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Nearly 16% of the world's population is affected by neurological disorders, including
neurodegenerative and neuroimmune diseases caused by acute or chronic
inflammation. Inflammatory processes in the central nervous system can exacerbate
these diseases by causing neuronal damage and apoptosis. Traditional Chinese
medicines have become an important area of research in anti-neuroinflammation
and neuroprotection owing to their multi-target effects and favorable safety
profiles. In this paper, we review the molecular mechanisms by which bioactive
compounds of herbal origin inhibit neuroinflammation and improve disease
progression through the modulation of inflammatory factors (including TLR4/
MyD88/NF-xB, NLRP3 inflammasomes, and Janus kinase-STAT signaling), epigenetic
modifications, cell-type-specific modulation (microglia M1/M2 polarization and
astrocyte A1/A2 transformation), and gut-brain axis interactions. These bioactive
compounds are mainly classified into those with well-defined chemical structures
(such as baicalein, baicalin, berberine, and ginsenoside Rgl), plant extracts (such as
tonifying Yang Huiwu Tang, Tongxinluo capsule, Shu Xuning injection, and Xingxiong
injection), and preparations based on special mechanisms of action or technical
means (such as Hedysari polysaccharides [RHP] and microglial cell exosome carrier
berberine and palmatine [Exos-Ber/Pall). We found that these compounds can
improve cognitive and motor dysfunction by inhibiting neuroinflammation while
exerting neuronal protection, but their low bioavailability, mechanistic complexity,
and lack of clinical translational evidence remain challenges. In the future, a
combination of multi-omics techniques, rigorously designed clinical trials, and
interdisciplinary strategies will be required to promote the precise application of
herbal medicines in neuroinflammation-related diseases.

KEYWORDS

herbal medicine, neuroinflammation, molecular mechanisms, neurological disorders,
multi-target therapy, gut-brain axis

1 Introduction

Neurological disorders are the leading cause of disability and the second leading
cause of death worldwide (1). Their disease burden continues to increase because of
population growth and aging, indicating that their prevention and management are
inadequate; this may primarily stem from a lack of a clear understanding of their etiology
(2). Disturbances in common molecular pathways including oxidative stress,
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excitotoxicity, mitochondrial dysfunction, and autophagy have
been implicated in the progression of neurodegenerative disorders
(3). Neuroinflammatory cascade responses have been identified
as a common causative factor in various neurological diseases,
including stroke, Alzheimer’s disease (AD), Parkinson’s disease
(PD), and ischemic/traumatic brain injury (TBI), and are common
thread linked to pathology (4, 5).

Neuroinflammation is a normal immune response within the
central nervous system (CNS) to noxious stimuli such as infection,
injury, or toxins, but can also be autoimmune. It is a major
pathophysiological feature and a key cause of many CNS disorders
(6, 7). Resident neuroglial cells, including microglia (the resident
immune cells of the CNS), astrocytes, oligodendrocytes, and
neurons, are involved in this process (6, 8—10). Multiple sclerosis
(MS) is an autoimmune CNS disease characterized by persistent
inflammation and demyelination (11, 12). In the early stages of
MS, persistent microglial activation results in the production of
proinflammatory cytokines. These in turn induce further
microglial activation, exacerbating MS symptoms (13, 14). AD is
another CNS disease closely associated with neuroinflammation;
it is also closely related to various pathological factors including
Ap plaques, phosphorylated tau, proinflammatory cytokines, and
oxidative stress, which can activate microglia and induce
neuroinflammation (15, 16). Neuroinflammation is also an
important pathological feature of PD, which is primarily
characterized by CNS microglial activation and proinflammatory
mediator release; this inflammatory cascade results in progressive
loss of dopaminergic neurons and exacerbates motor dysfunction
(17, 18). Stroke is a severe CNS disease characterized by high
morbidity and mortality rates. Microglia are activated, undergo
morphological changes, and secrete cytokines within minutes of
a stroke (19); in addition, astrocytes promote neuroinflammation
by recruiting peripheral immune cells and releasing
(20, 21).
Neuroinflammation is increasingly prevalent in patients with

proinflammatory cytokines and chemokines
neurological disorders, and targeting it to modulate neurological
disorders has important clinical applications.

