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Introduction: Existing studies have demonstrated a significant correlation 
between intestinal barrier and disease outcomes. The intestinal barrier is 
particularly susceptible to impairment following digestive surgery. The study 
aimed to elucidate the effects of intestinal barrier impairment on inflammation 
and nutritional status, as well as the necessity of nutritional treatment for 
postoperative patients.
Methods: We assessed intestinal barrier integrity by measuring serum 
biomarkers, diamine oxidase (DAO), D-lactate (D-lac) and lipopolysaccharide 
(LPS) in 745 consecutive hospitalized patients after digestive surgery and 394 
non-surgical patients. Serum levels above established cutoffs (DAO > 10 U/L, 
D-lac >15 mg/L, LPS > 20 U/L) were defined as positive, corresponding to 
mucosal injury, increased intestinal permeability, and bacterial translocation. 
Correlation analyses were performed between intestinal barrier integrity, 
inflammation, cytokines, and nutritional status. The areas under the receiver 
operating characteristic (ROC) curves were used to predict severe intestinal 
barrier impairment. Additionally, changes in intestinal barrier biomarkers were 
compared after 1 week of nutritional therapy.
Results: Postoperative patients exhibited a high incidence of intestinal barrier 
impairment. Among the biomarkers, DAO showed the highest positivity rate, 
followed by D-lac, while LPS was the least frequently elevated. The highest levels 
of serum DAO, D-lac and LPS were observed in patients with severe intestinal 
barrier impairment (positive for all three biomarkers). Patients with intestinal 
barrier impairment exhibited progressively worsening nutritional status and 
escalating systemic inflammation. The area under the ROC curve for predicting 
severe intestinal barrier impairment was 0.71. One-week nutritional intervention 
was significantly associated with improved intestinal barrier function, primarily 
evidenced by a reduction in intestinal permeability. Early enteral nutrition (EEN) 
was associated with lower serum DAO, D-lac, and LPS levels. However, patients 
with aggravated intestinal barrier function after nutritional therapy displayed 
higher inflammatory markers and failed to achieve improvement in nutritional 
status compared to those with improved barrier function.
Conclusion: Intestinal barrier impairment is prevalent in patients undergoing 
digestive surgery and acts as a key driver of both inflammation and malnutrition. 

OPEN ACCESS

EDITED BY

John Le,  
University of Alabama at Birmingham, 
United States

REVIEWED BY

Ismael San Mauro Martín,  
CINUSA Group, Spain
Peng Li,  
Peking University, China

*CORRESPONDENCE

Jingjing Wang  
 wangjingjing0204@163.com  

Guoxun Li  
 liguoxun8@126.com

†These authors have contributed equally to 
this work

RECEIVED 29 May 2025
ACCEPTED 26 August 2025
PUBLISHED 05 September 2025

CITATION

Wang J, Yan J, Shi L, Wang Y, Tian X, Qi Y and 
Li G (2025) Intestinal barrier function as a key 
determinant of inflammation and nutritional 
status in digestive surgery patients: a 
real-world study.
Front. Nutr. 12:1637877.
doi: 10.3389/fnut.2025.1637877

COPYRIGHT

© 2025 Wang, Yan, Shi, Wang, Tian, Qi and Li. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  05 September 2025
DOI  10.3389/fnut.2025.1637877

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1637877&domain=pdf&date_stamp=2025-09-05
https://www.frontiersin.org/articles/10.3389/fnut.2025.1637877/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1637877/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1637877/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1637877/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1637877/full
mailto:wangjingjing0204@163.com
mailto:liguoxun8@126.com
https://doi.org/10.3389/fnut.2025.1637877
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1637877


Wang et al.� 10.3389/fnut.2025.1637877

Frontiers in Nutrition 02 frontiersin.org

EEN was associated with improvement in intestinal barrier dysfunction. 
However, delayed or inadequate correction of intestinal barrier impairment may 
compromise therapeutic outcomes.
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1 Introduction

The gastrointestinal tract serves not only the central organ for 
digestion and absorption but also the primary defense against the 
invasion of pathogens and toxins. The intestinal barrier, composed of 
mechanical, chemical, immune, and biological barriers, is crucial for 
maintaining intestinal homeostasis (1, 2). Recent studies have further 
highlighted the role of gut in immunity, accounting for approximately 
70–80% of the body’s immune function (3, 4). Intestinal barrier is 
involved in the regulation of various systemic diseases such as diabetes 
(5, 6), fatty liver disease (7), cardiovascular disease (8, 9), asthma (10, 
11), primary sclerosing cholangitis (12), rheumatoid arthritis (13) and 
infectious diseases like influenza (14) and tuberculosis (15). 
Undoubtedly, maintaining the normal physiological function of the 
intestinal barrier is fundamental to overall health.

