 26/03/2020 Spring
S.06 Chellal 6 4 to 12 years 04/04/2020 Spring
S.07 Khattouti Sed El Djir 7 5 to 8 years 15/01/2021 Winter
S.08 Ouled Madhi 8 41to 6 years 26/02/2021 Winter
S.09 Ain El Hadjel 12 7 to 12 years 14/03/2022 Spring
S.10 Ouled Madhi 5 5 to 8 years 22/05/2022 Summer

2.2 Isolation, purification, and preservation
of LAB isolates

LAB were isolated from dromedary camel milk (DCM) by spread-
plating serial dilutions (10 to 1077) onto M17 agar (Conda, Madrid,
Spain) and de Man, Rogosa and Sharpe (MRS) agar (Merck Millipore,
Germany). Plates were incubated at 30 °C for 48-72 h under aerobic
conditions. Colonies exhibiting typical LAB morphology were selected,
sub-cultured for purification, and preserved for long-term storage. Pure
isolates were suspended in a cryoprotective mixture composed of
culture broth and glycerol, and stored at —80 °C in sterile Eppendorf
tubes to maintain viability (15).

2.3 Phenotypic, physiological, and
biochemical characterization

LAB isolates were initially screened based on phenotypic traits,
including microscopic morphology and catalase activity, following
standard protocols (16, 17). Only isolates that were Gram-positive,
catalase-negative, and non-motile were retained as presumptive LAB
candidates. Genus-level differentiation was subsequently conducted by
evaluating glucose fermentation patterns, growth in 6.5% NaCl,
tolerance to alkaline pH (9.6), and the ability to grow at different
temperatures (10 °C, 15 °C, and 45 °C). Additional biochemical
characterization was performed using the arginine dihydrolase test
(18=20).

2.4 Bacterial species identification by
MALDI-TOF MS

The identification of the LAB strains isolated from camel milk was
performed by MALDI-TOF mass spectrometry, following the protocol
described by Seng et al. (21).

2.4.1 Matrix preparation

A saturated solution of @-cyano-4-hydroxycinnamic acid (HCCA)
was prepared by mixing 250 pL of 10% trifluoroacetic acid (TFA),
250 pL of HPLC-grade water, and 500 pL of HPLC-grade acetonitrile
in a 1.5 mL microcentrifuge tube under a chemical fume hood. The
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mixture was vortexed vigorously, sonicated for 10 min, and
centrifuged at 13,000 x g for 5 min. The resulting supernatant was
transferred to a fresh 1.5mL tube and used as the working
matrix solution.

2.4.2 Sample deposition on the MALDI-TOF MS
target

Fresh bacterial colonies were picked using sterile pipette tips and
applied in a thin, homogeneous layer onto designated spots of a
stainless-steel MALDI target plate (Bruker Daltonics). Each isolate
was spotted in triplicate. In parallel, matrix-only spots (negative
controls) and reference strains (positive controls) were included.
Subsequently, 1.5 pL of the prepared matrix solution was added to
each spot and allowed to dry at room temperature to ensure complete
co-crystallization of matrix and sample.

2.4.3 Spectral acquisition and species
identification

Once dried, the MALDI target was introduced into the Microflex
LTII MALDI-TOF MS spectrometer (Bruker Daltonics, Bremen,
Germany). Spectra were acquired using the manufacturer’s standard
settings. Identification was performed using the Bruker Biotyper
software by matching the protein mass spectra to the
reference database.

Identification scores were interpreted according to Bruker’s
standard criteria:

o Score > 2.0: Secure identification at the species level
o Score 1.7-1.99: Probable identification at the genus level
o Score < 1.7: Unreliable identification

Only strains with score values > 2.0 were considered correctly
identified at the species level.

2.5 Evaluation of the technological
properties of LAB strains

2.5.1 Acidification activity

LAB isolates were cultivated in MRS or M17 broth (according to
their original isolation medium) and incubated at 30°C for 18-24 h.
Prior to testing, cultures were standardized to an optical density (OD)
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of approximately 1.00 at 600 nm using a spectrophotometer (Helios
Epsilon, Thermo Fisher Scientific, United States).

Each standardized culture (1% v/v) was inoculated into 200 mL
of ultra-high temperature (UHT) skimmed milk. The inoculated
samples were incubated at 30°C, and acidification kinetics were
assessed by monitoring pH at 0, 2, 4, 6, 8, 24, and 48 h using a
calibrated pH meter (SevenCompact S220, Mettler Toledo,
Switzerland), as described by Domingos-Lopes et al. (22).

The acidification rate was calculated as:

ApH = pHipitial — PHmeasured
Where:

o pHipa: Initial pH of the UHT milk
o PHieasurea: pH recorded after the incubation period

2.5.2 Lipolytic activity

Lipolytic activity was assessed using triglyceride agar
supplemented with 1% Tween 20. Sterile Whatman paper discs were
placed on the surface of the solidified medium and each disc was
inoculated with 10 pL of a log-phase LAB culture. Plates were
incubated at 30°C for 24-48 h. Lipolytic activity was evidenced by the
formation of a clear halo surrounding the disc, indicating enzymatic

hydrolysis of triglycerides (23, 24).

