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Nearly 16% of the world’s population is affected by neurological disorders, including 
neurodegenerative and neuroimmune diseases caused by acute or chronic 
inflammation. Inflammatory processes in the central nervous system can exacerbate 
these diseases by causing neuronal damage and apoptosis. Traditional Chinese 
medicines have become an important area of research in anti-neuroinflammation 
and neuroprotection owing to their multi-target effects and favorable safety 
profiles. In this paper, we review the molecular mechanisms by which bioactive 
compounds of herbal origin inhibit neuroinflammation and improve disease 
progression through the modulation of inflammatory factors (including TLR4/
MyD88/NF-κB, NLRP3 inflammasomes, and Janus kinase-STAT signaling), epigenetic 
modifications, cell-type-specific modulation (microglia M1/M2 polarization and 
astrocyte A1/A2 transformation), and gut-brain axis interactions. These bioactive 
compounds are mainly classified into those with well-defined chemical structures 
(such as baicalein, baicalin, berberine, and ginsenoside Rg1), plant extracts (such as 
tonifying Yang Huiwu Tang, Tongxinluo capsule, Shu Xuning injection, and Xingxiong 
injection), and preparations based on special mechanisms of action or technical 
means (such as Hedysari polysaccharides [RHP] and microglial cell exosome carrier 
berberine and palmatine [Exos-Ber/Pal]). We found that these compounds can 
improve cognitive and motor dysfunction by inhibiting neuroinflammation while 
exerting neuronal protection, but their low bioavailability, mechanistic complexity, 
and lack of clinical translational evidence remain challenges. In the future, a 
combination of multi-omics techniques, rigorously designed clinical trials, and 
interdisciplinary strategies will be required to promote the precise application of 
herbal medicines in neuroinflammation-related diseases.
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1 Introduction

Neurological disorders are the leading cause of disability and the second leading 
cause of death worldwide (1). Their disease burden continues to increase because of 
population growth and aging, indicating that their prevention and management are 
inadequate; this may primarily stem from a lack of a clear understanding of their etiology 
(2). Disturbances in common molecular pathways including oxidative stress, 
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excitotoxicity, mitochondrial dysfunction, and autophagy have 
been implicated in the progression of neurodegenerative disorders 
(3). Neuroinflammatory cascade responses have been identified 
as a common causative factor in various neurological diseases, 
including stroke, Alzheimer’s disease (AD), Parkinson’s disease 
(PD), and ischemic/traumatic brain injury (TBI), and are common 
thread linked to pathology (4, 5).

Neuroinflammation is a normal immune response within the 
central nervous system (CNS) to noxious stimuli such as infection, 
injury, or toxins, but can also be  autoimmune. It is a major 
pathophysiological feature and a key cause of many CNS disorders 
(6, 7). Resident neuroglial cells, including microglia (the resident 
immune cells of the CNS), astrocytes, oligodendrocytes, and 
neurons, are involved in this process (6, 8–10). Multiple sclerosis 
(MS) is an autoimmune CNS disease characterized by persistent 
inflammation and demyelination (11, 12). In the early stages of 
MS, persistent microglial activation results in the production of 
proinflammatory cytokines. These in turn induce further 
microglial activation, exacerbating MS symptoms (13, 14). AD is 
another CNS disease closely associated with neuroinflammation; 
it is also closely related to various pathological factors including 
Aβ plaques, phosphorylated tau, proinflammatory cytokines, and 
oxidative stress, which can activate microglia and induce 
neuroinflammation (15, 16). Neuroinflammation is also an 
important pathological feature of PD, which is primarily 
characterized by CNS microglial activation and proinflammatory 
mediator release; this inflammatory cascade results in progressive 
loss of dopaminergic neurons and exacerbates motor dysfunction 
(17, 18). Stroke is a severe CNS disease characterized by high 
morbidity and mortality rates. Microglia are activated, undergo 
morphological changes, and secrete cytokines within minutes of 
a stroke (19); in addition, astrocytes promote neuroinflammation 
by recruiting peripheral immune cells and releasing 
proinflammatory cytokines and chemokines (20, 21). 
Neuroinflammation is increasingly prevalent in patients with 
neurological disorders, and targeting it to modulate neurological 
disorders has important clinical applications.

