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Diagnostic efficacy of remnant 
cholesterol inflammatory index in 
diabetic kidney disease: machine 
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Background: Emerging evidence indicates that remnant cholesterol (RC) and 
inflammation play a crucial role in diabetic kidney disease (DKD) pathogenesis. 
The association and diagnostic efficacy of remnant cholesterol inflammatory 
index (RCII), integrating RC and inflammatory markers, with DKD remains 
underexplored.
Methods: This cross-sectional study analyzed data from the National Health 
and Nutrition Examination Survey (NHANES) 2015–2020, including 5,943 
participants. DKD was defined by diabetes, urine albumin to creatinine ratio 
(ACR) ≥ 30 mg/g and an estimated glomerular filtration rate (eGFR) < 60 mL/
min/1.73 m2. RC was calculated as total cholesterol minus high-density and 
low-density lipoprotein cholesterol, while RCII was derived by multiplying RC by 
high-sensitivity C-reactive protein (hs-CRP). Logistic regression and restricted 
cubic spline analysis were used to evaluate associations and dose–response 
relationship between RC and RCII and DKD. We assessed RCII diagnostic efficacy 
measured by five machine learning algorithms.
Results: Our study observed 1,014 cases of DKD (17.06%), with a higher 
prevalence among males (14.1%) compared to females (11.7%). The highest RC 
(OR: 2.73, 95% CI: 2.12–3.52, P for trend<0.001) and RCII (OR: 2.29, 95% CI: 
1.77–2.97, P for trend <0.001) levels were significantly associated with increased 
DKD risk after full adjustment. The result showed both overall and nonlinear 
positive correlations between the risk of DKD and both RC (P for overall 
<0.001, P for nonlinear = 0.049) and RCII (P for overall <0.001, P for nonlinear 
<0.001). Machine learning models incorporating RCII and traditional risk factors 
demonstrated robust diagnostic efficacy, with extreme gradient boosting 
(XGBoost) achieving the highest AUC values in the testing set (AUC: 0.953).
Conclusion: Our study suggested RCII was a novel and promising biomarker for 
DKD risk. Its integration into diagnostic models may enhance early identification 
and personalized prevention strategies for DKD, addressing a critical need in 
diabetes management.
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1 Introduction

Diabetic kidney disease (DKD) is a major and growing 
complication of diabetes, marked by a gradual deterioration in kidney 
function that frequently results in end-stage renal disease (ESRD) (1). 
As the global prevalence of diabetes continues to rise, so does the 
burden of DKD, posing serious challenges to healthcare systems 
worldwide (2, 3). The association between metabolic dysregulation 
associated with diabetes and the subsequent development of renal 
impairment has drawn considerable attention in both clinical and 
research settings (4, 5). Early identification and risk stratification of 
DKD are critical for implementing timely interventions to slow 
disease progression and improve outcomes. Consequently, it is crucial 
to discover new biomarkers that can improve early diagnosis and risk 
assessment, ultimately guiding more personalized and effective 
prevention strategies.

Remnant cholesterol (RC) has gained attention as an important 
contributor to the pathogenesis of cardiovascular diseases (CVD) and 
metabolic disorders (6, 7). RC represents the cholesterol content of 
triglyceride-rich lipoproteins, including very-low-density lipoproteins 
(VLDL) and chylomicron remnants (8), which are known to 
contribute to atherosclerosis (9). There is a growing body of evidence 
that RC is not only a risk factor for CVD but also influences the 
development of diabetic complications, such as cardiovascular 
outcomes in individuals with diabetes and DKD (10, 11). Additionally, 
inflammation is a well-established driver of DKD pathogenesis, 
contributing to glomerular injury, tubulointerstitial fibrosis, and 
progressive renal function decline (12). Given the interplay between 
lipid metabolism and inflammation in the development of diabetic 
complications, there is growing interest in composite biomarkers that 
integrate these two pathways (13, 14). The remnant cholesterol 
inflammatory index (RCII) was a novel biomarker combining RC 
levels with inflammatory markers (15). By capturing both lipid 
abnormalities and inflammatory activity, RCII may offer deeper 
insights into the pathophysiological processes underlying DKD and 
improve risk stratification beyond traditional biomarkers (16). 
However, despite its promising theoretical foundation, research on the 
association between RCII and DKD is notably lacking. To date, no 
studies have systematically investigated the diagnostic efficacy of RCII 
for DKD, leaving a significant gap in our understanding of its 
clinical utility.

To address this gap, our study investigated the association of RC 
and RCII with DKD in a nationally representative data in the USA, 
and the dose–response relationship of RC and RCII on DKD. We also 
explored the diagnostic efficacy of a combination of traditional 
potential risk factors and RCII by using machine learning algorithms. 
By addressing these objectives, our study aims to provide robust 
evidence on the role of RCII as a novel biomarker for DKD, offering a 
potential tool for DKD diagnostic and targeted prevention strategies 
in DKD populations.

2 Materials and methods

2.1 Study population

The National Health and Nutrition Examination Survey 
(NHANES) is a comprehensive program designed to assess the health 

and nutritional status of non-institutionalized individuals in the 
United States. The research used publicly accessible NHANES data, 
applying a cross-sectional design with a complex, multistage, stratified 
sampling method to guarantee the U.S. population’s representativeness. 
Initially, 25,531 participants were enrolled across two consecutive 
cycles, 2015–2016 and 2017–2020, which were included in the 
analysis. Following the application of exclusion criteria, the study 
population was finalized by excluding those under 20 years of age 
(n = 10,580) and pregnant women (n = 157). Furthermore, 
participants with incomplete data on estimated glomerular filtration 
rate (eGFR), albumin to creatinine ratio (ACR), albumin (ALB), 
serum creatinine (Scr), diabetes status, or essential laboratory 
parameters such as high-sensitivity C-reactive protein (hs-CRP), total 
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and 
low-density lipoprotein cholesterol (LDL-C) were also excluded from 
the analysis. The final analysis comprised 5,943 participants 
(Supplementary Figure S1). This carefully selected cohort enabled a 
rigorous investigation of the relationships between remnant 
cholesterol, inflammatory markers, and diabetic kidney disease. The 
study protocol was approved by the NCHS Ethics Review Board, and 
all participants provided written informed consent. The study abided 
by the Declaration of Helsinki principles.