2.5.3 Proteolytic activity

Proteolytic activity was evaluated qualitatively using an agar
diffusion assay. Sterile Whatman paper discs were placed on the
surface of plate count agar (PCA; Scharlau, Barcelona, Spain)
supplemented with 1% (w/v) UHT skimmed milk powder. Each disc
was inoculated with 10 puL of a log-phase LAB culture. Plates were
incubated at 30 °C for 3 to 5 days. Proteolytic activity was indicated
by the appearance of clear zones around the discs, corresponding to
casein hydrolysis. The diameter of the lysis zones was measured in
millimeters to assess the extent of proteolytic activity (22, 25).

2.5.4 Exopolysaccharide production

Exopolysaccharide (EPS) production was initially screened by
streaking log-phase LAB cultures on MSE agar supplemented with
10% (w/v) sucrose. After incubation at 30°C for 48 to 72 h, colonies
were examined visually. The presence of large, viscous, and slimy
colonies indicated potential EPS producers. To confirm EPS synthesis,
strains were further cultured in MRS or M17 broth supplemented with
sucrose and incubated at 30 °C for 24 h. The cultures were then
centrifuged at 5,000 rpm for 10 min at 4 °C. One milliliter of the
supernatant was transferred into a clean tube, and an equal volume of
95% ethanol was added. The formation of an opaque ring at the
interface confirmed EPS production (26).

2.5.5 Amylase production potential

The amylolytic activity of LAB isolates was assessed using a starch
hydrolysis assay based on the disk diffusion method. Sterile Whatman
paper discs were inoculated with 10 uL of log-phase cultures and
placed onto starch agar plates. After 24 h of incubation at 30°C, plates
were flooded with Lugol’s iodine solution and allowed to react for
15-30 min to form a starch-iodine complex. The presence of a clear
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halo around the inoculated discs indicated starch hydrolysis and thus
positive amylolytic activity (27, 28).

2.5.6 Acetoin production capacity

Acetoin production, indicative of flavoring potential, was
evaluated using the Voges—Proskauer (VP) test. LAB strains were
cultured in Clark and Lubs medium and incubated at 30°C for 24 h.
Following incubation, 2 mL of the culture was transferred to a sterile
tube, and 0.5 mL of 16% sodium hydroxide (VP1) and 0.5 mL of 6%
a-naphthol (VP2) in absolute ethanol were added sequentially. The
tubes were gently agitated and left at room temperature for 5-10 min.
A positive acetoin reaction was indicated by the formation of a pink
ring at the surface of the medium (23, 29).

2.6 Antimicrobial activity assay

The antimicrobial activity of LAB isolates was determined using
the Kirby-Bauer disk diffusion method. Target pathogenic strains
included Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC
25922), Salmonella enteritidis (ATCC 13076), Bacillus cereus (ATCC
10876), Listeria monocytogenes (ATCC 13932), Pseudomonas
aeruginosa (ATCC 27853), and Enterobacter cloacae (ATCC 13047).
Mueller-Hinton agar plates were inoculated with each pathogen at 0.5
McFarland standard turbidity. Sterile filter paper discs (6 mm
diameter) were impregnated with 10 puL of LAB culture and placed on
the agar surface. After drying at room temperature, plates were
pre-incubated at 4°C for 4 h to enhance metabolite diffusion, followed
by incubation at 30 °C for 24 h. Antimicrobial activity was evaluated
by measuring the diameter (mm) of the inhibition zones surrounding
each disc (30).

2.7 Statistical analysis

Descriptive statistics were initially applied to summarize the
data and characterize the phenotypic and functional traits of the
LAB isolates. To assess significant differences between mean values
of technological and antimicrobial parameters, one-way analysis of
variance (ANOVA) was conducted, followed by Tukey’s post hoc
test for multiple comparisons. Additionally, hierarchical cluster
analysis (HCA) using Ward’s method was employed to classify the
isolates based on their technological and antibacterial profiles,
identifying groups with shared characteristics. All statistical
analyses were performed using JMP Trial 17 software (SAS Institute
Inc., Cary, NC, United States). Results are presented as mean +
standard deviation (SD), and statistical significance was set at
p <0.05.

3 Results

3.1 Isolation and preliminary
characterization

A total of 79 presumptive LAB isolates were recovered from DCM
samples. Based on preliminary screening (Figure 2), 31 isolates
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FIGURE 2

Microscopic observation of Gram-stained LAB isolates (100 x magnification). (a) BLC7, (b) BLC13, (c) BLC16.
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exhibiting typical coccoid morphology were selected for further
characterization as potential LAB candidates.

3.2 Phenotypic characterization

The selected LAB isolates were assigned to four genera based

on phenotypic and biochemical criteria, including cell
morphology, glucose fermentation, temperature-dependent
growth, pH and salt tolerance, and arginine dihydrolase activity
(Table 2).

