& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY
loannis Zabetakis,
University of Limerick, Ireland

REVIEWED BY
Wenlong Sun,

Shandong University of Technology, China
Raushan Kumar,

ERA's Lucknow Medical College, India

*CORRESPONDENCE
Chen Jia
jc838703809@163.com

These authors have contributed equally to
this work and share first authorship

RECEIVED 06 June 2025
REVISED 22 October 2025
ACCEPTED 04 November 2025
PUBLISHED 25 November 2025

CITATION

Xie X, LiH, Gao Y, Zhao F, Li X and

Jia C (2025) Diagnostic efficacy of remnant
cholesterol inflammatory index in diabetic

kidney disease: machine learning approaches.

Front. Nutr. 12:1642358.
doi: 10.3389/fnut.2025.1642358

COPYRIGHT

© 2025 Xie, Li, Gao, Zhao, Li and Jia. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Nutrition

Frontiers in Nutrition

TYPE Original Research
PUBLISHED 25 November 2025
pol 10.3389/fnut.2025.1642358

Diagnostic efficacy of remnant
cholesterol inflammatory index in
diabetic kidney disease: machine
learning approaches

Xili Xie', Haifeng Li', Yan Gao', Feng Zhao', Xueyu Li and
Chen Jia*

Department of Disease Prevention and Control, General Hospital of Northern Theater Command,
Shenyang, Liaoning, China

Background: Emerging evidence indicates that remnant cholesterol (RC) and
inflammation play a crucial role in diabetic kidney disease (DKD) pathogenesis.
The association and diagnostic efficacy of remnant cholesterol inflammatory
index (RCII), integrating RC and inflammatory markers, with DKD remains
underexplored.

Methods: This cross-sectional study analyzed data from the National Health
and Nutrition Examination Survey (NHANES) 2015-2020, including 5,943
participants. DKD was defined by diabetes, urine albumin to creatinine ratio
(ACR) > 30 mg/g and an estimated glomerular filtration rate (eGFR) < 60 mL/
min/1.73 m2. RC was calculated as total cholesterol minus high-density and
low-density lipoprotein cholesterol, while RCIl was derived by multiplying RC by
high-sensitivity C-reactive protein (hs-CRP). Logistic regression and restricted
cubic spline analysis were used to evaluate associations and dose—response
relationship between RC and RCIl and DKD. We assessed RCII diagnostic efficacy
measured by five machine learning algorithms.

Results: Our study observed 1,014 cases of DKD (17.06%), with a higher
prevalence among males (14.1%) compared to females (11.7%). The highest RC
(OR: 2.73, 95% Cl: 2.12-3.52, P for trend<0.001) and RCIl (OR: 2.29, 95% ClI:
1.77-2.97, P for trend <0.001) levels were significantly associated with increased
DKD risk after full adjustment. The result showed both overall and nonlinear
positive correlations between the risk of DKD and both RC (P for overall
<0.001, P for nonlinear = 0.049) and RCII (P for overall <0.001, P for nonlinear
<0.001). Machine learning models incorporating RCII and traditional risk factors
demonstrated robust diagnostic efficacy, with extreme gradient boosting
(XGBoost) achieving the highest AUC values in the testing set (AUC: 0.953).
Conclusion: Our study suggested RCIl was a novel and promising biomarker for
DKD risk. Its integration into diagnostic models may enhance early identification
and personalized prevention strategies for DKD, addressing a critical need in
diabetes management.
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1 Introduction

Diabetic kidney disease (DKD) is a major and growing
complication of diabetes, marked by a gradual deterioration in kidney
function that frequently results in end-stage renal disease (ESRD) (1).
As the global prevalence of diabetes continues to rise, so does the
burden of DKD, posing serious challenges to healthcare systems
worldwide (2, 3). The association between metabolic dysregulation
associated with diabetes and the subsequent development of renal
impairment has drawn considerable attention in both clinical and
research settings (4, 5). Early identification and risk stratification of
DKD are critical for implementing timely interventions to slow
disease progression and improve outcomes. Consequently, it is crucial
to discover new biomarkers that can improve early diagnosis and risk
assessment, ultimately guiding more personalized and effective
prevention strategies.

Remnant cholesterol (RC) has gained attention as an important
contributor to the pathogenesis of cardiovascular diseases (CVD) and
metabolic disorders (6, 7). RC represents the cholesterol content of
triglyceride-rich lipoproteins, including very-low-density lipoproteins
(VLDL) and chylomicron remnants (8), which are known to
contribute to atherosclerosis (9). There is a growing body of evidence
that RC is not only a risk factor for CVD but also influences the
development of diabetic complications, such as cardiovascular
outcomes in individuals with diabetes and DKD (10, 11). Additionally,
inflammation is a well-established driver of DKD pathogenesis,
contributing to glomerular injury, tubulointerstitial fibrosis, and
progressive renal function decline (12). Given the interplay between
lipid metabolism and inflammation in the development of diabetic
complications, there is growing interest in composite biomarkers that
integrate these two pathways (13, 14). The remnant cholesterol
inflammatory index (RCII) was a novel biomarker combining RC
levels with inflammatory markers (15). By capturing both lipid
abnormalities and inflammatory activity, RCII may offer deeper
insights into the pathophysiological processes underlying DKD and
improve risk stratification beyond traditional biomarkers (16).
However, despite its promising theoretical foundation, research on the
association between RCII and DKD is notably lacking. To date, no
studies have systematically investigated the diagnostic efficacy of RCII
for DKD, leaving a significant gap in our understanding of its
clinical utility.

To address this gap, our study investigated the association of RC
and RCII with DKD in a nationally representative data in the USA,
and the dose-response relationship of RC and RCII on DKD. We also
explored the diagnostic efficacy of a combination of traditional
potential risk factors and RCII by using machine learning algorithms.
By addressing these objectives, our study aims to provide robust
evidence on the role of RCII as a novel biomarker for DKD, offering a
potential tool for DKD diagnostic and targeted prevention strategies
in DKD populations.