Patients undergoing digestive surgery often experience 
impairment of intestinal barrier function due to surgical trauma, 
anesthetic stress (16), and inflammatory responses. This impairment 
can lead to bacterial translocation, systemic inflammatory response 
syndrome (SIRS), and multiple organ dysfunction, significantly 
affecting disease outcomes (17, 18). However, in current clinical 
practice, a dynamic monitoring for postoperative intestinal barrier 
function remains to be established, and the underlying mechanisms 
governing the interplay between barrier repair, nutritional 
metabolism, and inflammatory regulation urgently require 
elucidation. Clinical data show that patients with impaired 
intestinal barrier function experience a 30–50% higher incidence of 
infectious complications, along with hospital stays prolonged by 
more than 20%. Therefore, intestinal barrier impairment in 
postoperative gastrointestinal patients adversely affects clinical 
outcomes, urgently necessitating the development of evidence-
based therapeutic interventions.

Nutritional intervention is a core strategy to improve 
postoperative intestinal barrier function. A great number of studies 
emphasize that patients with stable hemodynamics should initiate EN 
promptly to maintain the integrity of the intestinal mechanical and 
immune barriers (19). Postoperative protein-energy malnutrition can 
deplete essential nutrients such as glutamine (Gln) (20, 21) and short-
chain fatty acids (SCFA) (22, 23), which are critical for the 
proliferation of intestinal mucosal epithelial cells. This deficiency can 
lead to villus atrophy and the down-regulation of tight junction 
protein expression. However, the optimal timing and protocol for 
initiating enteral nutrition (EN) in post-gastrointestinal surgical 
patients remain controversial. While previous studies have 
predominantly focused on the effects of individual nutrients on 
intestinal barrier function, the systemic impact of comprehensive 
nutritional strategies has been largely overlooked. This prospective 
observational study conducted in real-world clinical settings 
systematically assessed intestinal barrier integrity among surgical 

patients receiving nutritional care encompassing combined parenteral 
and/or enteral approaches, all achieving predefined nutritional 
targets within the initial postoperative week. The investigation 
specifically compared clinical outcomes between two treatment 
strategies—one receiving early enteral nutrition (EEN) 
supplementation alongside parenteral nutrition (PN) support and the 
other maintained on complete fasting status with exclusive PN. The 
research objectives centered on elucidating the capacity of EEN to 
facilitate intestinal barrier restoration while concurrently analyzing 
the reciprocal regulatory mechanisms linking barrier functional 
recovery trajectories to the dynamic evolution of nutritional 
status indicators.

Intestinal barrier impairment has gradually become a focal point 
in clinical research and practice. Several biomarkers are utilized to 
evaluate intestinal barrier function in patients, with DAO, D-lac and 
LPS being the most commonly employed. DAO reflects intestinal 
mucosal integrity, as it is primarily synthesized by mature enterocytes. 
Elevated serum DAO indicates epithelial damage, as the enzyme is 
released into circulation during cell shedding (24). D-lac, a byproduct 
of bacterial metabolism, enters the bloodstream only when intestinal 
permeability is increased, making it a direct marker of barrier leakage 
(25). Lipopolysaccharide (LPS), a component of gram-negative 
bacterial membranes, translocate systemically during barrier 
disruption, triggering inflammation and serving as an indicator of 
microbial translocation (26). These biomarkers are widely recognized 
for their relatively high sensitivity and specificity, while maintaining 
non-invasive collection protocols suitable for routine practice (27, 28).

The present study aims to systematically analyze the characteristics 
of intestinal barrier dysfunction in postoperative digestive surgery 
patients and its complex interactions with nutritional status and 
inflammatory responses, thereby providing a scientific basis for 
clinical practice and promoting the continuous advancement of 
intestinal barrier protection strategies and nutritional 
therapy approaches.

2 Materials and methods

2.1 Study population and data collection

A total of 1,843 inpatients received intestinal barrier determination 
were enrolled from Tianjin Third Central Hospital between September 
2021 and July 2024. The flow of patient selection and exclusion was 
illustrated in Figure  1. In Cohort 1, a total of 745 patients who 
underwent digestive surgery received nutritional therapy and had 
their intestinal barrier function determined on the first day after 
surgery. The control group included 394 patients who did not undergo 
digestive surgery. Cohort 2 included 203 patients who underwent 
intestinal barrier determination on the first and the seventh day after 
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surgery. The study was approved by the Ethics Committee of Tianjin 
Third Central Hospital (No. IRB2024-01-0003).

