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Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder
(NPDs) caused by the interaction of genetic and environmental factors. Trans-
fatty acids (TFAs), mainly from chemically hydrogenated vegetable oils, are
an environmental factor with increased exposure risk in modern diets. Recent
studies suggest that TFAs may contribute to ADHD development through two
pathways: inducing neurodevelopmental damage and indirectly affecting neural
function by altering gut microbiota, though specific mechanisms remain unclear.
This review focuses on two critical neurodevelopmental phases (perinatal
period and adolescence) to explore the relationship between TFA exposure
and ADHD, and to investigate the pathways through which TFAs affect ADHD
by disrupting gut microbiota homeostasis. Although the association between
TFA exposure during adolescence and ADHD is controversial, the harm of
perinatal TFA exposure is undisputed. Shared neurodevelopmental damage
mechanisms across both stages support reducing TFA intake during critical
neurodevelopment. TFAs also impair neurodevelopment and brain function
through the microbiota-gut-brain axis (MGBA) by disrupting gut microbiota
homeostasis and activating neural, immune, and endocrine pathways. Thus,
based on the harmful effects of TFAs during critical periods and the
functional network by which TFAs contribute to ADHD pathogenesis through
gut microbiota, this review supports dietary TFAs restriction as an ADHD
prevention strategy.
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1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental
disorder characterized by inattention, hyperactivity, and impulsivity, as well as
abnormalities in emotion regulation that do not match the developmental stage (1).
As reported by epidemiological surveys, ADHD affects 6.7%—7.8% of children and
teenagers worldwide, and nearly half of the patients display symptoms that persist into
adulthood, which is a huge public health problem (1). An essential factor in the occurrence
and development of the disease is the interaction between genetic susceptibility and
environmental exposure (2). As a vital component of the environment, the gut flora
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has attracted increasing attention due to its role in mediating
neuroimmune-metabolic regulation through the gut-brain axis
(GBA), a pathway of reciprocal interaction linking the gut
microbiota to the central nervous system (3, 4). In current diets,
the risk of exposure to industrial sources of trans fatty acid (TFA)
resulting from artificially hydrogenated fats and oils has greatly
increased (5). Epidemiological surveys have found that the total
and industrially sourced TFA intake in preschool populations
increased significantly, mainly due to increased consumption of
ultra-processed foods, such as fast food, refined baked goods,
and processed meat products (6). As shown in previous studies,
TFAs as a typical component of ultra-processed foods, may
affect neurodevelopment due to the following mechanisms (7).
On the one hand, TFA exposure may result in learning and
memory impairment in the brain through the following possible
pathways: induction of oxidative stress, disruption of synaptic
plasticity, enhanced neuroinflammatory responses, and vascular
endothelial damage (7, 8). On the other hand, by affecting
the composition of intestinal microbes, TFA may reduce the
abundance of short-chain fatty acid (SCFA)-producing bacteria
like Bacteroidetes and increase the proportion of pro-inflammatory
bacteria such as Proteobacteria and Desulfovibrionaceae, further
inducing intestinal barrier damage and systemic inflammation via
the overproliferation of these pro-inflammatory bacteria (9, 10).
Particularly, this gut dysbiosis may contribute to the pathogenesis
of ADHD through multiple mechanisms. First, activation of the
peripheral immune system leads to the releases inflammatory
factors, including tumor necrosis factor-a (TNF-a) and IL-6,
which in turn induce a central neuroinflammatory response
by modulating the conduction of vagal nerve or blood-brain
barrier (BBB) permeability; second, suppression of neuroprotective
metabolites such as butyrate, results in dysfunction of the
dopamine and serotonergic (5-hydroxytrytaminergic) systems;
third, alterations in the bile acid metabolic profile impair the
regulation of synaptic plasticity mediated by the nuclear receptor
farnesol X receptor (FXR) signaling pathway (11-13).

Clinical findings suggest that children with ADHD have a
much higher TFA intake and erythrocyte membrane TFA content
than control subjects, with a positive correlation between the
fatty acid content in the membrane and the severity of the disease
(14, 15). Animal trials have shown that TFA exposure in Wistar
rats results in an increase in oxidative stress markers in the
prefrontal cortex and hippocampus, followed by mitochondrial
dysfunction and heightened hyperactivity (16, 17). Earlier studies
have demonstrated the harmful neurological effects of TFAs
and their relation to the development of ADHD. Still, their
susceptibility to exposure after prenatal life has not yet been
reported and the exact mechanism by which TFAs impair the
dynamic balance of the microbiota-gut-brain axis (MGBA) needs
to be explored.

