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Human milk vs. cow-milk based
infant formula proteins: structure,
digestion and physiological
impacts
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Isabelle Le Huérou-Luron?** and Amélie Deglaire**

ISTLO, INRAE, LInstitut Agro, Rennes, France, ?Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint
Gilles, France, >SODIAAL International, Centre Recherche AND Innovation, Rennes, France

This review examines the differences in protein composition, digestion, and
physiological effects on infants between human milk (HM) and infant formula
(IF). The World Health Organization recommends exclusive breastfeeding for
the first 6 months of life due to the numerous health benefits associated with
it. However, when this is not possible, IF is used as an alternative. Differences
between HM and IF remain, particularly in terms of protein composition and
structure. Further optimization of IF is needed to better mimic HM and provide
similar health benefits. Further improving IF formulation requires implementing
a promising strategy, which in turn requires a thorough understanding of the
mechanisms of protein digestion and amino acid (AA) absorption, as well as the
metabolic and physiological effects of protein composition and structure. These
are often altered by heat treatment and processing in IF. The main differences in
the protein composition and structure of HM and IF are presented, including a
synthesis of knowledge on the non-protein nitrogen (NPN) fraction. This fraction is
too often neglected in milks, despite accounting for one fifth of the total nitrogen
in HM. The influence of the protein composition and structure of HM and IF on the
digestion of dietary protein and dietary AA absorption is compared, highlighting
the need for data on the postprandial AA profile in infants from well-designed
clinical trials. Finally, this review examines the differences in protein composition
and digestion between HM and IF that lead to distinct metabolic, physiological
and microbial outcomes. Future research should focus on understanding the
role of partially digested proteins and the NPN fraction in shaping the infant gut
microbiota and overall health.

KEYWORDS

milk protein, protein structure, non-protein nitrogen, digestion, plasma amino acid,
gut microbiota, gut physiology, metabolism

1 Introduction

The health benefits of breastfeeding for infants are globally recognized, and the World
Health Organization (WHO) recommends an exclusive breastfeeding until 6 months of age
(1). However, the rate of exclusive breastfeeding among infants aged 0-6 months remains low
worldwide (48%) (1). Non-breastfed infants are therefore fed infant formula (IF), which aims
to mimic as much as possible mature human milk (HM). Thanks to increased knowledge and
scientific developments, the composition of IF has been improved over the past decades, in
the frame of the European regulation (2). The generic formulation and processing route for
producing powder IF is described hereafter (3). IFs, for healthy term infants, are commonly
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formulated from skimmed cow milk (CM), although other protein
sources can be used, such as goat milk or soy protein isolates. However,
this will not be covered in the present review. In standard IE the
skimmed milk is enriched with whey proteins (WP) to mimic the
average casein:whey protein ratio (40:60) of mature HM and thus
cover the regulatory aminogram (2). Free amino acids (AAs) may also
be added to standard IF to decrease the IF total protein content as
some studies have reported that high protein content in IFs may
contribute to infant overweight and obesity (4, 5). Purified whey
proteins such as lactoferrin (LF), a-lactalbumin, and/or osteopontin
can also be used in some specific IFs. Lactose (and sometimes
maltodextrin, although not present in HM), fat (usually based on a
mixture of vegetable oils, to which milk fat ingredients can be added),
minerals and vitamins are used for the IF formulation. The liquid
preparation obtained is heat-treated to ensure sanitary safety, the mix
is then concentrated usually before or after fat addition and
homogenization for emulsion stability (average droplet diameter:
0.1-1 pm). The mix is finally spray dried and packaged (3).

Despite the progress made by industrials in the last decades,
discrepancies between HM and IF remain particularly in terms of fine
composition and structure, referring here to protein quality, and
resulting in different physiological properties in the infant. The
present review aims to highlight the differences of composition and
structure of proteins between HM and standard IE. The fate of
digestion, as well as the metabolic and physiological impacts of HM
vs. IF will then be addressed.

2 Proteins and non-protein nitrogen
in human milk vs. infant formula

Milk nitrogenous compounds consist of a fraction of protein
nitrogen (PN) and, to a lesser extent, a fraction of non-protein
nitrogen (NPN). Milk proteins provide bioactive peptides and AAs
required for the synthesis of protein contributing to the growth of the
infant and the structural and functional development of its organs and
tissues, but also for the synthesis of non-protein nitrogen compounds
(NPN) (6, 7). Milk NPN fraction, identified as the acid-soluble
nitrogen obtained after protein precipitation, consists of more than 10
classes of compounds, the role of which for infant development is still
being discussed.

The impact of different IFs and breastfeeding on atopic diseases
and growth in pediatric cow’s milk protein allergy, as well as the effects
of food processing on allergenicity, have recently been reviewed (8, 9).
This topic is not presented here, as the focus is on the impact of the
nature of proteins in human milk and cow’s milk-based infant
formulas on digestion and gut physiology, which are less
documented areas.

2.1 Proteins

The HM protein content (0.8-1.2 g/100 mL) is one of the
lowest among other mammal milks, including donkey milk.
However, it can rise to as much as 6 g/100 mL in some mammal
milks, such as sheep’s milk. This correlated with the growth rate
of infants, which is one of the lowest for humans and donkeys, and
faster for sheep (10). Milk proteins are classified into three major
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classes: WPs, caseins and mucins (11). HM is a whey-dominant
milk with a casein: WPs ratio of 40:60 in mature milk, while CM,
the main source of protein and lactose in IFs, is a casein-dominant
milk with a casein: WPs ratio of 80:20 (12, 13). Because of these
differences, the manufacture of IFs requires the enrichment of
their protein fraction in WPs to mimic the AA profile of HM. This
enrichment generally results in an average casein: WPs ratio of
40:60 for IFs, ranging from 30:70 to 80:20 (benchmark on 35 IFs
available in France made in 2023). Despite this rebalance, the
nature of proteins remains different between HM and IFs,
resulting in a higher true protein content in IFs than in HM
(14, 15).

2.1.1 Whey proteins

WPs have major relevance for the infant development because of
their nutritional input and their bioactive functions, but their nature
and concentration vary between HM and IFs.

2.1.1.1 a-Lactalbumin

a-La has a high nutritional value as mainly composed of essential
AAs (63.2% of total AA content). a-La is a protein rich in cysteine
(6.5% of residues vs. 3.1% in -LG), and also in tryptophan (3.3% AA
residues vs. 2.5% AA residues in B-LG), an essential AA involved in
important metabolic pathways allowing brain maturation and the
development of sleep-wake rhythm, through serotonin and melatonin
synthesis (16). Human and bovine a-La present a similar structure
and a high level of homology (~72%) (14), but a few differences in
their glycosylation pattern might partly affect their functionality. a-La
is the main whey protein in HM, accounting for ~27% of total
proteins, while it is only the second most abundant whey protein in
IFs, representing ~9.6% of total proteins and being almost three-fold
less concentrated than in HM (17, 18). To balance the low-level of
a-La in standard IFs, and thus of cysteine and tryptophan, it is
necessary to increase the true protein content in IF compared to HM
or to formulate an a-La-enriched IF, thus allowing to have a lower
protein content in IE The addition of free AAs is also another way to
balance the low-levels of a-La in standard IFs. The latter strategy
might be beneficial for the infant (19-21), however this can be costly
and has to be done in agreement with the regulation. In addition,
sensory and nutritional consequences of this free AA supplementation
should be considered, as free AAs could modify the IF organoleptic
properties and may not remain stable along the shelf-life of the
IE. Finally, free AA bioavailability is expected to differ from that of
AA-bound protein. This should be further examined to evaluate the
impact of such strategy. Clinical studies have demonstrated that a-LA-
enriched IF may promote gastrointestinal tolerance and plasmatic AA
concentrations in a similar way to that of HM-fed infants (19, 22-25).

