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Background: Global consumption of artificial sweeteners (ASs) has risen 
substantially in recent years. However, their relationship with prostate cancer 
(PCa) remains poorly characterized. This study investigates the AS–PCa 
association to identify pivotal genes potentially bridging this relationship.
Method: This study retrieved target genes associated with ASs and PCa from 
multiple public databases. Protein–protein interaction (PPI) network analysis 
and visualization were conducted on overlapping genes, followed by the 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses to explore the underlying mechanisms. Subsequently, the 
optimal predictive model was selected from 101 machine-learning algorithm 
combinations and validated against 2 external datasets. Molecular docking 
analysis was then performed to examine the interactions between key genes 
and AS compounds. Finally, in vitro cellular assays were conducted to validate 
the specific effects of ASs on PCa.
Results: We analyzed seven common ASs—aspartame, acesulfame-K, sucralose, 
NHDC, sodium cyclamate, neotame, and saccharin—identifying 261 overlapping 
targets associated with PCa. The GO and KEGG enrichment analyses revealed 
that these targets primarily regulate cell proliferation, inflammation, and cancer 
cell metabolism. Machine learning algorithm screening identified the Lasso-
SuperPC hybrid model as demonstrating optimal predictive performance, with 
robust validation in two independent external datasets. Subsequent analysis 
identified two key regulatory genes: CD38 and MMP11. Molecular docking 
analysis further confirmed potential interactions between AS compounds 
and the core target MMP11. Finally, in  vitro cellular assays demonstrated 
that NHDC suppresses MMP11 expression in PCa cells and exhibits anti-PCa 
pharmacological effects.
Conclusion: By integrating bioinformatics, machine learning, molecular 
docking, and in  vitro cellular assays, this study demonstrates that ASs inhibit 
PCa progression through multiple molecular targets and signaling pathways. 
Collectively, these findings provide important insights into the safety assessment 
of food additives and cancer risk assessment.
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Background

Artificial sweeteners (ASs) are low- or zero-calorie sugar 
substitutes extensively used in the food, beverage, and pharmaceutical 
industries, with globally rising consumption (1, 2). Despite their 
low-calorie properties (200–13,000 times sweeter than sucrose), which 
makes them suitable for diabetics and individuals on sugar-restricted 
diets (2–4), the long-term safety of AS consumption remains 
inconclusive. The Joint FAO/WHO Expert Committee on Food 
Additives (JECFA), the authoritative evaluative body, establishes 
acceptable daily intakes (ADIs) through comprehensive assessments 
including acute toxicity and carcinogenicity studies. JECFA maintains 
that ADI-compliant usage poses no health risks (4). Furthermore, as 
most ASs are synthesized from natural precursors, they exhibit 
pharmacological properties including antipyretic, analgesic, anti-
inflammatory, and immunomodulatory effects (5–7). However, 
despite three decades of dietary use, significant research interest 
persists regarding their toxicological profiles, particularly their 
carcinogenic potential. Several studies suggest potential cancer risks 
associated with AS intake (4, 8–10). Yet, inconsistent epidemiological 
evidence in humans leaves the carcinogenic significance of 
AS controversial.

Prostate cancer (PCa) represents the most prevalent malignancy 
and the second-leading cause of cancer-related mortality among men 
worldwide (11, 12). With approximately 1.4 million new cases and 
396,000 deaths projected for 2024, PCa poses a major health threat 
and substantial healthcare burden (11, 12). Established PCa risk 
factors include age, ethnicity, and family history, as highlighted in 
prior research. Nevertheless, the influence of environmental 
determinants, lifestyle factors, and dietary components on PCa 
pathogenesis remains incompletely understood (13, 14). Although 
numerous studies have examined AS consumption–PCa risk 
associations, conclusive evidence remains elusive (4, 9, 15). 
Paradoxically, some ASs demonstrate antitumor properties potentially 
beneficial for PCa management, partly attributable to their antipyretic, 
analgesic, anti-inflammatory, and immunomodulatory activities (5–7, 
16). However, direct experimental validation is currently lacking. 
Consequently, the precise AS–PCa relationship remains undetermined.