2.2 Nutritional therapy procedure

All adult inpatients underwent nutritional risk screening based 
on Nutrition Risk Screening (NRS) 2002 within 24 h of admission. 
Postoperative patients were performed NRS 2002 screening again on 
the first day after surgery. If the NRS 2002 score was ≥3, a nutritionist 
conducted a comprehensive nutritional assessment and initiates 
appropriated nutritional therapy. Nutritional treatment was 
administered via the appropriate route. Enteral nutrition (EN) was 
the preferred option, whereas parenteral nutrition (PN) was 
administered to patients who cannot tolerate EN. EN treatment 
included oral diet, oral nutritional supplement (ONS), gastric tube 
nutrition and jejunum tube nutrition. Oral diets are categorized into 
liquid, semi-liquid, and solid foods. Early enteral nutrition (EEN) is 
defined as the initiation of gastrointestinal feeding within 48–72 h 
postoperatively. Nutritional prescriptions were adjusted daily, with a 
total energy target of 25–30 kcal/kg/day including both EN and 
PN. PN was provided as an all-in-one admixture containing 
compound amino acid injection (18AA), lipid emulsion (MCT/
LCT), glucose, electrolyte solution (sodium chloride injection, 
potassium chloride injection, calcium carbonate injection, 
magnesium sulfate injection, sodium glycerophosphate injection), 
trace elements (Multi-trace Elements Injection II; FRESENIU KABI 
SSPC, China), water-soluble vitamins (Verapamil Hydrochloride 
Tablets; FRESENIU KABI SSPC), and lipid-soluble vitamins 

(Fat-soluble Vitamin Injection II; FRESENIU KABI SSPC). 
Nutritional supplementation was gradually increased for patients 
postoperatively with the target energy intake achieved by the 
seventh day.

2.3 Blood biochemistry and intestinal 
barrier function assessment

Blood samples were collected from patients early in the morning 
after an overnight fast. All samples were processed for biochemical 
analysis at the biochemistry laboratory in hospital. White blood cell 
count (WBC), neutrophil count (NE), lymphocyte count (LYM), and 
hemoglobin (Hb) in the blood samples were quantified on the 
ADVIA-2120 autoanalyzer. Prognostic nutritional index (PNI) was 
calculated as (ALB + 5 × lymphocyte count). Serum C-reactive protein 
(CRP) was measured on a light scattering turbidimeter (IMMAGE 
800; Beckman). Procalcitonin (PCT) was detected by enzyme-linked 
fluorescence assay (ELFA) using the automatic chemiluminescence 
immunoassay system (VIDAS, Biomerieux, France). Blood albumin 
(ALB), prealbumin (PA) and retinol-binding protein (RBP) levels 
were measured using automatic biochemical analyzer MODULAR 
P800 (Roche). Serum cytokines were measured using liquid 
suspension chip technology (Luminex xMAP), and the instrument 
was Luminex 200 (Luminex, America). Intestinal barrier function was 
assessed by measuring serum DAO, D-lac and LPS using the JY-DLT 
system (Beijing Zhongsheng Jinyu Diagnostic Technology, China). 
The cutoff values are DAO < 10 U/L, D-lactate < 15 mg/L, and 
LPS < 20 U/L.

FIGURE 1

Flow diagram for the selection of patients in the study.
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2.4 Statistical analysis

SPSS (version 22.0) and Graph Pad Prism (version 8.2.1) were 
used for data analyses and visualization. Variable data distribution was 
evaluated using the Shapiro–Wilk test. Normally and non-normally 
distributed data were expressed as means ± standard deviations and 
medians with interquartile ranges (IQRs), respectively; categorical 
variables were expressed as counts and percentages. Correlation 
analysis was conducted using a Pearson’s correlation coefficient and 
simple linear regression. The difference between groups was 
performed by t-test. One-way analysis of variance (ANOVA) was used 
for multiple samples. SNK test was performed for multiple 
comparisons between groups. To evaluate the predictive power and 
the diagnostic performance for severe intestinal barrier impairment, 
receiver operating characteristic (ROC) curve analysis was performed, 
and the area under the ROC curve (AUC) was calculated. p < 0.05 was 
considered to indicate statistical significance.

3 Results

3.1 Patients characteristics

Table  1 delineates the baseline characteristics of the study 
population in cohort 1. A total of 745 patients were included in this 
study, with 68.86% were aged over 65 years. All participants 
underwent various forms of digestive surgery, including stomach 
surgery (n = 91, 12.22%), intestinal surgery (n = 233, 31.28%), 
hepatobiliary surgery (n = 223, 29.93%), and pancreatic surgery 
(n = 198, 26.58%).

Nutritional assessment indicated that 38.52% (n = 287) of patients 
were unable to tolerate oral intake, whereas 61.48% (n = 458) 
successfully commenced enteral nutrition (Table 1).