2.2 Assessment of RC and RCII

RC was calculated as the difference between TC and the sum of 
HDL-C and LDL-C, using the formula (17):

	
( ) ( ) HDL C mg / dL

RC mg / dL TC mg / dL
LDL C mg / dL

 −   = − + −    

This calculation was performed using laboratory data obtained 
from the NHANES database.

RCII was created by combining RC levels with hs-CRP, a 
recognized indicator of systemic inflammation. RCII was calculated 
as (15):

	 ( ) ( )= × −RCII RC mg / dL hs CRP mg / L /10

Both RC and RCII were treated as continuous variables in the 
analysis. To facilitate clinical interpretation, RC and RCII were also 
categorized into quartiles based on their distribution in the study 
population (15).

2.3 Outcome ascertainment: DKD

DKD was diagnosed by confirming both diabetes mellitus and 
kidney dysfunction. Diabetes mellitus was determined following the 
American Diabetes Association (ADA) guidelines (18), which 
included: a self-reported diagnosis by a healthcare provider, current 
use of antidiabetic medications, or hemoglobin A1c (HbA1c) levels of 
6.5% or higher.

Diagnostic criteria for DKD: (1) Confirmed diagnosis of diabetes, 
and (2) urine albumin to creatinine ratio (ACR) ≥ 30 mg/g or 
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estimated glomerular filtration rate (eGFR) ≤ 60 mL/min/1.73 m2, or 
both (19). Kidney dysfunction was evaluated using the eGFR, which 
was derived from the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) formula (20).

	 ( ) ( )

0.129
141 min ,1 max ,1

0.993 1.018  1.159  Age

Scr ScreGFR

if female if black
κ κ

−
   = × ×   
   

× × ×

In the equation, Scr represents serum creatinine levels (mg/dL), 
with κ values set at 0.9 for males and 0.7 for females. The term ‘min’ 
refers to the smaller value between Scr/κ and 1, while ‘max’ denotes 
the larger value between Scr/κ and 1.

An eGFR < 60 mL/min/1.73 m2 was considered indicative of 
impaired renal function. Participants were classified as having DKD 
if they met the criteria for diabetes mellitus and had either reduced 
eGFR (< 60 mL/min/1.73 m2).

2.4 Covariates

Sociodemographic information, such as age (years), gender (male 
or female), race (Mexican American, Other Hispanic, Non-Hispanic 
White People, Non-Hispanic Black, or Other), marital status (married 
or other), education level (≤high school diploma or >high school 
diploma), family poverty income ratio (PIR) (<1 or ≥1), smoking 
status (yes or no), and drinking status (yes or no) were gathered using 
standardized NHANES questionnaires. Physical measurements 
included body mass index (BMI), systolic blood pressure (SBP), and 
diastolic blood pressure (DBP). Hypertension was classified based on 
either a self-reported diagnosis by a healthcare provider or blood 
pressure readings meeting the International Society of Hypertension 
criteria (SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg) (21). Diabetes 
duration (years) is defined as the age at which the doctor diagnosed 
diabetes minus the age at which the individual was enrolled in 
the study.

2.5 Statistical analysis

All analyses were conducted using appropriate NHANES 
sampling weights, strata, and clustering variables, following 
established statistical protocols. To impute missing covariate data, the 
‘na.roughfix’ function within the ‘randomForest’ package was utilized. 
To assess the robustness of our findings regarding missing data, 
we  performed a sensitivity analysis using multiple imputation by 
chained equations (MICE) with 5 imputed datasets and pooled results 
according to Rubin’s rules. Categorical data were expressed as counts 
(N) and proportions (%), and comparisons were made using the 
chi-square test. In continuous variables, means were expressed with 
standard deviations (SD) with t-test, or medians were expressed with 
interquartile ranges (IQR) with Mann–Whitney’s U test.

We assessed the association of RC and RCII of DKD by using 
logistic regression analysis. As a reference group, the lowest quartile 
was used in all analysis. Model 1 was adjusted for none. Age and 
gender were controlled for in Model 2. Model 3 additionally 
considered race, educational level, marital status, PIR, smoking status, 

drinking status, BMI, hypertension, and diabetes duration. The results 
were expressed as odds ratio (OR) and 95% confidence intervals. P for 
trends were also established and the associations between per 1-SD 
RC or RCII increase and odds of DKD were also examined. Interaction 
and stratified analyses were conducted according to covariates. To 
examine the dose–response relationship between RC, RCII, and DKD, 
restricted cubic spline (RCS) models were applied. Sensitivity analyses 
were conducted to ensure the reliability of the findings. We  also 
explored the associations of RC and RCII with HbA1c, ACR, and 
eGFR by using multiple linear regression.