Therefore, this review will systematically discuss the impacts
of TFA exposure through sensitive development windows and
the interplay between gut microbiota disorders and ADHD
pathogenesis, with a view to providing a theoretical basis for
establishing ADHD prevention strategies involving dietary TFA
restriction interventions.
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2 An overview of ADHD

2.1 Key etiological influencing factors of
ADHD

Research has reported that the male-to-female prevalence
ratio of ADHD is 2-3:1 and that this ratio is most evident in
childhood (18). Males have a higher content of androgens like
testosterone, which may influence brain development and the
behavior of children. This hormone may make it more difficult
for boys to control their behavior and attention during the
process of growth, increasing their risk of developing ADHD
(19). These results above suggest that alterations in the endocrine
system could play a major role in the emergence and progression
of ADHD. Additionally, serum levels of the pro-inflammatory
factor TNF-o were inversely associated with both symptom
severity and gut microbiota diversity in ADHD patients (20).
This correlation suggests that abnormal immune function and gut
microbiota may contribute to pathological processes of ADHD by
transmitting peripheral inflammatory signals to the central nervous
system. However, epigenetic studies have demonstrated significant
associations between DNA methylation modifications of LIME1
and SPTBN2 in children and attention deficit symptoms (21).
In addition, the serotonin transporter gene (SHTTLPR) genotype
and dopamine D4 receptor gene (DRD4) genotype were both
significantly associated with susceptibility to ADHD symptoms,
and the interplay between environment and genotypes is a key
research direction for the non-genetic pathogenesis of ADHD (22,
23). As a whole, the above evidence suggests that the pathogenesis
of ADHD involves the synergistic effect of genetic predisposition,
epigenetic modulation, and environmental factors (toxins, diet) (2).

2.2 Limitations of current ADHD treatments
and exploration of new strategies

Current first-line clinical medications, central stimulants such
as methylphenidate and non-stimulants such as tomoxetine, can
relieve the core symptoms of attention deficit in patients by
inhibiting the dopamine transporter (24). However, approximately
10%—30% of patients will quit the medication due to the
suboptimal response or side effects (25). Animal experiments
have demonstrated that juvenile rats exhibit hypersensitivity to
methylphenidate in the prefrontal cortex, and the treatment with
MPH during the juvenile period has a long-term or lifelong
effect on excitatory neuronal function in the prefrontal cortex
(26). The current available evidence supports the safe use of
short- to medium-term use of the drug. However, their potential
to cause neurobehavioral problems and their long-term efficacy
require further investigation (27). These limitations inspired the
researchers to seek new therapeutic approaches, in which the
regulatory strategy of the microbial-gut-brain axis (MGBA) has
become a trending research topic (28). The gut microbiota,
as the core part of MGBA, can regulate brain and cognitive
development via neural, immune, and endocrine pathways (29). It
has been found that gut microbiota dysbiosis and its metabolites
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cause local inflammation by disrupting the intestinal barrier and
inducing elevated levels of inflammatory cytokines, immune cell
infiltration, and abnormal vagal stimulation, ultimately leading
to central inflammation and neurological dysfunction (30). This
sequence of events further leads to brain functional deficits with
neurodevelopmental disorders (NPDs) such as autism and ADHD
(31). These findings have inspired the idea of dietary intervention
to remodel gut microbiota and relieve ADHD symptoms.

3 ADHD influencing factors

3.1 How cognitive impairment affects
ADHD development

The integrity of cognitive functioning is the most fundamental
basis for normal brain function and social adaptability, and
multidimensional cognitive impairments are present in patients
with ADHD, such as executive dysfunction, attentional regulation
deficit, and social cognitive deficit (32). This pattern of cognitive
impairment not only significantly influences the clinical symptoms
of the patients in the short term but also is closely related
to their long-term prognosis. Executive dysfunction is the core
pathophysiological defect of ADHD. It is characterized by reduced
working memory capacity, impaired inhibitory control, and
cognitive inflexibility (33). Studies on neurobiological mechanisms
have found that the delayed prefrontal cortical development and
abnormal activity of the basal ganglia-anterior cingulate gyrus
circuit were the main causes of executive dysfunction in ADHD
patients (34). A meta-analysis of relevant studies showed that
approximately 30%—50% of ADHD patients still had executive
function deficits in adulthood (35).