2 Materials and methods
2.1 Study population

The National Health and Nutrition Examination Survey
(NHANES) is a comprehensive program designed to assess the health
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and nutritional status of non-institutionalized individuals in the
United States. The research used publicly accessible NHANES data,
applying a cross-sectional design with a complex, multistage, stratified
sampling method to guarantee the U.S. population’s representativeness.
Initially, 25,531 participants were enrolled across two consecutive
cycles, 2015-2016 and 2017-2020, which were included in the
analysis. Following the application of exclusion criteria, the study
population was finalized by excluding those under 20 years of age
(n=10,580) and pregnant women (n=157). Furthermore,
participants with incomplete data on estimated glomerular filtration
rate (eGFR), albumin to creatinine ratio (ACR), albumin (ALB),
serum creatinine (Scr), diabetes status, or essential laboratory
parameters such as high-sensitivity C-reactive protein (hs-CRP), total
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and
low-density lipoprotein cholesterol (LDL-C) were also excluded from
the analysis. The final analysis comprised 5,943 participants
(Supplementary Figure S1). This carefully selected cohort enabled a
rigorous investigation of the relationships between remnant
cholesterol, inflammatory markers, and diabetic kidney disease. The
study protocol was approved by the NCHS Ethics Review Board, and
all participants provided written informed consent. The study abided
by the Declaration of Helsinki principles.

2.2 Assessment of RC and RCI|I

RC was calculated as the difference between TC and the sum of
HDL-C and LDL-C, using the formula (17):
RC (mg/dL)=TC (mg/dL)— HDL-C[mg/dL |
§raH)= § +LDL-C[mg/dL]

This calculation was performed using laboratory data obtained
from the NHANES database.

RCII was created by combining RC levels with hs-CRP, a
recognized indicator of systemic inflammation. RCII was calculated
as (15):

RCII=RC (mg/dL)xhs—CRP(mg/L)/10

Both RC and RCII were treated as continuous variables in the
analysis. To facilitate clinical interpretation, RC and RCII were also
categorized into quartiles based on their distribution in the study
population (15).

2.3 Outcome ascertainment: DKD

DKD was diagnosed by confirming both diabetes mellitus and
kidney dysfunction. Diabetes mellitus was determined following the
American Diabetes Association (ADA) guidelines (18), which
included: a self-reported diagnosis by a healthcare provider, current
use of antidiabetic medications, or hemoglobin Alc (HbAlc) levels of
6.5% or higher.

Diagnostic criteria for DKD: (1) Confirmed diagnosis of diabetes,
and (2) urine albumin to creatinine ratio (ACR) > 30 mg/g or

frontiersin.org


https://doi.org/10.3389/fnut.2025.1642358
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Xie etal.

estimated glomerular filtration rate (¢GFR) < 60 mL/min/1.73 m? or
both (19). Kidney dysfunction was evaluated using the eGFR, which
was derived from the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) formula (20).

Scr Scr 0129
eGFR =141xmin (—,1) X max [—,lj
K K

x 0.993% x1.018(if fernale)x1.159(if black)

In the equation, Scr represents serum creatinine levels (mg/dL),
with k values set at 0.9 for males and 0.7 for females. The term ‘min’
refers to the smaller value between Scr/k and 1, while ‘max’ denotes
the larger value between Scr/x and 1.

An eGFR < 60 mL/min/1.73 m* was considered indicative of
impaired renal function. Participants were classified as having DKD
if they met the criteria for diabetes mellitus and had either reduced
eGFR (< 60 mL/min/1.73 m?).

2.4 Covariates

Sociodemographic information, such as age (years), gender (male
or female), race (Mexican American, Other Hispanic, Non-Hispanic
White People, Non-Hispanic Black, or Other), marital status (married
or other), education level (<high school diploma or >high school
diploma), family poverty income ratio (PIR) (<1 or >1), smoking
status (yes or no), and drinking status (yes or no) were gathered using
standardized NHANES questionnaires. Physical measurements
included body mass index (BMI), systolic blood pressure (SBP), and
diastolic blood pressure (DBP). Hypertension was classified based on
either a self-reported diagnosis by a healthcare provider or blood
pressure readings meeting the International Society of Hypertension
criteria (SBP > 140 mmHg and/or DBP > 90 mmHg) (21). Diabetes
duration (years) is defined as the age at which the doctor diagnosed
diabetes minus the age at which the individual was enrolled in
the study.

2.5 Statistical analysis

All analyses were conducted using appropriate NHANES
sampling weights, strata, and clustering variables, following
established statistical protocols. To impute missing covariate data, the
‘na.roughfix’ function within the ‘randomForest’ package was utilized.
To assess the robustness of our findings regarding missing data,
we performed a sensitivity analysis using multiple imputation by
chained equations (MICE) with 5 imputed datasets and pooled results
according to Rubin’s rules. Categorical data were expressed as counts
(N) and proportions (%), and comparisons were made using the
chi-square test. In continuous variables, means were expressed with
standard deviations (SD) with ¢-test, or medians were expressed with
interquartile ranges (IQR) with Mann-Whitney’s U test.

We assessed the association of RC and RCII of DKD by using
logistic regression analysis. As a reference group, the lowest quartile
was used in all analysis. Model 1 was adjusted for none. Age and
gender were controlled for in Model 2. Model 3 additionally
considered race, educational level, marital status, PIR, smoking status,
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drinking status, BMI, hypertension, and diabetes duration. The results
were expressed as odds ratio (OR) and 95% confidence intervals. P for
trends were also established and the associations between per 1-SD
RC or RCII increase and odds of DKD were also examined. Interaction
and stratified analyses were conducted according to covariates. To
examine the dose-response relationship between RC, RCII, and DKD,
restricted cubic spline (RCS) models were applied. Sensitivity analyses
were conducted to ensure the reliability of the findings. We also
explored the associations of RC and RCII with HbAlc, ACR, and
eGFR by using multiple linear regression.