2.1.1.2 p-Lactoglobulin

In HM, B-lactoglobulin (B-LG) is totally absent while it is the most
abundant WPs in CM accounting for ~50% of total WPs. B-LG is one
of the main allergens found in cow’s milk, although infants with
allergies are usually sensitive to several proteins found in cow’s milk,
such as caseins or a-La (26). IgE-mediated food allergy reactions to
dairy proteins can evolve during the first years of life. An allergic
reaction to f-lactoglobulin is commonly reported at birth, before
evolving towards caseins and then a-La by the end of the first
year (27).
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2.1.1.3 Lactoferrin

Lactoferrin (LF) is a protein partially resistant to gastrointestinal
digestion. Multiple physiological roles have been reported such as
antimicrobial, immunomodulatory, anti-inflammatory, bifidogenic,
anticarcinogenic, enzymatic and gene regulation activities (17, 28-32).
With an average of 0.15 g/100 mL, LF is the second major WP of HM,
accounting for ~16% of total proteins (17). LF level in CM is 10 times
lower than in HM. Human and bovine LFs have a rather high
homology (69%). LF supplementation in IFs has shown some benefits
for infants, with a better weight-gain up to 6 month-old, a reduction
of some infant diseases (e.g., lower respiratory tract illnesses), and the
modulation of the gut microbiota that better mimics HM-fed infant
microbiota (24, 33, 34). In vitro evaluation of the antiviral activity of
LFs showed that the commercial sources of available bovine milk LFs,
recombinant LFs and native human/bovine milk LFs influenced
immune responses by significantly and variously modulating
pro-inflammatory cytokine gene expression (35). The variation in LF
bioactivity may be due to differences in processing conditions (e.g.,
thermal and high-pressure treatments), iron saturation, and purity
(35, 36).

2.1.1.4 Immunoglobulins

Immunoglobulins (Igs) are the largest milk proteins. They are the
main antimicrobial substances in milk and are divided into four
classes: IgAs, IgMs, IgEs and IgGs. Taking all classes together, HM
contains far more IgAs than CM. In HM, IgAs make up to almost 90%
of total Igs (0.6 g/L in mature HM), while the major class in CM is
IgGs (0.6 g/L) (37). However, in IFs the reported levels of secretory
IgGs and IgAs are very low (38). Bovine milk immunoglobulins could
maintain their structure resisting the temperature up to 75°C for 15 s,
albeit losing their antigen-binding efficacy (39). In addition, the
technical application for Holder pasteurization further influenced the
retention rate of Igs and LF in HM (40).

2.1.1.5 Proteose-peptone

A minor fraction, called “proteose-peptone,” is present in WPs.
Although little information exists in HM, the “proteose-peptone”
fraction has been detailed in CM. It is a complex heterogeneous
mixture of heat-resistant WPs divided in two classes according to their
origin. The first class comprises non-hydrophobic, highly soluble
fragments derived from proteolysis of the N-terminal region of
p-casein by bovine plasmin, designated PP5, PP8S and PPSE. The
second class consists of a complex heterogeneous group of
hydrophobic glycoproteins, the main one being PP3, also known as
LP28, and belonging to the fat globule membrane of CM (41). In CM,
the “proteose-peptone” fraction accounts for 10% of total WPs.
Differences in the “proteose-peptone” fraction composition exist
between HM and CM (42). In HM, this fraction contains ~ 45%
carbohydrates, whereas in CM it contains only ~ 11%. Regarding IFs,
even though its concentration is not well characterized, the “proteose-
peptone” fraction is assumed to be present in WP ingredients used
for IFs.

2.1.1.6 Glycomacropeptides

WPs used for IF usually derive from cheese making and thus
contain a glycomacropeptide (GMP) fraction corresponding to the
carboxyl-terminal fragment of casein-x (43-106) cleaved by the action
of chymosin used for cheese making. GMP accounts for 9-15% of
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total protein in IFs (107). Nutritionally, GMP is of little interest for
infants as it lacks aromatic AAs (phenylalanine, tryptophan, tyrosine),
cysteine and only has a single methionine residue, whereas it is rich in
branched-chain AAs (isoleucine, leucine, valine) and threonine. In
HM or IFs derived from ideal whey (obtained after skimmed milk
microfiltration), GMP is absent. However, it is released by digestive
enzymes during the first step of gastric digestion. It has been reported
in adults and animal models that GMP may exert some health-
promoting activities (108, 109) and modulate microbiota composition
and immune system response (22, 110-114), although these effects are
not always observed (115). GMP is considered as a bioactive peptide
in the literature (108, 109, 116), but there was no evidence of the
concentration at which GMP in IFs may have a physiologic
impact (115).

2.1.2 Caseins

Caseins are mainly under micellar forms in HM and IFs (90-95%),
but human casein micelles are smaller than the bovine ones (30 to
75 nm in HM vs. 100 to 200 nm in CM) (117). Bovine casein micelles
are composed of four casein species - o-, 0,-, f- and k-caseins - with
a molar ratio of 4:1:3.5:1.5. However, only three of these are found in
HM: a,-, - and k-caseins, with a molar ratio of 1.5:7:1.5 (13, 118).
Although HM and CM both contain -caseins, they only share ~50%
sequence homology and have different numbers of phosphorylation
sites (0 to 5in HM vs. 4 to 5 in CM) (118). During gastrointestinal
digestion of f-caseins, small peptides rich in phosphorylated AA
residues, known casein phosphopeptides (CPPs), are formed. These
CPPs facilitate the absorption of calcium, zinc and other divalent
cations as they are able to keep these cations soluble (119).

A commercial fraction of purified 3-casein can be added to IFs to
increase the p-casein content and achieve the proportion of p-casein
present in HM. In 2022, using an in vitro digestion model, Huang et al.
(120) investigated the effects of supplementing the IF with either
f-casein or a-LA on digestion. They highlight that increasing the IF
content of one of these proteins resulted in a digestion profile that
better mimicked HM digestion. However, further research is needed
to confirm these preliminary results.

The interest of non-micellar casein and its impact on IF structure,
digestive behavior and physiological consequences will be discussed
in a dedicated section in this review.

2.2 Non protein nitrogen

Very few recent reviews have been carried out to synthesize
knowledge on this fraction, a too-often neglected fraction in milks,
even though it accounts for one fifth of total N in HM (Table 1). The
NPN fraction of milk contains more than 10 classes of compounds:
urea, peptides, free AAs, creatine, creatinine, uric and orotic acids,
ammonia, carnitine, choline, amino alcohols of phospholipids, amino
sugars, nucleic acids and nucleotides, polyamines, low molecular
weight peptide hormones and other biologically active compounds
such as growth factor (121) (Table 2). Their concentration depends on
the mammal species, but also on other parameters such as lactation
stage, time of the day, diet, prematurity, etc. (122, 123).