Research indicates that working memory capacity is positively
correlated with academic performance in ADHD patients (36).
Limited working memory capacity leads to persistent attentional
regulation issues in these patients, causing frequent “cognitive
breaks” that make it hard for them to consistently process
instructions or task details, such as forgetting what teachers say
or missing key information (37). In addition, impaired response
inhibition is one of the core phenotypes of ADHD (38). In
social settings, children with ADHD may face peer rejection due
to impulsive behaviors, like interrupting others and not waiting
their turn, leading to social conflicts and strained interpersonal
relationships (39). Long-term social frustration may further
impair interpersonal communication skills and trigger secondary
emotional problems, such as low self-esteem and depression,
thereby increasing disease burden (40).

Social cognitive deficits such as emotion recognition bias (e.g.,
misinterpreting the facial expressions of others) and impaired
empathy (inability to perceive the intentions of others) are
common in individuals with ADHD (39). This type of social
cognitive impairment is associated with difficulties in interpersonal
interactions, challenges in forming close bonds with peers, and an
increased risk of social exclusion (41). If these deficits persist, they
may result in a series of social problems in adulthood, including
difficulties in daily life, poor occupational adaptation, and low
economic status (42, 43). Cognitive impairment is now recognized
as an important factor contributing to the poor long-term outcome

Frontiersin Nutrition

10.3389/fnut.2025.1641574

of ADHD patients across neurobiological, behavioral, and social
functioning dimensions (44).

Intervening in cognitive impairment is crucial for alleviating
ADHD symptoms. Research indicates that enhancing executive
function, especially working memory and inhibitory control,
can reduce distraction and impulsivity. Existing intervention
approaches are specifically designed to target this core objective.
For instance, medications such as methylphenidate (a first-
line medication for ADHD) modulate the dopamine system to
improve cognitive resource allocation (45), while CBT provides
compensatory strategies through targeted training to support this
goal (46). In addition, childhood cognitive training and family
behavioral management may reduce cognitive impairment in
children and mitigate the long-term negative effects of ADHD
(47). Furthermore, dietary intervention may also be effective in
improving cognitive function. A meta-analysis of 10 trials involving
699 children found that Omega-3 fatty acid intervention exerted
a moderate effect in alleviating ADHD symptoms compared with
ADHD medications (48). In summary, individualized intervention
strategies combining medication, psychological support, social
support, and dietary strategies are of great importance to improve
the cognitive function and long-term outcomes in ADHD.

3.2 The relationship between diet and
ADHD

Recent research suggests that dietary components can affect
the gut flora’s shape and function via the MGBA, potentially
contributing to ADHD development (49). Dietary patterns
significantly affect the development of neurodevelopmental
disorders by regulating gut flora and metabolism. In early
childhood (0-3 years), gut flora is in the initial formation stage,
and nutrient intake crucially influences its colonization. A study
on children in Yaoundé showed that the balance of proteins, fats,
and carbohydrates consumed during this period changes the gut
microbiota’s composition and functional traits (50).

Different dietary patterns have significantly different effects
on ADHD risk. Preschool and school-aged children with ADHD
often prefer a Western diet, high in saturated fats and low in
fiber (51). A prospective study of 2,868 infants followed for 14
years found that higher Western dietary pattern scores were
linked to elevated ADHD risk in individuals (52). Conversely,
the Mediterranean diet, rich in whole grains, deep-sea fish, and
polyphenols, with low saturated fat and abundant dietary fiber,
may reduce ADHD prevalence and positively affect mental health
in children and adolescents (53-55). The research into this
phenomenon’s mechanisms indicated that a Mediterranean diet
rich in dietary fiber can promote the growth of SCFAs-producing
bacteria, such as Roseburia and Faecalibacterium (56). SCFAs
produced regulate neuroinflammation and the integrity of the
blood-brain barrier by activating the G protein-coupled receptor
(GPR43/41) signaling pathway (57, 58) and inhibiting histone
deacetylase. Conversely, a diet heavy in fat and sugar leads to a
decrease in intestinal flora a-diversity and disrupts the proportional
balance between Firmicutes and Bacteroidetes (59), which may
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further lead to intestinal barrier impairment and inflammation (see
Section 5.2 for detailed mechanisms) (60, 61).