The dataset was split into training and testing subsets in a 7:3 ratio.
Multivariable logistic regression was used to identify traditional
clinical features independently associated with DKD in the training
set. The candidate variables included in this screening process were
age, gender, race, educational level, marital status, PIR, smoking
status, drinking status, hypertension, diabetes duration, and
BMLI. Variables with a significance level of p < 0.05 in the multivariable
analysis were retained as significant traditional risk factors for
subsequent model construction. Five machine learning methods,
including logistic regression, random forest, k-nearest neighbors
(KNN), extreme gradient boosting (XGBoost), and light gradient
boosting machine (LightGBM), were utilized to construct diagnostic
models that included both traditional risk factors and RCII. The best-
performing model, as determined by the highest Area Under the
Curve (AUC) in the testing set, was further interpreted using Shapley
Additive Explanations (SHAP) to elucidate the direction and
magnitude of each feature’s contribution to the model’s predictions.
To further assess the generalizability of our optimal model,
we performed an external validation as a sensitivity analysis. The best-
performing model, trained on the NHANES dataset, was applied
without retraining to an independent external dataset derived from
the 2011 wave of the China Health and Retirement Longitudinal Study
(CHARLS).

Statistical analysis was conducted utilizing R 4.4.2.

3 Results
3.1 Characteristics of participants

The characteristics of 5,943 participants stratified by DKD status
are presented in Table 1. The study identified 1,014 cases of DKD
(17.06%). Participants with DKD were significantly older
(62.58 £ 11.93 vs. 48.33 £ 17.23, p <0.001) and had higher BMI
(32.43 £7.74 vs. 29.26 + 7.23, p < 0.001). Notable racial differences
were observed (p =0.001), with Mexican American showing the
highest DKD prevalence (22.37%). The DKD group exhibited worse
metabolic profiles, including HbAlc (7.54 + 1.78 vs. 5.54 + 0.62,
p<0.001), and lower eGFR (57.38+10.36 £7.59, p<0.001).
Additionally, DKD participants had significantly higher hs-CRP, RC
and RCII levels (p < 0.001). Additionally, Supplementary Table 51 also
showed characteristics of study participants before imputation.

3.2 Associations of RC and RCII with DKD

Table 2 presents the associations between RC and RCII levels
and DKD risk across three adjusted models. After adjusting for all
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TABLE 1 Characteristics of study participants according to diabetic kidney disease.

Characteristics Overall Non-DKD
N (%) 5,943 4,929 (82.94) 1,014 (17.06)
Age, years, mean + SD 50.77 £+ 17.30 48.33 £17.23 62.58 £11.93 <0.007 %%
Gender <0.001%#%*
Male 2,889 (48.61) 2,332 (80.72) 557 (19.28)
Female 3,054 (51.39) 2,597 (85.04) 457 (14.96)
Race 0.001%*
Mexican American 845 (14.22) 656 (77.63) 189 (22.37)
Other Hispanic 702 (11.81) 554 (78.92) 148 (21.08)
Non-Hispanic White People 2011 (33.84) 1711 (85.08) 300 (14.92)
Non-Hispanic Black 1,383 (23.27) 1,178 (85.18) 205 (14.82)
Other 1,002 (16.86) 830 (82.83) 172 (17.17)
Educational level <0.001##%*
<High school diploma 2,618 (44.05) 2075 (79.26) 543 (20.74)
>High school diploma 3,325 (55.95) 2,854 (85.83) 471 (14.17)
Marital status 0.001%**
Married 3,350 (56.37) 2,729 (81.46) 621 (18.54)
Other 2,593 (43.63) 2,200 (84.84) 393 (15.16)
PIR 0.603
<1 1,120 (18.85) 923 (82.41) 197 (17.59)
>1 4,823 (81.15) 4,006 (83.06) 817 (16.94)
Smoking status, N (%) 0.001%*
Yes 2,573 (43.29) 2086 (81.07) 487 (18.93)
No 3,370 (56.71) 2,843 (84.36) 527 (15.64)
Drinking status, N (%) <0.001%#%#*
Yes 4,482 (75.42) 3,854 (85.99) 628 (14.01)
No 1,461 (24.58) 1,075 (73.58) 386 (26.42)
Hypertension, N (%) <0.001 %%
Yes 3,235 (54.43) 1932 (71.34) 776 (28.66)
No 2,708 (45.57) 2,997 (92.64) 238 (7.36)
Diabetes duration, years, mean + SD 10.66 + 5.47 10.19 £ 3.69 12.92 £ 10.16 0.002%*
HbAlc, %, mean + SD 588+ 1.19 5.54+0.62 7.54+1.78 <0.001##*
ACR, mg/g, mean + SD 53.94 + 358.03 26.26 £ 163.34 188.50 + 774.77 <0.001#%#*
ALB, g/L, mean + SD 56.34 + 346.96 31.12 £208.81 178.94 £ 689.84 <0.001%#*
Scr, mg/dL, mean + SD 132.17 + 81.88 133.47 + 84.11 125.82 £ 69.71 0.007%*
eGFR, mL/min/1.73 m? mean + SD 56.29 +10.22 57.38 £10.36 51.00 £7.59 <0.001%#**
BMLI, kg/m?, mean + SD 29.80 +7.39 29.26 £7.23 3243 +7.74 0.013*
TC, mg/dl, mean + SD 185.85 + 40.81 188.17 +39.71 174.56 + 44.08 0.001%*
HDL-C, mg/dL, mean + SD 54.41 + 16.50 56.0 + 0.6 50.4+0.9 <0.001%#%*
LDL-C, mg/dL, mean + SD 110.17 + 35.84 113.1£0.9 103.1 £2.0 <0.001%#%*
hs-CRP, mg/l, median (IQR) 4.21 +8.32 3.82+7.38 6.12+11.72 <0.001 %%
RC, mg/dL, median (IQR) 21.26 £ 12.71 20.29 +12.34 25.99 + 13.42 <0.001 %%
RCII, median (IQR) 9.26 £ 18.98 7.88 £15.53 15.97 £29.74 <0.001%#%*%*

