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Enhancing antioxidant activity
and quality of Triadica
cochinchinensis honey via an
automated temperature-humidity
controlled cabinet

Huizhi Jiang*?!, Weixuan Chen'#, Wujun Jiang?, Feng Liu®,
Xiaobo Wu'?, Weiyu Yan'?, Xujiang He'?* and Zhijiang Zeng?*

'Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China, ?Jiangxi Province Key
Laboratory of Honeybee Biology and Beekeeping, Nanchang, China, *Apiculture Research Institute of
Jiangxi Province, Nanchang, China

Honey, a key beekeeping product, is rich in antioxidants and bioactive compounds,
offering antimicrobial, anti-inflammatory and health-promoting properties. The
water content of honey is directly correlated with its quality. However, Triadica
cochinchinensis honey (TCH), produced in high humidity regions, is frequently at
risk of fermentation and spoilage due to excessive water content. A dewatering
method using an automated, temperature- and humidity-controlled honey cabinet
was applied to address this issue and investigate its effects on TCH. After 96 h of
treatment, the water content of TCH capped honeycombs effectively reduced to
below 18%. Meanwhile, most physicochemical parameters, volatile compounds
and chemical compositions largely remained unchanged, thereby preserving their
nutritional value and flavor. Moreover, phenolics and flavonoids levels significantly
increased by 15.83 and 25.42%, respectively, thereby enhancing the honey’s
antioxidant capacity. Our results indicated that this method can significantly
enhance maturity and improve the quality of TCH, providing reference value for
other honey produced in high humidity regions. The utilization of honey cabinets
can enhance the market value of honey in these regions, and consumers can
benefit from higher-quality honey with greater biological activity.
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1 Introduction

Honey, a sweet food, is collected by worker bees from the nectar or plant secretions, which
is subsequently processed and stored in honeycombs (1, 2). It is a rich source of natural
antioxidants and exhibits various beneficial properties, including antioxidant (3) antibacterial
(4), and anti-inflammatory effects (5). Composed primarily of glucose and fructose, honey
contains sugars that are easily absorbed by the human body (6). In addition, honey is packed
with enzymes, vitamins, trace elements, and organic acids, contributing to its significant
nutritional value (7).

Antioxidant capacity is one of the most important properties of honey (8). It depends on
concentration, botanical source, geographical origin, processing methods and storage
conditions (9, 10). Phenolic compounds, mainly responsible for honey’s antioxidant properties,
are secondary metabolites produced by plants and transferred to honey through bee foraging
(11, 12). The phenolic compounds in honey mainly consist of flavonoids and phenolic acids
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(13). Additionally, amino acids, antioxidant enzymes, and vitamins in
honey also contribute to its antioxidant capacity (14).

The water content of honey is a key factor in determining its
physicochemical properties, affecting its quality, storage stability,
crystallization, and viscosity (15). Several factors influence honey’s
water content, including the type of nectar source, bee species, colony
conditions, honey production duration, and environmental
temperature and humidity during the nectar flow period, as well as
storage methods (16). For instance, in regions with high humidity,
such as Southern China and tropical countries, the water content of
capped honey can range from 22 to 23% (17, 18). If honey is extracted
directly without proper processing, the excessive water content may
lead to fermentation, spoilage, flavor degradation, phase separation,
and ultimately compromise both the quality and safety of honey for
consumption (19, 20). The standard in China specifies a maximum
water content of 18% for mature honey and 20% for regular honey.
The lower water content effectively inhibits yeast growth and extends
storage life (21, 22).

Triadica cochinchinensis is one of the primary nectar sources in
southern China, with its flowering period occurring from June to July
and characterized by large nectar secretion (Figure 1A) (23). Triadica
cochinchinensis honey (TCH) has the highest production in southern
China during summer, and each colony (Apis mellifera) can produce
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20 to 30 kilograms of TCH (Figure 1B) (24). Previous studies have
shown that TCH is notably rich in iron and zinc, exhibits naturally low
diastase activity and possesses the ability to alleviate alcoholic liver
damage and anti-aging properties (25-27). (—)-Gallocatechin gallate
is a characteristic marker to identify TCH, which belongs to flavonoids
and exhibits antioxidant properties (18). The southern regions of
China have typical subtropical monsoon climate, featuring hot and
rainy summers (28). Due to the high humidity levels in the production
environment, TCH tends to have a relatively high water content (>
22%) after being capped, and most of it is immature. This not only
makes it easy to ferment and spoilage but also leads to coarse
crystallization—a defect in which sugars form large, gritty crystals.
Crystallization compromises its texture and consumer acceptability
and ultimately resulted in a low selling price for TCH and reduced
income for beekeepers (29, 30). Over time, there has been a huge
negative impact on the regional economy because of the difficulty in
marketing low quality TCH.