The dataset was split into training and testing subsets in a 7:3 ratio. 
Multivariable logistic regression was used to identify traditional 
clinical features independently associated with DKD in the training 
set. The candidate variables included in this screening process were 
age, gender, race, educational level, marital status, PIR, smoking 
status, drinking status, hypertension, diabetes duration, and 
BMI. Variables with a significance level of p < 0.05 in the multivariable 
analysis were retained as significant traditional risk factors for 
subsequent model construction. Five machine learning methods, 
including logistic regression, random forest, k-nearest neighbors 
(KNN), extreme gradient boosting (XGBoost), and light gradient 
boosting machine (LightGBM), were utilized to construct diagnostic 
models that included both traditional risk factors and RCII. The best-
performing model, as determined by the highest Area Under the 
Curve (AUC) in the testing set, was further interpreted using Shapley 
Additive Explanations (SHAP) to elucidate the direction and 
magnitude of each feature’s contribution to the model’s predictions. 
To further assess the generalizability of our optimal model, 
we performed an external validation as a sensitivity analysis. The best-
performing model, trained on the NHANES dataset, was applied 
without retraining to an independent external dataset derived from 
the 2011 wave of the China Health and Retirement Longitudinal Study 
(CHARLS).

Statistical analysis was conducted utilizing R 4.4.2.

3 Results

3.1 Characteristics of participants

The characteristics of 5,943 participants stratified by DKD status 
are presented in Table 1. The study identified 1,014 cases of DKD 
(17.06%). Participants with DKD were significantly older 
(62.58 ± 11.93 vs. 48.33 ± 17.23, p < 0.001) and had higher BMI 
(32.43 ± 7.74 vs. 29.26 ± 7.23, p < 0.001). Notable racial differences 
were observed (p = 0.001), with Mexican American showing the 
highest DKD prevalence (22.37%). The DKD group exhibited worse 
metabolic profiles, including HbA1c (7.54 ± 1.78 vs. 5.54 ± 0.62, 
p < 0.001), and lower eGFR (57.38 ± 10.36 ± 7.59, p < 0.001). 
Additionally, DKD participants had significantly higher hs-CRP, RC 
and RCII levels (p < 0.001). Additionally, Supplementary Table S1 also 
showed characteristics of study participants before imputation.

3.2 Associations of RC and RCII with DKD

Table 2 presents the associations between RC and RCII levels 
and DKD risk across three adjusted models. After adjusting for all 
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TABLE 1  Characteristics of study participants according to diabetic kidney disease.

Characteristics Overall Non-DKD DKD p

N (%) 5,943 4,929 (82.94) 1,014 (17.06)

Age, years, mean ± SD 50.77 ± 17.30 48.33 ± 17.23 62.58 ± 11.93 <0.001***

Gender <0.001***

 � Male 2,889 (48.61) 2,332 (80.72) 557 (19.28)

 � Female 3,054 (51.39) 2,597 (85.04) 457 (14.96)

Race 0.001**

 � Mexican American 845 (14.22) 656 (77.63) 189 (22.37)

 � Other Hispanic 702 (11.81) 554 (78.92) 148 (21.08)

 � Non-Hispanic White People 2011 (33.84) 1711 (85.08) 300 (14.92)

 � Non-Hispanic Black 1,383 (23.27) 1,178 (85.18) 205 (14.82)

 � Other 1,002 (16.86) 830 (82.83) 172 (17.17)

Educational level <0.001***

 � ≤High school diploma 2,618 (44.05) 2075 (79.26) 543 (20.74)

 � >High school diploma 3,325 (55.95) 2,854 (85.83) 471 (14.17)

Marital status 0.001**

 � Married 3,350 (56.37) 2,729 (81.46) 621 (18.54)

 � Other 2,593 (43.63) 2,200 (84.84) 393 (15.16)

PIR 0.603

 � <1 1,120 (18.85) 923 (82.41) 197 (17.59)

 � ≥1 4,823 (81.15) 4,006 (83.06) 817 (16.94)

Smoking status, N (%) 0.001**

 � Yes 2,573 (43.29) 2086 (81.07) 487 (18.93)

 � No 3,370 (56.71) 2,843 (84.36) 527 (15.64)

Drinking status, N (%) <0.001***

 � Yes 4,482 (75.42) 3,854 (85.99) 628 (14.01)

 � No 1,461 (24.58) 1,075 (73.58) 386 (26.42)

Hypertension, N (%) <0.001***

 � Yes 3,235 (54.43) 1932 (71.34) 776 (28.66)

 � No 2,708 (45.57) 2,997 (92.64) 238 (7.36)

Diabetes duration, years, mean ± SD 10.66 ± 5.47 10.19 ± 3.69 12.92 ± 10.16 0.002**

HbA1c, %, mean ± SD 5.88 ± 1.19 5.54 ± 0.62 7.54 ± 1.78 <0.001***

ACR, mg/g, mean ± SD 53.94 ± 358.03 26.26 ± 163.34 188.50 ± 774.77 <0.001***

ALB, g/L, mean ± SD 56.34 ± 346.96 31.12 ± 208.81 178.94 ± 689.84 <0.001***

Scr, mg/dL, mean ± SD 132.17 ± 81.88 133.47 ± 84.11 125.82 ± 69.71 0.007**

eGFR, mL/min/1.73 m2, mean ± SD 56.29 ± 10.22 57.38 ± 10.36 51.00 ± 7.59 <0.001***