Data are presented as number (%), mean + standard deviation (SD), or median (interquartile range). DKD, diabetic kidney disease; BMI, body mass index; HbA1c, glycated hemoglobin; ACR,
albumin to creatinine ratio; ALB, albumin; Scr, serum creatinine; eGFR, estimated glomerular filtration rate; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol, hs-CRP, high-sensitivity C-reactive protein; RC, remnant cholesterol; RCII, remnant cholesterol inflammatory index. *p < 0.05, **p < 0.01, ***p < 0.001.
p-values which are lower than the statistical significance of 0.05 have been bolded.
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TABLE 2 Associations of RC and RCII with the risk of diabetic kidney disease.

10.3389/fnut.2025.1642358

Characteristics Model 1 Model 2 Model 3
OR (95%Cl) OR (95%Cl) OR (95%Cl)
RC
Quartile 1 1.0 (Reference) 1.0 (Reference) 1.0 (Reference)
Quartile 2 1.93 (1.52, 2.43) 1.58 (1.24, 2.02) 1.41 (1.09, 1.82)
Quartile 3 3.13 (2,51, 3.91) 2.48 (1.96, 3.13) 2.02 (1.57, 2.60)
Quartile 4 4.14 (3.32,5.15) 3.49 (2.77, 4.39) 2.73 (2.12,3.52)
P for trend <0.001 <0.001 <0.001
Per-SD 1.47 (1.39, 1.56) 1.47 (1.38, 1.57) 1.36 (1.27, 1.47)
RCII
Quartile 1 1.0 (Reference) 1.0 (Reference) 1.0 (Reference)
Quartile 2 1.50 (1.19, 1.89) 1.23 (0.97, 1.57) 1.06 (0.82, 1.37)
Quartile 3 2.28 (1.83,2.83) 1.94 (1.54, 2.44) 1.49 (1.16,1.91)
Quartile 4 3.53 (2.86, 4.35) 3.47 (2.78, 4.33) 2.29 (1.77,2.97)
P for trend <0.001 <0.001 <0.001
Per-SD 1.42 (1.32,1.52) 1.48 (1.37, 1.60) 1.32(1.22,1.42)

Model 1: Adjusted for none.
Model 2: Adjusted for age, gender (male; female).

Model 3: Adjusted for age, gender (male; female), race (Mexican American; Other Hispanic; Non-Hispanic Black; Non-Hispanic White People; Other), educational level, (<High school
diploma; >High school diploma), marital status, (Married; Other), PIR (<1; >1), smoking status (Yes; No), drinking status (Yes; No), BMI, Hypertension (Yes; No), and diabetes duration.

covariates, elevated RC levels showed a significant positive
association with DKD risk (OR: 2.73, 95% CI: 2.12-3.52, P for
trend <0.001). Additionally, each 1 standard deviation (SD)
increase in RC levels was linked to a higher risk of DKD (OR: 1.36,
95% CI: 1.27-1.47). Similarly, higher RCII levels were correlated
with increased DKD risk (OR: 2.29, 95% CI: 1.77-2.97, P for trend
<0.001), and per 1 SD rise in RCII levels correlated with greater
DKD risk (OR: 1.32, 95% CI: 1.22, 1.42). Moreover, the spline
regression models further validated the presence of both linear
and nonlinear positive correlations between the risk of DKD and
both RC (P for overall <0.001, P for nonlinear = 0.049) and RCII
(P for overall <0.001, P for nonlinear <0.001), as illustrated in
Figure 1. Notably, inflection points were identified at RC = 49.85
and RCII = 49.64, beyond which the risk of DKD increased
markedly. In the supplementary analyses, we further examined the
associations of RC and RCII with various metabolic and renal
parameters. The analysis of glycemic control indicators revealed
strong positive associations of RC and RCII levels with HbAlc
(Supplementary Table S2). Higher RC and RCII levels were
with  the ACR
(Supplementary Table S3). Regarding renal function, higher RC

associated increased  level  of
and RCII levels were associated with decreased eGFR
(Supplementary Table S4). The component analysis of RCII
(Supplementary Table S5) indicated that hs-CRP, TC, HDL-C, and
LDL-C all contributed to observed associations with DKD risk.
The significant associations of RC and RCII with DKD risk
remained robust after further adjustment for lipid-lowering and
antidiabetic drug wuse (both P for trend < 0.001) in
Supplementary Table S6. The sensitivity analysis using multiple
imputations showed the RCII and RC were also positively
associated with the risk of DKD in Supplementary Table S7.

Frontiers in Nutrition

3.3 Stratified analyses

Stratified analyses revealed significant interactions between RC/
RCII levels and various demographic and traditional risk factors
associated with DKD risk (Table 3). For RC, the strongest associations
with DKD were observed among females (OR: 4.61, 95% CI: 3.08-
6.90), non-Hispanic Black individuals (OR: 5.64, 95% CI: 3.19-9.97),
above high school diploma (OR: 3.32, 95% CI: 2.28-4.82), other
marital status (OR: 3.19, 95% CI: 2.12-4.79) and those with
hypertension (OR: 2.61, 95% CI: 1.93-3.54). Significant interaction
effects were noted for all covariates and RC (P-interaction <0.05).