Herbal medicines have a long history of treating various 
diseases and have been widely used as adjunctive therapies in 
clinical settings in Asian countries such as China, Japan, and 
Korea (22). However, their ambiguous pharmacological 
mechanisms have limited their development (23). Their 
advantages, such as multi-target mechanisms of action and 
favorable safety profiles, have brought these compounds into the 
limelight. Their pharmacological effects have been investigated by 
examining their active components (24, 25). Bioactive compounds 
of plant origin are commonly used to treat neurological disorders 
owing to their anti-inflammatory, antioxidative, and anti-
apoptotic activities (26, 27). Numerous clinical and experimental 
studies have validated the therapeutic effects of natural 
phytochemicals on neurological disorders through the inhibition 
of neuroinflammation (28). Berberine mitigates neuronal damage 
induced by Aβ in AD, and ginsenoside Rg1 improves blood–brain 
barrier (BBB) disruption and TBI (29). This paper summarizes the 
research progress on bioactive compounds of herbal origin to treat 
neurological diseases by inhibiting neuroinflammation, discussing 
how to improve their utilization and target them to specific 
mechanisms to provide therapeutic strategies and drug candidates.

2 Effect of herbs on 
inflammation-related signaling 
molecules

2.1 TLR4/MyD88/NF-κB pathway

Although several therapeutic techniques are currently available 
for controlling neurodegenerative disorders, these drugs are associated 
with a wide range of long-term side effects when used over time. The 
development of safe, multi-targeted, and effective drugs for the 
treatment of neurodegenerative diseases, particularly those derived 
from natural products, is of particular importance. Studies on 
neurodegenerative diseases have highlighted the critical role of NF-κB 
in neurons and microglia (30). When the NF-κB pathway is activated 
in microglia, it exerts secondary neurotoxicity by stimulating the 
secretion of reactive oxygen species (ROS) and pro-inflammatory 
cytokines, including TNF-α, IL-1β, and interferon-γ (31). The Toll-like 
receptor 4 (TLR4)/MyD88/NF-κB pathway is the central regulatory 
network involved in neuroinflammation. The MyD88/NF-κB pathway 
recognizes pathogen- and damage-associated molecular patterns, 
activating a downstream pro-inflammatory cascade (32).

Baicalein (5,6,7-trihydroxyketone; C15H10O5) is an important 
flavonoid primarily isolated from the roots of Scutellaria baicalensis 
Georgi (Labiatae). Previous studies have demonstrated that it 
possesses various pharmacological properties, including antioxidant, 
anti-inflammatory, and neuroprotective effects (33). Zhang et  al. 
reported the novel role of baicalein in anti-neuroinflammation by 
inhibiting the production of proinflammatory cytokines, suppressing 
the activation of astrocytes and microglial cells, and blocking NF-κB 
and MAPK signaling. Additionally, in a microglia model of 
lipopolysaccharide (LPS) activation, baicalein reduced inflammatory 
mediators by inhibiting IκBα phosphorylation and p65 translocation, 
and down-regulated TLR4, which functions upstream of NF-κB 
signaling. Baicalein treatment prevented rotenone-induced brain 
damage through its anti-inflammatory effects (34).

Additionally, tretinoin lactone, a diterpenoid tricyclic oxide 
isolated from Tripterygium wilfordii Hook F (TWHF), demonstrates 
pharmacological activity against inflammatory, neurodegenerative, 
and neuropathic pain (35). Premkumar et al. were the first to observe 
that tretinoin inhibits poly (I:C) (a TLR3 agonist)-induced COX-2 and 
iNOS expression in mouse macrophages; this suggests that tretinoin 
may prevent inflammation by inhibiting the TLR3 pathway in 
macrophages (36).