Several methods are employed to address the challenge of high
water content in honey production. Thermal treatment is commonly
employed for industrial honey dehydration, with temperature typically
ranging from 55 °C to 80 °C (31). However, high-temperatures may
reduce diastase activity and induce the formation of harmful
substances such as 5-hydroxymethylfurfural (HMF) (32, 33). As a

FIGURE 1

The botanical original analysis of Triadica cochinchinensis monofloral honey (TCH) and running operation of honey cabinet. (A) Honeybee visited T.
cochinchinensis flower. (B) View of TCH. (C) The capped honeycombs of TCH in the honey cabinet. (D) Physical map of honey cabinet. Dimensions:
1.2m (W) x 0.8 m (D) x 1.6 m (H). Capacity: 15 honeycombs (40 x 25 cm each).
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potential carcinogen, HMF is correlated with reduced honey freshness
(34). Thermal treatment can enhance honey’s antioxidant activity (35).
Vacuum drying methods of honey include high-temperature, freeze
and ultrasonic vacuum drying. High-temperature and freeze vacuum
drying can increase the total phenolics and flavonoid level of honey
(15), whereas ultrasonic vacuum drying increases HMF content and
darkens honey color (36). Microwave heating is another method for
honey drying, as it penetrates and interacts with honey to achieve
rapid heating (37). Nevertheless, under the same processing time,
HMEF formation seems to increase to a greater extent compared to
thermal heating, and there is a decrease in glucose oxidase and
invertase activity (38). When stingless bee honey is subjected to
microwave heating at a constant power level of 60 W for 1 min, its
antioxidant activity significantly decreases (39). Placing capped
honeycombs in a hot room equipped with an automated temperature
(36-38 °C) and humidity (30-40%) control system is also a useful
drying method. This approach replicates the temperature and
humidity conditions within bee colonies to facilitate honey
dehydration. After 3 to 4 days of treatment, this method can effectively
reduce the water content of the honey to below 18% (40-42).

For small-scale apiaries (<100 colonies), thermal treatment may
reduce the nutritional value of honey. Vacuum drying and microwave
heating require skilled operators and are difficult to maintain. Hot
rooms are impractical due to spatial limitations (>10 m?) and financial
constraints. However, beekeepers in small apiaries are in urgent need
of alow-cost and quality-preserving way to reduce the water of honey.

This study, drawing on the principles of hot air-drying technology,
developed an automated temperature- and humidity-controlled honey
cabinet designed explicitly for small apiaries in high-humidity regions
to reduce the water content of TCH. The cabinet (1.5 m®) utilizes
heaters, dehumidifiers, and axial fans to maintain a temperature of
38 °C and a relative humidity of 30% (Supplementary Figures 51, 52),
processing 15 honeycombs per batch. Comprehensive functional
verification demonstrated that after treatment with the cabinet, the
water content in capped honeycombs of TCH was reduced to below
18%, while effectively preserving nutritional and flavor components
of honey and enhancing its antioxidant capacity. Unlike industrial
dehydrators or hot rooms, its compact design (<0.5 kW in power)
suited small apiaries, offering the advantages of low operating costs,
quick return on investment and portability. This innovation not only
enhances honey quality and concentration but also contributes to
improved economic returns for beekeepers.

2 Materials and methods
2.1 Sample collection

TCH was selected for this experiment, which had the largest
production during summer in the high-humidity regions of southern
China. The apiaries selected for the production and harvesting of TCH
were Weimin apiary in Yongxiu County, Jiangxi Province, China
(29°01'N, 115°29’E) and Gan’s apiary in Anfu County, Jiangxi
Province, China (114°21’E, 27°14'N). Both were surrounded by
plantations of T. cochinchinensis. During the flowering period of
T. cochinchinensis (June-July 2024), 10 colonies (Apis mellifera) were
organized to produce TCH. Honeycombs with a capped rate exceeding
95% were chosen as the test samples.
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2.2 Chemicals and reagents

LC-MS acetonitrile, methanol and formic acid were purchased
from Thermo Fisher (MA, United States). A mixture of n-alkanes
(C7-C40) standard was purchased from Merck (Darmstadt,
Germany). Glucose and fructose standards were obtained from Dr.
Ehrenstorfer (Augsburg, Germany). Sucrose standard was sourced
from Anpel (Shanghai, China). Octanol standard was purchased from
TMTR (Changzhou, China). Rutin and gallic acid standards from
Weiye (Beijing, China). Furfural standard solution was acquired from
Alta (Tianjin, China). NaOH and H,SO, were purchased from Bolind
(Shenzhen, China). Glycerol, sodium acetate, acetic acid, iodine,
potassium iodide, sodium chloride, and starch were purchased from
Sinopharm (Shanghai, China). Dichloromethane (purity) > 99.9%
was purchased from Xiya (Linyi, China). AICl;, Na,CO; and ethanol
were obtained from Xilong (Shantou, China). Honey glycerol
enzymatic analysis kit was obtained from Kwinbon (Beijing, China).
Folin-Ciocalteu reagent, ABTS free radical scavenging capacity
(ABTS+) and ferricion reducing antioxidant power (FRAP) kits were
purchased from yuanye (Shanghai, China). 2,2-diphenyl-1-
picrylhydrazyl (DPPH) was acquired from Phygene (Fujian, China).
Ultra-pure water from Ultrapure Lab Water Systems (Rephile,
Shanghai, China) was used throughout the study.