Of the 31 isolates:

« 27 strains were identified as belonging to the Lactococcus genus.
These strains were tetrad-negative, capable of growth at 10 °C but
not at 45 °C, did not produce CO,, and were intolerant to alkaline
conditions (pH 9.6).

o 2 strains were assigned to the Enterococcus genus, characterized
by growth at 45 °C, tolerance to 6.5% NaCl and pH 9.6, and
absence of tetrads.

o The single Leuconostoc isolate produced CO, but tested negative
for arginine dihydrolase activity.

One isolate, identified as Lactobacillus, demonstrated growth at
15 °C without CO, production (Figure 3).

These findings reflect a diverse representation of LAB genera with
distinctive phenotypic traits adapted to the semi-arid camel
milk microbiota.

3.3 MALDI-TOF MS identification of LAB
isolates

All 31 LAB strains isolated from DCM were successfully identified
to the species level using MALDI-TOF MS, based on their peptide mass
fingerprint profiles. Identification was performed through spectral
comparison against the Bruker reference database, with all log score
values exceeding the established reliability threshold of 2.0, thus
indicating high-confidence species-level matches (21). The identification
scores ranged from 2.12 (Enterococcus italicus, strain BLC26) to 2.46
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(Lactococcus lactis, strain BLC5) (Table 3). The most prevalent species
was Lactococcus lactis, which accounted for 87.1% of the isolates (27/31),
in strong agreement with prior phenotypic characterization. In addition
to this dominant species, two strains (BLC2 and BLC26) were assigned
to Enterococcus italicus, a species rarely reported in dromedary-derived
matrices. One isolate was identified as Leuconostoc mesenteroides
(BLC15), and another as Lactobacillus lactis (BLC28), underscoring the
microbial diversity present in DCM from semi-arid Algerian regions.
These results validate the use of MALDI-TOF MS as a rapid and
accurate tool for LAB identification in complex matrices such as camel
milk, as previously demonstrated in dairy microbial ecology studies
(31, 32).

3.4 Acidification activity

The acidification profiles of the 31 LAB strains revealed marked
heterogeneity in acidification kinetics (Figure 4; p < 0.0001). All isolates
were able to lower milk pH during the first 6 h of fermentation at 30°C,
although none reached a pH below 5.0 within this initial phase.

After 24 h, acidification intensified across all strains, with ApH
values ranging from 1.42 (BLC2) to 2.47 (BLCI10 and BLC13). The
majority of strains reduced the milk pH to values between 4.0 and 5.0,
indicating effective acid production. At 48 h, ApH ranged from 1.57
(BLC29) to 3.20 (BLC13), confirming sustained acidification potential.
Notably, strains BLC9, BLC12, and BLC14 exhibited rapid acidification,
reducing the pH to 4.6 in less than 12 h. Most other isolates were
classified as moderate acidifiers, reaching this threshold between 12 and
48 h. Conversely, strains BLC2, BLC16, BLC22, and BLC29 demonstrated
slower kinetics, requiring more than 48 h to reach pH 4.6, consistent
with previously described acidification profiles for less active LAB
strains (33).

3.5 Lipolytic activity
Lipolytic activity was detected in 64.5% (20 out of 31) of the LAB
isolates when cultured on Tween-20-supplemented agar. The presence of

clear halos around inoculated disks confirmed enzymatic hydrolysis of
triglycerides, with statistically significant differences observed in the
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TABLE 2 Phenotypic characteristics of LAB strains isolated from DCM.

Strain  Morphology Gram Catalase Motility Tetrads Growth at Growth at = Growth at CO, production 6.5% NaCl pH 9.6 Arginine (ADH)

UONRLIINN Ul SI913U0.4

90

610 uISI13UO0L

10 °C 15°C 45 °C
BLC1 Coccus + - + ND - ND - ND
BLC2 Coccus + - ND ND + + + ND
BLC3 Coccus + - + ND - ND - ND
BLC4 Coccus + - + ND - ND - ND
BLC5 Coccus + - + ND - ND - ND
BLC6 Coccus + - + ND - ND - ND
BLC7 Coccus + - + ND - ND - ND
BLC8 Coccus + - + ND - ND - ND
BLC9Y Coccus + - + ND - ND - ND
BLC10 Coccus + - + ND - ND - ND
BLCI11 Coccus + - + ND - ND - ND
BLCI12 Coccus + - + ND - ND - ND
BLC13 Coccus + - + ND - ND - ND
BLC14 Coccus + - + ND - ND - ND
BLC15 Coccus + ND ND ND ND ND ND -
BLCl16 Coccus + - + ND - ND - ND
BLC17 Coccus + - + ND - ND - ND
BLC18 Coccus + - + ND - ND - ND
BLC19 Coccus + - + ND - ND - ND
BLC20 Coccus + - + ND - ND - ND
BLC21 Coccus + - + ND - ND - ND
BLC22 Coccus + - + ND - ND - ND
BLC23 Coccus + - + ND - ND - ND
BLC24 Coccus + - + ND - ND - ND
BLC25 Coccus + - + ND - ND - ND
BLC26 Coccus + - ND ND + + + ND
BLC27 Coccus + - + ND - ND - ND
BLC28 Rod + ND ND + ND ND ND ND
BLC29 Coccus + - + ND - ND - ND
BLC30 Coccus + - + ND - ND - ND
BLC31 Coccus + - + ND - ND - ND