3.2 Digestive surgery impaired patients’ 
intestinal barrier function

Postoperative patients who underwent digestive surgery 
demonstrated significantly elevated levels of intestinal barrier injury 
biomarkers compared to those in non-surgical controls with 
particularly notable increases in serum diamine oxidase (DAO, 
14.48 ± 6.172 U/L vs. 17.53 ± 7.593 U/L), D-lactate (D-lac, 
12.04 ± 5.271 mg/L vs. 15.95 ± 4.427 mg/L), and lipopolysaccharide 
(LPS, 10.48 ± 5.404 U/L vs. 16.01 ± 8.156 U/L) levels (Figures 2A–C). 
The extent of intestinal barrier impairment differed significantly 
among patients underwent various digestive surgical procedures. 
While gastric and intestinal surgeries induced comparable levels of 
intestinal barrier disruption, similar patterns were observed in 
hepatobiliary and pancreatic interventions. Notably, postoperative 
analysis revealed significantly elevated levels of intestinal barrier 
damage biomarkers—DAO, D-lac, and LPS—in patients following 
hepatobiliary and pancreatic procedures compared to those 
undergoing gastrointestinal surgeries (Figures 2D–F).

3.3 Analysis of intestinal barrier impairment 
in postoperative patients

The incidences of intestinal barrier impairment in postoperative 
patients were high, with a rate of 75.97% for intestinal mucosal 
impairment (DAO+), 58.26% for increased intestinal permeability 
(D-lac+), and 20% for bacterial translocation (LPS+; Figure 3A). The 
incidence of bacterial translocation in the absence of either intestinal 
mucosal injury or increased intestinal permeability (+ − +/−++/−−+/) 
was low with 3.36, 0.40 and 0.13%, respectively, (Figure 3B). DAO, 
D-lac, and LPS showed positive correlations in pairwise comparisons, 
with correlation coefficients of 0.41, 0.47, and 0.57, respectively 
(Figure 3C). Furthermore, concurrent intestinal mucosal injury with 
either increased permeability or bacterial translocation resulted in 
significantly elevated serum DAO levels. Similarly, serum D-lac 
concentrations were higher when increased permeability coexisted 
with intestinal mucosal injury or bacterial translocation compared to 
isolated permeability alterations. Serum DAO, D-lac and LPS levels 
were highest in severe intestinal barrier impairment (+++; 
Figures 3D–F).

3.4 Correlation analysis of intestinal barrier 
impairment

We conducted an analysis to explore the correlations between the 
intestinal barrier impairment and multiple clinical parameters, 
including age, systemetic inflammation markers, nutritional status, 
and cytokine levels. The analysis indicated that the serum levels of 
intestinal barrier markers (DAO, D-lac, and LPS) were positively 
correlated with inflammatory indicators, with correlation coefficients 
ranging from 0.11 to 0.32. Conversely, inverse relationships were 
observed between these biomarkers and age, with correlation 
coefficients ranging from −0.16 to −0.23 (Figure 4A).

The correlation between hemoglobin levels and intestinal barrier 
impairment was inconsistent; while hemoglobin showed a positive 
correlation with DAO and D-lac, it exhibited a negative correlation 

TABLE 1  Patient characteristics in cohort 1.

Characteristic (n = 745) Value

Age, years, x– ± s 67.43 ± 14.11

<45 years, n (%) 55 (7.38)

45–65 years, n (%) 177 (23.76)

>65 years, n (%) 513(68.86)

Sex, n (%)

  Female, n (%) 224 (30.07)

  Male, n (%) 521 (69.93)

Surgery types, n(%)

  Stomach surgery 91 (12.22)

  Intestinal surgery 233 (31.28)

  Hepatobiliary surgery 223 (29.93)

  Pancreatic surgery 198 (26.58)

  Postoperative diet, n(%)

  No oral intake 287 (38.52)

  EN 458 (61.48)

EN, enteral nutrition, including liquid diet, semi-liquid diet and oral nutritional supplements 
(ONS), nasogastric tube nutrition and jejunal nutrition.
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FIGURE 2

The intestinal barrier function compromised following digestive tract surgeries. (A–C) Patients after digestive surgery demonstrate significantly higher 
DAO (A), D-lac (B) and LPS (C) levels. (D–F) Patients in Cohort 1 undergoing different types of digestive surgeries showed varying degrees of intestinal 
barrier dysfunction. Control, non-operated patients (n = 394); Cohort 1, patients performed digestive surgery (n = 745).

FIGURE 3

Types of intestinal barrier impairment in Cohort 1. n = 745. (A) Percentage of serum DAO, D-lac, LPS positive. (B) The number and proportion of 
patients with different type of intestinal barrier impairment. (C) Correlation analysis of DAO, D-lac and LPS. Pearson r = (−1, 1). (D–F) Levels of serum 
DAO, D-lac and LPS in patients with different types of intestinal barrier impairment. Reference Range of intestinal barrier: Serum, adult: DAO<10 U/L, 
D-lac<15 mg/L, LPS<20 U/L.+, above the upper limit of the reference value range; −, within the reference value range; +++, DAO>10 U/L, 
D-lac>15 mg/L, LPS>20 U/L; + −+, DAO>10 U/L, D-lac<15 mg/L, LPS>20 U/L; ++−, DAO>10 U/L, D-lac>15 mg/L, LPS<20 U/L; + − -, DAO>10 U/L, 
D-lac<15 mg/L, LPS<20 U/L; − + −, DAO<10 U/L, D-lac>15 mg/L, LPS<20 U/L; −--, DAO<10 U/L, D-lac<15 mg/L, LPS<20 U/L.
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with LPS. Additionally, serum levels of DAO and LPS were inversely 
associated with nutritional indicators RBP and PA, with correlation 
coefficients of −0.13 and −0.18, respectively (Figure 4A).