Herbal medicines have a long history of treating various
diseases and have been widely used as adjunctive therapies in
clinical settings in Asian countries such as China, Japan, and
(22). their
mechanisms have limited their development (23). Their

Korea However, ambiguous pharmacological
advantages, such as multi-target mechanisms of action and
favorable safety profiles, have brought these compounds into the
limelight. Their pharmacological effects have been investigated by
examining their active components (24, 25). Bioactive compounds
of plant origin are commonly used to treat neurological disorders
owing to their anti-inflammatory, antioxidative, and anti-
apoptotic activities (26, 27). Numerous clinical and experimental
studies have validated the therapeutic effects of natural
phytochemicals on neurological disorders through the inhibition
of neuroinflammation (28). Berberine mitigates neuronal damage
induced by AP in AD, and ginsenoside Rgl improves blood-brain
barrier (BBB) disruption and TBI (29). This paper summarizes the
research progress on bioactive compounds of herbal origin to treat
neurological diseases by inhibiting neuroinflammation, discussing
how to improve their utilization and target them to specific

mechanisms to provide therapeutic strategies and drug candidates.
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2 Effect of herbs on
inflammation-related signaling
molecules

2.1 TLR4/MyD88/NF-«xB pathway

Although several therapeutic techniques are currently available
for controlling neurodegenerative disorders, these drugs are associated
with a wide range of long-term side effects when used over time. The
development of safe, multi-targeted, and effective drugs for the
treatment of neurodegenerative diseases, particularly those derived
from natural products, is of particular importance. Studies on
neurodegenerative diseases have highlighted the critical role of NF-kB
in neurons and microglia (30). When the NF-kB pathway is activated
in microglia, it exerts secondary neurotoxicity by stimulating the
secretion of reactive oxygen species (ROS) and pro-inflammatory
cytokines, including TNF-a, IL-1p, and interferon-y (31). The Toll-like
receptor 4 (TLR4)/MyD88/NF-«B pathway is the central regulatory
network involved in neuroinflammation. The MyD88/NF-kB pathway
recognizes pathogen- and damage-associated molecular patterns,
activating a downstream pro-inflammatory cascade (32).

Baicalein (5,6,7-trihydroxyketone; C15H1005) is an important
flavonoid primarily isolated from the roots of Scutellaria baicalensis
Georgi (Labiatae). Previous studies have demonstrated that it
possesses various pharmacological properties, including antioxidant,
anti-inflammatory, and neuroprotective effects (33). Zhang et al.
reported the novel role of baicalein in anti-neuroinflammation by
inhibiting the production of proinflammatory cytokines, suppressing
the activation of astrocytes and microglial cells, and blocking NF-xB
and MAPK signaling. Additionally, in a microglia model of
lipopolysaccharide (LPS) activation, baicalein reduced inflammatory
mediators by inhibiting IkBa phosphorylation and p65 translocation,
and down-regulated TLR4, which functions upstream of NF-kB
signaling. Baicalein treatment prevented rotenone-induced brain
damage through its anti-inflammatory effects (34).

Additionally, tretinoin lactone, a diterpenoid tricyclic oxide
isolated from Tripterygium wilfordii Hook F (TWHF), demonstrates
pharmacological activity against inflammatory, neurodegenerative,
and neuropathic pain (35). Premkumar et al. were the first to observe
that tretinoin inhibits poly (I:C) (a TLR3 agonist)-induced COX-2 and
iNOS expression in mouse macrophages; this suggests that tretinoin
may prevent inflammation by inhibiting the TLR3 pathway in
macrophages (36).