For RCII, the strongest associations were observed among females
(OR: 2.84, 95% CI: 1.90, 4.25), non-Hispanic Black individuals (OR:
3.99,95% CI: 2.22-7.20), and those with hypertension (OR: 2.21, 95%
CI: 1.63-3.01). Significant interaction effects were also noted for all
covariates and RCII (P-interaction <0.05).

3.4 DKD risk diagnostic model combining
traditional risk factors and RCI|

The multivariate logistic regression analysis
(Supplementary Table S9) identified several traditional risk factors
significantly associated with DKD, including age, gender, race,
educational level, marital status, drinking status, hypertension,
diabetes duration, and BMI (p < 0.05). These factors, along with RCI],
were incorporated into machine learning models to diagnose
DKD. The study population was divided into a training set (n = 4,161)
and a testing set (n =1782) (Supplementary Table S10). Figure 2
illustrates the performance of ML models incorporating RCII and

traditional risk factors for DKD. In the training set (Figure 2A), the
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FIGURE 1

Restricted cubic splines for associations of RC and RCII with the risk of diabetic kidney disease. Restricted cubic spline plots show the association
between (A) RC and (B) RCII with the adjusted odds ratios (solid lines) and 95% confidence intervals (shaded areas) for diabetic kidney disease. The P
for overall effect tests the global statistical significance of the association (linear or nonlinear), while the P for nonlinear tests the specific nonlinear
component of the dose—response relationship.

models demonstrated excellent diagnostic efficacy, with RF (AUC:  magnitude of each feature’s impact on model diagnose, revealing that
0.999), and KNN (AUC: 0.999). XGBoost also performed excellent  variables such as diabetes duration, age, BMIJ, race, hypertension, RCII
discrimination (AUC: 0.972), followed by LightGBM (AUC: 0.970),  significantly elevated the risk of DKD. Additionally, the SHAP
SVM (AUC: 0.938), LR (AUC: 0.828). In the testing set (Figure 2B),  waterfall plot (Figure 3C) details the contribution of each feature to
XGBoost (AUC: 0.953), LightGBM (AUC: 0.930), RF (AUC: 0.905)  the models diagnose of DKD for the third participant. The SHAP
showed the highest and most consistent performance. SVM also  values in the plot quantitatively demonstrate how each feature
performed excellent discrimination (AUC: 0.881), followed by LR influences the diagnostic outcome, with specific values indicating
(AUC: 0.810) and KNN (AUC: 0.778). The calibration curves either positive or negative contributions. Notably, a diabetes duration
(Figure 2C) and DCA (Figure 2D) further confirmed the clinical ~ of 20.7 years, an age of 60 years and the presence of hypertension
utility of the models, with XGBoost demonstrating robust calibration ~ showed significant positive impacts, contributing +0.218, +0.0912,
and net benefit across a range of risk thresholds. These results  +0.0484 to the diagnosis, respectively. Conversely, a BMI of 19.7 and
highlight the effectiveness of combining RCII with traditional risk ~ an RCII level of 0.36 exerted negative effects on the diagnosis, with
factors in ML models for DKD diagnoses, with XGBoost emergingas  respective contributions of —0.143 and —0.0848. Figures 3D-F
the most reliable approach. Moreover, the accuracy of seven machine  presents a comparative analysis of the top three features against the
learning models in the training and testing sets is summarized in ~ actual RCII values and their corresponding SHAP values,
Supplementary Table S11. The sensitivity analysis using multiple ~ demonstrating that features with positive SHAP values (>0) are
imputations showed the XGBoost was still the most reliable approach ~ associated with increased diagnostic probabilities in the model,
(Supplementary Table S12; Supplementary Figure 52). In the external ~ thereby indicating an elevated risk of DKD. The longer diabetes
validation conducted among the CHARLS participants, the diagnostic ~ duration, the older individuals, the greater the BMI and the higher the
performance of all machine learning models was suboptimal (AUCs  RCII level, the classification was DKD.

ranging from 0.513 to 0.594) (Supplementary Figure S3), but the

positive association was still observed between RCII and DKD risk

(OR: 1.42, 95% CI: 1.23-1.64) (Supplementary Table S8). 4 Discussion
As illustrated in the SHAP summary bar plot (Figure 3A), the
relative importance of features in the model was assessed using mean This study provides robust evidence supporting the role of

SHAP values, ranked from highest to lowest: diabetes duration, age, =~ remnant cholesterol (RC) and the remnant cholesterol inflammatory
BM], race, hypertension, RCII, gender, drinking status, marital status, ~ index (RCII) as novel biomarkers for diabetic kidney disease (DKD)
educational lever, emerged as the influential features. The SHAP  risk. Our findings demonstrate that elevated RC and RCII levels are
summary dot plot (Figure 3B) further demonstrates the directionand  significantly associated with an increased risk of DKD, with
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TABLE 3 Stratified analysis of the associations of RC and RCII with the risk of diabetic kidney disease.

Subgroup
Quartile 4 vs. P-interaction Quartile 4 vs. P-interaction
Quartile 1 Quartile 1

Gender <0.001 <0.001
Male 2.00 (1.42, 2.81) 1.90 (1.34, 2.94)
Female 4.61 (3.08, 6.90) 2.84 (1.90, 4.25)

Race <0.001 0.020
Mexican American 2.15(1.13,4.08) 2.57 (1.30, 5.08)
Other Hispanic 1.57 (0.73, 3.37) 1.83(0.87, 3.88)
Non-Hispanic White People 2.67 (1.66, 4.30) 1.78 (1.11, 2.83)
Non-Hispanic Black 5.64 (3.19,9.97) 3.99 (2.22,7.20)
Other 1.67 (0.90, 3.09) 1.80 (0.96, 3.38)

Educational level <0.001 <0.001
<High school diploma 2.32 (1.64, 3.29) 1.79 (1.25, 2.56)
>High school diploma 3.32(2.28,4.82) 2.96 (2.03, 4.30)