Recent advances in bioinformatics provide powerful tools for 
elucidating complex environment–disease pathogenesis interactions 
(17, 18). Through multi-omics data integration and network-based 
analyses, these approaches have become key strategies for identifying 
molecular targets and pathways in disease mechanisms. Furthermore, 
machine learning algorithms show considerable potential for disease 
prediction and high-precision biomarker discovery. Therefore, this 
study uses an integrated approach combining multimodal 
bioinformatics, machine learning algorithms, and in vitro cellular 
assays to comprehensively investigate AS–PCa associations and 
elucidate underlying molecular mechanisms.

Methods and materials

Data sources

This study integrated transcriptomic profiles and matched 
clinical data from 1,098 PCa cases, including: (1) the TCGA-PRAD 
cohort (retrieved via UCSC Xena) and (2) three independent GEO 

cohorts (GSE21032, GSE70770, GSE116918). To enhance statistical 
power, we merged GSE21032 and GSE70770 into a combined GEO 
cohort, applying the ComBat algorithm (R sva package) to correct 
for technical batch effects. Patients lacking a biochemical 
recurrence (BCR) status or with <1-month follow-up were 
excluded to ensure data reliability. Comprehensive patient 
characteristics for all analytical cohorts are detailed in 
Supplementary Tables S1, S2.

Identification of AS target genes

According to previous literature reports (4), seven ASs 
commonly used in China, the US, the EU, and other regions were 
selected: aspartame, acesulfame-K, sucralose, neohesperidin 
dihydrochalcone (NHDC), sodium cyclamate, neotame, and 
saccharin. These ASs served as search queries across three 
databases: Comparative Toxicogenomics Database (CTD), 
STITCH, and Super-PRED. Canonical SMILES strings and SDF 
structural formats for all ASs were retrieved from PubChem. Target 
prediction was performed using SwissTargetPrediction and 
Similarity Ensemble Approach (SEA) databases with SMILES data. 
Target prediction was performed using SwissTargetPrediction and 
Similarity Ensemble Approach (SEA) databases with SMILES data. 
SDF files were converted to mol2 format using Chem3D software, 
followed by target identification via PharmMapper  and 
GalaxySagittarius platforms. Analyses focused on Homo sapiens 
targets meeting these thresholds: SwissTargetPrediction 
(probability >0.01), Super-PRED (probability ≥50%), and 
PharmMapper (Norm-Fit ≥0.7). Targets from all databases were 
integrated to establish unique target profiles for each AS. Targets 
from all seven ASs were aggregated into a unified target set for 
downstream analysis.

Identification of prostate cancer targets

Transcriptomic data from TCGA included 534 PCa samples (483 
tumors and 51 normal controls) (Supplementary Table S2). 
Differential expression analysis was performed using the DESeq2 R 
package with thresholds: |log2 fold change| > 0.65 and adjusted 
p-value <0.05. Significantly dysregulated genes were considered 
potential PCa therapeutic targets.

AS–PCa target identification and PPI 
network construction

Overlapping targets between ASs and PCa were identified using 
Venn analysis. Protein–protein interactions (PPIs) among 
overlapping targets were analyzed using the STRING database 
(confidence score ≥0.4 thresholds), which integrates known and 
predicted protein associations, including physical interactions and 
functional linkages. Following PPI retrieval, non-essential targets 
were filtered to construct a target–protein interaction network. The 
interaction network (TSV format) was imported into Cytoscape 
3.9.0 for visualization. Cytoscape’s Network Analyzer calculated 
topological properties (degree, closeness centrality, and betweenness 
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centrality) to assess node importance. The “Analyze Network” 
module generated comprehensive topological datasets. Genes were 
ranked by degree scores, where higher values indicate greater 
network importance.

Functional enrichment analysis

Gene Ontology (GO)1 categorizes gene functions into the cellular 
component (CC), molecular function (MF), and biological process 
(BP) domains. Kyoto Encyclopedia of Genes and Genomes (KEGG)2 
systematically links genomic information with high-level functional 
pathways. GO and KEGG enrichment analyses were performed using 
the R package clusterProfiler.