BMI, kg/m2, mean ± SD 29.80 ± 7.39 29.26 ± 7.23 32.43 ± 7.74 0.013*

TC, mg/dl, mean ± SD 185.85 ± 40.81 188.17 ± 39.71 174.56 ± 44.08 0.001**

HDL-C, mg/dL, mean ± SD 54.41 ± 16.50 56.0 ± 0.6 50.4 ± 0.9 <0.001***

LDL-C, mg/dL, mean ± SD 110.17 ± 35.84 113.1 ± 0.9 103.1 ± 2.0 <0.001***

hs-CRP, mg/l, median (IQR) 4.21 ± 8.32 3.82 ± 7.38 6.12 ± 11.72 <0.001***

RC, mg/dL, median (IQR) 21.26 ± 12.71 20.29 ± 12.34 25.99 ± 13.42 <0.001***

RCII, median (IQR) 9.26 ± 18.98 7.88 ± 15.53 15.97 ± 29.74 <0.001***

Data are presented as number (%), mean ± standard deviation (SD), or median (interquartile range). DKD, diabetic kidney disease; BMI, body mass index; HbA1c, glycated hemoglobin; ACR, 
albumin to creatinine ratio; ALB, albumin; Scr, serum creatinine; eGFR, estimated glomerular filtration rate; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol, hs-CRP, high-sensitivity C-reactive protein; RC, remnant cholesterol; RCII, remnant cholesterol inflammatory index. *p < 0.05, **p < 0.01, ***p < 0.001. 
p-values which are lower than the statistical significance of 0.05 have been bolded.
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covariates, elevated RC levels showed a significant positive 
association with DKD risk (OR: 2.73, 95% CI: 2.12–3.52, P for 
trend <0.001). Additionally, each 1 standard deviation (SD) 
increase in RC levels was linked to a higher risk of DKD (OR: 1.36, 
95% CI: 1.27–1.47). Similarly, higher RCII levels were correlated 
with increased DKD risk (OR: 2.29, 95% CI: 1.77–2.97, P for trend 
<0.001), and per 1 SD rise in RCII levels correlated with greater 
DKD risk (OR: 1.32, 95% CI: 1.22, 1.42). Moreover, the spline 
regression models further validated the presence of both linear 
and nonlinear positive correlations between the risk of DKD and 
both RC (P for overall <0.001, P for nonlinear = 0.049) and RCII 
(P for overall <0.001, P for nonlinear <0.001), as illustrated in 
Figure 1. Notably, inflection points were identified at RC = 49.85 
and RCII = 49.64, beyond which the risk of DKD increased 
markedly. In the supplementary analyses, we further examined the 
associations of RC and RCII with various metabolic and renal 
parameters. The analysis of glycemic control indicators revealed 
strong positive associations of RC and RCII levels with HbA1c 
(Supplementary Table S2). Higher RC and RCII levels were 
associated with the increased level of ACR 
(Supplementary Table S3). Regarding renal function, higher RC 
and RCII levels were associated with decreased eGFR 
(Supplementary Table S4). The component analysis of RCII 
(Supplementary Table S5) indicated that hs-CRP, TC, HDL-C, and 
LDL-C all contributed to observed associations with DKD risk. 
The significant associations of RC and RCII with DKD risk 
remained robust after further adjustment for lipid-lowering and 
antidiabetic drug use (both P for trend < 0.001) in 
Supplementary Table S6. The sensitivity analysis using multiple 
imputations showed the RCII and RC were also positively 
associated with the risk of DKD in Supplementary Table S7.

3.3 Stratified analyses

Stratified analyses revealed significant interactions between RC/
RCII levels and various demographic and traditional risk factors 
associated with DKD risk (Table 3). For RC, the strongest associations 
with DKD were observed among females (OR: 4.61, 95% CI: 3.08–
6.90), non-Hispanic Black individuals (OR: 5.64, 95% CI: 3.19–9.97), 
above high school diploma (OR: 3.32, 95% CI: 2.28–4.82), other 
marital status (OR: 3.19, 95% CI: 2.12–4.79) and those with 
hypertension (OR: 2.61, 95% CI: 1.93–3.54). Significant interaction 
effects were noted for all covariates and RC (P-interaction <0.05).

For RCII, the strongest associations were observed among females 
(OR: 2.84, 95% CI: 1.90, 4.25), non-Hispanic Black individuals (OR: 
3.99, 95% CI: 2.22–7.20), and those with hypertension (OR: 2.21, 95% 
CI: 1.63–3.01). Significant interaction effects were also noted for all 
covariates and RCII (P-interaction <0.05).

3.4 DKD risk diagnostic model combining 
traditional risk factors and RCII

The multivariate logistic regression analysis 
(Supplementary Table S9) identified several traditional risk factors 
significantly associated with DKD, including age, gender, race, 
educational level, marital status, drinking status, hypertension, 
diabetes duration, and BMI (p < 0.05). These factors, along with RCII, 
were incorporated into machine learning models to diagnose 
DKD. The study population was divided into a training set (n = 4,161) 
and a testing set (n = 1782) (Supplementary Table S10). Figure  2 
illustrates the performance of ML models incorporating RCII and 
traditional risk factors for DKD. In the training set (Figure 2A), the 

TABLE 2  Associations of RC and RCII with the risk of diabetic kidney disease.

Characteristics Model 1 Model 2 Model 3

OR (95%CI) OR (95%CI) OR (95%CI)

RC

Quartile 1 1.0 (Reference) 1.0 (Reference) 1.0 (Reference)

Quartile 2 1.93 (1.52, 2.43) 1.58 (1.24, 2.02) 1.41 (1.09, 1.82)

Quartile 3 3.13 (2.51, 3.91) 2.48 (1.96, 3.13) 2.02 (1.57, 2.60)

Quartile 4 4.14 (3.32, 5.15) 3.49 (2.77, 4.39) 2.73 (2.12, 3.52)

P for trend <0.001 <0.001 <0.001

Per-SD 1.47 (1.39, 1.56) 1.47 (1.38, 1.57) 1.36 (1.27, 1.47)

RCII

Quartile 1 1.0 (Reference) 1.0 (Reference) 1.0 (Reference)

Quartile 2 1.50 (1.19, 1.89) 1.23 (0.97, 1.57) 1.06 (0.82, 1.37)

Quartile 3 2.28 (1.83, 2.83) 1.94 (1.54, 2.44) 1.49 (1.16, 1.91)