Marital status <0.001 0.006
Married 2.44 (1.76, 3.37) 2.15 (1.54, 3.00)
Other 3.19 (2.12,4.79) 2.51 (1.66, 3.80)

PIR <0.001 <0.001
<1 3.44 (2.36, 5.01) 2.65 (1.49, 4.74)
>1 2.19 (1.54, 3.11) 2.77 (2.08, 3.67)

Smoking status, N (%) <0.001 <0.001
Yes 1.88 (1.30, 2.72) 1.88 (1.30, 2.72)
No 2.86 (1.99, 4.12) 2.86(1.99, 4.12)

Drinking status, N (%) <0.001 <0.001
Yes 2.64 (1.94, 3.60) 2.65 (1.91, 3.66)
No 2.95 (1.89, 4.59) 1.71 (1.11, 2.64)

Hypertension, N (%) <0.001 <0.001
Yes 2.61 (1.93, 3.54) 2.21 (1.63, 3.01)
No 2.50 (1.57, 3.96) 1.97 (1.21, 3.22)

Adjusted for age, gender (male; female), race (Mexican American; Other Hispanic; Non-Hispanic Black; Non-Hispanic White; Other), educational level, (<High school diploma; >High school
diploma) marital status (Married; Other), PIR (<1; >1), smoking status (Yes; No), drinking status (Yes; No), BMI, Hypertension (Yes; No), and diabetes duration.

dose-response relationships. Furthermore, the integration of RCII
with traditional risk factors in machine learning models showed
strong diagnostic efficacy, underscoring its clinical utility for early
identification and risk stratification in DKD populations.

The robust positive association between RC and DKD risk
observed in our study corroborates the growing body of evidence
establishing lipid abnormalities as critical contributors to diabetic
complications. The association was supported by multiple population-
based studies across diverse ethnic groups. A Chinese cohort study
demonstrated significant associations between RC levels and both
DKD and ESRD (22). A FinnDiane study prospectively also observed
that the higher level of RC was linked to DKD risk and severe diabetic
retinopathy (23). Furthermore, longitudinal data from a Chinese
diabetes cohort revealed that both baseline and cumulative RC
exposure were positively correlated with DKD development (24).
Moreover, the pathological significance of RC extends beyond renal
outcomes, as evidenced by its association with increased CVD

Frontiers in Nutrition

mortality in participants with type 2 diabetes and established DKD
(25). The mechanistic basis for these observational studies lied in RC’s
biological properties as a component of triglyceride-rich lipoproteins.
A previous study has shown that participants with chronic kidney
disease (CKD) have increased production of triglyceride-rich
lipoproteins, leading to reduced clearance (26). Moreover, RC is
closely linked to renal function progression and the occurrence of
cardiovascular events, suggesting that RC may be a new non-invasive
marker for predicting ESKD risk (22). Notably, the differential
strength of association observed across demographic subgroups -
particularly in females, non-Hispanic Black individuals, and
hypertensive patients - underscores the importance of population-
specific risk stratification in DKD management. These findings
indicate that RC significantly contributes to the onset and progression
of diabetic nephropathy. Its association with inflammation and
cardiovascular risk further underscores the importance of managing
RC in diabetic patients (27). These findings offer new perspectives for
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clinical practice, suggesting the need for further research into the
specific mechanisms of RC in diabetic nephropathy and potential
therapeutic strategies.

Our study also highlighted the novel RCII biomarker, which
integrates RC with systemic inflammation, offers a more
comprehensive assessment of DKD risk. Inflammation is a well-
recognized driver of DKD progression, contributing to both
glomerular damage and tubulointerstitial fibrosis. The development
of renal fibrosis is driven by intricate interactions between immune
cells and resident kidney cells, which secrete pro-fibrotic cytokines
and growth factors, promoting fibrosis. Macrophages, for instance,
play a dual role in renal inflammation and fibrosis. They can adopt a
pro-inflammatory phenotype that exacerbates renal injury, or an anti-
inflammatory phenotype that aids in repair. However, persistent
inflammation frequently results in advancing renal fibrosis, potentially
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leading to end-stage renal disease (28). Additionally, the inflammatory
milieu in DKD is influenced by various factors, including metabolic
dysfunction and hemodynamic alterations. These elements intensify
inflammation and promote fibrosis by triggering processes like
epithelial-mesenchymal transition (EMT) and inducing cell cycle
arrest in tubular epithelial cells. The activation of pathways like mTOR
signaling in macrophages further enhances the inflammatory response
and fibrosis-associated EMT, highlighting the intricate link between
inflammation and fibrosis in DKD (29). Research underscores the
involvement of inflammation in diabetic nephropathy, highlighting
how immune cells, cytokines, and chemokines play key roles in
initiating and advancing the condition. These inflammatory mediators
create a proinflammatory microenvironment that exacerbates kidney
damage, leading to increased fibrosis and progression to ESKD (30).
Additionally, the combination of lipids and inflammation may

frontiersin.org


https://doi.org/10.3389/fnut.2025.1642358
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Xie etal. 10.3389/fnut.2025.1642358
A xgboost B xgboost C xgboost
Davetsduaton | B o — oz
- P [ o —«;uu.. - Diabetesduration=207] [ 70218
B B + o 107{ QT
High Age=60 +0.0912 y
Race Race {; g
. RCN=036 -0.0848
Hypertension | Hypertension { -‘ 3 RacE 4 P 0.0586
© :
Rail Rail +_._.. H Hypertension = 1
& 2
- =
Low 1
} R
Educationalevel | Educationalivel { > Ellw)-0164
060 %6 oo oz 3z o0 2 o4 o5 X3 o0 B ok 0% %0
mean(|SHAP valuel) SHAP value Prediction
D xgboost E xgboost F xgboost
. . .
02 L 02 . 02 £
. = o . . .
o® * L i Lid %
j—— . . — . .« o . .
.-0 .Q & o & o ° ..0 » { T
088, o % Diabetesduration ol e | = Age o288, o0 " BMI
B ~ o . 0 ~ o o . 0 o1 ) o .
g oy " . - oo 60
3 4 = ¥ 4 B 3 » o
S | S e o ° ° . % s . @ g0 4 ° . o § I L ° . =
k4 0 e . k4 tefee o ° 0 & 30 o ° . “©
E 2 £ 42 W I
% it % © 5 S
20
0.0 0 00 20; 00
H ] H
01 01 01
] 100 2o 3% T 100 3t T 00 B 3t
RCI RCI RCI
FIGURE 3

RCII and age; (F) SHAP dependence plots of RCIl and BMI.