IL-6 levels demonstrated a positive correlation with serum DAO, 
D-lac, and LPS, with correlation coefficient (r) of 0.17, 0.15, and 0.36, 
respectively. Meanwhile, IFN-γ was negatively correlated with D-lac 
(r = −0.13) and LPS (r = −0.14). In contrast, IL-10 showed a positive 
correlation with DAO (r = 0.14; Figure 4A).

3.5 Patients with severe intestinal barrier 
impairment had poor nutritional status

Analysis of nutritional indicators among patients with different 
degrees of postoperative intestinal barrier impairment revealed 
notable trends. Patients without intestinal barrier impairment (−−−) 
exhibited the highest levels of PA and RBP, with mean values of 
12.48 mg/dL and 26.50 mg/L, respectively. In contrast, those with 
intestinal barrier impairment showed reduced levels, with the most 
pronounced reduction observed in the severe impairment group 
(+++), where PA and RBP levels dropped to 10.36 mg/dL and 

19.78 mg/L, respectively. Additionally, other nutritional indicators, 
such as ALB, LYM, and PNI, also appeared to be lowest in patients 
with severe intestinal barrier impairment (+++). However, no 
statistically significant differences were detected among the groups 
(Figures 4B–F).

3.6 Patients with severe intestinal barrier 
impairment had higher inflammation

Postoperative inflammation levels varied among patients with 
different degrees of intestinal barrier impairment. Patients without 
intestinal barrier impairment (−−−) exhibited the lowest levels of 
inflammatory markers, including WBC (8.52 × 109/L), NE 
(6.81 × 109/L), CRP (59.13 μg/mL), and PCT (2.32 ng/mL). In 
contrast, patients with intestinal barrier impairment exhibited a 
progressive increase in inflammatory markers. Among them, patients 
with severe intestinal barrier impairment (+++) had the highest 
inflammation levels, with WBC, NE, CRP, and PCT measuring 
13.62 × 109/L, 11.65 × 109/L, 117.27 μg/mL and 7.05 ng/mL, 
respectively. Furthermore, increased intestinal permeability (D-lac+) 

FIGURE 4

Association between intestinal barrier and inflammation and nutrition status in Cohort 1. n = 745. (A) Correlation analysis of intestinal barrier 
impairment. Pearson r = (−1, 1). (B–F) Nutritional status in different types of intestinal barrier impairment. (G–J) Inflammation in different types of 
intestinal barrier impairment. +, above the upper limit of the reference value range; −, within the reference value range. WBC, blood white blood cell 
count; NE, blood neutrophil count; CRP, C-reactive protein; PCT, procalcitonin; ALB, blood albumin; PA, blood pre-albumin; RBP, retinol-binding 
protein; PNI, Prognostic nutritional index; LYM, blood lymphocyte count.
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was a key factor contributing to the elevation of inflammation 
(Figures 4G–J; Table 2).

3.7 Prediction of severe intestinal barrier 
impairment

The patients were divided into 4 groups based on the degree of 
intestinal barrier impairment: normal group (−−−), mild impairment 
group (+ − − and − + −), moderate impairment group (++−, + − +), 
and severe impairment group (+++). There were statistically 
significant differences in age, WBC, NE, CRP, PA, RBP, PNI, and IL-6 
among the four groups. These indicators were analyzed to predict the 
occurrence of severe intestinal barrier impairment (+++). And Age, 
WBC, NE, CRP, PA, and RBP could independently predict severe 
intestinal barrier impairment (+++), with corresponding areas under 
the curve (AUCs) of 0.61, 0.64, 0.65, 0.60, 0.60, and 0.60. Additionally, 

patients unable to initiate early enteral nutrition were at higher risk of 
severe intestinal barrier impairment, with an AUC of 0.64 (Table 3; 
Figures 5A,B). When these risk factors were combined to predict 
severe intestinal barrier impairment, the predictive performance 
improved, with AUC increasing to 0.71 (Table 3).

3.8 Nutritional therapy and improvement in 
intestinal barrier impairment

The proportion of patients unable to initiate EN decreased after 
nutritional therapy (Figure 5A). Furthermore, the initiation of EEN in 
postoperative patients was closely related to intestinal barrier function. 
Compared to the no oral intake group, patients who started EEN 
promptly after surgery exhibited lower serum levels of DAO, D-lac, 
and LPS (Figure 5B). Moreover, nutritional therapy contributed to 
improvement in intestinal barrier function, primarily manifested by a 

TABLE 2  Analysis of influencing factors of intestinal barrier function impairment.