2.3 Honey cabinet and verification of its
dewatering efficiency and energy
consumption

A honey cabinet was used to excessive water content in this
experiment. The control system of the honey cabinet utilizes the
temperature and humidity sensor to automatically regulate the heater,
dehumidifier, and axial fan, ensuring proper air circulation and
maintaining stable temperature and humidity environment within the
honey cabinet (Supplementary Figures S1, S2). Dimensions: 1.2 m
(W) x 0.8 m (D) x 1.6 m (H). Capacity: 15 honeycombs (40 x 25 cm
each). The relevant parameters of honey cabinet were summarized in
Supplementary Table S1. The automated control system can maintain
a stable temperature at 38 °C £+ 1 °C and the relative humidity at
30 £ 5%. Upon activation of the honey cabinet, the heated air is
accelerated, distributed and filled the entire cavity, which creates a
continuous circulation of hot air within the drying chamber and
effectively facilitates the drying of the capped honeycombs
(Supplementary Figures 53, 54). The operational flow diagram for the
honey cabinet was shown in Supplementary Figure S5.

A total of 30 capped honeycombs of TCH (15 in one apiary) with
an initial water content of 21-22% were selected. Each honeycomb
was divided into six areas, and five cells were randomly sampled from
each area to measure the water content, allowing for the estimation of
the overall water content across the entire honeycomb. Five
honeycombs were placed on each shelf of the honey cabinet,
maintaining a spacing of 6-8 cm between them (Figures 1C,D).

We conducted a pre-experiment using capped honeycomb
samples with different initial water contents and found that the water
contents of all samples could be reduced to below 18% after 96 h of
treatment. Therefore, the honeycombs were processed in the cabinet
for 96 h. Before treatment (0 H), five honeycombs were randomly
chosen. Each honeycomb was divided into six areas (three on each
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side), and five cells were selected within each section. Remove the
beeswax caps and measure the initial water content of TCH. After 96 h
of treatment (96 H), follow-up sampling was performed in each area
by measuring water of five cells. Random sampling was performed in
each honeycomb area, and the analysts were blinded to treatment
groups during subsequent experiments.

There were 30 replicates in each group. The water content was
then calculated by determining the refractive index at 40 °C using an
Abbe refractometer (DRA1, ATAGO, Tokyo, Japan). During the
cabinet run, the energy consumed by honey cabinet was recorded with
power meters.

2.4 Palynological and physicochemical
analysis

The TCH produced by Weimin apiary was utilized for subsequent
analysis. The light microscope equipped with a camera (DS-Fi3,
Nikon Corporation, Tokyo, Japan) was used to palynological analysis.
The TCH samples preparation and local pollen grains determination
was based on the method of Yang et al. (43).

To examine the effects of cabinet treatment on TCH quality, the
physicochemical components of 0 and 96 H TCH samples were
analyzed. The contents of fructose, glucose and sucrose in TCH
samples were determined using the AOAC method No. 977.20 (44).
A high-performance liquid chromatograph (HPLC) equipped with a
refractive index detector (2695-2,414, Waters, MA, United States).
The Cosmosil Sugar-D (5 pm 4.6 x 250 mm) column (Nacalai tesque,
Kyoto, Japan) was used for the separation of sugar compounds. The
mobile phase consisted of water-acetonitrile (25:75, v/v) with a flow
rate at 1.0 mL/min, column temperature at 40 °C, injection volume of
20 pL and run time of 15 min per sample. Standard solutions of
glucose, fructose and sucrose were prepared to establish standard
curves for calculating the sample concentration. The water system also
used for HMF analysis consisted of an HPLC and an ultraviolet (UV)
detector. The chromatographic separation was by ACQUITY UPLC
BEH C18 (1.7 pm 2.1 x 50 mm) column (Waters, MA, United States).
The conditions were as follows: the mobile phase consisted of water—
methanol (90:10, v/v), the flow rate of 1.0 mL/min, column
temperature at 30 °C, injection volume of 10 pL and run time of
15 min per sample. HMF standards were prepared at concentrations
of 0.01 mg/mL - 1 mg/mL with water-methanol (90:10, v/v) for
calibration. Samples were dissolved to 100 mg/mL with water—
methanol (90:10, v/v) for determination.

The diastase activity of TCH was analysis as follows: 5.0 g sample
was dissolved in 15 mL water, together with 2.5 mL acetate buffer
(pH =5.3). Then 1.5 mL of 0.5 M sodium chloride was added, and the
mixture was diluted to 25 mL with water. 5 mL starch solution was
combined with 10 mL honey solution. From the 5th min, 1.0 mL of
the mixture was added to 10.0 mL iodine solution every 15 min and
then the absorbance was measured at 660 nm using a
spectrophotometer. The procedure was repeated until the absorbance
dropped below 0.235. A standard curve was drawn with time and
absorbance to calculate the time when the absorbance of the sample
mixed solution reached 0.235.