Quartile 4 3.53 (2.86, 4.35) 3.47 (2.78, 4.33) 2.29 (1.77, 2.97)

P for trend <0.001 <0.001 <0.001

Per-SD 1.42 (1.32, 1.52) 1.48 (1.37, 1.60) 1.32 (1.22, 1.42)

Model 1: Adjusted for none.
Model 2: Adjusted for age, gender (male; female).
Model 3: Adjusted for age, gender (male; female), race (Mexican American; Other Hispanic; Non-Hispanic Black; Non-Hispanic White People; Other), educational level, (≤High school 
diploma; >High school diploma), marital status, (Married; Other), PIR (<1; ≥1), smoking status (Yes; No), drinking status (Yes; No), BMI, Hypertension (Yes; No), and diabetes duration.
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models demonstrated excellent diagnostic efficacy, with RF (AUC: 
0.999), and KNN (AUC: 0.999). XGBoost also performed excellent 
discrimination (AUC: 0.972), followed by LightGBM (AUC: 0.970), 
SVM (AUC: 0.938), LR (AUC: 0.828). In the testing set (Figure 2B), 
XGBoost (AUC: 0.953), LightGBM (AUC: 0.930), RF (AUC: 0.905) 
showed the highest and most consistent performance. SVM also 
performed excellent discrimination (AUC: 0.881), followed by LR 
(AUC: 0.810) and KNN (AUC: 0.778). The calibration curves 
(Figure  2C) and DCA (Figure  2D) further confirmed the clinical 
utility of the models, with XGBoost demonstrating robust calibration 
and net benefit across a range of risk thresholds. These results 
highlight the effectiveness of combining RCII with traditional risk 
factors in ML models for DKD diagnoses, with XGBoost emerging as 
the most reliable approach. Moreover, the accuracy of seven machine 
learning models in the training and testing sets is summarized in 
Supplementary Table S11. The sensitivity analysis using multiple 
imputations showed the XGBoost was still the most reliable approach 
(Supplementary Table S12; Supplementary Figure S2). In the external 
validation conducted among the CHARLS participants, the diagnostic 
performance of all machine learning models was suboptimal (AUCs 
ranging from 0.513 to 0.594) (Supplementary Figure S3), but the 
positive association was still observed between RCII and DKD risk 
(OR: 1.42, 95% CI: 1.23–1.64) (Supplementary Table S8).

As illustrated in the SHAP summary bar plot (Figure 3A), the 
relative importance of features in the model was assessed using mean 
SHAP values, ranked from highest to lowest: diabetes duration, age, 
BMI, race, hypertension, RCII, gender, drinking status, marital status, 
educational lever, emerged as the influential features. The SHAP 
summary dot plot (Figure 3B) further demonstrates the direction and 

magnitude of each feature’s impact on model diagnose, revealing that 
variables such as diabetes duration, age, BMI, race, hypertension, RCII 
significantly elevated the risk of DKD. Additionally, the SHAP 
waterfall plot (Figure 3C) details the contribution of each feature to 
the model’s diagnose of DKD for the third participant. The SHAP 
values in the plot quantitatively demonstrate how each feature 
influences the diagnostic outcome, with specific values indicating 
either positive or negative contributions. Notably, a diabetes duration 
of 20.7 years, an age of 60 years and the presence of hypertension 
showed significant positive impacts, contributing +0.218, +0.0912, 
+0.0484 to the diagnosis, respectively. Conversely, a BMI of 19.7 and 
an RCII level of 0.36 exerted negative effects on the diagnosis, with 
respective contributions of −0.143 and −0.0848. Figures  3D–F 
presents a comparative analysis of the top three features against the 
actual RCII values and their corresponding SHAP values, 
demonstrating that features with positive SHAP values (>0) are 
associated with increased diagnostic probabilities in the model, 
thereby indicating an elevated risk of DKD. The longer diabetes 
duration, the older individuals, the greater the BMI and the higher the 
RCII level, the classification was DKD.

4 Discussion

This study provides robust evidence supporting the role of 
remnant cholesterol (RC) and the remnant cholesterol inflammatory 
index (RCII) as novel biomarkers for diabetic kidney disease (DKD) 
risk. Our findings demonstrate that elevated RC and RCII levels are 
significantly associated with an increased risk of DKD, with 

FIGURE 1

Restricted cubic splines for associations of RC and RCII with the risk of diabetic kidney disease. Restricted cubic spline plots show the association 
between (A) RC and (B) RCII with the adjusted odds ratios (solid lines) and 95% confidence intervals (shaded areas) for diabetic kidney disease. The P 
for overall effect tests the global statistical significance of the association (linear or nonlinear), while the P for nonlinear tests the specific nonlinear 
component of the dose–response relationship.
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dose–response relationships. Furthermore, the integration of RCII 
with traditional risk factors in machine learning models showed 
strong diagnostic efficacy, underscoring its clinical utility for early 
identification and risk stratification in DKD populations.