Alongside dietary patterns, individual nutrients and food
additives are also key factors in the development of ADHD. Various
dietary fatty acids can influence cognitive performance in obese
mice by altering intestinal inflammation and signaling pathways
(62). Long-chain saturated fatty acids (LC-SFA), medium-chain
saturated fatty acids (MC-SFA), n-6 polyunsaturated fatty acids (n-
6 PUFA), monounsaturated fatty acids (MUFA), as well as trans-
fatty acids (TFA) may impair cognition, while n-3 polyunsaturated
fatty acids (n-3 PUFA) could offer protective benefits (62).
Interestingly, an elevated maternal omega-6/omega-3 fatty acid
ratio may raise the likelihood that a child would experience
long-term ADHD symptoms (63). Furthermore, supplementing
children with ADHD with omega-3 fatty acids resulted in a
significant increase in EPA and DHA levels in their erythrocyte
membranes. This change relieved the symptoms of inattention,
hyperactivity, and oppositional behavior and improved working
memory function (64, 65). Deficiencies in micronutrients, such
as iron, magnesium, and vitamin D, may induce ADHD by
interfering with dopaminergic signaling, neurodevelopment, and
immunoregulatory processes (66—68).

Food additives are another potential risk factor for ADHD
that should not be overlooked (69). A positive association between
the consumption of snacks containing synthetic colors (lemon
yellow and sunset yellow) and preservatives (sodium benzoate), and
the appearance of symptoms in some children with ADHD has
been demonstrated (70, 71). In addition, Benoit et al. found that
artificial emulsifiers like carboxymethylcellulose and polysorbate-
80, which are common in foods like cakes and ice creams, can
alter gut microbiota, compromise intestinal barriers, promote
lipopolysaccharide migration into the bloodstream, and trigger
neuroinflammation in mice (72).

In summary, dietary factors such as dietary patterns, nutrient
intake, and food additives can affect the brain via a variety of
routes, including regulating intestinal flora, influencing short-chain
fatty acid metabolism, altering intestinal permeability, and being
mediated by inflammatory cytokines. These findings provide new
insights into the pathogenesis of ADHD.

4 Effects of trans fatty acids on ADHD

4.1 Neurotoxicity of trans fatty acids

The brain is highly lipophilic, with 40%—60% of its dry
weight being lipids—this high lipid content and lipophilicity allow
TFAs to cross the blood-brain barrier, and thereby affect the
nervous system through multiple mechanisms (73). TFAs have
been suggested as contributors to neurological disorders like
depression and Alzheimer’s disease (74-76). A clinical trial found
higher TFA levels in children with ADHD compared to healthy
controls, indicating a potential link between TFA exposure and
ADHD (15). Follow-up research has since demonstrated that the
neurological effects of TFAs may be mediated by dopaminergic
neurotransmission and that TFA-rich diets reduce dopamine
levels and cause signaling abnormalities in the limbic system,
ultimately impairing signaling along the dopamine reward pathway
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(77, 78). This signal transmission interruption is associated with
motivational deficits and inattention in ADHD patients (79, 80). In
addition, TFAs inhibit the synthesis of long-chain polyunsaturated
fatty acids (LC-PUFAs) and disrupt lipid distribution in brain cell
membranes (81). However, supplementation with LC-PUFAs may
alleviate ADHD symptoms in children and adolescents (82).

In terms of oxidative stress, high TFA intake increases the
activity of NADPH oxidase and the expression of inflammatory
cytokines, thereby elevating oxidative stress (83). An animal study
demonstrated that a high-TFA diet increases protein carbonyl (PC)
levels in mouse brains, exacerbates neuronal oxidative damage and
may further impair memory function (84).

Regarding gut-brain interactions, TFAs induce intestinal
dysbiosis, increasing the proportional abundance of pathogenic
bacteria Proteobacteria and Desulfovibrionaceae, while decreasing
the proportional abundance of beneficial bacteria Bacteroidetes and
Lachnospiraceae (9). This microbial shift may cause alterations
in the metabolic activities of intestinal microbiota, resulting in
a decrease in the overall quantity of short-chain fatty acids.
As metabolites produced by the gut microbiota during the
fermentation of dietary fiber, short-chain fatty acids (SCFAs)
can regulate nervous system function through binding to
cell surface receptors. For example, the SCFA propionic acid
modulates neuroinflammation and maintains the blood-brain
barrier integrity by activating free fatty acid receptor 2 (GPR43)
(85). Thus, TFAs can also indirectly affect nervous system
function by reshaping the composition and metabolic activity of
gut microbiota.