Variable 1Normal group
n = 98

2Mild group
n = 264

3Moderate 
group
n = 259

4Severe group
n = 120

F value p value

DAO(U/L) 7.05 ± 2.08d 13.45 ± 5.49c 18.63 ± 5.76b 23.08 ± 6.82a 161.13** <0.01

D-lac(mg/L) 10.72 ± 2.98d 13.02 ± 4.0c 18.05 ± 3.02b 20.03 ± 2.37a 208.19** <0.01

LPS(U/L) 8.73 ± 2.85d 11.51 ± 4.15c 15.09 ± 5.07b 27.34 ± 6.65a 316.33** <0.01

Age, years, x ± s 70.17 ± 10.82a 69.89 ± 11.64a 66.27 ± 14.93b 61.91 ± 17.38c 9.92** <0.01

Sex [n(%)]

Male 62(63.26) 136(72.73) 180(68.70) 143(72.23) 2.83 0.42

Inflammatory biomarkers

WBC (×109/L) 8.52 ± 4.25d 9.95 ± 6.07c 11.55 ± 6.11b 13.62 ± 7.67a 12.68** <0.01

NE (×109/L) 6.81 ± 4.04d 7.95 ± 4.88c 9.73 ± 5.83a 11.65 ± 7.19a 15.63** <0.01

CRP (μg/mL) 59.13 ± 52.09d 77.07 ± 75.71c 92.2 ± 77.79b 117.27 ± 104.71a 9.97** <0.01

PCT (ng/mL) 2.32 ± 7.37 4.11 ± 10.51 5.77 ± 18.02 7.05 ± 14.07 2.24 0.08

Nutritional status

Hb (g/L) 90.21 ± 20. ×109/L 15 95.66 ± 21.10 97.31 ± 21.64 95.45 ± 22.52 2.15 0.09

ALB (g/L) 31.49 ± 4.51 32.11 ± 4.51 32.25 ± 3.67 31.52 ± 4.04 1.26 0.29

PA (mg/dL) 12.14 ± 5.55a 12.08 ± 5.59a 12.10 ± 5.42a 10.41 ± 5.18b 3.16* 0.02

RBP (mg/L) 26.500 ± 14.133a 21.316 ± 11.307b 22.630 ± 12.911b 21.568 ± 12.784b 3.09* 0.03

LYM (×109/L) 0.96 ± 0.48 1.06 ± 1.49 0.95 ± 0.58 0.95 ± 0.55 0.72 0.54

PNI 35.66 ± 7.06a 35.60 ± 11.35a 35.74 ± 8.14a 33.15 ± 10.51b 4.43** <0.01

Cytokines

IL-2 (pg/ml) 1.22 ± 1.11 1.65 ± 2.92 1.59 ± 2.17 5.61 ± 25.72 1.43 0.24

IL-4 (pg/ml) 1.19 ± 0.90 1.68 ± 3.02 1.36 ± 1.29 1.11 ± 0.95 0.86 0.47

IL-6 (pg/ml) 55.37 ± 59.54d 87.82 ± 247.72c 253.09 ± 724.45b 608.80 ± 1485.86a 4.19** <0.01

IL-10 (pg/ml) 11.62 ± 8.14 14.21 ± 21.10 42.13 ± 134.65 87.37 ± 358.95 1.67 0.18

TNF-α (pg/ml) 1.03 ± 1.15 1.22 ± 2.66 1.40 ± 1.69 0.67 ± 0.63 1.47 0.22

IFN-γ (pg/ml) 1.56 ± 1.57 1.60 ± 1.97 1.68 ± 1.84 1.08 ± 1.40 1.13 0.34

1DAO, D-Lac, LPS: −−−.
2DAO, D-Lac, LPS: + − −, − + −.
3DAO, D-Lac, LPS: ++−, + − +.
4DAO, D-Lac, LPS: +++; +, above the upper limit of the reference value range; −, within the reference value range.
a,b,c,dDisplay statistical differences between groups, if two groups have the same letter, their difference is statistically non-significant, if the different letters, their difference is statistically 
significant. **p<0.01; *p<0.05.
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reduction in intestinal permeability (Figure  5C). In addition, 
nutritional therapy was associated with reduced inflammatory 
markers, especially CRP levels. Among the nutritional indicators, PA 
and LYM showed notable increase compared to baseline levels, while 
improvements in other nutritional markers were less pronounced 
(Figures 5D,E).