Zhang et al. reported that Panax ginseng saponin R1 (NG-R1) 
protects against ischemic stroke (IS) through multiple pathways; it 
reduces intestinal permeability and inflammation by inhibiting the 
TLR4/MyD88/NF-κB signaling pathway and simultaneously affects 
the microbiota-gut-brain axis by reducing the abundance of 
pathogenic bacteria and restoring the levels of beneficial bacteria. 
Additionally, NG-R1 also leads to the restoration of tight junction 
protein expression in the brain, ensuring BBB integrity (37).

Salvianolic acids (SAs) are hydrophilic phenolic compounds 
derived from Salvia miltiorrhiza. SA for injection (SAFI) is a 
lyophilized powder intended for intravenous administration. Zhao 
et al. reported that SAs inhibit the NF-κB and MAPK pathways by 
suppressing TLR4/MyD88 and TNF-α signaling, reducing 
inflammatory factor production; they also modulate the polarization 
of astrocytes and microglia to attenuate neuroinflammation (38). 
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Wang et al. reported a higher likelihood of good functional outcomes 
at 3 months in patients receiving intravenous Recombinant tissue-type 
plasminogen activator(rt-PA) combined with SAFI than in those 
receiving intravenous rt-PA alone. Additionally, the use of SAFI for 
2 weeks has been associated with improved neurological recovery (39).

MyD88 serves as an intracellular adapter protein for nearly all 
TLRs. TLR3 functions as an adapter protein that uses TRIF as a signal 
transducer (39, 40); IL-1β has also been shown to be downstream of 
the proinflammatory effects of TLR3 in certain diseases (41). Zhang 
et al. reported that intrathecal injection of triptolide exerts an anti-
inflammatory effect by inhibiting the TLR3/TRIF/IL-1β pathway, 
which may be a potential mechanism by which tretinoin attenuates 
neuropathic pain induced by peripheral nerve injury (42). 
Additionally, triptolide downregulated inflammatory mediators 
(NF-κB, Cox-2, NLRP3, IL-1β, and TNF-α) in LPS-treated 
(100 ng mL−1) C2C12 myotubes, suggesting that it prevents 
LPS-induced inflammation and skeletal muscle atrophy (43).

The aforementioned herbal components exert multi-targeted anti-
neuroinflammatory effects by targeting the TLR/NF-κB pathway, 
regulating glial cell polarization, and repairing the gut-brain axis. 
However, their bioavailability and clinical translational efficiency 
require technical optimization.

2.2 NLRP3 inflammatory vesicles

The nucleotide-binding domain of the leucine-rich repeat-
containing receptor family pyrin domain-containing 3 (NLRP3) 
inflammasome, which contains a pyrin structural domain, is the most 
extensively studied inflammasome; it is implicated in numerous 
autoimmune and inflammatory diseases (44). The NLRP3 
inflammasome is a protein complex consisting of NLRP3, a cysteine 
aspartate-specific protease 1 precursor (pro-caspase-1), and apoptosis-
associated speckled protein. The assembly of NLRP3 inflammatory 
vesicles results in the maturation of pro-caspase-1 into caspase-1, 
which subsequently activates scorch death execution protein 
gasdermin D (GSDMD), creating pores in the cell membrane that 
exacerbate the release of IL-1β and IL-18 to trigger a more severe 
inflammatory response (45, 46). The transcriptional silent information 
regulator 1 (SIRT1) and downstream peroxisome proliferator-
activated receptor-α coactivator (PGC-1α) can inhibit 
neuroinflammation by suppressing the NLRP3 inflammasome 
activation (47–49). Responses mediated by SIRT1 are involved in a 
variety of physiological processes, including oxidative stress, 
inflammation, and apoptosis (50).