The NPN fraction in HM accounts for approximately 20% of the
total N (11.5-25.9%) in HM while it only accounts for approximately
6% of the total N in CM (4.2-9.9%). In CM-based IFs, the NPN
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TABLE 1 Concentration of total, protein and non-protein nitrogen, urea nitrogen and free amino acids nitrogen in human milk, cow milk and cow milk-
based infant formula (mean + SD).

Components Unit Human milk Cow milk CM-based IF
Total nitrogen mg N/100 mL 195 + 46 (57, 63, 77, 86, 259- 266) 531 + 31(63, 64, 259, 265, 267-278) 248 + 34 (62, 64,227, 263)
Protein nitrogen % TN 80.0 94.1 91.2
Non-protein nitrogen mgN/IOO mL 31.2 £9.2 (63, 64, 259, 265, 267-269,
39.1+9.2 (57, 63, 259-266) 21.8 +7.5 (62, 64, 263)
272-276)
% TN 20.0 59 8.8
mg N/100 mL 12.5 + 3.3 (63, 64, 259, 265, 268, 269,
Urea 17.6 £ 4.3 (57, 63,77, 259= 262, 265) 2, 274) 9.4 +2.9 (56, 58, internal data)
272,274
% NPN 45.0 39.9 42.9
Free amino acids mg N/100 mL 5.2 (63, 77, 85, 260, 263, 264, 279-282) 1.5 (63, 64, 265, 278, 281) 1.4 (37, 58, 276, internal data)
% NPN 13.2 4.7 6.3

IF, infant formula; N, nitrogen; TN, total nitrogen; NPN, non-protein nitrogen.

TABLE 2 Concentration of creatine, creatinine, uric acid, orotic acid, glucosamine, sialic acid, carnitine, ammoniac and polyamines in human milk, cow

milk and in cow milk-based infant formula (min - max).

mg /100 mL Human milk Cow milk CM-based IF
Creatine 1.53 (0.32-3.7) (121, 140, 277, 278) 2.33(0.9-3.55) (140, 258, 261) 2.72(279)
Creatinine 1.25 (0.22-3.5) (121, 140, 254, 277, 278) 0.59 (0.19-1.21) (128, 140, 258, 261) 0.37 (128)

Uric acid 0.73 (0.24-2.2) (121, 140, 253, 272, 274, 277) 0.95 (0.66-1.55) (140, 258, 261, 272, 274) 0.32 (0.3-0.32) (272, 274, 280)

Orotic acid 0 (147, 148, 272, 274)

1.05 (0.84-1.46) (261, 272, 274) 0.42 (0.3-0.6) (272, 274, 280)

Glucosamine 3.6 (1.6-4.7) (121, 140, 141)

12 (+ 1.8) (281) 4.85 (+0.06) (282)

Sialic acid 3.2(121)

16-19 (283) 12-27 (283)

Carnitine 0.07 (0.04-0.09) (121, 258, 272, 274, 276) 0.28 (0.18-0.36) (128, 258, 272, 274) 0.17 (0.15-0.19) (128, 272, 274)

NH, 0.19 (0.16-0.21) (121, 140, 253) 0.74 (0.6-0.88) (140, 261) 0.17 (0.11-0.21) (107)

Polyamines 0.039 (121, 278, 284, 285) 0.0832 (286) 0.007-0.009 (128, 284, 287)
Spermine 0.022 (0.013-0.034) 0.0410 (286) 0.001 (0-0.002) (287)
Spermidine 0.015 (0.009-0.020) 0.0334 (286) 0.004 (287)
Putrescine 0.002 (0.001-0.004) 0.0088 (286) 0.003 (287)

I, infant formula.

content is variable among brands, accounting on average for 9% of the
total N (4.9-13.0%) (Table 1).

The variation of the NPN fraction in CM is often attributed to
the variation of the urea level. The urea concentration in CM
depends on factors related to the cow’s diet, such as dry matter
content, crude protein content, percentage of rumen degradable and
rumen non-degradable protein, energy/protein ratio, amount of
easily digestible carbohydrates, and water intake. It is also influenced
by physiological factors such as breed, body weight, mammary gland
health, stage of lactation, age and parity (primiparous or
multiparous) of cows, and seasonal factors (124, 125). Milk transport
and storage time and processing technologies also play a significant
role in modulating NPN concentration. The level of NPN increases
with transport and storage time. It is also higher in cheese-derived
whey due to its production process (hot or cold ripening) than in
ideal whey obtained after skim milk microfiltration (126). The levels
of NPN in IFs were reported to be highly dependent on the type of
whey used. As a matter of facts, demineralized whey can be obtained
from several processes such as ion-exchange and electrodialysis, but
also processes such as micro- and ultra-filtration. In a study,
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Donovan and Lonnerdal (127) demonstrated that the level of NPN
was the highest in ion-exchange whey, followed by electrodialyzed
and ultrafiltered whey. The ultrafiltered whey contained the lowest
amount of peptides in the NPN fraction due to the 10 kDa filtration,
whereas the ion exchange demineralized whey contained a low
amount of highly charged free AAs (Lysine, Glutamic acid, Arginine)
(127). In a more recent study on IFs (126), the authors confirmed
that demineralized cheese whey contained a higher content of NPN
than the demineralized ideal whey.

2.2.1Urea

Urea is the main NPN component in HM and CM, accounting for
around 45 and 40% of this fraction, respectively. This represents 9% of
the total N in HM and less than 3% of total N in CM. There is very
little data available on the urea content of CM-based IFs (128), but it
is estimated to account for around 43% of the NPN fraction and
approximately 4% of the total N in IFs. N-urea becomes available after
being released by intestinal bacterial ureases, which are expressed by
some Bifidobacterium species (129, 130). Thus, the composition of the
microbiota plays an important role in urea production.
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2.2.2 Free amino acids

Milk NPN also contains a fraction of free AAs, which is well-
documented in the literature for HM, CM and CM-based IFs. The total
free AA content (mg N/100 mL) in HM is 4 times higher than in
CM. The free AA fraction reaches 13% of the total NPN fraction in HM
and 4.7% in CM. In HM and CM, the free AA fraction is mainly
composed of proteinogenic AAs (88 and 74% of total free AAs,
respectively) and a small fraction of non-proteinogenic AAs, mainly
taurine in HM and carnitine in CM. The most abundant free AA is
glutamic acid (39 and 27% of total free AAs in HM and CM,
respectively), the second most abundant is glutamine for HM (18%),
carnitine for CM (19%), and the third most abundant is taurine in HM
(10%) and histidine for CM (13%). Taurine is only the fifth most
abundant free AA in CM with a concentration 5 times lower
than in HM.

In CM-based IFs, free AAs represent an average of only 6% of the
NPN, consisting mainly of proteinogenic AAs (55% of the total free AAs).
The non-proteinogenic AA fraction mainly consists of taurine (33% of
total free AAs) and carnitine (12% of total free AAs), both of which can
be added to IFs. As a result, taurine is the first most abundant free AA
(33% of total free AAs), followed by carnitine, serine and glutamic acid,
in CM-based IFs. Differences between IF brands are observed because
different free A As (other than taurine) can be added and different protein
sources can be used for IF formulation.