Zhang et al. reported that Panax ginseng saponin R1 (NG-R1)
protects against ischemic stroke (IS) through multiple pathways; it
reduces intestinal permeability and inflammation by inhibiting the
TLR4/MyD88/NF-kB signaling pathway and simultaneously affects
the microbiota-gut-brain axis by reducing the abundance of
pathogenic bacteria and restoring the levels of beneficial bacteria.
Additionally, NG-R1 also leads to the restoration of tight junction
protein expression in the brain, ensuring BBB integrity (37).

Salvianolic acids (SAs) are hydrophilic phenolic compounds
derived from Salvia miltiorrhiza. SA for injection (SAFI) is a
lyophilized powder intended for intravenous administration. Zhao
et al. reported that SAs inhibit the NF-xB and MAPK pathways by
suppressing TLR4/MyD88 and TNF-a
inflammatory factor production; they also modulate the polarization

signaling, reducing

of astrocytes and microglia to attenuate neuroinflammation (38).
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Wang et al. reported a higher likelihood of good functional outcomes
at 3 months in patients receiving intravenous Recombinant tissue-type
plasminogen activator(rt-PA) combined with SAFI than in those
receiving intravenous rt-PA alone. Additionally, the use of SAFI for
2 weeks has been associated with improved neurological recovery (39).

MyD88 serves as an intracellular adapter protein for nearly all
TLRs. TLR3 functions as an adapter protein that uses TRIF as a signal
transducer (39, 40); IL-1f has also been shown to be downstream of
the proinflammatory effects of TLR3 in certain diseases (41). Zhang
et al. reported that intrathecal injection of triptolide exerts an anti-
inflammatory effect by inhibiting the TLR3/TRIF/IL-1p pathway,
which may be a potential mechanism by which tretinoin attenuates
neuropathic pain induced by peripheral nerve injury (42).
Additionally, triptolide downregulated inflammatory mediators
(NF-kB, Cox-2, NLRP3, IL-1f, and TNF-a) in LPS-treated
(100 ngmL™") C2C12 myotubes, suggesting that it prevents
LPS-induced inflammation and skeletal muscle atrophy (43).

The aforementioned herbal components exert multi-targeted anti-
neuroinflammatory effects by targeting the TLR/NF-kB pathway,
regulating glial cell polarization, and repairing the gut-brain axis.
However, their bioavailability and clinical translational efficiency
require technical optimization.

2.2 NLRP3 inflammatory vesicles

The nucleotide-binding domain of the leucine-rich repeat-
containing receptor family pyrin domain-containing 3 (NLRP3)
inflammasome, which contains a pyrin structural domain, is the most
extensively studied inflammasome; it is implicated in numerous
autoimmune and inflammatory diseases (44). The NLRP3
inflammasome is a protein complex consisting of NLRP3, a cysteine
aspartate-specific protease 1 precursor (pro-caspase-1), and apoptosis-
associated speckled protein. The assembly of NLRP3 inflammatory
vesicles results in the maturation of pro-caspase-1 into caspase-1,
which subsequently activates scorch death execution protein
gasdermin D (GSDMD), creating pores in the cell membrane that
exacerbate the release of IL-1f and IL-18 to trigger a more severe
inflammatory response (45, 46). The transcriptional silent information
regulator 1 (SIRT1) and downstream peroxisome proliferator-
(PGC-1a) can inhibit
neuroinflammation by suppressing the NLRP3 inflammasome

activated  receptor-a  coactivator
activation (47-49). Responses mediated by SIRT1 are involved in a
variety of physiological processes, including oxidative stress,
inflammation, and apoptosis (50).