+, positive result; —, negative result; ND, not determined.
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m Lactococcus lactis
= Enterococcus italicus
= Leuconostoc mesenteroide

= Lactobacillus lactis

FIGURE 3
Species distribution of 31 LAB strains isolated from raw DCM
samples.

TABLE 3 Species identification results obtained by MALDI-TOF MS for the
31 LAB strains isolated from DCM collected in the semi-arid regions of
Algeria.

Isolate Identification result Score
BLC1 Lactococcus lactis 2.37
BLC2 Enterococcus italicus 2.32
BLC3 Lactococcus lactis 2.44
BLC4 Lactococcus lactis 2.38
BLC5 Lactococcus lactis 2.46
BLC6 Lactococcus lactis 2.32
BLC7 Lactococcus lactis 2.35
BLC8 Lactococcus lactis 2.44
BLC9 Lactococcus lactis 232
BLC10 Lactococcus lactis 2.37
BLC11 Lactococcus lactis 2.39
BLCI12 Lactococcus lactis 2.27
BLC13 Lactococcus lactis 2.29
BLC14 Lactococcus lactis 2.32
BLC15 Leuconostoc mesenteroides 2.24
BLC16 Lactococcus lactis 2.30
BLC17 Lactococcus lactis 233
BLC18 Lactococcus lactis 2.42
BLC19 Lactococcus lactis 2.38
BLC20 Lactococcus lactis 2.37
BLC21 Lactococcus lactis 2.29
BLC22 Lactococcus lactis 2.29
BLC23 Lactococcus lactis 223
BLC24 Lactococcus lactis 241
BLC25 Lactococcus lactis 2.34
BLC26 Enterococcus italicus 2.12
BLC27 Lactococcus lactis 2.23
BLC28 Lactobacillus lactis 2.32
BLC29 Lactococcus lactis 227
BLC30 Lactococcus lactis 237
BLC31 Lactococcus lactis 2.29

A log score value >2.0 indicates reliable identification at the species level.
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diameters of lysis zones (p < 0.0001; Figure 5). The most pronounced
lipolytic activity was recorded for strain BLC25, which produced the
largest halo (1.45 + 0.07 cm). In contrast, 34.5% of the isolates, mainly
identified as Lactococcus lactis, showed no detectable lipolytic activity
under the tested conditions.

3.6 Proteolytic activity

Proteolytic activity varied significantly among the LAB isolates, with
a high degree of inter-strain variability (p < 0.0001; Figure 6). A total of
87.1% of the strains exhibited measurable proteolytic activity, as indicated
by the formation of clear hydrolysis zones on skimmed milk-enriched
agar. Only four strains, BLC4, BLC5, BLC16, and BLC23, did not exhibit
any proteolytic activity under the conditions tested, highlighting notable
functional diversity within the LAB collection.

3.7 Exopolysaccharide production

Exopolysaccharide (EPS) production was observed in 29.0% of the
LAB isolates when cultured on MSE agar supplemented with sucrose
(Table 4). Among these, 22.6% demonstrated low EPS production, while
only one strain (BLCI5) exhibited moderate production levels. The
majority of isolates (70.9%) did not produce detectable amounts of EPS
under the tested conditions. These findings highlight limited but variable
EPS biosynthesis potential within the LAB collection, which may
influence the textural and rheological properties of fermented
dairy matrices.

3.8 Amylolytic activity

Amylolytic activity was detected in only 9.7% of the
isolates (BLC23, BLC29, and BLC30), all identified as Lactococcus lactis
(Table 4). These strains exhibited weak activity, with halo diameters of
1.20 £ 0.14 cm, 0.85+0.07 cm, and 1.35 + 0.64 cm, respectively. The
remaining 90.3% of the LAB isolates showed no detectable starch-
degrading activity under the tested conditions, suggesting limited
amylolytic potential within this collection.

3.9 Acetoin production

Acetoin production was detected in 48.4% of the LAB isolates based
on the Voges-Proskauer test (Table 4). The remaining 51.6% of strains
tested negative for this metabolic trait. A highly significant inter-strain
variability was observed in acetoin production capacity (p < 0.0001),
indicating functional diversity within the collection. This property is of
particular interest for its contribution to flavor development in fermented
dairy products.