Rhodopsin is derived from various natural sources, including 
rhubarb (51); it exhibits a range of pharmacological effects, including 
anti-inflammatory (52), anticancer, and immunosuppressive (53) 
effects such as autophagy, apoptosis, and pyroptosis (54, 55). An 
in vitro study reported that rhodopsin decreases microglial activation 
(56). Cui et al. reported that rhodopsin may reduce inflammation and 
demyelination in an experimental autoimmune encephalomyelitis 
(EAE) rat model, likely through the SIRT1/PGC-1α/NLRP3 signaling 
pathway, whereas microglia in an EAE rat model exhibited attenuated 
inflammation and demyelination (57). Jiang et  al. reported that 
rhodopsin inhibits the LPS/ATP-induced activation of NLRP3 
inflammatory vesicles, blocks the cleavage of GSDMD, and suppresses 
LPS/ATP-induced cellular scorch death in BV2 cells; additionally, it 

decreased the levels of inflammatory mediators TNF-α, IL-18, and 
IL-1β, reduced HT-22 hippocampal neuronal apoptosis, and restored 
cell viability (58).

Curcumin is derived from turmeric and exhibits numerous 
pharmacological and biological activities, including anti-inflammatory 
properties (59). Xu et al. reported that curcumin prevented rotenone-
induced PD by inhibiting the activation of microglial NLRP3 
inflammasomes and attenuating mitochondrial dysfunction in mice 
(59). Cai et al. reported that curcumin affected histone deacetylase 
(HDAC) 6, which directly modulated NLRP3 acetylation and 
inhibited neuroinflammation, alleviating neuronal degeneration in a 
PD model (60).

Yang et al. reported that astragaloside IV significantly inhibited 
NFκB-mediated inflammatory vesicle activation of NLRP3 in MPTP 
mice in vivo and BV2 microglial cells; it also activates Nrf2, which 
negatively influences NLRP3 activation by inhibiting ROS-induced 
activation. These findings suggest that astragaloside IV protects 
dopaminergic neurons by inducing neuroinflammation and oxidative 
stress (61).

Li et  al. reported that tensin alleviates neuroinflammation by 
suppressing the ADRA1/NF-κB/NLRP3 pathway. Additionally, it 
ameliorated the pathological state of tau proteins and restored 
neuronal and BBB structures and functions, enhancing learning and 
memory in 3xTg-AD mice (62). Zhao et  al. reported that the 
combination of ginseng and Ginkgo biloba extract modulated NLRP3 
inflammatory vesicles and the CAMK4/CREB pathway to ameliorate 
neuroinflammation and excitotoxicity in IS (63). Tongxinluo, a novel 
neuroprotective formula with anti-inflammatory properties, is 
recognized for its ability to stabilize vulnerable plaques in animal 
models and patients with myocardial infarction (64). Wang et  al. 
reported that it also significantly alleviated astrocyte death following 
cerebral ischemia/reperfusion by down-regulating the expression of 
cleaved caspase-11/1, GSDMD, NLRP3, IL-6, and cleaved IL-1β (65). 
Subsequently, a randomized clinical trial by Dong et al. demonstrated 
that in patients with IS within 72 h of symptom onset, those who 
received additional concentric loops were more likely to have a good 
functional outcome than the placebo group. These findings provide 
novel and valuable insights for the development of targeted therapeutic 
strategies for neurological disorders.

2.3 JAK–STAT signaling regulation

The overactivation of microglia and astrocytes exacerbates the 
involvement of the Janus kinase (JAK)/STAT pathway in 
neuroinflammatory diseases by initiating innate immunity, 
orchestrating adaptive immune responses, and suppressing 
inflammation and immune activity. The JAK/STAT signaling pathway 
is a pivotal driver of neuroinflammation in neurodegenerative 
disorders. Targeting this pathway through interventions such as JAK 
inhibitors holds significant therapeutic promise for treating conditions 
such as AD and MS (66). In a landmark discovery, Su et  al. 
demonstrated that JAK1/STAT3 signaling serves as a pivotal regulator 
of neuronal cell proliferation, differentiation, and programmed cell 
death, while also exerting profound effects on inflammatory response 
mechanisms (67).