Rhodopsin is derived from various natural sources, including
rhubarb (51); it exhibits a range of pharmacological effects, including
anti-inflammatory (52), anticancer, and immunosuppressive (53)
effects such as autophagy, apoptosis, and pyroptosis (54, 55). An
in vitro study reported that rhodopsin decreases microglial activation
(56). Cui et al. reported that rhodopsin may reduce inflammation and
demyelination in an experimental autoimmune encephalomyelitis
(EAE) rat model, likely through the SIRT1/PGC-1a/NLRP3 signaling
pathway, whereas microglia in an EAE rat model exhibited attenuated
inflammation and demyelination (57). Jiang et al. reported that
rhodopsin inhibits the LPS/ATP-induced activation of NLRP3
inflammatory vesicles, blocks the cleavage of GSDMD, and suppresses
LPS/ATP-induced cellular scorch death in BV2 cells; additionally, it

Frontiers in Nutrition

10.3389/fnut.2025.1646438

decreased the levels of inflammatory mediators TNF-a, IL-18, and
IL-1p, reduced HT-22 hippocampal neuronal apoptosis, and restored
cell viability (58).

Curcumin is derived from turmeric and exhibits numerous
pharmacological and biological activities, including anti-inflammatory
properties (59). Xu et al. reported that curcumin prevented rotenone-
induced PD by inhibiting the activation of microglial NLRP3
inflammasomes and attenuating mitochondrial dysfunction in mice
(59). Cai et al. reported that curcumin affected histone deacetylase
(HDAC) 6, which directly modulated NLRP3 acetylation and
inhibited neuroinflammation, alleviating neuronal degeneration in a
PD model (60).

Yang et al. reported that astragaloside IV significantly inhibited
NFkB-mediated inflammatory vesicle activation of NLRP3 in MPTP
mice in vivo and BV2 microglial cells; it also activates Nrf2, which
negatively influences NLRP3 activation by inhibiting ROS-induced
activation. These findings suggest that astragaloside IV protects
dopaminergic neurons by inducing neuroinflammation and oxidative
stress (61).

Li et al. reported that tensin alleviates neuroinflammation by
suppressing the ADRA1/NF-kB/NLRP3 pathway. Additionally, it
ameliorated the pathological state of tau proteins and restored
neuronal and BBB structures and functions, enhancing learning and
memory in 3xTg-AD mice (62). Zhao et al. reported that the
combination of ginseng and Ginkgo biloba extract modulated NLRP3
inflammatory vesicles and the CAMK4/CREB pathway to ameliorate
neuroinflammation and excitotoxicity in IS (63). Tongxinluo, a novel
neuroprotective formula with anti-inflammatory properties, is
recognized for its ability to stabilize vulnerable plaques in animal
models and patients with myocardial infarction (64). Wang et al.
reported that it also significantly alleviated astrocyte death following
cerebral ischemia/reperfusion by down-regulating the expression of
cleaved caspase-11/1, GSDMD, NLRP3, IL-6, and cleaved IL-1f (65).
Subsequently, a randomized clinical trial by Dong et al. demonstrated
that in patients with IS within 72 h of symptom onset, those who
received additional concentric loops were more likely to have a good
functional outcome than the placebo group. These findings provide
novel and valuable insights for the development of targeted therapeutic
strategies for neurological disorders.

2.3 JAK-STAT signaling regulation

The overactivation of microglia and astrocytes exacerbates the
involvement of the Janus kinase (JAK)/STAT pathway in
neuroinflammatory diseases by initiating innate immunity,
orchestrating adaptive immune responses, and suppressing
inflammation and immune activity. The JAK/STAT signaling pathway
is a pivotal driver of neuroinflammation in neurodegenerative
disorders. Targeting this pathway through interventions such as JAK
inhibitors holds significant therapeutic promise for treating conditions
such as AD and MS (66). In a landmark discovery, Su et al.
demonstrated that JAK1/STAT3 signaling serves as a pivotal regulator
of neuronal cell proliferation, differentiation, and programmed cell
death, while also exerting profound effects on inflammatory response
mechanisms (67).