Developing AS–PCa prediction model 
using machine learning

To develop a high-accuracy diagnostic model: (1) TCGA-PCa 
cohort served as a training set; GSE and GSE116918 datasets as 
external validation sets; (2) Ten machine learning algorithms were 
implemented: random survival forest (RSF), elastic net (Enet), Lasso 
regression, ridge regression, stepwise Cox regression, CoxBoost, Cox 
partial least squares regression (plsRcox), SuperPC, generalized 
boosted regression models (GBMs), and survival support vector 
machine (survival-SVM); and (3) All 101 possible algorithm 
combinations were applied to AS–PCa genes. Models were ranked by 
mean C-index, with the highest-scoring model selected as 
optimal (19).

Prediction model evaluation

Patients in TCGA-PRAD, GSE, and GSE116918 cohorts were 
stratified into low−/high-risk groups based on median risk scores. 
Survival differences were compared using Kaplan–Meier (K–M) 
curves. Predictive performance was validated across three independent 
datasets (TCGA, GSE, and GSE116918). Area under the curve (AUC) 
values were calculated to assess accuracy.

Molecular docking

Molecular docking simulations elucidated interaction 
mechanisms between ASs and AS–PCa target proteins. AS 
molecular structures were retrieved from PubChem. Three-
dimensional (3D) structures of AS–PCa target proteins were 
obtained from the AlphaFold Protein Structure Database. 
AutoDockTools 1.5.7 processed structures and performed docking 
simulations to predict binding modes, binding affinity (ΔG), and 
functional implications. Binding energies <0 kcal/mol indicate 

1  http://geneontology.org

2  https://www.kegg.jp

spontaneous binding, while energies <−5.0 kcal/mol indicate 
stable binding.

Cell culture and treatment

Human normal prostate cells (RWPE-1) and PCa cells (DU145) 
were obtained from the Chinese Academy of Sciences Cell Bank. Cells 
were cultured as per the manufacturer’s protocol at 37°C in a 
humidified 5% CO₂ atmosphere. NHDC (Selleck, China) was 
dissolved in dimethyl sulfoxide (DMSO, Selleck) to prepare 100 mM 
stock solutions stored at 4°C. Stock solutions were diluted in a cell 
culture medium immediately before experiments to achieve a 30 μM 
final concentration for DU145 treatment. DMSO concentration was 
maintained below 0.1%, as concentrations ≤0.25% showed minimal 
cytotoxicity. Based on established cytotoxic profiles (20–23), 
we selected an NHDC concentration that demonstrates significant 
anti-tumor efficacy while maintaining minimal cytotoxicity in 
non-malignant cells.

Western blotting

Following established protocols (24), total protein was isolated 
from RWPE-1 and DU145 cells using RIPA lysis buffer (Solarbio, 
China) supplemented with protease inhibitor cocktail (Yeasen, China). 
Proteins were resolved by 10% SDS-polyacrylamide gel electrophoresis 
and electrotransferred to PVDF membranes. Membranes were blocked 
with 5% non-fat dry milk for 1 h at room temperature, then incubated 
overnight at 4°C with an anti-MMP11 primary antibody (1:600; 
#30615-1-AP, Proteintech; Proteintech). After TBST washes, 
membranes were probed with species-matched horseradish peroxidase-
conjugated secondary antibodies for 2 h at room temperature.

EdU proliferation assay

The impact of NHDC on DU145 cell proliferation was assessed 
using the 5-ethynyl-2′-deoxyuridine (EdU) In Vitro Cell Proliferation 
Kit (Beyotime Biotechnology, Shanghai). Following 24-h incubation 
after seeding (3 × 103 cells/well in 24-well plates), cells were pulse-
labeled with 20 μL of EdU working solution for 2 h at 37°C. Cells 
were then fixed and stained according to the manufacturer’s protocol. 
EdU-positive cells were visualized using fluorescence microscopy, 
with representative images captured at 20 × magnification.