Echinacoside (ECH) is a phenylacetaldehyde glycoside isolated 
from the extract of Dioscorea alata; it has been extensively studied and 
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found to have many pharmacological effects, such as antioxidant, anti-
inflammatory, anti-infective, and anti-tumor effects (68, 69). Lu et al. 
demonstrated that both ECH and pinealoside significantly increased 
the ratios of p-JAK1/JAK1 and p-STAT3/STAT3. This compelling 
evidence indicates that pinealoside directly activates the JAK1/STAT3 
signaling cascade, stimulating neuronal proliferation while concurrently 
inhibiting neuroinflammatory responses, ultimately manifesting potent 
antidepressant effects (70). Nakamura et al. revealed that sustained 
STAT3 signaling in senescent macrophages orchestrates microglial M2 
polarization and significantly promotes neovascularization (71).

G. biloba (Ginkgoaceae), a reverse therapeutic agent for 
inflammatory bowel disease, is a potent herbal medicine used to treat 
IS. Its efficacy stems from key bioactive compounds such as flavonoid 
glycoside ligands and terpene lactones. Extensive pharmacological 
research has revealed that the active constituents of G. biloba exert 
neuroprotective effects in IS by combating inflammation, 
counteracting oxidative stress, and inhibiting apoptotic pathways 
while simultaneously stimulating neurovascular regeneration and 
enhancing axonal remodeling (72). Zhang et  al. revealed in a 
groundbreaking study that G. biloba extract combats ischemic brain 
damage through dual mechanisms at the molecular level; it suppresses 
astrocyte proliferation and leverages the LCN2-JAK2/STAT3 pathway 
to inhibit neuroinflammatory cascades (73).

Although STAT3 is primarily activated by non-receptor tyrosine 
kinases of the JAK family, the activity of JAK itself is subject to tight 
regulation by the signal transduction inhibitory factor (SOCS) family 
(74). Paeoniflorin (PF), a monoterpene glucoside with therapeutic 
potential, is one of the most prominent bioactive constituents derived 
from Paeoniflora roots; its potent anti-inflammatory properties have 
been extensively documented in numerous animal studies revealing 
its efficacy in mitigating inflammatory responses (75). In a 
groundbreaking study conducted by Shi et al., researchers found that 
PF significantly upregulates the expression of cytokine SOCS3, 
effectively suppressing the IL-6/STAT3 signaling pathway in dendritic 
cells (DCs) (76). Additionally, Zhang et al. revealed that PF decreases 
Th17 differentiation by suppressing STAT3 phosphorylation. Their 
research demonstrated that PF not only inhibited IL-6 production in 
DCs but also lowered clinical scores in EAE mice, simultaneously 
delaying disease progression while maintaining cellular regulatory 
precision (77).

Salvia divinorum is derived from the rhizome of a traditional 
Chinese medicinal herb of the same name, and salvinorin IIA is a 
prominent lipophilic bioactive component. Chen et al. demonstrated 
that tanshinone IIA (TAN) suppresses JAK2 kinase activity, effectively 
inhibiting STAT1 Ser727 phosphorylation, thereby modulating this 
critical signaling pathway (78). Herbal active ingredients, including 
pineoside, paeoniflorin, and tanshinone IIA, exhibit high efficacy in 
orchestrating a delicate balance between neuroinflammatory processes 
and immune responses through dual-directional modulation of the 
JAK–STAT pathway (selectively activating or inhibiting distinct 
isoforms). However, challenges persist in elucidating their multi-
targeting mechanisms and optimizing effective drug delivery systems.

2.4 Epigenetic regulation

The primary mechanisms of epigenetic dynamics include DNA 
methylation, histone modification, and non-coding RNA (79). DNA 

methylation is a reversible, heritable epigenetic modification that 
provides an additional layer of control over gene expression without 
changing the DNA sequence (80). Epigallocatechin-3-gallate (EGCG) 
is an extract that is the primary polyphenolic component of green tea 
(81). Klotho is an antioxidant, antifibrotic, and anti-inflammatory 
protein whose promoter is susceptible to DNA methylation. Yang et al. 
reported that under high glucose conditions, EGCG reduces the 
methylation of the Klotho gene promoter through DNA 
methyltransferase 3a to up-regulate Klotho expression and lower 
IL-1β, IL-6, and TNF-α levels (82).