Echinacoside (ECH) is a phenylacetaldehyde glycoside isolated
from the extract of Dioscorea alata; it has been extensively studied and
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found to have many pharmacological effects, such as antioxidant, anti-
inflammatory, anti-infective, and anti-tumor effects (68, 69). Lu et al.
demonstrated that both ECH and pinealoside significantly increased
the ratios of p-JAK1/JAKI and p-STAT3/STATS3. This compelling
evidence indicates that pinealoside directly activates the JAK1/STAT3
signaling cascade, stimulating neuronal proliferation while concurrently
inhibiting neuroinflammatory responses, ultimately manifesting potent
antidepressant effects (70). Nakamura et al. revealed that sustained
STATS3 signaling in senescent macrophages orchestrates microglial M2
polarization and significantly promotes neovascularization (71).

G. biloba (Ginkgoaceae), a reverse therapeutic agent for
inflammatory bowel disease, is a potent herbal medicine used to treat
IS. Its efficacy stems from key bioactive compounds such as flavonoid
glycoside ligands and terpene lactones. Extensive pharmacological
research has revealed that the active constituents of G. biloba exert
neuroprotective effects in IS by combating inflammation,
counteracting oxidative stress, and inhibiting apoptotic pathways
while simultaneously stimulating neurovascular regeneration and
enhancing axonal remodeling (72). Zhang et al. revealed in a
groundbreaking study that G. biloba extract combats ischemic brain
damage through dual mechanisms at the molecular level; it suppresses
astrocyte proliferation and leverages the LCN2-JAK2/STAT3 pathway
to inhibit neuroinflammatory cascades (73).

Although STATS3 is primarily activated by non-receptor tyrosine
kinases of the JAK family, the activity of JAK itself is subject to tight
regulation by the signal transduction inhibitory factor (SOCS) family
(74). Paeoniflorin (PF), a monoterpene glucoside with therapeutic
potential, is one of the most prominent bioactive constituents derived
from Paeoniflora roots; its potent anti-inflammatory properties have
been extensively documented in numerous animal studies revealing
its efficacy in mitigating inflammatory responses (75). In a
groundbreaking study conducted by Shi et al., researchers found that
PF significantly upregulates the expression of cytokine SOCS3,
effectively suppressing the IL-6/STAT3 signaling pathway in dendritic
cells (DCs) (76). Additionally, Zhang et al. revealed that PF decreases
Th17 differentiation by suppressing STAT3 phosphorylation. Their
research demonstrated that PF not only inhibited IL-6 production in
DCs but also lowered clinical scores in EAE mice, simultaneously
delaying disease progression while maintaining cellular regulatory
precision (77).

Salvia divinorum is derived from the rhizome of a traditional
Chinese medicinal herb of the same name, and salvinorin IIA is a
prominent lipophilic bioactive component. Chen et al. demonstrated
that tanshinone ITA (TAN) suppresses JAK2 kinase activity, effectively
inhibiting STAT1 Ser727 phosphorylation, thereby modulating this
critical signaling pathway (78). Herbal active ingredients, including
pineoside, paeoniflorin, and tanshinone IIA, exhibit high efficacy in
orchestrating a delicate balance between neuroinflammatory processes
and immune responses through dual-directional modulation of the
JAK-STAT pathway (selectively activating or inhibiting distinct
isoforms). However, challenges persist in elucidating their multi-
targeting mechanisms and optimizing effective drug delivery systems.

2.4 Epigenetic regulation

The primary mechanisms of epigenetic dynamics include DNA
methylation, histone modification, and non-coding RNA (79). DNA
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methylation is a reversible, heritable epigenetic modification that
provides an additional layer of control over gene expression without
changing the DNA sequence (80). Epigallocatechin-3-gallate (EGCG)
is an extract that is the primary polyphenolic component of green tea
(81). Klotho is an antioxidant, antifibrotic, and anti-inflammatory
protein whose promoter is susceptible to DNA methylation. Yang et al.
reported that under high glucose conditions, EGCG reduces the
methylation of the Klotho gene promoter through DNA
methyltransferase 3a to up-regulate Klotho expression and lower
IL-1p, IL-6, and TNF-a levels (82).