The free acidity was determined using the Chinese rules for the
inspection of honey for import and export (SN/T0852-2012) (45). A
10.0 g honey sample was dissolved in 75 mL of boiled and cooled
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water. Two to three drops of 1% phenolphthalein indicator were
added, followed by titration with 0.1 M sodium hydroxide solution
until a stable pink color persisted for at least 10s. The final acidity
values were calculated in mL/kg. The glycerol of TCH were assessed
utilizing commercial assay kits and results were expressed as mg/kg.
The lab chromaticity was measured by a CM-5 chromameter
(Minolta, Shanghai, China). The samples were filled into the cuvette
and placed in the transmission sample chamber to measure the L*
(Redness)
whiteboard correction.

(lightness), a* and b*(yellowness) values after

2.5 GC-MS analysis

The SPME fiber (50/30 pm DVB/CAR/PDMS, stableflex (2 cm)
24 Ga; Supelco, PA, United States) was used to extract volatile
compounds from TCH samples. 5.000 g of sample was weighed,
dissolved in distilled water, and diluted to 10 mL to obtain a
concentration of 0.5 g/mL. The mixture was then transferred to a
20 mL SPME vial. 200 pL of octanol was subsequently added
(dissolved in dichloromethane, 10 pg/mL) and mixed well (46). The
samples were incubated at 40 °C for 15 min and then extracted for
Before the SPME fibers
conditioned 30 min.

GC-MS system (5977B-7890B, Agilent Technologies, CA,
United States) equipped with HP-VOC (30 m x 0.20 mm x 1.12 pm)
was adopted for sample analysis. The conditions were as follows:

30 min. extraction, the were

Helium (99.99% purity) served as the carrier gas at a constant flow rate
of 1.2 mL/min, maintaining a constant pressure of 9.1075 psi. The
injection temperature was 250 °C and the analytes were carried out in
splitless mode. The initial column temperature was held at 40 °C for
2 min, then increased to 180 °C at a rate of 2 °C/min, followed by a
further increase to 260 °C at 5 °C/min, and held for 5 min. The total
analysis time was 97.00 min. The mass spectra data were performed
under 70 eV electron ionization.

2.6 UPLC-MS/MS analysis

The Oasis HLB (3 cc/60 mg, Waters Oasis, MLF, United States), a
solid-phase extraction (SPE) column was used for the extraction of
compounds from TCH samples. Briefly, 2.5 g honey sample was
weighed, dissolved thoroughly in 5 mL of water, and then centrifuged
at 8000 r/min for 10 min. The supernatant was retained. After the SPE
column was activated according to the instructions, the supernatant
was loaded onto the column for component enrichment. The column
was then washed with water and thoroughly removed residual water.
Subsequently, the column was eluted with 3 mL of methanol and dried
under nitrogen gas. The eluate was redissolved in 1 mL of 80%
methanol solution, filtered through a 0.22 pm filter membrane, and
transferred to an injection vial for analysis. The quality control (QC)
sample was prepared by mixing equal volumes of the injection
solutions from all samples, which was used to monitor the stability of
the analytical system.

An ultra-high-performance liquid chromatography system
(Dionex Ultimate 3,000, Thermo Fisher Scientific, MA, United States)
coupled to a Q Exactive mass spectrometer (MS, Thermo Fisher
Scientific, MA, United States) with a heated electrospray ionization
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(HESI) source was used for testing the compounds of TCH samples.
The separation was performed on an ZORBAX Eclipse Plus C18
chromatographic ~ column (3.0 x 150 mm x 1.8 pm,  Agilent
Technologies, CA, United States) thermostated at 40 °C. A gradient
elution program ran with mobile phase A (0.1% formic acid water)
and B (methanol) as follows: 0-0.5 min, 95% A; 0.5-4 min, 95-40%
A; 4-12 min, 40-5% A, 12-16 min, 5% A; and 16-20 min, 95%
A. Each injection of 2 pL was loaded with a flow rate of 0.3 mL/min.
All samples were collected in positive (ESI+) and negative ion (ESI-)
switching full scan modes. The quality control (QC) sample was
injected once for every five real samples to examine the stability of the
entire detection process and was used for qualitatively determination
scanned in the full scan/ddMS2 mode.

The HESI parameters were optimized as follows: sheath gas flow
rate 40 L/min; aux. Gas flow rate 5 L/min; spray voltage 3,000 V for
ESI- and 3,500 V for ESI+; capillary temperature 320 °C; S lens radio
frequency voltage level of 60%; and aux. Gas heater temperature
350 °C. Full scan data (m/z 80-1,200) were acquired at a resolution of
70, 000 and ddMS2 was set at 17,500. The collision energies were 20,
30, and 40 eV. The automatic gain control (AGC) was set at 1 x 10° and
the maximum injection time was set to 50 ms. The scan rate was set at
1 scan/s. MS data was collected using Xcalibur software 4.0 (Thermo
Fisher Scientific, MA, United States) and saved as Raw format files.