Sirtuin is a widely present NAD + -dependent histone deacetylase 
(83). Liu et  al. reported that ginsenoside Rg3 inhibits the NF-kB 
pathway by activating SIRT1, alleviating neuroinflammation and 
post-TBI in hippocampal neurons. These observations were further 
supported by in vitro experiments, which showed that ginsenoside 
Rg3 could attenuate hippocampal neuronal damage by inhibiting 
LPS-induced microglial activation through modulation of the SIRT1/
NF-kB pathway (84). Additionally, within the spinal cord, the 
administration of rhodopsin decreases leukocyte infiltration, down-
regulates IL-1β, reduces HDAC6 activity, and attenuates the 
interactions of HDAC6 with NLRP3; this decreases the activity of the 
HDAC6-NLRP3 complex, suppressing NLRP3 inflammatory vesicle 
responses to reduce spinal inflammation and chronic inflammatory 
pain (85).

miRNAs are small non-coding RNAs consisting of 18–25 
nucleotides that regulate gene expression by binding to the 3′-UTR 
region of mRNAs, resulting in either the inhibition of translation or 
the induction of mRNA degradation (86). Using the TargetScan online 
database, Ding et al. predicted that the target gene of miR-182-5p was 
Rac1. Previous studies have indicated that activated Rac1 subsequently 
activates NF-κB and NOX2, resulting in increased inflammation, 
oxidative stress, and neuronal death (87). Berberine is an isoquinoline-
derived alkaloid obtained from herbs such as Berberis vulgaris and 
Phellodendron amurense, which have traditionally been used to treat 
intestinal infections (87). Numerous studies have indicated that 
berberine exhibits neuroprotective effects in CNS disorders such as IS 
(88), AD (89), and PD (90). Ding et al. reported that berberine can act 
on damaged Rac1 in neurons to attenuate neuroinflammation (87). In 
conclusion, epigenetic regulation plays a significant role in the anti-
inflammatory effects of herbal components.

3 Herbs and inflammation-associated 
cells

3.1 Microglial phenotype switching

A prevailing consensus indicates that microglial-mediated 
neuroinflammation is linked to neurodegenerative diseases, including 
AD, PD, and MS, exhibiting common pathophysiological mechanisms 
(91). Microglia are classified into neurotoxic M1 and neuroprotective 
M2 phenotypes (91). Microglia of the M1 phenotype release 
proinflammatory mediators, including nitric oxide (92), IL-1β, and 
TNF-α, leading to neurotoxicity and myelin damage. In contrast, M2 
phenotype microglia promote the release of neurotrophic molecules 
and anti-inflammatory cytokines, such as insulin-like growth factor-1, 
glial cell-derived neurotrophic factor, and brain-derived neurotrophic 
factor (93–95). These molecules promote the differentiation of 
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oligodendrocyte progenitor cells and enhance neuroprotection and 
myelin repair.

Considering the distinct roles of M1 and M2 microglia and 
macrophages, functional phenotypic modulators have been used as 
potential therapeutic agents for neurodegenerative diseases (96). 
Astragaloside IV (AST-IV) is a monomeric compound found in 
Astragalus membranaceus. Recent studies have demonstrated its 
neuroprotective effects in various intermediate neurological disorders 
including ischemia, Parkinson’s disease, Alzheimer’s disease, and 
autoimmune encephalomyelitis. AST IV alleviates motor deficits and 
enhances neurochemical activity by reducing inflammation and 
oxidative stress (97). Yu et  al. reported that AST IV ameliorated 
paralysis and pathology in EAE by inhibiting neurotoxicity caused by 
M1 microglia, facilitating the shift to the M2 phenotype, and 
protecting neurons from apoptosis through inhibition of TLR 4/Myd 
88/NF-κB signaling (98). Chen et al. reported that tanshinone IIA 
shifts the polarization of microglia to the M2 state by activating ERβ/
IL-10 signaling; additionally, it attenuates neuronal loss and 
neuroinflammatory responses in mice with TBI (98). Sodium 
tanshinone sulfonate IIA (STS), a derivative of tanshinone IIA, 
possesses anti-inflammatory and anti-nociceptive properties. 
MiR-125b-5p is an immune-related miRNA that is highly expressed 
in microglia (99). Zeng et al. reported that STS pretreatment inhibits 
LPS-stimulated proinflammatory cytokine secretion, decreases 
proteins associated with the STAT3 pathway and apoptosis, increases 
miR-125b-5p and proopiomelanocortin expression, and enhances the 
conversion of microglial cells in BV-2 cells from the M1 to the M2 
phenotype. STS exerts antinociceptive and antineuroinflammatory 
effects on neuropathic pain in neuropathic pain rats by targeting 
multiple pathways (99).