The robust positive association between RC and DKD risk 
observed in our study corroborates the growing body of evidence 
establishing lipid abnormalities as critical contributors to diabetic 
complications. The association was supported by multiple population-
based studies across diverse ethnic groups. A Chinese cohort study 
demonstrated significant associations between RC levels and both 
DKD and ESRD (22). A FinnDiane study prospectively also observed 
that the higher level of RC was linked to DKD risk and severe diabetic 
retinopathy (23). Furthermore, longitudinal data from a Chinese 
diabetes cohort revealed that both baseline and cumulative RC 
exposure were positively correlated with DKD development (24). 
Moreover, the pathological significance of RC extends beyond renal 
outcomes, as evidenced by its association with increased CVD 

mortality in participants with type 2 diabetes and established DKD 
(25). The mechanistic basis for these observational studies lied in RC’s 
biological properties as a component of triglyceride-rich lipoproteins. 
A previous study has shown that participants with chronic kidney 
disease (CKD) have increased production of triglyceride-rich 
lipoproteins, leading to reduced clearance (26). Moreover, RC is 
closely linked to renal function progression and the occurrence of 
cardiovascular events, suggesting that RC may be a new non-invasive 
marker for predicting ESKD risk (22). Notably, the differential 
strength of association observed across demographic subgroups  - 
particularly in females, non-Hispanic Black individuals, and 
hypertensive patients - underscores the importance of population-
specific risk stratification in DKD management. These findings 
indicate that RC significantly contributes to the onset and progression 
of diabetic nephropathy. Its association with inflammation and 
cardiovascular risk further underscores the importance of managing 
RC in diabetic patients (27). These findings offer new perspectives for 

TABLE 3  Stratified analysis of the associations of RC and RCII with the risk of diabetic kidney disease.

Subgroup RC RCII

Quartile 4 vs. 
Quartile 1

P-interaction Quartile 4 vs. 
Quartile 1

P-interaction

Gender <0.001 <0.001

 � Male 2.00 (1.42, 2.81) 1.90 (1.34, 2.94)

 � Female 4.61 (3.08, 6.90) 2.84 (1.90, 4.25)

Race <0.001 0.020

 � Mexican American 2.15 (1.13, 4.08) 2.57 (1.30, 5.08)

 � Other Hispanic 1.57 (0.73, 3.37) 1.83 (0.87, 3.88)

 � Non-Hispanic White People 2.67 (1.66, 4.30) 1.78 (1.11, 2.83)

 � Non-Hispanic Black 5.64 (3.19, 9.97) 3.99 (2.22, 7.20)

 � Other 1.67 (0.90, 3.09) 1.80 (0.96, 3.38)

Educational level <0.001 <0.001

 � ≤High school diploma 2.32 (1.64, 3.29) 1.79 (1.25, 2.56)

 � >High school diploma 3.32 (2.28, 4.82) 2.96 (2.03, 4.30)

Marital status <0.001 0.006

 � Married 2.44 (1.76, 3.37) 2.15 (1.54, 3.00)

 � Other 3.19 (2.12, 4.79) 2.51 (1.66, 3.80)

PIR <0.001 <0.001

 � <1 3.44 (2.36, 5.01) 2.65 (1.49, 4.74)

 � ≥1 2.19 (1.54, 3.11) 2.77 (2.08, 3.67)

Smoking status, N (%) <0.001 <0.001

 � Yes 1.88 (1.30, 2.72) 1.88 (1.30, 2.72)

 � No 2.86 (1.99, 4.12) 2.86 (1.99, 4.12)

Drinking status, N (%) <0.001 <0.001

 � Yes 2.64 (1.94, 3.60) 2.65 (1.91, 3.66)

 � No 2.95 (1.89, 4.59) 1.71 (1.11, 2.64)

Hypertension, N (%) <0.001 <0.001

 � Yes 2.61 (1.93, 3.54) 2.21 (1.63, 3.01)

 � No 2.50 (1.57, 3.96) 1.97 (1.21, 3.22)

Adjusted for age, gender (male; female), race (Mexican American; Other Hispanic; Non-Hispanic Black; Non-Hispanic White; Other), educational level, (≤High school diploma; >High school 
diploma) marital status (Married; Other), PIR (<1; ≥1), smoking status (Yes; No), drinking status (Yes; No), BMI, Hypertension (Yes; No), and diabetes duration.
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clinical practice, suggesting the need for further research into the 
specific mechanisms of RC in diabetic nephropathy and potential 
therapeutic strategies.

Our study also highlighted the novel RCII biomarker, which 
integrates RC with systemic inflammation, offers a more 
comprehensive assessment of DKD risk. Inflammation is a well-
recognized driver of DKD progression, contributing to both 
glomerular damage and tubulointerstitial fibrosis. The development 
of renal fibrosis is driven by intricate interactions between immune 
cells and resident kidney cells, which secrete pro-fibrotic cytokines 
and growth factors, promoting fibrosis. Macrophages, for instance, 
play a dual role in renal inflammation and fibrosis. They can adopt a 
pro-inflammatory phenotype that exacerbates renal injury, or an anti-
inflammatory phenotype that aids in repair. However, persistent 
inflammation frequently results in advancing renal fibrosis, potentially 

leading to end-stage renal disease (28). Additionally, the inflammatory 
milieu in DKD is influenced by various factors, including metabolic 
dysfunction and hemodynamic alterations. These elements intensify 
inflammation and promote fibrosis by triggering processes like 
epithelial-mesenchymal transition (EMT) and inducing cell cycle 
arrest in tubular epithelial cells. The activation of pathways like mTOR 
signaling in macrophages further enhances the inflammatory response 
and fibrosis-associated EMT, highlighting the intricate link between 
inflammation and fibrosis in DKD (29). Research underscores the 
involvement of inflammation in diabetic nephropathy, highlighting 
how immune cells, cytokines, and chemokines play key roles in 
initiating and advancing the condition. These inflammatory mediators 
create a proinflammatory microenvironment that exacerbates kidney 
damage, leading to increased fibrosis and progression to ESKD (30). 
Additionally, the combination of lipids and inflammation may 