XGBoost explanation by the Shapley Additive Explanation (SHAP) method. (A) Order plot of variable importance for SHAP analysis; (B) Statistical graph
of variable contribution in SHAP analysis; (C) Waterfall plot; (D) SHAP dependence plots of RCIl and diabetes duration; (E) SHAP dependence plots of

be more likely to cause the occurrence of DKD. A study examining the
association between remnant cholesterol and CKD highlighted the
mediating role of inflammation. It was found that remnant cholesterol
and preinflammatory markers had a combined effect on CKD,
emphasizing the importance of inflammation in the relationship
between remnant cholesterol and renal dysfunction (31). Studies has
demonstrated a strong link between glomerular filtration rate,
inflammation, and lipid metabolism genes in human diabetic
nephropathy, indicating that dysregulated lipid metabolism is a key
factor in the advancement of DKD (32). Our results contribute to the
expanding evidence highlighting the interaction between lipid
metabolism and inflammation in the development of DKD. From a
mechanistic perspective, the RCII-DKD association may be explained
through several pathways. Elevated RC levels induce oxidative stress
and activate transcription factors such as nuclear factor kappa-B
(NF-xB), promoting the release of proinflammatory cytokines (e.g.,
TNF-a, IL-1B, IL-18) and establishing a chronic low-grade
inflammatory state (31, 33). Furthermore, high RC levels activate the
NLRP3 inflammasome, leading to the maturation and release of
IL-1B, which exacerbates
inflammatory damage in renal tissues (34, 35). The synergistic effect

inflammatory cytokines such as

of RC-driven lipid toxicity and subsequent inflammatory activation
creates a vicious cycle that promotes endothelial dysfunction,
glomerulosclerosis, and tubulointerstitial fibrosis, ultimately
accelerating the progression of DKD. Additionally, the RCII may have
therapeutic implications, as pharmacological interventions that lower
RC levels, such as statins and PCSK9 inhibitors, have been shown to
concurrently inhibit NF-kB

inflammation (36). This suggests that targeting RC-related pathways

signaling and attenuate renal

could not only ameliorate dyslipidemia but also directly mitigate the
inflammatory drivers of DKD progression, providing a dual
therapeutic benefit. The RCII quantitatively integrates these two
interconnected processes, providing a comprehensive biomarker that
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reflects the dual hit of dyslipidemia and inflammation in DKD
pathogenesis. By demonstrating a strong association between RCII
and DKD risk, our study provides further validation for the role of
remnant cholesterol and systemic inflammation as key contributors to
renal injury in diabetes. The dose-response relationships observed
between RC, RCII, and DKD risk underscore the potential of these
biomarkers to improve risk stratification and early detection.
Furthermore, the stratified analyses revealed significant interactions
between RCII and key demographic variables, with notably stronger
associations observed in females and non-Hispanic Black populations.
This sexual dimorphism in lipid metabolism is further evidenced by
the distinct lifelong patterns of lipid accumulation and exposure in
females, characterized by variations during the menstrual cycle,
pregnancy, lactation, and the postmenopausal period, which
collectively shape a unique cardiovascular risk profile (37).
Furthermore, females appear to be disproportionately affected by
diabetes, chronic kidney disease, and autoimmune inflammatory
conditions, potentially amplifying the detrimental interplay between
dyslipidemia, inflammation, and end-organ damage (37). The
pronounced association in non-Hispanic Black individuals might
reflect the combined impact of socioeconomic disparities, healthcare
access limitations, and potentially higher genetic susceptibility to
cardiometabolic complications (38-40). These findings collectively
underscore the need for tailored strategies in DKD prevention and
management that account for these population-specific differences.
Our study not only identified a significant positive correlation
between RC and hyperglycemia but also demonstrated a robust
positive association between RCII and hyperglycemia, providing
direct evidence linking this novel composite biomarker to glucose
metabolic disorders. Previous study revealed the relationship between
RCII and diabetes is mechanistically grounded in the well-established
role of RC as an independent risk factor for type 2 diabetes (T2DM),
even after adjustment for traditional lipid parameters (41).
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Epidemiological studies have consistently demonstrated that elevated
RC levels significantly increase T2DM risk, with a 28-48% higher risk
per 1 mmol/L increase in RC (42). This association remains robust in
individuals achieving conventional lipid targets, where those with
high RC (>0.8 mmol/L) face a 4.04-fold higher diabetes risk compared
to those with low RC (41). Crucially, chronic inflammation serves as
a key mediator in this relationship, with genetic evidence from
Mendelian randomization studies confirming that elevated RC
directly triggers low-grade inflammation (e.g., increasing C-reactive
protein by 28%) and promotes insulin resistance (43, 44). Notably, our
findings are supported by established mechanisms linking RC to
insulin resistance (IR), a core pathological process in diabetes
development. RC levels demonstrate a strong positive correlation with
IR severity, as evidenced by significantly higher RC concentrations in
moderate-to-severe IR groups compared to mild IR groups (45).
Mechanistically, elevated RC contributes to f-cell dysfunction through
multiple pathways: it directly inhibits insulin secretion, disrupts
normal glucose metabolism, and reduces f-cell proliferation capacity
(46). These mechanisms collectively establish RC as both a biomarker
and functional contributor to diabetes pathogenesis through
IR-mediated pathways.