2.7 Analysis of total phenolics, flavonoids
content and antioxidant capacity

2.7.1 Determination of total phenolics and
flavonoids

Total phenolics (TPC) and flavonoids content (TFC) of TCH
samples were assessed following the protocol previously published by
Cucu et al. (47). A calibration curve was constructed using various
concentrations (0.01-0.25 mg/mL) of gallic acid (y = 10.567x + 0.1268,
R2 =0.998) and rutin (y = 9.0645x + 0.0816, R2 = 0.999). The results
were presented as gallic acid equivalents (GAE) in mg/100 g of honey
for phenolics determination and rutin equivalents (RE) in mg/100 g
of honey for flavonoids measurement.

2.7.2 Determination of antioxidant capacity

DPPH/ABTS+ reflect radical scavenging in hydrophilic systems,
while FRAP assesses reduction potential—collectively covering honey’s
antioxidant mechanisms (12). The antioxidant capacity of TCH
samples was determined by FRAP, DPPH, and ABTS+ methods. For
the DPPH experiment, the procedure followed the method described
by Hu et al. (48). The ABTS+ and FRAP assays for TCH were assessed
utilizing commercial assay kits. The results were displayed as 50%
inhibitory concentration (IC50) of DPPH and ABTS+, while the FRAP
results were expressed as mg/Trolox kg of honey.

2.8 Statistical analysis

Except for the moisture content analysis, all experiments were
repeated with five biological replicates and the results are presented as
mean * standard error (SE). Data normality was confirmed via
Shapiro-Wilk tests (p > 0.05). Unpaired t-test were performed using
IBM SPSS (version 27, IBM Corp., NY, United States). Additionally,
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Pearson correlation coefficient was used for correlation analysis. The
metabolomics analyses were conducted using the online platform
MetaboAnalyst.!

The raw MS data were imported into Compound Discoverer 3.2
software (Thermo Fisher Scientific, CA, United States) for subsequent
data calibration and data analysis. Firstly, the CD3.2 software identified
and aligned the ion peaks in the raw file, as well as normalizing the
peak area, and performed preliminary characterization. The ion peak
matching parameters were as follows: maximum allowed retention
time offset 0.2 min; maximum allowed mass deviation 5 ppmy;
minimum peak response value 1 x 107; signal to noise ratio 3; peak
response deviation 30%. The mzCloud, ChemSpider and mzVaul
databases were used for metabolite identification.

A peak rating threshold of 4.5 was applied and only features
detected in at least three samples were retained.

The qualitative volatiles were identified using the MassHunter
Workstation Unknowns Analysis, B.09.00 software (Agilent
Technologies, CA, United States) combined with the NIST 17
database, based on retention time, mass-spectral similarity match (>
80%) and Retention Index (RI) offsets of + 20 units.

3 Results and discussion

3.1 Dewatering efficiency and energy
consumption of honey cabinet

Following a 96-h treatment in the honey cabinet at a temperature
of 38 °C £ 1 °C and relative humidity of 30% + 5%, the water content
of the capped honeycombs of TCH produced by Yongxiu and Anfu
both decreased to below 18% (Table 1). It was significantly lower than
the European Union standard of less than 20% (49). This reduction
effectively prevented fermentation and degradation, thereby
enhancing the quality and facilitating long period storage of TCH (50).

The average energy consumption per run of cabinet was 12.8 kWh,
translated to an operational cost of approximately $1.06 per run, based
on the 2025 U. S. industrial electricity rates. It was a marked reduction
compared to traditional hot rooms, which are estimated to
be 25-35 kWh for comparable throughput (40). Each run could
process approximately 50 kilograms of TCH, so the cabinet’s energy
use was 0.26 kWh/kg and the 96 h treatment cost was $0.02 per
kilogram, which is 48% lower than commercial vacuum drying units
(0.5 kWh/kg) (17) and 85% lower than thermal heating machine
($0.135 per kilogram) (35).

While a duration of 96 h may seem long, this is a viable timeframe
for high value honey batch production in small apiaries. Additionally,
automation has minimized labor costs. Further optimization may
include slightly higher temperatures and lower relative humidity
(within safe limits to avoid HMF or glycerol) to potentially reduce
processing time without compromising quality.

In summary, the honey cabinet not only guaranteed efficient
dehydration of capped honeycombs but also maintained a
comparatively low operational cost. It provided a practical solution to
improve income for small-scale beekeepers facing TCH devaluation

1 https://www.metaboanalyst.ca/
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due to high water content. With a low purchase cost of only $ 210 and
an easy one-touch operation, it is highly suitable for small apiaries and
favorable for rapid and wide-scale dissemination in humid regions.