FIGURE 2

Performance of machine learning (ML) models using RCII and traditional risk factors diagnosing diabetic kidney disease. (A) Receiver Operating 
Characteristic (ROC) curves in the training set; (B) ROC curves in the testing set; (C) Decision curve analysis; (D) Calibration curves.
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be more likely to cause the occurrence of DKD. A study examining the 
association between remnant cholesterol and CKD highlighted the 
mediating role of inflammation. It was found that remnant cholesterol 
and preinflammatory markers had a combined effect on CKD, 
emphasizing the importance of inflammation in the relationship 
between remnant cholesterol and renal dysfunction (31). Studies has 
demonstrated a strong link between glomerular filtration rate, 
inflammation, and lipid metabolism genes in human diabetic 
nephropathy, indicating that dysregulated lipid metabolism is a key 
factor in the advancement of DKD (32). Our results contribute to the 
expanding evidence highlighting the interaction between lipid 
metabolism and inflammation in the development of DKD. From a 
mechanistic perspective, the RCII-DKD association may be explained 
through several pathways. Elevated RC levels induce oxidative stress 
and activate transcription factors such as nuclear factor kappa-B 
(NF-κB), promoting the release of proinflammatory cytokines (e.g., 
TNF-α, IL-1β, IL-18) and establishing a chronic low-grade 
inflammatory state (31, 33). Furthermore, high RC levels activate the 
NLRP3 inflammasome, leading to the maturation and release of 
inflammatory cytokines such as IL-1β, which exacerbates 
inflammatory damage in renal tissues (34, 35). The synergistic effect 
of RC-driven lipid toxicity and subsequent inflammatory activation 
creates a vicious cycle that promotes endothelial dysfunction, 
glomerulosclerosis, and tubulointerstitial fibrosis, ultimately 
accelerating the progression of DKD. Additionally, the RCII may have 
therapeutic implications, as pharmacological interventions that lower 
RC levels, such as statins and PCSK9 inhibitors, have been shown to 
concurrently inhibit NF-κB signaling and attenuate renal 
inflammation (36). This suggests that targeting RC-related pathways 
could not only ameliorate dyslipidemia but also directly mitigate the 
inflammatory drivers of DKD progression, providing a dual 
therapeutic benefit. The RCII quantitatively integrates these two 
interconnected processes, providing a comprehensive biomarker that 

reflects the dual hit of dyslipidemia and inflammation in DKD 
pathogenesis. By demonstrating a strong association between RCII 
and DKD risk, our study provides further validation for the role of 
remnant cholesterol and systemic inflammation as key contributors to 
renal injury in diabetes. The dose–response relationships observed 
between RC, RCII, and DKD risk underscore the potential of these 
biomarkers to improve risk stratification and early detection. 
Furthermore, the stratified analyses revealed significant interactions 
between RCII and key demographic variables, with notably stronger 
associations observed in females and non-Hispanic Black populations. 
This sexual dimorphism in lipid metabolism is further evidenced by 
the distinct lifelong patterns of lipid accumulation and exposure in 
females, characterized by variations during the menstrual cycle, 
pregnancy, lactation, and the postmenopausal period, which 
collectively shape a unique cardiovascular risk profile (37). 
Furthermore, females appear to be  disproportionately affected by 
diabetes, chronic kidney disease, and autoimmune inflammatory 
conditions, potentially amplifying the detrimental interplay between 
dyslipidemia, inflammation, and end-organ damage (37). The 
pronounced association in non-Hispanic Black individuals might 
reflect the combined impact of socioeconomic disparities, healthcare 
access limitations, and potentially higher genetic susceptibility to 
cardiometabolic complications (38–40). These findings collectively 
underscore the need for tailored strategies in DKD prevention and 
management that account for these population-specific differences.

Our study not only identified a significant positive correlation 
between RC and hyperglycemia but also demonstrated a robust 
positive association between RCII and hyperglycemia, providing 
direct evidence linking this novel composite biomarker to glucose 
metabolic disorders. Previous study revealed the relationship between 
RCII and diabetes is mechanistically grounded in the well-established 
role of RC as an independent risk factor for type 2 diabetes (T2DM), 
even after adjustment for traditional lipid parameters (41). 

FIGURE 3

XGBoost explanation by the Shapley Additive Explanation (SHAP) method. (A) Order plot of variable importance for SHAP analysis; (B) Statistical graph 
of variable contribution in SHAP analysis; (C) Waterfall plot; (D) SHAP dependence plots of RCII and diabetes duration; (E) SHAP dependence plots of 
RCII and age; (F) SHAP dependence plots of RCII and BMI.
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Epidemiological studies have consistently demonstrated that elevated 
RC levels significantly increase T2DM risk, with a 28–48% higher risk 
per 1 mmol/L increase in RC (42). This association remains robust in 
individuals achieving conventional lipid targets, where those with 
high RC (>0.8 mmol/L) face a 4.04-fold higher diabetes risk compared 
to those with low RC (41). Crucially, chronic inflammation serves as 
a key mediator in this relationship, with genetic evidence from 
Mendelian randomization studies confirming that elevated RC 
directly triggers low-grade inflammation (e.g., increasing C-reactive 
protein by 28%) and promotes insulin resistance (43, 44). Notably, our 
findings are supported by established mechanisms linking RC to 
insulin resistance (IR), a core pathological process in diabetes 
development. RC levels demonstrate a strong positive correlation with 
IR severity, as evidenced by significantly higher RC concentrations in 
moderate-to-severe IR groups compared to mild IR groups (45). 
Mechanistically, elevated RC contributes to β-cell dysfunction through 
multiple pathways: it directly inhibits insulin secretion, disrupts 
normal glucose metabolism, and reduces β-cell proliferation capacity 
(46). These mechanisms collectively establish RC as both a biomarker 
and functional contributor to diabetes pathogenesis through 
IR-mediated pathways.