3.9 Intestinal barrier impairment hindered 
therapeutic efficacy

Patients showed improvement in intestinal mucosal damage, 
intestinal permeability, and bacterial translocation after nutritional 
therapy, with improvement rates of 53.20, 61.58 and 56.16%, 
respectively (Figure  6A). Among the 203 patients that received 
nutritional therapy for 1 week, 38.42% (n = 78) showed improvement 
in DAO, D-lac, and LPS levels, while 23.65% (n = 48) had an increase 
in these markers, indicating a deterioration in intestinal barrier 
function (Figure 6B). Compared to the intestinal barrier improvement 
group, patients in deteriorative group had worse nutritional status, 
manifested by a decrease in PNI and PA levels after nutritional therapy 
(Figures  6C–G). Furthermore, the deteriorative group showed 
elevated inflammatory markers with increased WBC counts and NE 
levels (Figures 6H,K).

4 Discussion

The present study investigated the relationship between intestinal 
barrier function, inflammation, and nutritional status in patients after 
digestive surgery, providing valuable insights into the clinical 
implications of intestinal barrier dysfunction in the postoperative 
period. Our findings emphasized the high incidence of intestinal 
barrier impairment, primarily characterized by mucosal injury, 
followed by increased intestinal permeability and bacterial 
translocation. These results were consistent with previous studies, 
which have also underscored the critical role of intestinal barrier 

integrity in postoperative recovery (29) and its association with 
systemic inflammation and nutritional status.

The impairment of intestinal barrier function is closely related to 
the multi-layered defense mechanisms of the intestinal barrier. Our 
results showed that serum concentrations of DAO, D-lac, and LPS 
were positively correlated, with an increase in DAO preceding D-lac 
positivity, and bacterial translocation (LPS +) occurring only after 
DAO and D-lac were elevated. This sequential pattern suggests a 
progressive deterioration of the intestinal barrier function. 
Postoperative ischemia, the release of inflammatory factors, or surgical 
trauma can directly damage the intestinal epithelial cells and 
intercellular tight junctions (e.g., ZO-1 and occludin protein), leading 
to mucosal damage. Following mucosal injury, the permeability of the 
intestinal wall increases, allowing large molecular substances (D-lac) 
and bacterial endotoxins (LPS) to pass through the damaged mucosa 
into the bloodstream (30). Patients with increased intestinal 
permeability exhibited more severe mucosal damage, which may 
be  related to the exacerbated oxidative stress and ischemia–
reperfusion injury, such as oxygen free radicals attacking cell 
membrane lipids, and leading to apoptosis and necrosis (31, 32). 
Bacterial translocation represents the terminal stage of barrier injury, 
where mucosal damage and increased permeability collectively 
promote the passage of bacteria and endotoxins from the intestine into 
the systemic circulation. This process further activates systemic 
inflammatory responses (e.g., TNF-α, IL-6), forming a vicious cycle 
that perpetuates barrier function (33, 34).

Intestinal barrier function was closely related to the inflammation 
levels and nutritional status in postoperative patients. Patients with 
severe barrier dysfunction (+++) exhibited the highest levels of 
inflammatory markers and the poorest nutritional status. 
Furthermore, our study demonstrated that a combination of 
inflammatory and nutritional indicators could effectively predict 
severe intestinal barrier impairment, with an area under the curve 
(AUC) of 0.71. This predictive model provides a potential tool for 
early identification of high-risk patients, enabling timely interventions.

Interestingly, while elderly patients have decreased mucosal repair 
ability, our results showed that they exhibited less barrier damage. This 
paradoxical finding may be attributed to more cautious selection of 
surgical methods or comorbidity management in this population. 
Notably, elderly patients have a lower basal metabolic rate, reducing 
intestinal oxygen demand, thereby alleviating ischemia–reperfusion 
injury (35). Furthermore, aging may be accompanied by decreased 
glucocorticoid receptor sensitivity, reducing the destructive effects of 
excessive inflammatory responses on intestinal mucosa (36).

A key finding of our study was the association between early 
enteral nutrition (EEN) and improved intestinal barrier function. 
Compared with fasting patients, those who started early enteral 
nutrition after surgery had a lower degree of intestinal barrier 
impairment. This is supported by Nikniaz et al., which showed that 
EEN was more effective in improving postoperative nutritional status 
and immune indices in gastric cancer patients (37). The clinical 
significance of this finding lies in the potential of gastrointestinal 
support to safeguard intestinal barrier integrity. EEN is beneficial to 
intestinal barrier function recovery through multiple mechanisms. 
Firstly, food stimulation increases intestinal blood flow, thereby 
reducing ischemia–reperfusion injury. Secondly, EEN provided 
essential nutrients such as glutamic acid and short chain fatty acids, 
which promotes the proliferation of intestinal epithelial cells and the 

TABLE 3  Predictive analysis of severe intestinal barrier impairment.