Machine learning approaches have been employed to biomarkers
into diagnostic models for DKD. For example, a study utilizing
machine learning techniques identified serum uric acid, urea,
phosphorous, and other metabolites as significant factors of diabetic
kidney disease progression (47). Another research effort created a
digital twin model using generalized metabolic fluxes to forecast
chronic kidney disease in type 2 diabetes, demonstrating the promise
of combining metabolic profiles for improved risk assessment (48).
However, to date, no studies have systematically investigated the
development of DKD diagnostic models that integrate traditional risk
factors with the novel RCII. The unique advantage of RCII lies in its
dual-pathophysiological targeting, which distinguishes it from other
reported metabolic-inflammatory biomarkers. While previous
composite markers often focus on single pathways or general
metabolic fluxes (49, 50), RCII directly reflects the synergistic
contribution of two key processes in DKD, including lipid-rich
remnant particle deposition and chronic inflammatory response. This
is supported by cardiovascular research, where the combination of
high residual cholesterol and elevated hs-CRP was associated with
markedly increased risks of cardiovascular disease (44.9%) and
coronary artery disease (57%), along with shorter survival times (51).
Furthermore, RC has been shown to outperform traditional lipid
markers such as triglycerides and LDL-C in predicting cardiovascular
events (AUC 0.919 vs. 0.818 and 0.669, respectively) (52). In diabetic
populations, RC correlates positively with inflammatory markers
including hs-CRP and fibrinogen, and their combination improves the
prediction of short-term cardiovascular outcomes (53). Unlike single-
metabolite or general flux-based biomarkers, RCII integrates these
two potent risk dimensions into a single interpretable index, offering
a more holistic and mechanistically grounded tool for risk
stratification. Logistic regression and XGBoost emerged as the most
reliable models in our study, with consistent AUC values in both
training and testing sets. These findings underscore the potential of
combining novel biomarkers like RCII with advanced analytical
methods to enhance DKD risk diagnosis. The clinical utility of these
models was further supported by calibration curves and decision
curve analysis, which confirmed their robustness across a range of risk
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thresholds. This approach not only improves risk stratification but also
provides a framework for personalized prevention strategies, enabling
early intervention in high-risk populations.

To our knowledge, this is the first study to comprehensively
explore the association between RCII and DKD risk, offering new
perspectives on the interplay between lipid metabolism and
inflammation in DKD development. It is also the first to create and
validate machine learning-based DKD diagnostic models that
include RCII alongside conventional risk factors. Using advanced
analytical techniques, we showed that models incorporating RCII
outperform traditional ones, underscoring their potential as a
biomarker for early DKD risk assessment. However, this study has
limitations. Its cross-sectional nature limits causal conclusions, and
while NHANES data is nationally representative, it may not fully
reflect global population diversity. Furthermore, although
we attempted external validation using the CHARLS database, the
performance was suboptimal, likely attributable to substantial
differences in ethnicity, environmental exposures, and age structure
between the study populations. This finding underscores the
necessity for further validation and investigation across diverse
populations in the future. Third, the ‘na.roughfix’ method was used
for imputing missing covariate data due to its computational
efficiency in the machine learning workflow. Although this method
provides a practical single imputation, it does not account for the
uncertainty inherent in the imputation process. However, our
sensitivity analysis using multiple imputation yielded highly
consistent results, which strengthens the confidence in our primary
findings. Additionally, single measurements of RC and hs-CRP may
not represent long-term exposure. Future longitudinal studies are
necessary to confirm these findings and investigate the temporal
dynamics between RCII and DKD progression. Lastly, despite
adjusting for numerous confounders, residual confounding from
unmeasured factors, such as environmental influences, cannot
be completely excluded. Furthermore, although we adjusted for
lipid-lowering and antidiabetic medications, data on the use of
specific anti-inflammatory agents were not available, which
represents a potential source of unmeasured confounding.

5 Conclusion

RCII represents a promising and novel biomarker for DKD
diagnosis, and our study provides robust evidence for a strong,
dose-dependent association between RCII levels and the risk of
DKD. Its integration into diagnostic models may improve early
identification and personalized prevention strategies, addressing a
critical need in diabetes management. These results emphasize the
need to target both lipid metabolism and inflammation in DKD
prevention and demonstrate the value of advanced analytics in
enhancing diagnostic models. Additional studies are needed to
validate these findings and assess the practical application of RCII
across diverse populations.
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Glossary

DKD - Diabetic kidney disease

ESRD - End-stage renal disease

RC - Remnant cholesterol

CVD - Cardiovascular diseases

CHARLS - China Health and Retirement Longitudinal Study
VLDL - Very-low-density lipoproteins

RCII - Remnant cholesterol inflammatory index

MICE - Multiple imputation by chained equations

NHANES - National Health and Nutrition Examination Survey
eGFR - Estimated glomerular filtration rate

hs-CRP - High-sensitivity C-reactive protein

TC - total cholesterol

HDL-C - High-density lipoprotein cholesterol

LDL-C - Low-density lipoprotein cholesterol

ADA - American Diabetes Association
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HbAIc - hemoglobin Alc
FBG - Fasting blood glucose

CKD-EPI - Chronic Kidney
Collaboration

PIR - Poverty income ratio
BMI - Body mass index

SBP - Systolic blood pressure
DBP - diastolic blood pressure
SD - Standard deviations

IQR - interquartile ranges
RCS - Restricted cubic spline
KNN - K-nearest neighbors

XGBoost - Extreme gradient boosting

10.3389/fnut.2025.1642358

Disease

LightGBM - Light gradient boosting machine

SHAP - Shapley Additive Explanations

CKD - Chronic kidney disease

Epidemiology
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