Machine learning approaches have been employed to biomarkers 
into diagnostic models for DKD. For example, a study utilizing 
machine learning techniques identified serum uric acid, urea, 
phosphorous, and other metabolites as significant factors of diabetic 
kidney disease progression (47). Another research effort created a 
digital twin model using generalized metabolic fluxes to forecast 
chronic kidney disease in type 2 diabetes, demonstrating the promise 
of combining metabolic profiles for improved risk assessment (48). 
However, to date, no studies have systematically investigated the 
development of DKD diagnostic models that integrate traditional risk 
factors with the novel RCII. The unique advantage of RCII lies in its 
dual-pathophysiological targeting, which distinguishes it from other 
reported metabolic-inflammatory biomarkers. While previous 
composite markers often focus on single pathways or general 
metabolic fluxes (49, 50), RCII directly reflects the synergistic 
contribution of two key processes in DKD, including lipid-rich 
remnant particle deposition and chronic inflammatory response. This 
is supported by cardiovascular research, where the combination of 
high residual cholesterol and elevated hs-CRP was associated with 
markedly increased risks of cardiovascular disease (44.9%) and 
coronary artery disease (57%), along with shorter survival times (51). 
Furthermore, RC has been shown to outperform traditional lipid 
markers such as triglycerides and LDL-C in predicting cardiovascular 
events (AUC 0.919 vs. 0.818 and 0.669, respectively) (52). In diabetic 
populations, RC correlates positively with inflammatory markers 
including hs-CRP and fibrinogen, and their combination improves the 
prediction of short-term cardiovascular outcomes (53). Unlike single-
metabolite or general flux-based biomarkers, RCII integrates these 
two potent risk dimensions into a single interpretable index, offering 
a more holistic and mechanistically grounded tool for risk 
stratification. Logistic regression and XGBoost emerged as the most 
reliable models in our study, with consistent AUC values in both 
training and testing sets. These findings underscore the potential of 
combining novel biomarkers like RCII with advanced analytical 
methods to enhance DKD risk diagnosis. The clinical utility of these 
models was further supported by calibration curves and decision 
curve analysis, which confirmed their robustness across a range of risk 

thresholds. This approach not only improves risk stratification but also 
provides a framework for personalized prevention strategies, enabling 
early intervention in high-risk populations.

To our knowledge, this is the first study to comprehensively 
explore the association between RCII and DKD risk, offering new 
perspectives on the interplay between lipid metabolism and 
inflammation in DKD development. It is also the first to create and 
validate machine learning-based DKD diagnostic models that 
include RCII alongside conventional risk factors. Using advanced 
analytical techniques, we showed that models incorporating RCII 
outperform traditional ones, underscoring their potential as a 
biomarker for early DKD risk assessment. However, this study has 
limitations. Its cross-sectional nature limits causal conclusions, and 
while NHANES data is nationally representative, it may not fully 
reflect global population diversity. Furthermore, although 
we attempted external validation using the CHARLS database, the 
performance was suboptimal, likely attributable to substantial 
differences in ethnicity, environmental exposures, and age structure 
between the study populations. This finding underscores the 
necessity for further validation and investigation across diverse 
populations in the future. Third, the ‘na.roughfix’ method was used 
for imputing missing covariate data due to its computational 
efficiency in the machine learning workflow. Although this method 
provides a practical single imputation, it does not account for the 
uncertainty inherent in the imputation process. However, our 
sensitivity analysis using multiple imputation yielded highly 
consistent results, which strengthens the confidence in our primary 
findings. Additionally, single measurements of RC and hs-CRP may 
not represent long-term exposure. Future longitudinal studies are 
necessary to confirm these findings and investigate the temporal 
dynamics between RCII and DKD progression. Lastly, despite 
adjusting for numerous confounders, residual confounding from 
unmeasured factors, such as environmental influences, cannot 
be  completely excluded. Furthermore, although we  adjusted for 
lipid-lowering and antidiabetic medications, data on the use of 
specific anti-inflammatory agents were not available, which 
represents a potential source of unmeasured confounding.

5 Conclusion

RCII represents a promising and novel biomarker for DKD 
diagnosis, and our study provides robust evidence for a strong, 
dose-dependent association between RCII levels and the risk of 
DKD. Its integration into diagnostic models may improve early 
identification and personalized prevention strategies, addressing a 
critical need in diabetes management. These results emphasize the 
need to target both lipid metabolism and inflammation in DKD 
prevention and demonstrate the value of advanced analytics in 
enhancing diagnostic models. Additional studies are needed to 
validate these findings and assess the practical application of RCII 
across diverse populations.
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Glossary

DKD - Diabetic kidney disease

ESRD - End-stage renal disease

RC - Remnant cholesterol

CVD - Cardiovascular diseases

CHARLS - China Health and Retirement Longitudinal Study

VLDL - Very-low-density lipoproteins

RCII - Remnant cholesterol inflammatory index

MICE - Multiple imputation by chained equations

NHANES - National Health and Nutrition Examination Survey

eGFR - Estimated glomerular filtration rate

hs-CRP - High-sensitivity C-reactive protein

TC - total cholesterol

HDL-C - High-density lipoprotein cholesterol

LDL-C - Low-density lipoprotein cholesterol

ADA - American Diabetes Association

HbA1c - hemoglobin A1c

FBG - Fasting blood glucose

CKD-EPI - Chronic Kidney Disease Epidemiology  
Collaboration

PIR - Poverty income ratio

BMI - Body mass index

SBP - Systolic blood pressure

DBP - diastolic blood pressure

SD - Standard deviations

IQR - interquartile ranges

RCS - Restricted cubic spline

KNN - K-nearest neighbors

XGBoost - Extreme gradient boosting

LightGBM - Light gradient boosting machine

SHAP - Shapley Additive Explanations

CKD - Chronic kidney disease
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