3.10 Antimicrobial activity

The antimicrobial potential of the LAB isolates displayed substantial
heterogeneity, with statistically significant differences in inhibitory
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Acidification activity of LAB strains in UHT skimmed milk at 30°C.
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Lipolytic activity of LAB strains on Tween-20 agar. Bacterial strains designated with the same letter do not exhibit statistically significant differences

(p > 0.05).

activity among strains (p < 0.0001). Over 67% of the isolates effectively o Salmonella enteritidis (25.8%), with inhibition zones between
inhibited Staphylococcus aureus, producing inhibition zones ranging 7.0 £ 0 mm and 9.5 + 0.7 mm;
from 8.0 + 1.4 mm to 22.0 £ 2.8 mm ( ) o Listeria monocytogenes (25.8%), with diameters ranging from
Notable inhibitory effects were also recorded against: 8.5+ 0.7 mm to 11.0 + 5.7 mm;
o Pseudomonas aeruginosa (41.9%), with zones from 7.0 + 0 mm
o Enterobacter cloacae (51.6% of strains), with inhibition zones of to 10.5 + 0.7 mm;
7.0 + 0 mm to 9.5 + 0.7 mm; o Bacillus cereus (6.5%), with zones between 8.5 + 0.7 mm and
o Escherichia coli (29.0%), with zones ranging from 7.5 + 0.7 mm 9.0 + 1.4 mm.

to 14.5 + 2.1 mm;
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These findings support the antimicrobial potential of several LAB
strains isolated from DCM, with implications for biopreservation and
functional food applications.

3.11 Visual summary of technological and
antimicrobial traits

The key technological and antimicrobial activities observed in the
LAB isolates are visually summarized in shows
acidification activity in milk culture tubes, while illustrates
amylase activity evidenced by clear halo formation around inoculated
discs on starch agar. Acetoin production is demonstrated in
by the appearance of a pink ring in the Voges-Proskauer test.

,e display exopolysaccharide (EPS) production, with visible

slimy colonies and precipitate formation following ethanol addition.
shows a representative inhibition halo indicating
antimicrobial activity, and demonstrates proteolytic activity
through casein hydrolysis on milk agar. provides qualitative
confirmation of the diverse functional profiles detected across the

LAB isolates.

3.12 Cluster analysis of technological and
antimicrobial properties

Hierarchical cluster analysis (HCA) using Ward’s method was
performed to classify the 31 LAB isolates based on their
-c). The
) illustrates the variability across strains in key

technological and antimicrobial properties (
heatmap (
parameters including lipolytic, proteolytic, and amylolytic activity,
acidification over time, EPS and acetoin production. The HCA
dendrogram revealed four distinct clusters with different functional
profiles. The constellation tree ( ) confirmed these

groupings, with Cluster 1 comprising the largest number of isolates
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that shared similar acidification and enzymatic traits. Cluster 3
included strains with minimal or no antimicrobial activity, such as
BLC4, BLC15, BLC17, BLC21, BLC23, BLC26, BLC30, and BLC31,
while Clusters 2 and 4 contained isolates with stronger inhibitory
profiles. This grouping was further visualized in the line graph

(

cluster differed across the measured variables. These results

), which showed how the average performance of each

highlight the functional heterogeneity within the LAB population
and suggest the presence of specific subgroups with enhanced
biotechnological or biopreservative potential.

3.13 Cluster analysis of antibacterial activity

To further explore the functional diversity among LAB strains,
hierarchical cluster analysis (HCA) was performed based on their
antimicrobial activity profiles against seven foodborne pathogens
(
grouped strains with low to moderate antimicrobial activity,
including BLC1, BLC3, BLC5-12, and BLC22. Cluster 2 contained
strains with selective inhibition capacity (BLC2, BLCI3, BLCI14,
BLCI6, BLCI8, BLC19, BLC20, BLC27, BLC28, BLC29). Cluster 3
included strains with minimal or no activity (BLC4, BLC15, BLC17,
BLC21, BLC23, BLC26, BLC30, BLC31). Cluster 4, although small,
included strains with strong and broad-spectrum antimicrobial
activity (BLC24 and BLC25). The constellation plot ( )
visualizes the distribution and relative distance of these clusters
)

highlights variability in pathogen-specific inhibition across clusters.

—c). Four major clusters were identified: Cluster 1

based on inhibition spectra, while the line graph (

Cluster 4 stood out with consistently high inhibition values against
most pathogens, particularly Staphylococcus aureus and Listeria
in food

monocytogenes, application

biopreservation. These findings confirm that specific LAB strains

suggesting potential

from Algerian DCM exhibit promising and differentiated
antimicrobial potential.
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TABLE 4 Technological activities of LAB strains isolated from DCM in semi-arid regions of Algeria.

Strain

EPS production?