Sirtuin is a widely present NAD + -dependent histone deacetylase
(83). Liu et al. reported that ginsenoside Rg3 inhibits the NF-kB
pathway by activating SIRT1, alleviating neuroinflammation and
post-TBI in hippocampal neurons. These observations were further
supported by in vitro experiments, which showed that ginsenoside
Rg3 could attenuate hippocampal neuronal damage by inhibiting
LPS-induced microglial activation through modulation of the SIRT1/
NE-kB pathway (84). Additionally, within the spinal cord, the
administration of rhodopsin decreases leukocyte infiltration, down-
regulates IL-1P, reduces HDACG6 activity, and attenuates the
interactions of HDAC6 with NLRP3; this decreases the activity of the
HDAC6-NLRP3 complex, suppressing NLRP3 inflammatory vesicle
responses to reduce spinal inflammation and chronic inflammatory
pain (85).

miRNAs are small non-coding RNAs consisting of 18-25
nucleotides that regulate gene expression by binding to the 3’-UTR
region of mRNAs, resulting in either the inhibition of translation or
the induction of mRNA degradation (86). Using the TargetScan online
database, Ding et al. predicted that the target gene of miR-182-5p was
Racl. Previous studies have indicated that activated Racl subsequently
activates NF-kB and NOX2, resulting in increased inflammation,
oxidative stress, and neuronal death (87). Berberine is an isoquinoline-
derived alkaloid obtained from herbs such as Berberis vulgaris and
Phellodendron amurense, which have traditionally been used to treat
intestinal infections (87). Numerous studies have indicated that
berberine exhibits neuroprotective effects in CNS disorders such as IS
(88), AD (89), and PD (90). Ding et al. reported that berberine can act
on damaged Racl in neurons to attenuate neuroinflammation (87). In
conclusion, epigenetic regulation plays a significant role in the anti-
inflammatory effects of herbal components.

3 Herbs and inflammation-associated
cells

3.1 Microglial phenotype switching

A prevailing consensus indicates that microglial-mediated
neuroinflammation is linked to neurodegenerative diseases, including
AD, PD, and MS, exhibiting common pathophysiological mechanisms
(91). Microglia are classified into neurotoxic M1 and neuroprotective
M2 phenotypes (91). Microglia of the M1 phenotype release
proinflammatory mediators, including nitric oxide (92), IL-1, and
TNEF-q, leading to neurotoxicity and myelin damage. In contrast, M2
phenotype microglia promote the release of neurotrophic molecules
and anti-inflammatory cytokines, such as insulin-like growth factor-1,
glial cell-derived neurotrophic factor, and brain-derived neurotrophic
factor (93-95). These molecules promote the differentiation of
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oligodendrocyte progenitor cells and enhance neuroprotection and
myelin repair.

Considering the distinct roles of M1 and M2 microglia and
macrophages, functional phenotypic modulators have been used as
potential therapeutic agents for neurodegenerative diseases (96).
Astragaloside IV (AST-1IV) is a monomeric compound found in
Astragalus membranaceus. Recent studies have demonstrated its
neuroprotective effects in various intermediate neurological disorders
including ischemia, Parkinson’s disease, Alzheimer’s disease, and
autoimmune encephalomyelitis. AST IV alleviates motor deficits and
enhances neurochemical activity by reducing inflammation and
oxidative stress (97). Yu et al. reported that AST IV ameliorated
paralysis and pathology in EAE by inhibiting neurotoxicity caused by
MI1 microglia, facilitating the shift to the M2 phenotype, and
protecting neurons from apoptosis through inhibition of TLR 4/Myd
88/NF-kB signaling (98). Chen et al. reported that tanshinone ITA
shifts the polarization of microglia to the M2 state by activating ERf/
IL-10 signaling; additionally, it attenuates neuronal loss and
neuroinflammatory responses in mice with TBI (98). Sodium
tanshinone sulfonate ITA (STS), a derivative of tanshinone IIA,
possesses anti-inflammatory and anti-nociceptive properties.
MiR-125b-5p is an immune-related miRNA that is highly expressed
in microglia (99). Zeng et al. reported that STS pretreatment inhibits
LPS-stimulated proinflammatory cytokine secretion, decreases
proteins associated with the STAT3 pathway and apoptosis, increases
miR-125b-5p and proopiomelanocortin expression, and enhances the
conversion of microglial cells in BV-2 cells from the M1 to the M2
phenotype. STS exerts antinociceptive and antineuroinflammatory
effects on neuropathic pain in neuropathic pain rats by targeting
multiple pathways (99).