Predictor AUC 95%CI Cutoff 
value

p value

Age (years) 0.609** 0.548–0.669 60.50 <0.01

WBC 

(×109/L)

0.640** 0.583-0.697 7.75 <0.01

NE (×109/L) 0.649** 0.592-0.706 6.73 <0.01

CRP (μg/mL) 0.602** 0.542-0.663 67.30 <0.01

PA (mg/dL) 0.602** 0.543-0.661 7.65 <0.01

RBP (mg/L) 0.599** 0.524–0.674 26.44 0.04

PNI 0.530 0.473–0.587 0.32

IL-6 (pg/ml) 0.561 0.462–0.661 0.22

No oral 

intake

0.636** 0.579–0.694 <0.01

Joint 

indicator

0.710** 0.660–0.760 <0.01

**p<0.01, *p<0.05, Joint indicator, age + WBC + NE + CRP + PA + RBP + No oral intake.
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synthesis of tight junction proteins (20–23). Finally, dietary fiber 
promotes the colonization of probiotics while inhibiting the 
overgrowth of pathogenic bacteria, thereby reducing bacterial 
translocation (38).

Our study suggests that intestinal permeability often improves 
earlier during nutritional therapy. This phenomenon arises from the 
fact that nutrients such as glutamine (26, 27) serve as energy 
substrates for intestinal epithelial cells. Upon uptake, these 
compounds rapidly provide energy and raw materials to initiate 
cellular repair processes, thereby significantly restoring intestinal 
permeability within a short timeframe. However, mucosal repair 
progresses more slowly, as such injuries typically involve disruption 
of the intricate three-dimensional architecture of the intestinal wall. 
While nutritional support facilitates recovery, complete restoration 
of this sophisticated structural organization proves challenging in 
acute phases, resulting in suboptimal clinical improvement. 
Furthermore, bacterial translocation presents additional therapeutic 
hurdles due to its multifactorial pathogenesis involving microbial 
overgrowth, barrier dysfunction, and systemic immune dysregulation. 
Although nutritional interventions partially ameliorate epithelial 
barrier defects, they struggle to concomitantly modulate gut 
microbiota composition and fully restore lymphatic surveillance or 
immune homeostasis, ultimately limiting their efficacy in controlling 
bacterial translocation.

Unfortunately, a subset of patients still experienced a continued 
deterioration of intestinal barrier function with increased serum levels 
of DAO, D-lac and LPS. Compared to the group with improved 
intestinal barrier function, these patients showed worsening 

nutritional and inflammatory indicators despite receiving nutritional 
treatment. This suggests that deterioration of the intestinal barrier may 
trigger a vicious cycle of inflammation and poor response to 
nutritional treatment, emphasizing the importance of close monitoring 
and timely intervention to prevent the progression of intestinal 
barrier dysfunction.

Our results revealed a complex interplay between intestinal 
barrier injury markers (DAO, D-lactate, LPS) and cytokine dynamics. 
Elevated serum levels of DAO, D-lac and LPS were strongly correlated 
with increased IL-6, suggesting that intestinal epithelial damage 
promotes pro-inflammatory responses. Notably, LPS levels exhibited 
a positive association with IL-6, reinforcing its role in activating Toll-
like receptor 4 pathways and subsequent cytokine storms (39). 
Conversely, IL-10 demonstrated an inverse relationship with DAO, 
implying compensatory anti-inflammatory mechanisms during 
barrier repair.

This study has some limitations that warrant attention in future 
research. First, the retrospective observational design of this study, 
while useful, are inherently limited by recall bias, selection bias, and 
potential confounding due to reliance on pre-existing data not 
collected for research purposes, and cannot establish causality. 
Second, the current study has merely delineated this epidemiological 
pattern, while the underlying molecular mechanisms remain to 
be elucidated. Finally, the nutritional therapy in this study consisted 
of comprehensive supplementation with macronutrients and 
essential micronutrients; however, the effect of each individual 
nutrient component was not examined. Further studies could 
investigate the effects of individual nutrients on intestinal barrier 

FIGURE 5

Changes after nutritional treatment for 1 week in Cohort 2. n = 203. (A) Percentage of EN in patients before and after nutritional treatment. EN, 
including oral diet (liquid, semi-liquid and normal-solid food), oral nutritional supplement (ONS), nasogastric tube nutrition and jejunal nutrition. 
(B) Analysis of intestinal barrier impairment in postoperative patients between no oral intake and EEN. EEN, early enteral nutrition. (C) Changes of 
intestinal barrier impairment after nutritional treatment. (D) Comparison of inflammation before and after nutritional treatment. (E) Comparison of 
nutritional status before and after nutritional treatment. Pre, Pre-nutritional therapy; Post, Post-nutritional therapy.
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function to provide more targeted and effective nutritional 
intervention strategies.

5 Conclusion

Our study provides comprehensive evidence on the relationship 
between intestinal barrier function, inflammation, and nutritional 
status in patients who underwent digestive surgery. The findings 
highlight important implications for clinical practice in terms of early 
detection, prevention, and treatment of intestinal barrier dysfunction 
and its related complications.
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