4.2 Developmental window sensitivity

During different developmental stages, including the perinatal
period (28 weeks of gestation to 1 week postpartum), infancy,
childhood, and adolescence, the body’s sensitivity to exposure to
TFAs varies significantly. The perinatal period is a sensitive time
for central nervous system ontogeny. A mother’s dietary pattern
may influence the structural brain development and behavioral
outcomes of her children (86). Animal studies showed that
excessive TFA intake in mother rats enabled TFAs to cross the
placental barrier into offspring, altering the fatty acid composition
and oxidative status in the brain of offspring and reducing
the expression of TrkB, and this reduction could directly lead
to the failure of the neuroprotective function of brain-derived
neurotrophic factor (BDNF) (87, 88). The abnormal changes
in these intracerebral physiological indicators may disrupt the
developmental neurological trajectory, affect brain function, and
lead to memory disorders (88). Other research suggests that
high maternal consumption of TFAs, palm oil, or esterified fats
during pregnancy and lactation may trigger brain inflammation in
offspring by disrupting neuroactive compound balance (89). This
can harm brain functions related to cognition and mood (90).

Perinatal TFA exposure affects offspring neurodevelopment
directly and indirectly by disrupting their gut microbiota. A high-
fat maternal diet reshapes maternal tract flora, disrupting the
embryonic brain’s glutamate-glutamine cycle, thereby increasing
the expression of several glutamate-related genes (86). This
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disturbance may not only persist into adolescence but also
trigger gender-dependent hyperactivity and anxiety-like behaviors.
Interestingly, it has been found that high TFA exposure in
pregnancy induces an inflammatory response in the colon of the
offspring. This might be connected to a change in the offspring’s
gut microbiota. Maternal dietary supplementation with Jussara is
effective in mitigating this colonic inflammatory response in the
offspring and improving their gut health (91).

The TFA content of breast milk, a critical source of nutrition
during early infancy, is affected by the mother’s dietary composition
(92). TFAs in breast milk may be transferred to infants and inhibit
the synthesis of LC-PUFAs in infants (81). LC-PUFAs are critical
to synaptic development and neuronal myelination. Metabolic
disorders of LC-PUFAs may hinder the development of infants’
neurons and increase the risk of neurodevelopmental disorders,
such as ADHD in these infants (93).

During childhood and adolescence, the effects of TFAs differ
from those in the perinatal stage. An animal study found that
high TFA intake impairs spatial memory in young rats (94).
In children, high consumption of saturated and trans fats is
linked to cognitive decline related to the hippocampus, while
omega-3 exert a positive effect (95). Prolonged TFA exposure in
young animals leads to reduced motor activity and exploratory
behavior, as well as increased fear and anxiety-like behaviors (96).
This indicates that prolonged exposure to TFA during childhood
may aggravate neuromotor dysfunction and neuropsychiatric
behavioral problems. In adolescents, TFAs may modulate the
brain’s oxidative status by inducing lipid peroxidation and lowering
antioxidant enzyme activity, ultimately leading to anxiety behaviors
(97). In addition, TFA intake could raise the probability of
metabolic syndrome, promote systemic inflammatory responses,
and enhance blood-brain barrier permeability, which may be
detrimental to cognitive development in a dual manner (98-100).
Although many studies have confirmed the negative neurological
effects of TFAs at different developmental stages, the link between
maternal TFA exposure and ADHD in children and adolescents
remains debated. Maternal TFA exposure during the perinatal
period is associated with smaller fetal head circumference in
late pregnancy, though its effect on fetal head size in mid-
pregnancy and whole-brain volume at age 10 remains unclear
(101). Therefore, based on the negative impacts of TFAs on
neurodevelopment during critical developmental windows and
their association with ADHD-related phenotypes, reducing TFA
intake from the perinatal period to adolescence may serve as one of
the strategies to prevent ADHD onset. However, population-based
evidence directly linking TFA exposure at different developmental
stages to ADHD onset is relatively limited, with most conclusions
from animal experiments. In the future, the effectiveness of this
strategy requires further verification through more population-
based studies and the multifactorial etiological characteristics of
ADHD should also be considered.

5 Mechanisms of trans fatty acids
effects on ADHD

Even though some countries have restricted TFA use in
industrial foods, TFA consumption is expected to increase with the
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growing prevalence of home baking and the expanding variety of
processed food items. After ingestion, TFAs enter the human body
and are digested and absorbed in the intestines. Emerging evidence
suggests they may affect the occurrence and development of ADHD
through potential mechanisms such as influencing the function and
development of the nervous system and disrupting the gut-brain
axis. Their potential mechanisms are summarized below.