3.2 Palynological characterization and
effects on physicochemical parameters of
TCH

The pollen grains in TCH observed under the microscope
displayed a prolate shape in the equatorial view (Figure 2A) and a
trilobed circular shape in the polar view (Figure 2B). The pollen grains
of T. cochinchinensis accounted for 85.06% + 2.51% in TCH. Which
indicates that the samples met the requirement (>45%) to
be considered monofloral honey (51).

Seven physicochemical parameters of TCH at different treatment
times were shown in Table 2. As the treatment time increased, the
content of fructose and glucose in TCH significantly increased, while
the sucrose content significantly decreased. The sucrose was
enzymatically hydrolyzed into fructose, glucose and other
monosaccharide by invertase during the honey maturation process
(52, 53). This indicated that during the honey cabinet treatment, TCH
underwent a post maturation. Additionally, the significant increase in
monosaccharide content aligned with the sugar composition
characteristics observed in mature honey (54).

HME a toxic cyclic aldehyde and an intermediary product of
Maillard reactions in honey, served as a crucial indicator for evaluating

TABLE 1 Honey dewatering and total energy consumption for each test.

Location of Treatment time (Water = Total energy
TCH content, %) consumed
roduction for 96 h (KW
. OH 96 H A
(n =30) (n =30)
Yongxiu, Jiujiang 21.79 £ 0.17* 17.72 £ 0.09° 12.56 ‘
Anfu, Jian 21.45 +0.09* 17.80 + 0.10° 13.02 ‘

The same lowercase letter in the same line indicated no significant difference (p>0.05),
different lowercase letters indicated significant difference (p<0.05).

10.3389/fnut.2025.1641551
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the extent of honey thermal treatment (55, 56). No HMF was detected
in any TCH samples, indicating that the honey cabinet treatment did
not result in thermal degradation and consequently prevented the
formation of harmful substances such as HMF (57).

Diastase is sensitive to heat, and exposure to thermal treatment
can cause denaturation of its structure, leading to inactivation (15, 58).
The activity of diastase is frequently used as an indicator to evaluate
the freshness and the processing suitability of honey (59). TCH
naturally exhibits low diastase activity (18). As treatment time
increased, the diastase activity in TCH also rose, which is consistent
with Zhang et al’s findings that diastase activity increases with greater
maturity (60).

Acidity plays a pivotal role in inhibiting microbial growth (51).
The significant increase in acidity of 96 H TCH enhanced the
antibacterial properties of honey (61). Honey fermentation results in
the production of glycerol, which is difficult to eliminate during
subsequent honey processing (62). It can be used to assess honey
spoilage and processing suitability (63). The glycerol content of TCH
showed no difference after 96 h of processing, which indicates that it
will not accelerate fermentation and extend the storage time. The color
of TCH is light amber (64). The b* (yellowness) values increased
significantly with prolonged treatment time, suggesting that TCH is
progressively maturing.

3.3 Variation of volatile compounds of TCH

Volatile compounds impart both taste and aroma to honey,
representing essential quality characteristics of honey (65). Over 600
volatile compounds have been identified in various types of honey
(66, 67).

A total of 8 kinds of 36 volatile compounds were tentatively
identified from 0 H and 96 H TCH, including acids, alcohols,
aldehydes, esters, hydrocarbons, aromatics, phenols and ethers. All of
them were present on both time points. Both groups identified octanal
and nonanal as frequently detected volatile compounds, contributing
to the fresh citrus-like fruit aroma characteristic of TCH (46, 68).
Furthermore, nonanoic acid and decanol impart woody and floral
aromas to TCH (69, 70).

10Em

FIGURE 2

under the microscope.

The palynological characterization of TCH. (A) An equatorial view of TCH pollen grains under the microscope. (B) A polar view of TCH pollen grains
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TABLE 2 Physicochemical parameters of 0 Hand 96 H TCH.

Treatment time

96 H (n =5)

Parameter

OH(n=05)

Fructose (%) 37.19 +0.29° 38.44 +0.15°

Glucose (%) 35.83 +0.37° 37.69 £0.21°

Sucrose (%) 0.73 +0.02* 0.49 + 0.07°

HME (5-hydroxymethylfurfural) (mg/ ND ND

kg)

Diastase activity mL/(g-h) 0.86 +0.17° 1.02 £0.18"

Free acidity (mL/kg) 15.19 £ 0.57° 18.07 £ 0.88*

Glycerol (mg/kg) 61.68 + 1.05* 66.43 + 2.60°
L* (lightness) 95.35+0.10* 95.34 £ 0.11°

Color a* (Redness) —2.15+0.04* —2.16 £ 0.01*
b* (yellowness) 19.39 £ 0.21° 21.06 + 0.09*

ND indicates data not detected. The same lowercase letter in the same line indicated no
significant difference (p>0.05), different lowercase letters indicated significant difference
(p<0.05).