Wound healing assay

NHDC-treated and untreated DU145 cells were cultured in 
complete medium (RPMI-1640 supplemented with 10% FBS) in 6-well 
plates until reaching 100% confluency. A uniform wound was created 
in the monolayer using a sterile 200 μL pipette tip. After PBS washing 
to remove dislodged cells, standardized wounds were established. Cells 
were maintained in low-serum migration medium (RPMI-1640 with 
1% FBS) to minimize proliferation-related effects during wound 
closure assessment. Wound closure was monitored at 0 and 48 h post-
wounding using phase-contrast microscopy (10 × objective).
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Transwell invasion assay

Consistent with our prior methodology (24), cells were suspended 
in serum-free medium and seeded into the upper chamber of 
Transwell® inserts (8-μm pore size). The lower chamber contained 
RPMI-1640 supplemented with 10% FBS as a chemoattractant. 
Following 24-h incubation at 37°C/5% CO₂, non-migratory cells on 
the upper membrane surface were removed by mechanical scraping 
with cotton swabs. Migrated cells on the lower surface were fixed with 
4% paraformaldehyde and stained with 0.1% crystal violet for 20 min. 
Membranes were excised and mounted on slides, with migrated cells 
quantified by imaging five random fields per insert using an inverted 
microscope (10 × objective).

Statistical analysis

All statistical analyses were performed using R software 
(version 4.2.2). Gene expression differences were assessed using 
both non-parametric Wilcoxon signed-rank tests and parametric 
paired Student’s t-tests, with statistical significance defined as a 

two-sided p-value of < 0.05. Survival analysis for disease-free 
survival (DFS) used Cox proportional hazards regression models 
and Kaplan–Meier curves with log-rank testing. To ensure 
reproducibility, all in vitro functional experiments included three 
biological replicates.

Results

Acquisition of AS–PCa targets

After integrating target prediction data from the above databases, 
we  identified potential target genes for each artificial sweetener: 
aspartame, acesulfame-K, sucralose, NHDC, cyclamate, neotame, and 
saccharin. After duplicate removal, 1,263 unique AS-related target 
genes were retained. Subsequent differential expression analysis 
revealed 3,602 differentially expressed genes in tumor tissues 
(Supplementary Table S3, Figure  1A). Venn diagram analysis 
identified 261 overlapping AS–PCa genes (Figure 1B) representing 
potential therapeutic targets for artificial sweetener-mediated effects 
on prostate cancer.

FIGURE 1

Identification and enrichment analysis of AS–PCa targets. (A) Volcanic map of differential gene expression in TCGA-PRAD, (B) AS–PCa common target 
Venn diagram, (C) GO enrichment analysis, and (D) KEGG enrichment analysis.
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Enrichment analysis of AS–PCa targets

The GO enrichment analysis of 261 AS–PCa genes revealed 
important roles in biological processes, including the cGMP signaling 
pathway, cell proliferation, hypoxia response, microRNAs in cancer, 
and biosynthetic pathways (Figure 1C). The KEGG pathway analysis 
further identified the cAMP signaling pathway, cGMP-PKG signaling 
pathway, Rap1 signaling pathway, TRP channels involved in 
inflammatory mediator regulation, AMPK signaling pathway, 
chemical carcinogenesis-DNA adducts, proteoglycans in cancer, 
purine metabolism, central carbon metabolism in cancer, protein 
digestion, and absorption (Figure 1D). These findings suggest that 
artificial sweeteners may affect PCa by modulating inflammatory, 
apoptotic, and oncogenic pathways.

Construction of PPI network for AS–PCa 
targets

We imported 261 overlapping AS–PCa target genes into the STRING 
database for PPI analysis, applying a confidence threshold of ≥ 0.4. A 
total of 257 AS–PCa targets remained after filtering disconnected nodes. 
The PPI network was visualized using Cytoscape 3.10.3. Nodes were 
arranged by degree, with darker colors and larger diameters indicating 
stronger protein interactions. Network analysis identified 10 core targets 
in the AS–PCa interaction network: AGT, BCL2, PPARG, PTGS2, 
MMP9, FN1, ACE, LEP, APOE, and KDR (Figures  2A–C). This 
visualization provided a clear overview of the interactions between the 
key targets and provided valuable insights for further investigation of the 
molecular mechanisms linking ASs and PCa.