5.1 How trans fatty acids indirectly trigger
ADHD through brain-mediated factors

5.1.1 Trans fatty acids lead to impaired
metabolism of essential fatty acids

A birth cohort study in Spain found that a higher omega-
6:omega-3 ratio in prenatal cord plasma is linked to subclinical
ADHD symptoms in children (63). Therefore, the balance between
omega-3 and omega-6 fatty acids is of great importance in the
development of neurological function. Maternal diet, breast milk,
and the concentration of TFA in infant plasma phospholipids are
all positively correlated, while TFA in breast milk is negatively
correlated with the levels of essential fatty acids 18:2n-6 (linoleic
acid, LA) and 18:3n-3 (a-linolenic acid, ALA) (102). That is to
say, when the content of TFA in breast milk increases while
the n-3 PUFA content decreases, this may be attributed to
TFA disturbing the balance of essential fatty acids in the body.
Dietary n-3 PUFA supplementation reduces the accumulation
of TFA in the brain and enhances the accumulation of DHA
(103). DHA, an omega-3 fatty acid, is vital for neuronal and
retinal membrane integrity, neural signaling, and brain energy
metabolism. Its deficiency leads to alterations in learning ability,
stress response, and behavior (104). Additionally, Lara et al.
discovered that omega-3 PUFAs supplementation alters gut
microbiota by increasing Bacteroidetes and butyrate-producing
Lachnospiraceae, while decreasing Faecalibacterium, leading to
more anti-inflammatory compounds like short-chain fatty acids
(105). This suggests that omega-3 PUFAs may act on the gut-brain
axis by altering the composition of the gut microbiota.

5.1.2 Effect of trans fatty acids on fat-soluble
vitamins

TFA exposure jeopardizes neurological health by disturbing
the metabolic homeostasis of vitamin E and vitamin D through
oxidative stress and organ damage pathways. High TFAs intake
increases oxidative stress by promoting NADPH oxidase activity
and inflammatory cytokine expression (83). As a key antioxidant,
vitamin E supplementation reduces oxidative stress in humans
(106), implying that TFA-induced oxidative stress may accelerate
vitamin E depletion and that vitamin E supplementation could
mitigate such TFA-mediated oxidative stress. In addition, TFAs
lead to hepatic fat accumulation and non-alcoholic steatohepatitis-
like damage, thereby impairing liver function (107). As the liver
is the main storage organ for vitamin E, hepatic steatosis further
reduces vitamin E storage, metabolism, and conversion efficiency
(108). Chronic vitamin E deficiency not only aggravates oxidative
damage in the brain and increases the risk of cognitive impairment,
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but also disrupts gut flora and imbalances the ratio of Firmicutes
to Bacteroidetes (109, 110). Research has shown that abnormalities
in the gut microbiome are key factors in the onset of neurological
disorders, including ADHD (111).

Research indicates that low vitamin D levels in obese children
are linked to increased oxidative damage and inflammation
(112), suggesting a harmful interaction between inflammation
and vitamin D deficiency. This deficiency can downregulate
the transcription of the antimicrobial peptides cathelicidin and
defensin beta 4, which in turn leads to reduced intestinal flora
diversity, impaired intestinal function, and increased pathogen
growth, creating an “inflammation-intestinal flora dysbiosis vicious
cycle” (113). Clinical research shows that children with ADHD have
lower vitamin D levels, and vitamin D supplementation markedly
attenuates inattentive and impulsive symptoms (114). Additionally,
vitamin D deficiency during early pregnancy may raise the risk
of ADHD in offspring (115), highlighting its protective role
in neurodevelopment.

In summary, reducing TFA intake (e.g., limiting fried foods and
processed snacks) while supplementing with vitamin E (through
dietary nuts and leafy greens) and vitamin D (through deep-sea fish
and sunlight exposure) may reduce the risk of neurodevelopmental
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abnormalities through multiple pathways, including antioxidant,
anti-inflammatory, and microbiota regulation.