The orthogonal partial least squares-discriminant analysis (OPLS-
DA) was carried out on 36 volatile compounds. The two groups were
clearly separated in the OPLS-DA score plot, indicating the
discrimination between them was excellent (Figure 3A). The
differential volatile compounds were screened using p < 0.05 and
[log2FC| > 0.585. Compared to the 0 H TCH, the 96 H TCH had 2
differential volatile compounds (Figure 3B). The proportion of
non-differential volatile compounds was 94.44%. 2-methylnonane was
down-regulated. Hydrocarbons are common in honey and may
originate from flower nectar and further converted by bees (71). The
result was consistent with the studies that the maturity of Gallnut
honey increased while hydrocarbons content decreased (72). The
content of cedrol increased after 96 H treatment. Previous studies have
shown that the volatile compounds in honey, particularly terpenoids,
alcohols, and aldehydes, fluctuate during the ripening process,
consistent with our findings (73). Cedrol provides herbal flavors for
TCH and serves as a volatile marker and an important contributor to
unifloral safflower honey (74). Therefore, it was observed that after 96
H treatment by honey cabinet, the overall volatile compounds of TCH
had no significant alterations.

Sensory evaluation was valuable for flavor perception. However,
the minimal changes in key aroma-active compounds in TCH like
octanal, nonanal and nonanoic acid (65), along with the increase in
cedrol, indicate that the overall sensory profile characteristic of TCH
is well-preserved (75). Moreover, sensory perception depends on both
compound concentrations and odor thresholds, and given that
2-methylnonane is a minor component, its sensory impact is likely to
be limited (76). Future studies should include sensory panels to
confirm consumer acceptability.

3.4 Variation of chemical compositions of
TCH

A total of 1,546 small molecule compounds were identified in
TCHs (0 H and 96 H treatment), with the composition of components
being identical in both groups. The OPLS-DA analysis was carried out
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on the 1,546 metabolites in two groups. There was a clear separation
in the OPLS-DA score plot, indicating that the optimal classification
result has been achieved (Figure 4A). The differential metabolites were
screened using p < 0.05 and |log2FC| > 0.585. Compared to the 0 H
TCH, the 96 H TCH exhibited 66 differential components
(Supplementary Table S2; Figure 4B), including 42 up-regulated
components, mainly organic acids, fatty acids, esters, phenolic acids,
flavonoids and others. The proportion of non-differential compounds
was 95.73%.

The upregulation of differential components in the 96 H TCH
could primarily be attributed to two factors. Firstly, the reduction in
water content resulted in a higher concentration of specific
components. Secondly, after 96 h of treatment, TCH had exhibited
greater transformation and maturity. For example, during the
maturation process, sucrose continuously undergoes hydrolysis to
form fructose and glucose, while organic acids are simultaneously
generated (77). The elevated levels of six organic acids contributed to
lowering the pH value of TCH, thereby enhancing its antibacterial
properties (78). Fatty acids accumulate by the action of lipase on lipids
during honey maturation, and the subsequent dehydration process
further increases their concentration (79). There was a significant
upregulation of two long-chain fatty acids, which aligned with
previous research that mature honey contained significantly higher
levels of long-chain fatty acids compared to immature honey (54).
Additionally, the levels of three esters in the 96 H TCH had also
increased, contributing to the development of TCH’s distinctive fruity
and floral aromas (80). Furthermore, we also found that one Phenolic
acid and one flavonoid were upregulated in the 96 H TCH, consistent
with the finding that some polyphenol levels increase during TCH
maturation (81), potentially improving the antioxidant capacity of
TCH. Phenolic increases may arise from continued plant enzyme
activity (e.g., polyphenol oxidase) during dehydration, converting
glycosides to aglycones (82).

These results collectively suggested that honey cabinet treatment
promoted honey maturation without causing significant changes in
the composition or content of the compound and may enhance TCH
antioxidant capacity.

3.5 Comparative analysis of TPC, TFC and
antioxidant capacity of TCH

Phenolic acids and flavonoids are important bioactive substances
in honey, mainly contributing to its antioxidant activity (83, 84). The
TPC and TFC of the 96 H TCH were significantly increased by 15.83
and 25.42%, respectively, compared to those of the 0 H TCH
(Figures 5A,B). Based on the UPLC- MS/MS results, methyl gallate
and 2-methoxyisoliquiritigenin showed significant increase.
Furthermore, phenolic acids like gallic acid, sinapinic acid and
4-hydroxy-2-methylbenzoic acid, as well as flavonoids including
quercetin, kaempferol, eupatorin and sakuranetin, all exhibited
upward trends. Methyl gallate (upregulated 2.1-fold) exhibits high oral
bioavailability and antimicrobial effects against Aspergillus spp.,
potentially extending shelf-life (85).