Rhodiola rosea (SLDS) extract, a phenylpropane glycoside
extracted from the plant’s roots, is one of the main active components
of the plant. Liu et al. reported that treating M1 microglia with SLDS
promotes oligodendrocyte differentiation by transitioning from the
MI to the M2 phenotype, indicating that it may facilitate myelin
regeneration in neurological diseases (100). IG et al. reported that
Artemisia absinthium extract ameliorated excessive neuroinflammation
and AP accumulation by modulating microglial activation and the
autophagy-lysosome pathway, suggesting that it is a promising
therapeutic candidate for the treatment of AD (101). These findings
offer new avenues for treating neurological disorders.

3.2 Regulation of astrocyte function

Similar to the activation of microglia, and in line with the
functional significance of their beneficial or harmful effects,
reactive astrocytes are classified as either neurotoxic (Al) or
neurotrophic (A2). Yu et al. reported that AST IV ameliorates
paralysis in EAE by shifting astrocytes towards the neuroprotective
A2 phenotype, protecting neurons from apoptosis and pathology
(96). alcohol-4-O-f-D-
glucopyranoside), a phenolic glycoside derived from the rhizome

Aspalathin ~ (4-hydroxybenzyl
of the plant Aspalathus, has demonstrated various effects in
preclinical models of CNS disorders. These include antioxidant
properties, anti-inflammatory effects, and microglial cell
activation inhibition (102). Wang et al. reported that aspalathin
inhibits the development of microglial cells and astrocytes,
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reduced oxidative stress, and prevented neuronal apoptosis,
preventing early brain injury induced by subarachnoid
hemorrhage (103). A recent study by Zuo et al. suggested that
aspalathin modulates astrocyte phenotypic changes through
angiotensin type II1, indicating that it exerts therapeutic effects
by modulating the RAS-SIRT3 pathway (104). However, the
specific modulation mechanism remains unclear and should
be the focus of future research.

3.3 Herbs and the gut-brain axis

Current research suggests that the gut flora contributes to
microglial maturation, BBB development, and neuron
proliferation, which are critical for the gut-brain axis (105). In
addition, neurological disorders such as MS, PD, and AD are
associated with the gut microbiome (105-107). Sun et al. reported
a significant increase in the population of lactic acid bacteria in
the intestines of AD mice following intervention with berberine,
reducing intestinal inflammation and helping to maintain the
balance of the intestinal microbiota (106, 108). Additionally, they
conducted an immunofluorescence chemical analysis of mouse
intestinal tissues and observed that berberine significantly
increased the expression of the intestinal junction proteins ZO-1,
occludin, and claudin-1, improving intestinal permeability and
preventing endotoxins from entering the bloodstream through the
intestinal barrier. Agirman et al. have shown that intestinal
disorders favor humoral signaling of inflammatory factors
through the gut-brain axis and can alter intestinal permeability
and cause neuroinflammatory symptoms before changes in the
CNS immune system (109). Berberine intervention may produce
neuroinflammatory symptoms by altering the intestinal flora and
increasing intestinal permeability, reducing brain inflammation
to exhibit neuroprotection. Berberine also removes A plaques
and increases the number of neurons in the brain, alleviating AD
to some extent (105).