5.1.3 Effect of trans fatty acids on essential
elements

Iron, magnesium, and zinc are essential elements for nervous
system health. Studies show children with ADHD have lower
levels of these elements compared to healthy peers, suggesting a
link between deficiencies in these elements and ADHD (116-118).
Zinc is vital for neurotransmitter synthesis and regulation (119),
while magnesium exerts neuroprotective benefits by influencing
ion channels and neurotransmitter activity (120). Iron is widely
present in the brain and involved in processes such as neuronal
development, myelin formation, and neurotransmitter synthesis
(121). Chen et al. reported that iron content was decreased
in dopamine transmission-related brain regions, including the
bilateral striatum, anterior cingulate, cortex, and olfactory gyrus,
in ADHD children, while iron content in the left anterior cingulate
was positively correlated with ADHD symptom severity (122). In
addition, altered brain iron levels in children are associated with
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impaired sustained attention, thus further corroborating the crucial
role of iron in ADHD pathophysiology (123).

TFAs may hinder the absorption of essential minerals through
various mechanisms. They can alter the expression of zinc-
binding proteins at the cellular level, thereby affecting intracellular
zinc levels (124). Additionally, TFAs alter gut microbiota
composition, increasing harmful bacteria such as Proteobacteria
and decreasing beneficial ones like Bacteroidetes (9), which disrupts
intestinal balance and mineral absorption (125). Consequently,
TFAs may reduce mineral absorption efficiency, thus affecting
their normal utilization in the body and potentially worsening
ADHD symptoms.

5.2 How trans fatty acids indirectly induce
ADHD through gut microbiota—mediated
mechanisms

Gut microbiota interacts with the central nervous system via

the microbial-gut-brain axis, thereby regulating neurodevelopment
and functional maturation (126). It exerts its effects through the

Frontiersin Nutrition

immune, neural, and endocrine pathways, and there is cross-talk
between these three pathways. It is important to note that TFAs
may alter the composition and structure of gut microbiota, which
in turn acts on the brain via the gut-brain axis and affects patients
with ADHD.

5.2.1 Activation of neural pathways by trans fatty
acids via intestinal flora MGBA

Our findings in Figure I suggest that TFA exposure may
regulate the neuroinflammatory process by remodeling gut
microbiota structure and disrupting its metabolic function.
Research has reported that TFAs can induce the proliferation
of harmful bacteria like Proteobacteria and Desulfovibrionaceae,
inhibit the proliferation of beneficial bacteria like Bacteroidetes and
Lachnospiraceae, and cause intestinal microecological imbalance
and intestinal inflammation (9).

Additionally, TFAs impede the conversion of intestinal
acetate to butyrate, a mechanism that not only impairs intestinal
barrier function but also exacerbates the body’s inflammatory
response by increasing bacterial translocation (127). The
increase of inflammatory mediators like interleukin-1p (IL-1p),
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interleukin-6 (IL-6), and tumor necrosis factor-o. (TNF-at) might
negatively impact the central nervous system (128). On the
one hand, inflammatory factors can disrupt the blood-brain
barrier (BBB), allowing harmful substances to penetrate the
brain and disrupt nerve cell function (129). On the other hand,
it damages the autonomic nerves through the organ-brain axis,
leading to neuroinflammation (130). Recent studies suggest that
neuroinflammation and gut microbiota imbalances may contribute
to ADHD by disrupting neurotransmitter development, affecting
the synthesis of dopamine, norepinephrine, and BDNF (131, 132).
These neurotransmitter abnormalities are closely linked to ADHD
symptoms and their deficiency may worsen the condition (2).

5.2.2 Trans fatty acids activate immune pathways
via gut microbiota MGBA
Trans fatty acids

neurodevelopmental

contribute to the pathogenesis of
ADHD by
gut microbiota structure and activating immunological and

diseases like remodeling

neuroinflammatory pathways (2). In animal models, dysbiosis

of intestinal flora induces intestinal oxidative stress, which
increases HNE (4-hydroxynonenal) adducts while decreasing
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tight junction protein ZO-2. These changes stimulate the NF-kB
pathway, leading to the generation of systemic autoantibodies
and an immunological response, which suggests an interaction
between gut microbiota and the immune system (133, 134).
Notably, maintaining early gut microbiota balance is crucial
for proper immune development. Dysbiosis in the newborn gut
disrupts early gut microbiota balance, affecting the development
of gut-associated lymphoid tissues and causing a systemic immune
response in adulthood (135). This process may occur because flora
disturbances weaken the mucosal barrier, allowing bacteria and
metabolites to enter the body and disrupt the immune system
(136, 137).