Rhodiola rosea (SLDS) extract, a phenylpropane glycoside 
extracted from the plant’s roots, is one of the main active components 
of the plant. Liu et al. reported that treating M1 microglia with SLDS 
promotes oligodendrocyte differentiation by transitioning from the 
M1 to the M2 phenotype, indicating that it may facilitate myelin 
regeneration in neurological diseases (100). IG et al. reported that 
Artemisia absinthium extract ameliorated excessive neuroinflammation 
and Aβ accumulation by modulating microglial activation and the 
autophagy-lysosome pathway, suggesting that it is a promising 
therapeutic candidate for the treatment of AD (101). These findings 
offer new avenues for treating neurological disorders.

3.2 Regulation of astrocyte function

Similar to the activation of microglia, and in line with the 
functional significance of their beneficial or harmful effects, 
reactive astrocytes are classified as either neurotoxic (A1) or 
neurotrophic (A2). Yu et al. reported that AST IV ameliorates 
paralysis in EAE by shifting astrocytes towards the neuroprotective 
A2 phenotype, protecting neurons from apoptosis and pathology 
(96). Aspalathin (4-hydroxybenzyl alcohol-4-O-β-D-
glucopyranoside), a phenolic glycoside derived from the rhizome 
of the plant Aspalathus, has demonstrated various effects in 
preclinical models of CNS disorders. These include antioxidant 
properties, anti-inflammatory effects, and microglial cell 
activation inhibition (102). Wang et al. reported that aspalathin 
inhibits the development of microglial cells and astrocytes, 

reduced oxidative stress, and prevented neuronal apoptosis, 
preventing early brain injury induced by subarachnoid 
hemorrhage (103). A recent study by Zuo et al. suggested that 
aspalathin modulates astrocyte phenotypic changes through 
angiotensin type II1, indicating that it exerts therapeutic effects 
by modulating the RAS-SIRT3 pathway (104). However, the 
specific modulation mechanism remains unclear and should 
be the focus of future research.

3.3 Herbs and the gut-brain axis

Current research suggests that the gut flora contributes to 
microglial maturation, BBB development, and neuron 
proliferation, which are critical for the gut-brain axis (105). In 
addition, neurological disorders such as MS, PD, and AD are 
associated with the gut microbiome (105–107). Sun et al. reported 
a significant increase in the population of lactic acid bacteria in 
the intestines of AD mice following intervention with berberine, 
reducing intestinal inflammation and helping to maintain the 
balance of the intestinal microbiota (106, 108). Additionally, they 
conducted an immunofluorescence chemical analysis of mouse 
intestinal tissues and observed that berberine significantly 
increased the expression of the intestinal junction proteins ZO-1, 
occludin, and claudin-1, improving intestinal permeability and 
preventing endotoxins from entering the bloodstream through the 
intestinal barrier. Agirman et  al. have shown that intestinal 
disorders favor humoral signaling of inflammatory factors 
through the gut-brain axis and can alter intestinal permeability 
and cause neuroinflammatory symptoms before changes in the 
CNS immune system (109). Berberine intervention may produce 
neuroinflammatory symptoms by altering the intestinal flora and 
increasing intestinal permeability, reducing brain inflammation 
to exhibit neuroprotection. Berberine also removes Aβ plaques 
and increases the number of neurons in the brain, alleviating AD 
to some extent (105).