The DPPH IC50 and ABTS+ IC50 values for 96 H TCH are notably
lower by 19.20 and 9.5%, respectively, compared to those of 0 H TCH
(Figures 5C,D). Although the FRAP values did not reach statistical

significance, they exhibited an upward trend (Figure 5E). As shown in
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The GC-MS analysis of 0 H and 96 H TCH. (A) The OPLS-DA scores plot of volatile compounds determined by GC-MS of 0 Hand 96 H TCH (n = 5).
(B) Volcano plot of 36 identified volatile compounds from 96 H TCH vs. 0 H TCH. The differential volatile compounds were analyzed by p < 0.05 and
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Table 3, both TPC and TFC in TCH have significant correlations with
antioxidant capacity (DPPH IC50, ABTS+ IC50 and FRAP). These
results showed that 96 h treatment with honey cabinet enhanced not
only the TPC and TFC, but also the in vitro antioxidant capacity.

Two factors may explain this observation: firstly, the treatment
may improve honey maturity. Guo et al. noted that mature honey
possessed richer polyphenolic compositions, and Zhang et al. found
the TPC, TFC and vitro antioxidant capacity of rape honey displayed
an overall upward trend with the increase of ripening (60, 82).
Secondly, the b* (yellowness) values of 96 H TCH significantly
increased. Research indicates that the color values of honey is a
positive correlation with phenolic compounds content and antioxidant
capacity (86). Estevinho et al. demonstrated that dark honeys contain
significantly higher phenolics and superior DPPH scavenging capacity
than light variants (87).
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4 Conclusion

In this study, after 96 h of treatment at the temperature of
38 £ 1 °C and relative humidity of 30 + 5% in the honey cabinet, the
water content of TCH decreased to below 18%, effectively extending
its shelf life. Results showed that this dewatering method not only
accelerated TCH maturation and improved quality but also avoided
The
composition and content of chemical composition and volatile
compounds remained largely unchanged, with 95.73 and 94.44%
similarity before and after treatment, respectively. Additionally, it

the adverse effects of conventional thermal treatment.

increased TPC and TFC, enhancing antioxidant activity. These
findings confirmed the honey cabinet’s effectiveness and practicality
for TCH dewatering and quality preservation, providing a strong
theoretical and technical foundation for its broader application in
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H TCH (unpaired t-test, n = 5). (E) The ferricion reducing antioxidant power (FRAP; mg Trolox/kg) in 0 H and 96 H TCH (unpaired t-test, n = 5). The
same lowercase letter in the same figure indicated no significant difference (P>0.05), different lowercase letters indicated significant difference

TABLE 3 Correlation matrix between TPC, TFC, and antioxidant capacity
in TCH (n = 5).

Parameter TPC TFC DPPH ABTS* FRAP
IC50 IC50

TPC 1

TEC 0.924% 1

DPPH IC50 —0.945%%  —0.868"* 1

ABTS+ 1C50 —0.965%* = —0.837% | 0.883*% 1

FRAP 0.946** | 0980** | —0.906* | —0.858% 1

Level of significance: p < 0.05 (2-tailed): Groups marked with a single asterisk (*); p < 0.01
(2-tailed): Groups marked with a double asterisk (**).

small apiaries. Additionally, it shows great potential in handling other
high water honeys across Southeast Asia. While the sample size (30
honeycombs) and biological replication (1 = 5) provide statistically
significant results for the parameters measured, future studies with
larger-scale  validation across multiple seasons  would
strengthen generalizability.

Beekeepers can adopt this system for $210 (material costs),
recovering investments within one season via improved honey quality.

To ensure optimal performance, it is recommended that beekeepers

Frontiers in Nutrition

follow the specified temperature and humidity settings when operating
the honey cabinet. During the dewatering treatment, beekeepers
should regularly check the water content of honeycombs to avoid
over-drying. Overall, the cabinet’s cost-effectiveness and scalability
provide a viable solution for small apiaries, enhancing economic
returns for beekeepers in humid regions.
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SUPPLEMENTARY FIGURE S1

The structural diagram of honey cabinet includes left view, right view and air
intake view. The meaning of numbers in the figure are as follows: 1.
Dehumidifier, 2. Temperature and humidity sensor, 3. Axial fan, 4.
Honeycomb shelves, 5. Heater, 6. Air intake, 7. Air outlet.

SUPPLEMENTARY FIGURE S2

The 3D schematic representations: left and right view of honey cabinet, and
control components including heaters, dehumidifiers, axial fans, air intake
and air outlet.

SUPPLEMENTARY FIGURE S3

The distribution of relevant parameters within honey cabinet. (A) The airflow
mechanism of honey cabinet. Air enters through the bottom intake,
accelerated by an axial fan to form a horizontal laminar flow that evenly
spreads across the base and gradually fills the cabinet vertically, finally being
discharged directionally through diagonally positioned upper vents. (B) The
distribution of temperature in honey cabinet (°C), (C) The distribution of
humidity in honey cabinet (%).

SUPPLEMENTARY FIGURE S4
The internal temperature and relative humidity within the honey cabinet
during a 96-h operation (38 °C + 1 °C and the RH 30 + 5%).

SUPPLEMENTARY FIGURE S5
The operational flow diagram for the honey cabinet.
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