Establishment and evaluation of the  
AS–PCa prediction model

Univariate Cox regression initially identified 52 AS–PCa genes 
associated with disease-free survival (DFS) in the TCGA-PRAD 
cohort (Supplementary Table S4). Systematic evaluation of 101 

algorithm combinations identified the Lasso-SuperPC hybrid model 
as optimal, incorporating 18 key genes (Figures  3A,B, 
Supplementary Figure S1A) with a mean C-index of 0.695. Kaplan–
Meier analysis demonstrated significantly shorter DFS in high-risk 
groups (stratified by median risk score) across TCGA-PRAD 
(Figure 3C), GSE (Figure 3D), and GSE116918 (Figure 3E) cohorts. 
Time-dependent ROC curves confirmed robust predictive 
performance for DFS: TCGA-PRAD (AUC: 1-year 0.77, 3-year 0.73, 
and 5-year 0.68; Figure 3F), GSE (1-year 0.73, 3-year 0.72, 5-year 0.69; 
Figure 3G), and GSE116918 (3-year 0.73, 5-year 0.71, 8-year 0.71; 
Figure 3H).

Survival analysis of core targets in the  
AS–PCa prediction model

Univariate Cox regression in GSE and GSE116918 cohorts 
identified five consensus prognostic genes (Supplementary Figure S1) 
consistently associated with DFS across all cohorts: CCNB2, CD38, 
CDC20, MMP11, and PDE4D. Kaplan–Meier analysis revealed that 
only CD38 (Figures 4A–C) and MMP11 (Figures 4D–F) showed 
significantly shorter DFS with high expression in all three cohorts. 
Building upon our prior validation of MMP11’s critical 
pro-tumorigenic role (24), we  selected MMP11 as the principal 
investigative focus for subsequent mechanistic exploration.

The influence of seven types of ASs on the 
core targets

Molecular docking assessed binding interactions between seven 
AS compounds and MMP11. All seven ASs showed spontaneous 
binding (ΔG < 0 kcal/mol), with five exhibiting stable binding 
(ΔG < −5 kcal/mol): acesulfame-K (−4.2; Figure  5A), sodium 
cyclamate (−4.5; Figure 5B), aspartame (−5.0; Figure 5C), sucralose 
(−5.2; Figure  5D), NHDC (−7.1; Figure  5E), neotame (−5.7; 
Figure 5F), and saccharin (−5.6; Figure 5G). These results indicate that 
direct AS–MMP11 interactions may modulate PCa-related biological 

FIGURE 2

AS–PCa protein mapping and network core protein screening. (A) Protein-protein interaction (PPI) network of all common targets, with hub targets 
highlighted in yellow; (B) PPI network of the hub targets; (C) PPI network of hub targets ranked by Degree, with deeper colors and larger nodes 
indicating higher Degree scores.
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processes. Due to its highest binding stability, NHDC was selected for 
functional validation.

The effect of NHDC on PCa in vitro

WB analysis showed that protein levels of MMP11 in PCa cells 
were reduced after NHDC treatment (Figure 5H). Functional assays 
showed that NHDC intervention significantly inhibited proliferation 
(EdU assay) (Figure 6A), invasion (Transwell assay) (Figure 6B), and 
migration (Scratch Healing assay) (Figure 6C) of DU145 cells. These 
findings support the tumor suppressor effect of NHDC in PCa.

Discussion

ASs are extensively incorporated into foods and beverages due to 
their low-calorie properties and high-intensity sweetness. The global 
AS market is projected to approach $10 billion by 2028 (1–3). 
Widespread AS usage has raised concerns about environmental 
contamination and human health impacts, particularly carcinogenic 
risks (8–10). Several studies suggest potential carcinogenic hazards 
from AS consumption (8–10, 25, 26). However, inconsistent 

epidemiological validation in human populations leaves the 
carcinogenic significance of ASs scientifically contentious. Given 
large-scale production and extensive use, universal human exposure 
to potential AS-related hazards is increasingly unavoidable. Thus, 
elucidating AS health risks remains crucial for developing effective 
risk-mitigation strategies.