Hedysari polysaccharide (RHP) is a key bioactive component 
of Radix Hedysari. Studies have demonstrated that RHP has 
neuroprotective properties (110). Yang et al. have reported that it 
modulates the hippocampal proteomic and serum metabolomic 
profiles of AD mice, enhances the intestinal barrier, attenuates 
neuroinflammatory responses, and reduces neuronal 
mitochondrial damage. This suggests that RHP ameliorates 
cognitive impairment in Senescence-Accelerated Mouse Prone 8 
by regulating the gut-brain axis (111). Pseudostellaria heterophylla, 
a herb with a history of use spanning thousands of years in China, 
has been shown through modern pharmacological studies to 
possess various biological activities, including anti-inflammatory 
and immunomodulatory effects (112–114). He et al. have reported 
that Pseudostellaria heterophylla polysaccharide is a potent and 
effective drug for treating neuroinflammatory diseases in SAMP8 
mice. They suggested that PH-PS might prevent AD progression 
by modulating the gut microbiota and glial polarization, offering 
evidence that could inform the design of potential dietary 
therapies to prevent or cure AD (115).

Research has also focused on TCM prescriptions. Pingweisanjia 
Pharmaceutical (PWP) not only prevents the spread of α-synuclein 
across the gut-brain axis but also prevents neurodegeneration and 
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behavioral deficits. PWP treats PD through multiple pathways, 
increasing beneficial flora involved in the gut-brain axis, including 
Actinobacteria and Lactobacillus as well as decreasing the expression 
of NLRP6 and GSDMD in PD mice (116–118). Despite the promising 
results shown, the understanding of how herbs affect the gut-brain 
axis is still unclear, providing a direction for future research (Figure 1).

Chinese herbal medicine can inhibit the release of inflammatory 
mediators, such as IL-1β and IL-18, by regulating related inflammatory 
pathways, (including TLR4/NF-κB, NLRP3, and JAK–STAT). 
Additionally, it can also suppress neuroinflammation by modulating 
the phenotypic transformation of astrocytes and microglia, as well as 
by regulating epigenetics and the gut-brain axis, thereby improving 
related neurological diseases.

4 Discussion

TCMs have demonstrated significant potential for treating 
neurological disorders owing to their multi-target and multi-
mechanism actions. However, the bioavailability of most TCMs is 
poor after oral administration, necessitating further in-depth 
studies on targeted delivery (119, 120). Zhao et al. reported that a 
microglia-derived Exos-Ber/Pal delivery system enhances drug 
targeting and penetration into the brain. Additionally, the 
combination of berberine and palmatine was found to more 

effectively restore neurons, inhibit Aβ phagocytosis and microglial 
activation, and modulate the secretion of inflammatory factors 
(121). Hassan et  al. reported the use of CS-TAN-NLCs 
(nanostructured lipid carriers) as an effective nano-agent for the 
treatment of PD following intranasal administration. The final 
results indicated that CS-TAN-NLCs improved exercise and 
alleviated depression in patients with PD, reducing NF-kβ and 
histone B expression to a greater extent than other delivery 
methods. Elevated levels of histone B can lead to the production 
of pro-inflammatory mediators and mitochondria-derived ROS, 
ultimately inducing neuronal death. Overall, CS-TAN-NLCs 
provide a highly adaptive strategy for the effective intranasal brain 
delivery of TAN for the treatment of PD (122). Yang et  al. 
developed targeted liposomes and found that IGF1R-targeted 
salvianolic acid A -loaded liposomes demonstrated a more potent 
anti-neuroinflammatory effect than free SAA by suppressing the 
activation of microglia and the release of pro-inflammatory 
cytokines; additionally, it exhibited superior anti-
neuroinflammatory effects and maintained good biosafety (123).

In conclusion, bioactive compounds associated with TCM can 
affect the progression and outcome of neurological diseases by 
regulating pathways related to neuroinflammation, epigenetics, 
and the gut-brain axis. Consequently, TCM has the potential to 
offer new therapeutic options for treating and curing 
neurological diseases.

FIGURE 1

Related mechanisms of Chinese herbal medicine affecting inflammatory pathways.
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