Free AAs may be beneficial for infants. They can be directly absorbed
and metabolized (121, 131). Glutamine and taurine, for example, which
are highly represented in the free AA fraction, play essential roles during
infant growth. Glutamine, in particular, is the precursor of non-essential
AAs, including proline and arginine, which are produced by the intestinal
mucosa (132). Taurine indirectly aids fat absorption by conjugating with
bile acids to form bile salts (133, 134). However, studies have shown that
taurine supplementation in IF does not modulate fat absorption; rather,
it contributes to the development of a healthy microbiota, as taurine-
conjugated bile salts are less toxic to Bifidobacteria than glycine-
conjugated bile salts (135, 136).

2.2.3 Amino sugars

Milk provides N-containing oligosaccharides and amino
sugar-containing glycoproteins and glycopeptides. Sialic acids
acid, Neu5Ac in HM and CM;
N-gycolylneuraminic acid, Neu-5Gc, in CM), glucosamine and

(N-acetyl-neuraminic

galactosamine are amino sugars present in the NPN fraction (288,
289). Sialic acid is very abundant in HM, with 70 to 83% bound to
HM oligosaccharides, 14 to 28% bound to glycoproteins, 2 to 3%
in free form, and 0.3% bound to glycolipids (137). Because amino
sugar-containing compounds are acid soluble and oligosaccharides
are the third most abundant solid component in HM [5 to 15 g/L
in mature milk, (138)], nitrogen from amino sugars contributes to
a significant portion of the NPN fraction in HM (121). By contrast,
oligosaccharides are only present in trace amounts in CM (30 to
60 mg/L) (139). Three studies on HM reported the content of
glucosamine (121, 140, 141) and one study reported the content of
sialic acid in HM (121). The results showed that glucosamine N
accounted for 9.1% of NPN and sialic acid nitrogen for 8.2% of
NPN, making them the third and fourth most abundant N
compounds in the NPN of HM. Glucosamine and galactosamine
microbiota,

contribute to the development of the

especially Bifidobacteria.
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2.2.4 Creatine and creatinine

Creatine and creatinine contribute, respectively, 3.9 and 3.2% to
the NPN in HM, and 7.5 and 1.9% in CM. In IF, there was insufficient
data to determine the contribution of creatine and creatinine to the
NPN fractions.

2.2.5 Uric and orotic acids

Uric acid constitutes 1.9% of NPN in HM, 3% in CM, and 1.5% in
CM-based IFs. Orotic acid is absent from HM, despite accounting for
3.4% of NPN in CM. There is no data available for orotic acid in
CM-based IFs.

2.2.6 Ammonia, nitrite and nitrate

Ammonia contributes 0.5% of the NPN in HM, and 2.4% of NPN
in CM. Interestingly, ammonia contributes an average of only 0.8% of
NPN in CM-based IFs.

Nitrite accounts for 0.24% of NPN in HM, whereas it is negligible
in CM and CM-based IFs, accounting for just 0.0002 and 0.0001%,
respectively. In contrast, nitrate is less abundant in HM than in CM
and CM-based IFs, accounting for 0.001, 0.17, and 0.09% of NPN,
respectively (142).

2.2.7 Polyamines

The contribution of polyamines (spermine, spermidine,
putrescine and cadaverine) to the NPN fraction is low in milk (290).
Studies have shown that the polyamine concentration is much higher
in HM than in IF (0.093-0.140 mg/100 mL HM vs. 0.014 mg/100 mL
IF) and intermediate in CM (0.041 mg/100 mL CM) (128, 143, 144).
However, only the contribution of N from polyamines to the NPN
fraction in HM has been calculated (0.1% of NPN) (134, 143). There
is insufficient data on IFs to determine the contribution of polyamines
to the NPN fraction, but it is expected to be negligible in
comparison to CM.

Despite their low content, polyamines are thought to be necessary
for optimal gastrointestinal growth, as they are assumed to contribute
to the regulation of cell growth and proliferation (143), and to
modulate the composition of the microbiota. This has been observed
in neonatal mice fed a polyamine-supplemented IF (145).

2.2.8 Nucleos(t)ides

The concentration of most nucleos(t)ides tends to decrease
gradually as lactation progresses, but the decrease is less abrupt in
HM than in CM (146-148). Similar compositions are observed in
human and bovine colostrum, whereas differences in composition
and concentrations are reported in mature milk (141, 143). Although
the concentration of ribonucleotides reported in HM varies widely
(10 to 200 pmol/L) (148), it appears that HM contains a higher
concentration of nucleos(t)ides than CM. Cytidine and adenosine
derivatives represent ~25% of the total nucleotides in HM, a higher
amount than in CM. In HM, the concentrations of cytidine
monophosphate (CMP), adenosine monophosphate (AMP),
guanosine monophosphate (GMP), uridine monophosphate
(UMP) were found to be 0.076+0.006 mgN/100 mL,
0.105 + 0.061 mg N/100 mL, 0.024 + 0.004 mg N/100 mL, 0.032
0.008 mg N/100 mL, respectively (141, 142, 144). GMP, UMP, and
inosine monophosphate (IMP) were not detected in CM (140, 142-
144). The usual concentration of ribonucleotides (mono- and
diphosphate) is about 1 to 2 orders of magnitude higher than that of
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ribonucleosides (adenosine, guanosine, thymine, uridine, cytidine)
in HM (148). In IF, the concentration of ribonucleos(t)ides appears
to be a very negligible fraction of NPN, although insufficient data
are currently available. Due to the limited data available and the
variability of the values reported in the literature, it is difficult to
assess the contribution of nitrogen from ribonucleos(t)ides to the
NPN fraction in milk. However, nucleotides can be added to IE,
which is a common practice.

2.2.9 Amino alcohols

Amino alcohols such as phosphoethanolamine, ethanolamine,
phosphoserine, phosphatidylcholine, sphingosin, which mainly come
from MFGM, and unesterified choline contribute to the NPN fraction.
However, there is very little data on their concentrations in milk
available in the literature. In 1989, Atkinson and Lonnerdal (121)
estimated that 0.6 to 2mgN/100 mL could be derived from
phosphoethanolamine and phosphatidylcholine, and 0.3 to
0.9 mg N/100 mL from unesterified choline, in HM. Overall, amino
alcohols may account for 2-7% of the NPN fraction in HM. There are
insufficient data in the literature to evaluate their contribution to NPN
in CM or in CM-based IFs.

Overall, although IFs are designed to closely resemble HM in
terms of composition, there are still differences in their fine
composition and structure. These differences are mainly due to
the different milk source (bovine vs. human). HM is a bioactive
fluid whose composition varies during lactation and depends on
the mother’s diet. In contrast, IFs which are formulated to meet
the infant’s nutritional needs between 0 and 6 months. IFs have a
higher protein content to provide sufficient essential AAs to
meet the infant’s nutritional needs, whereas HM provides
other bioactive components that are partially lacking in IFs (149).

3 Protein digestion and amino acid
absorption in infant

At birth, the infant faces many environmental changes,
including a change in the way nutrients are delivered. Initially
supplied by the placenta during the fetal period, ingested food is
destructured throughout the infant’s gastrointestinal tract to
allow for nutrient release and absorption, exposing the digestive
system to compounds other than those present in the amniotic
fluid (150). To meet this challenge, the infant’s organism and
metabolism adapt and change during the first 2 years of life. This
period is known as the critical period (151) is characterized by
the infant’s extreme sensitivity due to the functional immaturity
of many tissues and organs. Therefore, it is essential to control
the environment to ensure the infant’s optimal growth and
metabolic development.