PCa ranks among the leading malignancies in men worldwide by 
both incidence and mortality (11–13). Its pathogenesis involves 
complex pathophysiological mechanisms, with oxidative stress, 
chronic inflammation, and epigenetic modifications being widely 
recognized as pivotal factors (13, 14, 27, 28). Interestingly, prior 
research highlights that certain ASs exhibit pharmacological 
properties including antipyretic, analgesic, anti-inflammatory, and 
immunomodulatory effects (5–7), which may beneficially suppress 
PCa initiation and progression (13, 14, 27, 28), though direct 
laboratory evidence remains lacking. In this study, we  used a 
multidisciplinary approach integrating bioinformatics, machine 
learning, molecular docking, and in  vitro cellular assays to reveal 
potential AS–PCa connections. We further identified key genes and 
their interaction networks, providing novel insights into AS 
roles in PCa.

Our analysis identified 261 AS–PCa bridging genes. KEGG and 
GO enrichment analyses suggest that ASs may influence PCa through 

FIGURE 3

Establishment and validation of risk prediction model related to AS–PCa target. (A,B) Average C-index of 101 robotic algorithm combinations; (C,F) 
TCGA-PRAD cohort; (D,G) GSE cohort; (E,H) GSE116918 cohort.
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modulation of inflammatory responses, cell proliferation, biosynthetic 
pathways, hypoxia responses, and cGAS-STING signaling. 
Subsequently, machine learning algorithms developed a robust risk 

model using 52 PRAD progression-associated genes, demonstrating 
strong predictive performance for DFS. Finally, our research further 
identified CD38 and MMP11 as reliable survival biomarkers.

MMP11 (stromelysin-3), a matrix metalloproteinase family 
member, critically regulates extracellular matrix degradation and 
remodeling (29, 30). Elevated MMP11 expression correlates with poor 
outcomes across multiple cancers (31–33). We observed a similar 
trend: MMP11 overexpression in PCa correlates with shorter 
progression-free survival. Previous studies confirmed that suppressing 
MMP11 expression effectively inhibits PCa cell proliferation, 
migration, and invasion, underscoring its crucial role in PCa 
pathogenesis (34–36). Intriguingly, molecular docking revealed 
spontaneous binding between all seven AS compounds and MMP11, 
with NHDC showing the highest binding stability. Western blotting 
confirmed significantly reduced MMP11 protein levels in NHDC-
treated PCa cells, providing experimental evidence that ASs may exert 
anti-PCa effects via MMP11 modulation.

NHDC, a widely used, safe, low-calorie, non-nutritive artificial 
flavor derived from neohesperidin dihydrochalcone (37), 
demonstrates anti-inflammatory effects by reducing LPS-induced 
cytokine production, modulating mitochondrial oxidative 
phosphorylation, and exhibiting free-radical scavenging and 
ROS-inhibitory activities (38–40). These pharmacological properties 
position NHDC as an antitumor drug candidate. Indeed, Kim et al. 
demonstrated that NHDC inhibits proliferation and invasion in triple-
negative breast cancer cells (23). Our study further validates these 
findings, showing that NHDC similarly suppresses PCa cell 
proliferation, migration, and invasion while inhibiting the expression 
of the tumor progression factor MMP11. To our knowledge, this 

FIGURE 4

KM survival curves of core genes CD38 and MMP11 in three cohorts. (A–C) CD38; (D–F) MMP11; (A,D) TCGA-PRAD cohort; (B,E) GSE cohort; (C,F) 
GSE116918 cohort.

FIGURE 5

Impact of seven types of AS on the core protein MMP11. 
(A) acesulfame-K; (B) cyclamate; (C) aspartame; (D) sucralose; 
(E) NHDC; (F) neotame; (G) saccharin; (H) The effect of NHDC on 
the expression of MMP11.
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represents the first investigation of NHDC’s effects on prostate cancer 
pathogenesis, highlighting its novel implications for PCa management.