BLC1 —

Amylase production? (cm)

Acetoin production®

BLC2 —

BLC3 +

BLC4 —

BLC5 -

BLC6 -

BLC7 -

BLC8 +

BLC9 -

BLC10 -

BLC11 -

BLCI12 +

BLC13 -

BLC14 -

BLC15 ++

BLCl16 -

BLC17 -

BLC18 -

BLC19 -

BLC20 -

BLC21 +

BLC22 +

- +

BLC23 -

1.20 + 0.14%® +

BLC24 -

- +

BLC25 -

BLC26 -

BLC27 -

BLC28 -

- +

BLC29 +

0.85 +0.07° +

BLC30 +

1.35 +0.64% +

BLC31 +++

'EPS production: (+) Low, (++) Moderate, (+++) High, (—) No activity. ’Amylase production: clear zone diameter (cm); (—) Negative test; (Mean + SD). *Acetoin production: (+) Positive test,

(=) Negative test. Values with different superscript letters differ significantly (p < 0.05).

4 Discussion

LAB are indispensable biotechnological tools in the global food
industry. Their broad application in the fermentation of dairy, bakery,
meat, and beverage products is supported by their GRAS (Generally
Recognized as Safe) and QPS (Qualified Presumption of Safety) status,
confirming their safety for human consumption (34). In this study,
Lactococcus lactis dominated the LAB community (87.10%) in DCM,
followed by Enterococcus italicus (6.45%), Leuconostoc mesenteroides
(3.23%), and Lactobacillus lactis (3.23%). These findings align with
previous investigations in Algeria, Morocco, Kuwait, and India (11,
35-37), confirming the prevalent LAB genera in camelid milk.
Notably, this is the first report of Enterococcus italicus isolated from
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Algerian DCM, suggesting an original finding. Identification of the 31
LAB strains by MALDI-TOF mass spectrometry revealed a strong
correlation with the results of phenotypic characterization. This
technique has emerged as a rapid, accurate, and cost-effective method
for bacterial identification, and its potential to replace classical
phenotypic approaches in various microbiological applications is
increasingly recognized (31, 38). In support of this, Dogan and
Ozpinar (39) successfully identified 144 probiotic LAB strains from
130 food samples, including boza, cheese, kefir, and raw milk, in
Turkey. Similarly, Gantzias et al. (40) reported a 95.5% identification
rate of 88 non-starter LAB isolates from 18 artisanal Greek cheese
samples, covering key species such as Lactococcus lactis, Leuconostoc
mesenteroides, Lactobacillus brevis, L. plantarum, L. rhamnosus,
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TABLE 5 Antimicrobial activities of LAB strains isolated from DCM in semi-arid regions of Algeria (Mean + SD).

Antibacterial activity*

Indicator strains

10.3389/fnut.2025.1647344

Strain Staphylococcus Escheri_chia Salmo'n'el_la Bacillus Listeria Pseudomonas Enterobacter
aureus coli enteritidis cereus  monocytogenes aeruginosa cloacae
BLCl1 13.0 + 1.4%¢ - - - - 8.0 + 1.4 7.0 £ 0
BLC2 12.0 + 1.4 - 8.5+0.7% - 1157 8.0+ 0% 8.5+0.7%
BLC3 11.0 + 1.4 - - - - 7.5 +0.7" 9.5+0.7°
BLC4 - - - - - - -
BLC5 9.5+ 0.7 - - - - 7.0 £ 0° -
BLC6 15.0 + 1.4% - 7.0 +0° - - 8.0 + 1.4 7.5+ 0.7
BLC7 12.0 + 1.4 - - - - - 7.5+0.7%
BLC8 125+ 0.7%¢ - - - - 8.5 + 0.7 8.0 + 0
BLC9 - - - - - - 9.5+0.7°
BLC10 8.0+1.4¢ - - - - - 9.0 £ 0%
BLCI11 12.0 +2.8% - - - - 9.5+ 0.7 -
BLCI2 8.5+ 0.7 - - - - 9.0 % 0%¢ 9.5+0.7°
BLC13 12.0 + 1.4 7.5+0.7° - - - - -
BLC14 11.0 + 1.4 8.0 +1.4° 8.0 + 0™ - - - 8.0 + 1.4
BLC15 - - - - - - -
BLC16 - 8.5+0.7° 8.5+ 0.7 - - 8.0 + 1.4 -
BLC17 - - - - - - -
BLC18 13.5 £0.7 7.5+0.7° - - 9.0+ 1.4° - -
BLC19 15.0 + 1.4% - 7.0 +0° - 9.0 + 1.4 - -
BLC20 125+ 0.7%¢ 8.0+ 0° 9.0 + 1.4 - 9.5+0.7* 10.5+ 0.7 7.0 £ 0°
BLC21 - - - - - - -
BLC22 13.5+2.1%¢ - - - 8.5+0.7° 8.0 + 0™ 8.5+ 0.7
BLC23 - - - - - - -
BLC24 15.5 + 4.9 9.0 +0° - 8.5+0.7° 9.0+ 1.4° 9.5+ 0.7 8.5+ 0.7
BLC25 125+ 2.1%4 9.0 +1.4° - 9.0 + 1.4 8.5+2.1° 7.5+ 0.7 8.0 + 1.4
BLC26 - - - - - -
BLC27 22.0+2.8 - 8.5+ 0.7 - - - -
BLC28 13.5+0.7¢ 14.5 +2.1° - - 10.5+0.7° - 7.0 0
BLC29 18.5+2.1% 7.5+0.7° 9.5+ 0.7 - - - 9.0 +1.4%®
BLC30 - - - - - - -
BLC31 - - - - - - -

'Diameter of the inhibition zone (mm); (-) No inhibition; Values with different superscript letters differ significantly (p < 0.05).