3.1 Digestive specificities in infants

Maturation of digestive functions begins early in utero, with
enteral feeding possible as early as 29 weeks of amenorrhea (152),
but the digestive system is still immature at birth, which affects
the infant’s absorb nutrients,

ability to digest and

including proteins.
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3.1.1 Protein digestion

Protein digestion starts in the gastric phase, where proteolysis is
carried out by pepsin, secreted as pepsinogen and activated
autocatalytically at a pH below 4 (153). Despite active acid secretion from
birth, the infant’s gastric mucosa is still highly susceptible to acidity during
the first two to 3 weeks of life, and thus prostaglandins (such as PGE2)
stimulate mucus and bicarbonate production, inhibit acid secretion and
increase mucosal hydrophobicity (154). As a result, the gastric pH is
between 6.0 and 6.5 immediately after feeding and does not reach pH 5.0
until 80 min after feeding due to the high buffering capacity of the milk
diet (HM and IF) (155). At this pH, the rate of conversion of pepsinogen
to pepsin is low and the activity of pepsin is probably reduced, as its pH
optimum has been reported to be 2.0 for the hydrolysis of globular
proteins (156) and may be different for the unstructured proteins that are
caseins. The level of pepsin activity at 4 weeks postpartum has been
reported to be 18% of that in adults (152) and to reach 100% only at
2 years of age (125, 148, 151). Gastric proteolysis in infants is thus
incomplete as compared to adults. A previous study (153) showed that the
type of diet (HM vs. IF) has no effect on pepsin production during
infancy. In vivo, gastric proteolysis in nine full-term neonates averaged
15% of ingested protein (157), while in vitro gastric proteolysis of 5 to 15%
of ingested protein is often reported for a static, semi-dynamic, or
dynamic model of term neonates (120, 152-155). Overall, this suggests
that a large proportion of dietary proteins enter the intestinal
compartment partially or non-hydrolyzed. Several studies have reported
that the rate of gastric emptying is influenced by the type of diet. HM is
assumed to have a faster gastric emptying than IE with a T,/, of 36 to
48 min in preterm and term infants for HM (158) and a T, of 65 to
78 min in preterm and term infants for IF (159). Two recent in vivo
studies also confirmed faster gastric emptying with HM than with IF (157,
160). Several factors have been reported to influence gastric emptying,
including bolus volume, caloric density, lipid quality, and protein type and
structure (161).

The pancreas plays an important role for intestinal proteolysis
through its secretory activity of major proteases (162). Pancreatic juice
contains inactive proteases in the form of zymogens and contribute to
pH increase of the acidic gastric chyme thanks to sodium bicarbonate.
The activation of these zymogens is the result of cascade mechanisms.
Trypsin is the most important pancreatic enzyme, accounting for 20%
(w/v) of the total protein in pancreatic juice. Its activity is detected as
early as the 16™ week of amenorrhea and increases throughout the
fetal period, reaching 90% of that of adults at birth (43, 163). In
infants, chymotrypsin activity is estimated to be 50 to 60% of that of
children over 2 years of age (43). Other pancreatic proteases complete
the action of trypsin, such as chymotrypsin, elastases and
carboxypeptidases, the latter one being the only exopeptidases among
the pancreatic proteases. The intestinal protein hydrolysis is completed
by the action of the brush border peptidases. The addition of brush
border peptidases to pancreatic proteases in an in vitro digestion
model raised the degree of proteolysis from 57 to 74% (44). At the end
of the intestinal proteolysis, the luminal nitrogen is composed of small
peptides of two to three AA residues (~60 to 70%), free AAs (~25 to
30%), and a small fraction consisting of large peptides and undigested
proteins (45). The undigested or unabsorbable nitrogen fraction is
then available for fermentation by the colonic microbiota. Fermented
nitrogen can either be reused by the bacteria, excreted in the feces or,
to a lesser extent, absorbed by the host in the form of ammonia and
free AAs (46, 47).
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3.1.2 Absorption of proteolysis products

A large proportion of peptides is absorbed in the jejunum, while
free AAs are assumed to be mainly absorbed in the ileum (48).
Compared with the other two segments, the absorption of free AAs
and their derivatives from bacterial fermentation in the colon is low.
The complex structure of the intestinal epithelium, whose
development begins in the fetus and ends shortly after birth, greatly
increases the exchange surface area. Before entering the portal vein,
di- and tripeptides may undergo a final stage of proteolysis in the
cytoplasm of brush-border enterocytes. Free AAs are absorbed using
several transport systems present in the apical and/or basolateral
membranes of enterocytes: active (Na*-dependent) transporters and
facilitated transport by simple diffusion across the membrane, while
di- and tri-peptides are absorbed by a H + -dependent transporter
(PepT1) (49). The absorption of AAs and peptides is developmentally
regulated and influenced by diet, hormones and growth factors. The
transport systems are present at birth, and the transport rates of
peptides and most AAs tend to decrease with age (from birth to
weaning), although the extent of these changes varies widely among
individuals (43). Studies suggested that the high dietary levels of
protein or AA lead to the transcriptional activation of the PepT1
gene, resulting in the upregulation of peptide and AA transport
(50-52).

3.1.3 Metabolic fate of dietary amino acids

From a quantitative perspective, the appearance of AAs in portal
blood depends primarily on the composition and quantity of ingested
proteins, as well as their digestibility. The main factors that determine
the kinetics of AA appearance are the physicochemical nature of the
proteins and how quickly they can transit and/or be digested through
the digestive tract (53-55). A large proportion of AAs are used as they
are, or can be transaminated for use as other AAs in protein synthesis.
Another fraction enters specific metabolic pathways that convert AAs
into non-protein nitrogen compounds. A final fraction can
be catabolized to produce energy.

Free AAs first circulate through the splanchnic zone before
reaching the peripheral circulation. In piglets, it has been reported
that approximately 27% of total dietary nitrogen is retained in the
splanchnic area following a meal (56). However, splanchnic extraction
of AAs varies widely among AAs. For instance, up to 80% of dietary
threonine and around 50% of dietary lysine are absorbed by the
splanchnic area in piglets (57-59). Studies in adult humans have
reported splanchnic extraction rates of up to 96% for glutamic acid,
69% for alanine, and 64% for glutamine. In contrast, the rates were
much lower for arginine (38%), phenylalanine (29%) and leucine
(21%), expressed as a proportion of enteral intake (60). Several
parameters influence the metabolic fate of AAs in the splanchnic zone,
such as the tissues with discrepancies between liver and gastrointestinal
tissues, the tissue cell characteristics, and the molecular form of AAs
(56). After extraction of AAs by the splanchnic zone, the circulating
pool of AAs consists of dietary AAs that have escaped splanchnic
extraction, AAs from transamination of dietary AAs in the liver, and
AAs from proteolysis of endogenous proteins. These circulating AAs
are metabolized by peripheral organs. In piglets, 42% of dietary
nitrogen retention occurred in the peripheral zone [including 31% in
the muscle and 6% in the skin (56)].