Hedysari polysaccharide (RHP) is a key bioactive component
of Radix Hedysari. Studies have demonstrated that RHP has
neuroprotective properties (110). Yang et al. have reported that it
modulates the hippocampal proteomic and serum metabolomic
profiles of AD mice, enhances the intestinal barrier, attenuates
neuroinflammatory  responses, and reduces neuronal
mitochondrial damage. This suggests that RHP ameliorates
cognitive impairment in Senescence-Accelerated Mouse Prone 8
by regulating the gut-brain axis (111). Pseudostellaria heterophylla,
a herb with a history of use spanning thousands of years in China,
has been shown through modern pharmacological studies to
possess various biological activities, including anti-inflammatory
and immunomodulatory effects (112-114). He et al. have reported
that Pseudostellaria heterophylla polysaccharide is a potent and
effective drug for treating neuroinflammatory diseases in SAMP8
mice. They suggested that PH-PS might prevent AD progression
by modulating the gut microbiota and glial polarization, offering
evidence that could inform the design of potential dietary
therapies to prevent or cure AD (115).

Research has also focused on TCM prescriptions. Pingweisanjia
Pharmaceutical (PWP) not only prevents the spread of a-synuclein

across the gut-brain axis but also prevents neurodegeneration and
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Related mechanisms of Chinese herbal medicine affecting inflammatory pathways.

behavioral deficits. PWP treats PD through multiple pathways,
increasing beneficial flora involved in the gut-brain axis, including
Actinobacteria and Lactobacillus as well as decreasing the expression
of NLRP6 and GSDMD in PD mice (116-118). Despite the promising
results shown, the understanding of how herbs affect the gut-brain
axis is still unclear, providing a direction for future research (Figure 1).

Chinese herbal medicine can inhibit the release of inflammatory
mediators, such as IL-1p and IL-18, by regulating related inflammatory
pathways, (including TLR4/NF-kB, NLRP3, and JAK-STAT).
Additionally, it can also suppress neuroinflammation by modulating
the phenotypic transformation of astrocytes and microglia, as well as
by regulating epigenetics and the gut-brain axis, thereby improving
related neurological diseases.

4 Discussion

TCMs have demonstrated significant potential for treating
neurological disorders owing to their multi-target and multi-
mechanism actions. However, the bioavailability of most TCMs is
poor after oral administration, necessitating further in-depth
studies on targeted delivery (119, 120). Zhao et al. reported that a
microglia-derived Exos-Ber/Pal delivery system enhances drug
targeting and penetration into the brain. Additionally, the
combination of berberine and palmatine was found to more
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effectively restore neurons, inhibit Ap phagocytosis and microglial
activation, and modulate the secretion of inflammatory factors
(121). Hassan et al. reported the use of CS-TAN-NLCs
(nanostructured lipid carriers) as an effective nano-agent for the
treatment of PD following intranasal administration. The final
results indicated that CS-TAN-NLCs improved exercise and
alleviated depression in patients with PD, reducing NF-kp and
histone B expression to a greater extent than other delivery
methods. Elevated levels of histone B can lead to the production
of pro-inflammatory mediators and mitochondria-derived ROS,
ultimately inducing neuronal death. Overall, CS-TAN-NLCs
provide a highly adaptive strategy for the effective intranasal brain
delivery of TAN for the treatment of PD (122). Yang et al.
developed targeted liposomes and found that IGF1R-targeted
salvianolic acid A -loaded liposomes demonstrated a more potent
anti-neuroinflammatory effect than free SAA by suppressing the
activation of microglia and the release of pro-inflammatory
it  exhibited  superior
neuroinflammatory effects and maintained good biosafety (123).

cytokines;  additionally, anti-

In conclusion, bioactive compounds associated with TCM can
affect the progression and outcome of neurological diseases by
regulating pathways related to neuroinflammation, epigenetics,
and the gut-brain axis. Consequently, TCM has the potential to
offer new therapeutic options for treating and curing

neurological diseases.
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