L. paracasei, Enterococcus faecium, and Pediococcus pentosaceus.
Among the tested strains, three Lactococcus lactis isolates exhibited
strong acidifying capabilities in vitro, while four strains, including
Lactococcus lactis and Enterococcus italicus, showed a slower
acidification kinetic. The remaining isolates were classified as
moderate acidifiers. Rapidly acidifying strains are particularly well-
suited as primary starters in dairy fermentation, whereas slow
acidifiers may be better employed as adjunct cultures depending on
their broader technological profiles (41). Our findings contrast with
those of Saidi et al. (42), who reported low acidifying potential in LAB
isolated from Algerian DCM, but are consistent with the observations
of Fguiri et al. (43), who described marked variability in this trait.
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Such differences may be attributed to strain-specific metabolic
pathways involved in the catabolism of carbon and nitrogen
sources (25).

Technological properties, particularly proteolytic and lipolytic
enzymatic activities, play a fundamental role in shaping the
organoleptic qualities of fermented foods, influencing aspects such as
ripening, texture, and flavor development. In the present study, the
lipolytic activity of the LAB strains was generally low, with inhibition
halos measuring less than 1.5 cm (44). This modest lipolytic potential
is desirable in cheese production, as it ensures a controlled release of
free fatty acids, which are essential for flavor development without
leading to rancidity (45). Similar low levels of lipolytic activity in LAB
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FIGURE 7

Representative results of the technological and antimicrobial activities of LAB strains. (a) Acidification activity, (b) Amylase production, (c) Acetoin
production, (d,e) EPS production, (f) Antimicrobial activity, (g) Proteolytic activity.

|

were reported by Davis et al. (46) in isolates from ewe’s milk cheeses,
reinforcing the consistency of these findings. In addition, strains with
reduced lipolytic activity can still effectively contribute to the sensory
complexity of fermented dairy and meat products over extended
ripening periods (44, 47). Regarding proteolytic activity, Vuillemard
et al. (48) proposed that lysis zones between 1.5 and 2.1 cm serve as
reliable indicators. Although most of our strains did not strictly fall
within this range, substantial proteolytic activity was observed,
notably in strain BLC3, which produced a halo measuring
4.10 £ 0.57 cm (25). Our findings are in line with previous work on
LAB isolated from Algerian DCM, which highlighted strong
proteolytic potential in strains such as Lactococcus lactis, Enterococcus
faecium, Lactobacillus plantarum, and Lactobacillus rhamnosus (49).
These results also corroborate other investigations across various LAB
species (22, 50). The proteolytic system of LAB, including a suite of
intracellular peptidases, plays a pivotal role in breaking down milk
proteins into peptides and free amino acids that not only enhance taste
but also serve as key precursors for aromatic compounds. Upon cell
lysis, these enzymes are released into the matrix, further enriching the
sensory profile of the final product (51).

Regarding EPS production, one strain, Leuconostoc mesenteroides
(BLC15), exhibited moderate EPS synthesis, while Lactococcus lactis
(BLC31) stood out for its high EPS yield, evidenced by large, slimy,
and viscous colonies. These findings are in line with the results of
Benhouna et al. (26), who demonstrated that LAB strains from
traditional Algerian dairy products can hydrolyze sucrose and
synthesize EPS. Similarly, Patel and Prajapati (52) identified
Streptococcus, Lactobacillus, Lactococcus, Leuconostoc, and Pediococcus
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as the major EPS-producing genera among LAB. Notably, Weissella
and Leuconostoc were reported to generate the highest dextran yields.
Enhancing EPS productivity requires a deeper understanding of LAB
biosynthetic metabolism and genetic regulation (53, 54).

Amylolytic LAB, capable of hydrolyzing starch into fermentable
sugars and producing lactic acid, are essential in the fermentation of
cereal-based products, where they influence both texture and flavor
(55). In our study, only three strains demonstrated measurable
amylolytic activity. This observation aligns with existing reports
suggesting that LAB from camel milk exhibit limited starch-degrading
capacity. Research in this area remains scarce, although Rao et al. (56)
recently reported that only 5 out of 76 LAB strains isolated from sheep
milk showed detectable amylolytic activity, as indicated by halo
formation around the colonies.