Although MMP11 remains our primary focus based on previous 
studies, the critical role of CD38  in prostate cancer development 
warrants concurrent investigation. As a multifunctional extracellular 
enzyme, CD38 regulates cellular NAD homeostasis through NAD 
catabolism (41, 42). CD38 dysfunction is associated with various 
pathophysiological processes, including aging, metabolic disorders 
(such as obesity/diabetes), cardiovascular disease, and chronic 
inflammation (41, 42). Its tumor-regulatory function in prostate 
cancer has been confirmed (43–45). First, recent laboratory evidence 
suggests that the epigenetic silencing of CD38 in PCa cells enhances 
NAD availability, thereby conferring a survival advantage to tumor-
initiating cells by improving mitochondrial function (43, 44). Similar 
previous studies have emphasized that CD38 expressed by immune 
cells in the microenvironment can promote immune suppression 
through adenosine production, thereby facilitating PCa progression 
(45). Notably, no studies have investigated the regulatory effects of 
artificial sweeteners (especially natural derivatives such as NHDC) on 
CD38. Given the importance of CD38, further clarification of the 
specific regulatory effects of artificial sweeteners (especially natural 
derivatives such as NHDC) on it may be beneficial for new drug 
development in PCa. Therefore, future studies should consider: (1) 
validating the responsiveness of CD38 to sweeteners and (2) 
elucidating the mechanisms of AS-CD38 crosstalk.

This study offers significant methodological advances over prior 
research (4, 9, 15): First, our integrated approach combining 
bioinformatics, machine learning, molecular docking, and in  vitro 
validation substantially enhances scientific rigor. Earlier studies 
predominantly relied on database-derived epidemiological surveys 
focusing on single synthetic artificial sweeteners. However, such 
approaches face inherent limitations in prostate cancer research, where 
pathogenesis involves complex gene–environment interactions. 
Dietary confounders remain challenging to control in observational 
studies, potentially compromising the accuracy of epidemiological 

conclusions. Second, even the recent bioinformatic analysis of seven 
sweeteners in PCa (4) by Xie et al. used limited methodologies: core 
target screening lacked machine learning precision, and computational 
predictions remained experimentally unvalidated. Crucially, our study 
provides the first experimental evidence of NHDC’s anti-tumor effects 
against PCa cells in  vitro, potentially mediated through MMP11 
suppression. These findings offer translational implications for dietary 
management (e.g., recommending natural-origin sweeteners such as 
NHDC) and novel therapeutic development for prostate 
cancer patients.

We acknowledge several limitations: First, target identification 
relied solely on database predictions susceptible to algorithmic bias, 
potentially compromising artificial sweetener (AS) target accuracy. 
Second, experimental validation was restricted to naturally derived 
NHDC, limiting generalizability to synthetic AS such as aspartame. 
Third, in vitro models cannot replicate in vivo absorption, distribution, 
metabolism, and excretion (ADME) processes, particularly relevant 
given evidence of carcinogenic AS metabolites. Fourth, while NHDC 
concentrations followed literature precedents, biological heterogeneity 
across cancer lineages may limit dose optimization. Future studies 
should incorporate detailed dose–response and toxicity profiling. 
Fifth, although Western blotting confirmed MMP11 suppression, 
upstream regulatory mechanisms (transcriptional regulation and 
proteasomal degradation) remain unexplored. Finally, while 
molecular docking predictions aligned with WB results, we cannot 
exclude indirect effects through intermediate molecules. Direct 
binding validation (isothermal titration calorimetry [ITC] or surface 
plasmon resonance [SPR]) remains essential to confirm MMP11’s 
mechanistic centrality.

Conclusion

This study comprehensively investigated the relationship between 
ASs and PCa using an integrated approach that combined 

FIGURE 6

Effect of NHDC on the biological behavior of DU145 cells in vitro. (A) EdU assay; (B) Transwell assay; (C) Wound healing assay.
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bioinformatics, machine learning, molecular docking, and in vitro 
cellular assays. Our findings demonstrate that ASs influence PCa 
initiation and progression through multiple molecular targets and 
signaling pathways. We  discovered that NHDC exhibits tumor-
suppressive effects against PCa for the first time, identifying MMP11 
as a key mechanistic mediator. Furthermore, we developed an 18-gene 
risk prediction model based on core AS–PCa interactions, offering 
promising targets for PCa early detection, prognostic assessment, and 
targeted therapy. Collectively, this study provides novel insights into 
the AS–PCa relationship. Future research should use comprehensive 
in vitro and in vivo models to validate AS effects on PCa pathogenesis 
and elucidate precise molecular mechanisms underlying AS-mediated 
MMP11 regulation.
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