As a growing organism, the neonate has a positive nitrogen
balance (anabolic predominance), with protein losses inversely related
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to gestational age (61). However, in 2008, Kalhan and Bier (62)
reported that the protein losses expressed as a function of metabolic
weight (weight’”) are not significantly different from those of adults,
whereas they are significantly higher when related to body weight. In
seven-day-old piglets, the rate of protein accretion was very high and
dependent on enteral intake (63). Focusing on specific AAs, the rate
of glutamine and phenylalanine appearance in circulating blood,
expressed on a body weight basis, was higher in infants than in healthy
adults, reflecting higher energy expenditure in the infant (62, 64). It
was also demonstrated that a negative relationship between glutamine
turnover and the irreversible oxidation of protein (urea synthesis)
existed, thus suggesting that glutamine has an important role as a
nitrogen source for other synthetic processes and accretion of body
proteins in the newborn (64). Finally, tryptophan is an AA of
importance for infants because it is a limiting AA in food, being
present in low concentration in IFs. Tryptophan released after protein
hydrolysis is mainly used for protein biosynthesis. The remaining
fraction of free tryptophan is metabolized by the host in the intestine,
liver and brain, or by the colonic microbiota (65). The kynurenine
pathway in liver is the most significant degradation pathway of the
tryptophan unused for protein synthesis (>90% of tryptophan in
excess available) (66). It is metabolized to quinolinic acid, which in
turn is converted to niacin (vitamin B3). Tryptophan is important for
infants because it is also converted in the pineal gland to the
neurotransmitters, serotonin and melatonin, which play an important
role in sleep regulation. Interestingly, the transport of tryptophan
across the blood-brain barrier is in competition with the transport of
other large neutral AAs (LNAAs), namely histidine, isoleucine,
leucine, methionine, phenylalanine, tyrosine and valine. As a result, a
strong correlation between brain tryptophan concentration, brain
serotonin concentration and plasma tryptophan/LNAA ratio has been
demonstrated (67-69).

3.2 Impact of protein composition and
structure on digestion of HM vs. IF

HM is a dynamic fluid that serves as the biological standard for
infant nutrition, providing the essential nutrients and thousands of
bioactive molecules that play critical roles in protecting against
infection and inflammation, contributing to immune maturation,
supporting organ development, and promoting healthy microbial
colonization. Unlike IF, which targets 0- to 6-month-old infants, HM
composition adapts during lactation to meet the specific needs of the
developing infant, which vary by stage of lactation, and between term
and preterm infants (70).

HM serves as the reference for IF formulation. IFs require
numerous ingredients (up to fifty for some IFs) and production
steps involving several heat treatments, either on the raw material
during ingredient manufacturing or during IF production (3).
The formulation and processing route of IFs can differ between
industrials, contributing to variability of IFs in their protein
composition and potential ingredient interactions. This can affect
digestion kinetics and physiological effects (71, 72). With respect
to proteins, several factors such as phosphorylation, size, charge,
tertiary structure, AA content and glycosylation have been
identified as influencing protein degradation (131). Casein and
WPs, both in HM and IFs, differ chemically and structurally,
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influencing their gastric behavior and digestive sensitivity.
Interestingly, the ratio of casein to WPs influences gastric
emptying and the degree of proteolysis (55, 73). Gastric emptying
in infants aged three to 12 months was faster after the ingestion
of HM or WP-dominant IF than casein-dominant IF (158), as
casein coagulates near its isoelectric point (4.6). In contrast,
unaggregated WPs remain soluble at the acidic pH of the infant
stomach. In 2020, Halabi et al. (74) demonstrated that the
addition of LF within IF induced partial casein micelle
disintegration even before heating. Some studies have also
explored the effect of casein mineralization and organization on
gastric behavior and digestive kinetics (75-77), showing that the
lower the mineralization, the faster the proteolysis. These results
may explain the variability in gastric half-emptying time reported
by different studies for IFs, as the mineralization levels of casein
in IFs on the market is highly variable (4 to 12 mmol micellar Ca
per 10 g casein (78);) and can also explain why the gastric
emptying is slower for IF than for HM, due to the lower
mineralisation level of HM caseins [~3.2 mmol micellar Ca per
10 g casein; (79)]. This can induce a different pattern of protein
coagulation in the stomach, in addition to the different structure
of human and bovine casein micelles (80-82) and the different
size of fat droplets in HM and IF. Furthermore, there are different
variants of f#-casein (Al and A2) in cow’s milk and IFs. Milk
based on A2 f-casein is available on some markets. It has been
reported that A2 f-casein cow’s milk has a different casein
micelle size and different curd formation properties. This could
potentially result in reduced gut discomfort related to milk (83).
However, whether this remains true within the IF context
requires further investigation.

Thermal treatments of proteins, such as those employed in
ingredient and IF processing, are known to alter both protein
structure and gastric behavior. Heat treatments increase the
resistance of casein to gastric hydrolysis by forming casein/WP
aggregates (84). A recent work also showed that the heat-induced
denaturation of LF within IF significantly increased its
susceptibility to hydrolysis (85). Changes in the surface properties
of casein micelles, after WP binding, enhanced casein hydrolysis
within IF (85) and increased the pH at which casein coagulates
from ~4.9 to ~5.4 (86). The casein micelle organization was
proved to be strongly dependent on the #-LG and LF contents in
IF and on the heating temperature (74). The dairy protein
ingredients used in IF formulations may be dry or liquid,
depending on the manufacturer. A main factor influencing
protein denaturation and aggregation during the initial
processing of the liquid raw materials is the heat intensity (87-
89). For dairy protein ingredients, the production process
(serum, concentrate or isolate) appears to affect the rate of
protein denaturation and aggregation, resulting in differences in
digestibility (90).

Focusing on WPs, several studies have shown that #-LG in its
native form remains intact in the stomach. Heat treatment can either
accelerate its proteolysis in the intestine due to protein chain unfolding
phenomenon (91-95), or reduce its digestibility by forming compact,
aggregated WPs that hinder enzyme access to cleavage sites (96, 97).
A study investigating the impact of heat treatment on proteins within
IF revealed that IF containing a-La and LF preserved a higher
proportion of native WPs than IF containing p-LG for high heat
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treatments (90°C/15 s, 75°C/15 min) (98). In its native form, LF has
been shown to be resistant to pepsin, enabling it to exert its full
bioactivity in the gut. However, the pasteurization of HM results in
the partial gastric hydrolysis of LE, as demonstrated in vitro under
infant digestive conditions (99, 100).

The Maillard reaction (glycation), favored by the heat treatment
that occurs during IF production and storage due to the presence of
primary amines and of lactose (a reducing sugar), can also affect
protein digestibility directly or indirectly by sterically hindering the
cleavage sites of digestive enzymes (90). In 2020, Zenker et al. (101)
showed that high levels of glycation in IFs increase the size of peptides
during digestion, indicating reduced proteolytic efficiency. Reduced
glycation levels in IFs may enhance the gastrointestinal comfort of
infants, as indicated by the clinical trial of Sheng et al. (102). However,
the latter result is confounded by the different nature of the prebiotics
administered in the various IFs. In addition, Maillard reaction
products, such as carboxymethyl lysine, may also affect intestinal
physiology (103, 104).

A recent in vitro and in vivo study on HM and IF (164) showed
that the microstructure of the digesta differs between HM and IF, and
that gastric proteolysis of a-La and casein is significantly lower for
HM than for IE In addition, it was demonstrated that the quality
(structure and composition) of dairy protein ingredients within IF
formulation significantly influenced the microstructure of the IFs.
These differences were found to modulate proteolysis kinetics as well
as the breakdown of the emulsion during the early gastric phase (126),
highlighting the importance of considering the quality of protein
ingredients in IF manufacturing. Whenever possible, IFs should
be designed to closely resemble HM, including its digestive behavior
(3, 105).