A substantial proportion, nearly half, of the tested LAB isolates
demonstrated acetoin-producing fermentative pathways, highlighting
their potential for technological applications in aroma development.
This finding contrasts with an earlier study, which reported that only
2 out of 8 LAB strains isolated from DCM in southwestern Algeria
were capable of producing diacetyl and acetoin (35). By comparison,
Domingos-Lopes et al. (22) found high acetoin-producing activity
among LAB strains isolated from traditional raw cow’s milk cheeses
from Pico Island in the Azores, with notable frequencies in
Leuconostoc (60%), Lactococcus (33%), Lactobacillus (82%), and
Enterococcus (92%). Acetoin, a secondary metabolite resulting from
the oxidative decarboxylation of «-acetolactate, contributes
significantly to the aroma profile of fermented foods. It frequently
coexists with diacetyl, a key compound responsible for buttery notes
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Cluster analysis of the technological activities of 31 LAB strains isolated from raw DCM samples: (a) Hierarchical clustering (Ward's method), (b)
Constellation plot, (c) Cluster profile overview. Cluster 1: BLCL, 6, 7, 8, 11, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28, 31; Cluster 2: BLC4, 5, 23; Cluster 3: BLC2,

in beer, wine, dairy products, and bread. Among LAB, Enterococcus
and Lactobacillus are particularly important contributors to acetoin
production (22, 57).

Analysis of the inhibition spectra revealed notable antimicrobial
activity in the majority of LAB strains tested (74.19%). Staphylococcus
aureus was particularly susceptible, with strain BLC27 exhibiting the
strongest inhibitory effect, characterized by a zone of inhibition
measuring 22.0 + 2.8 mm. In contrast, eight out of the 31 isolates
showed no detectable antimicrobial activity, while Bacillus cereus
exhibited partial resistance to the bioactive compounds produced.
The application of non-pathogenic microorganisms such as LAB for
food biopreservation has gained increasing attention, given their
ability to suppress undesirable microbes and extend product shelf life.
Their production of antimicrobial and antioxidant metabolites not
only enhances microbial safety but also contributes to the nutritional
and sensory quality of foods, with promising applications in the
cosmetic and pharmaceutical sectors as well (58, 59). Eddine et al.
(60) demonstrated the broad-spectrum antimicrobial potential of
LAB isolated from DCM in the arid regions of southern Algeria, with
some strains showing strong inhibition against Pseudomonas
aeruginosa (22 +1.00 mm) and others active against E. coli and
S. aureus. A recent study on LAB isolated from camel milk in
Faisalabad, Pakistan, revealed variable inhibitory activities among the
strains. The Lactobacillus casei-04 strain demonstrated an inhibition
zone of 15.33 + 0.58 mm against Escherichia coli AZ1. On the other
hand, the Lactobacillus casei-05 strain exhibited a maximum
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inhibition zone of 16.33 + 1.15 mm against Staphylococcus aureus
Saba-1 (61). These findings are consistent with other studies reporting
similar antimicrobial capacities in LAB isolates (59, 62, 63),
underscoring their value as natural biopreservatives. Finally,
hierarchical cluster analysis (HCA) was used to explore functional
relationships among the 31 LAB isolates, resulting in two distinct
classification schemes: one based on technological parameters
(Figure 8) and the other on antimicrobial activity (Figure 9). In the
technological cluster analysis, four main groups emerged, with
Cluster 1 encompassing the largest number of strains that shared
moderate acidification, proteolytic activity, and low amylolytic or EPS
production. Cluster 3, in contrast, contained strains with minimal or
absent technological traits, reflecting limited suitability for
fermentation applications. When clustering was based on
antibacterial activity, a different pattern emerged. Cluster 4, although
small, was notable for comprising strains (BLC24 and BLC25) with
broad-spectrum and high-level inhibitory activity against foodborne
pathogens, including Staphylococcus aureus, Listeria monocytogenes,
and Escherichia coli. Conversely, Cluster 3 of the antimicrobial profile
included strains with no measurable activity against the tested
pathogens, limiting their relevance in food safety contexts. Together,
these complementary clustering approaches underscore the
functional heterogeneity of LAB populations from Algerian DCM
and help identify promising candidates for targeted industrial use,
whether for starter culture development, functional food
enhancement, or natural biopreservation strategies.
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5 Conclusion

This study revealed substantial inter-strain variability in the
technological and functional attributes of LAB isolated from
DCM. Several strains demonstrated promising acidifying and
proteolytic capacities, along with the ability to produce
exopolysaccharides (EPS) and acetoin, traits that are desirable for
fermented food applications. In contrast, lipolytic and amylolytic
activities were generally low across the collection. Importantly, a
majority of the isolates exhibited significant antimicrobial activity,
underscoring their potential as natural biopreservatives in food
systems. These findings position DCM from the semi-arid regions of
Algeria as an untapped ecological niche rich in functionally diverse
LAB strains with both technological and bioconservative potential.
This work provides an original scientific contribution to the
characterization of LAB from a unique ecosystem and lays the
foundation for future applied research. Ongoing investigations aim to
validate the efficacy of selected strains in real food matrices,
particularly in response to the growing demand for clean-label
products free from synthetic additives.
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