As shown in Figure 2, all the above immune abnormalities
may affect the nervous system through two pathways. On the
one hand, a possible autoimmune reaction may lead to the
production of autoantibodies against neural proteins (such as
dopamine receptors), which disrupts the normal transmission
of neurotransmitters and causes abnormalities in the nervous
system (138). On the other hand, gut microbiota dysbiosis may
interfere with the differentiation of Th17 cells, increasing IL-17A
(interleukin-17A) levels. It has been reported that this cytokine can
activate microglia and further aggravate neuroinflammation, which
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is an important risk factor for the occurrence and development of
ADHD (139, 140).

The bile acid metabolism axis plays a key regulatory
role in the molecular mechanisms of microbiota-immunity
interactions. Secondary bile acid isoDCA (iso-deoxycholic acid)
maintains intestinal immune homeostasis by antagonizing the
farnesol X receptor (FXR) signaling pathway, simultaneously
inhibiting the pro-inflammatory function of dendritic cells,
and inducing the differentiation of regulatory T cells (pTreg)
(141). TFAs may disrupt this negative feedback mechanism by
reducing the abundance of isoDCA-producing bacteria such as
Bacteroides (142).

5.2.3 Activation of endocrine pathways by trans
fatty acids via gut microbiota MGBA

Figure 3 (MGBA) suggests that TFAs can alter gut microbiota,
thereby impacting neuroendocrine signaling in the hypothalamic-
pituitary-adrenal (HPA) axis and central nervous system. Gut
microbiota, a crucial participant in MGBA signaling, directly
regulates the metabolism of neurotransmitters, including
dopamine, 5-HT, GABA, and glutamate (143). Dopamine and
5-hydroxytryptamine are crucial for the executive function
of the prefrontal cortex. Notably, dopamine affects cognitive
modulation, reward processing, and motivation. Intestinal flora
like Bacteroides and Lactobacillus contain dopamine synthesizing
and catabolic enzymes, and can modulate their bioavailability
(144). Furthermore, the intestinal flora regulates 5-HT synthesis
and metabolism, which in turn influences intestinal motility and
the emotional and cognitive functions of the central nervous
system (145). This process may be modulated by its metabolites,
SCFAs, that have effects on colonic enterochromaffin cells and
modulate colonic 5-HT synthesis (146). Additionally, Bacteroides
and Lactobacillus produce GABA, which influences intestinal
integrity and vagal signaling, and when intestinal flora dysbiosis
causes abnormalities in GABA synthesis or function, the imbalance
of this pathway can potentially lead to neurological disorders
(147, 148). Notably, TFAs can alter gut microbiota composition,
potentially impairing SCFA production and disrupting HPA axis
regulation (149). In animal studies, for example, gut dysbiosis was
linked to reduced hypothalamic glucocorticoid levels and increased
CRH synthesis, leading to HPA axis hyperactivation and elevated
cortisol (150). This finding suggested gut microbes influence
HPA axis activity. Clinically, children with ADHD exhibited
lower HPA axis activity and cortisol levels, possibly due to gut
microbiota dysregulation (151). Therefore, TFAs might activate
endocrine pathways and affect HPA axis function by modifying gut
microbiota.

Ultimately, TFAs may contribute to ADHD by disrupting gut
microbiota balance and activating neural, immune, and endocrine
pathways, suggesting they are potential environmental risk factors
for ADHD. Further clinical studies are necessary to confirm
causality, assess intervention effects, explore dose-response
relationships, determine safe exposure levels, and develop
prevention and treatment strategies for ADHD.
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6 Conclusion and outlook

MGBA is a complicated communication network linking
the gut microbiome and central nervous system, and its
role in neuropsychiatric disorders like ADHD has gradually
attracted attention. Focusing on exposure to industrially
sourced TFAs, this review clarifies TFA impacts on ADHD
across key growth stages and explores the potential mechanism
by which TFAs affect ADHD through the modulation of
gut microbiota by MGBA. This article also offers
viewpoints on ADHD etiology and highlights the importance

new

of diet and environment for the neurodevelopmental health
of children.

The impact of TFA exposure in the developmental window
presented in this review has been supported by animal
experiments. However, it should be noted that the human
epidemiological evidence for the direct association between
TFA exposure at various stages (perinatal and adolescent)
and ADHD outcomes
investigation. Future studies should address the dose-response
relationship of TFA exposure to ADHD to define safe TFA
exposure limits. In clinics, researchers can develop better

remains limited, requiring further

prevention and treatments by integrating evidence from
genetic, environmental, and epigenetic studies, which will
facilitate early prevention of ADHD and improve the prognosis

of patients.
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