The true ileal digestibility (TID) of HM vs. IF was recently
measured in Yucatan mini-piglets as a model for human infants (106).
It was shown that the TID of total nitrogen was lower for HM than for
IF due to the greater proportion of NPN in HM. NPN remains largely
unabsorbed and is transferred to microbiota. As previously discussed
in this review, this may have physiological relevance. Additionally, the
TID of seven AAs differed significantly, particularly for lysine,
phenylalanine, threonine, valine, alanine, proline and serine. The
digestible indispensable AA score (DIAAS) of IF was lower than that
of HM (83 vs. 101). Moughan et al. highlighted that the current FAO
(2013) recommendations for AA requirements for infants may require
revision, as the recommended AA concentrations were not corrected
for hydrolysis time and digestibility. This resulted in lower values for
leucine, lysine and threonine (more than 16% difference) and histidine
and tryptophan (more than 30% difference).

3.3 Impact of protein composition and
structure on absorption of dietary amino
acids of HM vs. IF

The kinetics of AA appearance in plasma can be significantly
impacted by several parameters, with the gastric emptying rate being
the most important factor (55, 165). Previous studies on the casein
fraction in IFs have shown that the degree of casein mineralization
affects their supramolecular organization, which in turn influences
their behavior in the stomach (76, 78). In other dairy matrices, it has
been confirmed that the supramolecular organization of casein
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influences the gastric emptying rate and, subsequently, postprandial
AA kinetics (77, 166). Another factor influencing the appearance of
AA in the plasma is the rate of protein digestion, which in turn is
modulated by protein structure. Specifically, the structure of WPs is
easily modified in IFs, due to the numerous heat treatments. In vivo
studies comparing postprandial AA concentrations in neonatal piglets
fed native or denatured WP solutions have shown that higher plasma
levels of essential AAs are observed within the first 60 min with native
WP than with denatured WP (167). Similarly, in rodents fed diets
containing 40% IF with either native or heat-denatured WPs (168),
the consumption of native WPs resulted in higher plasma levels of
total AAs than heat-denatured WPs.

A study in neonatal mini-piglets investigated how the
composition and structure of protein ingredients within IFs affects
plasma AA Kkinetics and concentrations (107). Although no
difference in plasma AA kinetics was observed, both preprandial
and postprandial AA concentrations in the plasma were modulated
by the quality of the protein within the IFs. Interestingly, the whey
origin within the IFs (either cheese or ideal whey) was found to
modify AA homeostasis, resulting in increased plasma total and
essential AA concentrations in piglets fed cheese whey IFs
compared to ideal whey IFs. In line with previous studies (169), the
importance of using cheese whey to increase plasma threonine
concentration was emphasized, given that the cheese whey contains
a significant amount of GMP, a threonine-rich peptide (107).
Several other studies focusing on the casein/WP ratio in IFs found
that an increased WP content in IFs was associated with higher
plasma threonine concentrations, which were directly related to the
AA profile of the predominant proteins (23, 170, 171). Several
authors have suggested that increased threonine intake may
be related to the limited ability of infants to eliminate threonine,
given that it leads to higher plasma threonine levels (107, 169, 170,
172, 173). Interestingly, formula-fed term infants have been
reported to have higher baseline and postprandial plasma
concentrations of threonine, urea and valine, than breastfed term
infants (174).

Several studies have attempted to compare the levels of AAs in the
plasma of infants fed HM vs. formula. Most emphasized that the
different protein profile in IFs compared to HM impacts the plasma
concentration of AAs, as well as urea and other compounds, in
preterm (169, 170, 172) and term (23, 170, 175-177) infants. However,
only one study was conducted under presumed isonitrogenous
conditions. This study showed that the postprandial plasma
concentration of essential AAs was ~18% lower in HM-fed infants
than in formula-fed infants. This suggests that the nature and structure
of proteins may play a modulating role in AA absorption (178), in
addition to the molecular form of nitrogen. It is likely that nitrogen
was present in HM in lower proportions as true proteins than in IF.

Comparable data on HM and IF is lacking in this area due to
differences in the design of the studies carried out, the nitrogen
content of the matrices under study, the absence of a dietary
adaptation period prior to sampling, the lack of sampling kinetics and
imprecision regarding the timing of blood sampling in relation to the
last meal. Furthermore, plasma AA concentrations, as measured in the
systemic circulation, are influenced by first-pass extraction from
splanchnic tissues, as well as by protein turnover and AA metabolism
in the whole organism. These factors could differ between matrices
(i.e., within IFs and HM).
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4 Infant diet impact on microbiota,
intestinal and brain development

Early nutrition plays an essential role in programming adult
health and disease, including metabolic, cardiovascular, and immune
diseases, as well as programming food preferences and eating
behaviors (179, 180). The health benefits provided by HM are not yet
fully realized with IF feeding. Therefore, improving the functional
effects of IFs is an important goal in order to reduce the gap in terms
of physiological and metabolic health between breastfed and
formula-fed infants.

In the short term, HM has been associated with a lower risk of
neonatal mortality. HM appears to be protective against sudden infant
death syndrome as compared to IF (181). The reduced risk prevalence
was a function of the breastfeeding rate, with a greater reduction for
exclusive or predominant breastfeeding. Furthermore, there is
convincing evidence that HM reduces the risk of developing diarrhea
(0-5 years) (181-183) and acute otitis media (0-2 years) (183-185).
In the long term, HM-fed infants may be at a lower risk (— 22%) of
being overweight or obese in adulthood compared to formula-fed
infant (4, 186-190). Furthermore, HM may prevent type II diabetes
in adulthood compared to IF (181, 191-193).

The infant development initiated in utero continues from birth up
to 2-3 years of age. Many changes occur during the early postnatal
period, especially regarding intestinal development through
morphological changes, functional maturation such as microbiota
establishment (194, 195) and brain development (synaptogenesis and
myelination) (196). Environmental factors such as infant nutrition
(HM vs. IF) are essential determinants of the postnatal development,
reported to modulate the gut microbiota (197-199), and thus the
global microbiota-gut-brain axis (199, 200).

4.1 Microbiota, a key determinant of the
infant health through its role on the gut
brain-axis

Gut microbiota represents a complex bacterial ecosystem that
colonizes the digestive tract. Itferments indigestible nutrients (such as
HMOs or urea) and produces various metabolites including SCFAs
(201). The early development of microbiota is under the influence of
many parameters like the mode of delivery, the maternal genetic, the
use of antibiotics and the environment as well as the maternal and
infant nutrition (15, 180, 202, 203).

A lower fecal a-diversity was observed in HM-fed infants
compared to formula-fed infants at 40 days of age, the difference being
further reduced at 6 months of age (204-207). Indeed, gut microbiota
abundance and evenness increased in HM-fed infants after 3 months
of age unlike that in formula-fed infants for whom these indexes were
already high at 40 days of age gut microbiota (207). A lower a-diversity
was also measured in different intestinal segments (ileum, colon and
rectum) in 3 weeks-old HM-fed piglets than in formula-fed piglets
(198, 206), suggesting a specific role of HM components.
Actinomycetota (formerly Actinobacteria) is the major phyla in gut
microbiota of 3- and 6-month-old HM-fed and formula-fed infants,
representing over 42 to 74% of the total phyla. The microbiota of
HM-fed infants is characterized by a lower relative abundance of
Bacillota (formerly Firmicutes) than that of formula-fed infants (205,
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207), but Bacillota remains the second major phylum in 6-month-old
HM-fed infants. Dissimilarities also exist at the genus level.
Bifidobacterium (including Bifidobacterium spp., Bifidobacterium
breve, Bifidobacterium infantis, Bifidobacterium longum) is frequently
described as the dominant genus in the fecal content of 0- to
9-month-old HM-fed infants unlike that in formula-fed infants (203,
207-209), although some studies reported no difference (210, 211).

Besides HMOs, lipids and lactose (193, 212-214), it has been
demonstrated that proteins and NPN are able to modulate the
microbiota composition (15). Firstly, the impact of the nitrogenous
fraction on microbiota shaping is frequently associated to proteins
having immunomodulatory properties such as LE lysozyme or Igs,
but can also be due to other proteins and to NPN. Regarding
immunological proteins, LF decreases the iron availability for
bacteria due to its bacteriostatic property and is able to decrease
E. coli, Pseudomonas aeruginosa and Candida albicans (215).
Moreover, lysozyme can hydrolyze the peptidoglycan polymers found
in the cell walls of bacteria, thereby lysing Gram-positive bacteria.
However, it can also act synergistically with LE, contributing to the
degradation of Gram-negative bacteria (216). Other studies have
suggested that the undigested proteins from IF could also contribute,
albeit to a lesser extent, to modulating the gut microbiota.
Supplementating IF with a-La and GMP has been shown to increase
the relative abundance of Clostridiaceae, Enterobacteriaceae and
Streptococcus in preterm piglets after 19 days of feeding (217),
whereas no difference was observed in six-month-old term
infants (218).

Other nitrogenous compounds that could influence the
microbiota include NPN, particularly urea, for which a role has been
reported. Indeed, some bacteria possess urease genes, including
certain Bifidobacterium species (e.g., B. longum subsp. Infantis);
meaning that urea could act as a growth factor for these species (130,
219). Supplementation the IF with nucleotides was shown to decrease
the ratio of Bacteroides-, Porphyromonas-, Prevotella- to
Bifidobacterium-species in the fecal microbiota of 20-week-old
infants (220).

4.2 Impact of infant diet on gut immune
and barrier functions and brain
development and their relationships with
gut microbiota

Food in direct contact with the intestinal epithelium plays a
recognized role in the maturation of the intestinal barrier, immune
and endocrine functions. The structural and functional development
of the gut depends on the type of the diet consumed (HM vs. IF).
Intestinal growth is enhanced by bioactive components of HM, such
as growth factors, absent or present in low amount in IF (194, 221).

It is acknowledged that the postnatal development of intestinal
permeability in humans and porcine models follows a bell curve (222-
224). During the first weeks of life, higher permeability is most
commonly reported in HM-fed infants as compared to formula-fed
infants (225), and in HM-fed and sow’s milk-fed piglets as compared
to formula-fed piglets (199, 226). This has been associated with a
reduced expression of genes involved in tight junction proteins in
HM-fed piglets compared to formula-fed ones (199, 227). However,
conflicting data have been observed in animal models, such as no
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change in jejunal or ileal permeability and/or increased expression of
tight junction proteins in sow’s milk- vs. formula-fed piglets (206, 226,
228), and no change in the lactulose/mannitol ratio in breastfed
infants (229-231). Such discrepancies may be related to the specificity
of epithelial permeability in the intestinal segments studied in animal
models, which cannot easily be recapitulated by an overall
measurement such as the lactulose/mannitol ratio in infants. High
intestinal permeability can lead to an increased passage of molecules
across the epithelium, thereby promoting immune system
development and tolerance to commensal bacteria and dietary
antigens (226). Accordingly, HM-induced enhancement of the
mucosal immune system has been reported in breastfed infants (232-
234) and in piglets fed only HM (199). Fecal calprotectin content, a
valuable marker of the state of intestinal mucosal inflammatory
infiltration, was higher in HM-fed infants compared to formula-fed
infants during the first weeks of life (225, 231, 235-237).

Several immunological factors, such as LF and IGs (IgG, IgA,
IgM), which are more abundant in HM than in IF (38), anti-
inflammatory cytokines (such as TGF-f and IL-10), pro-inflammatory
cytokines [IL-1b, IL-6, IL-8, IL-12, TNF-a, IFN-y; (15)] and other
minor proteins present in HM but not in IF (17), are likely to
contribute to the immune system boost in addition to dietary-induced
changes in microbiota composition. The importance of the Bacillota
phylum in inducing a pre-weaning peak in intestinal inflammatory
markers has been demonstrated in rodents and piglets. Accordingly,
our study comparing HM-fed and IF-fed piglets supports the
relationship between microbiota and the mucosal immune system
maturation. Several significant positive correlations were observed
between Anaerovibrio, Mitsuokella and Veillonella genera belonging to
Veillonellaceae family (Bacillota phylum) and genes encoding anti-
and pro-inflammatory cytokines (IL-10, IL-10Ra, SOCS3, CCL2,
IL-1bR, IL-8, TNF-a) and cellular signaling (ICAM1, MYD88) (199).
This boost of the mucosal immune system has been shown to
be essential for both immune ontogeny and regulation of susceptibility
to immunopathologies later in life (199, 238). Moreover, in infants,
positive correlations between fecal calprotectin excretion and
colonization by some taxa of the Bacillota phylum support the role of
bacteria in maturation of the intestinal immune system (239). The
quality of the protein ingredients in IFs has also been reported to
moderately affect the gut physiology and microbiota of three-week-old
mini-piglets used as a model of human infants (115). This suggests
that the quality of WP and casein (structure and composition) may
mediate some of the physiological properties of IFs.

Similar to the gut, brain development begins in utero and continues
throughout the first years of life. The postnatal period is crucial for the
development of the central nervous system (240). While some steps in
the development of neurons that begin at birth, such as visual and
auditory processing, are rapidly developed, others, such as
synaptogenesis and synaptic refinement, take longer to be fully
developed (240, 241). These processes occur from birth to 3 years of age.
It has been established that HM and IF have different effects on brain
development and function. A large observational study (>17,000 healthy
infants) has provided strong evidence that HM is more beneficial for
optimal infant neurodevelopment than IF (242). It has also been
demonstrated that HM is associated with higher myelination than IF at
2 years of age. Better myelination resulted in superior language and
motor function in HM-fed infants, which is consistent with the superior
cognitive performance observed in HM-fed infants compared to IF-fed
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infants during the first 6 months of life (243-245). Later in life, better
cognitive function was observed in 10-19-year-olds who were breastfed
as infants, compared to those who were formula-fed during infancy
(246). However, several other environmental factors may affect child
development. Supporting these clinical observations in infants, HM and
IF diets were found to induce different genes expression profiles related
to blood-brain barrier, endocrine and immune functions,
neurosynaptogenesis, and metabolite levels in various brain regions,
particularly the hypothalamus and hippocampus, in piglets (199).

The difference in brain development profiles between infants fed
HM and IF can mainly be explained by differences in food
composition related to components of the milk fat globule membrane
(MFGM), such as polar lipids (244, 247) and to polyunsaturated fatty
acids (248-251). Furthermore, a recent study in piglets demonstrated
that the composition and structure of WPs and caseins did not affect
the expression of several genes associated with hypothalamic

development (115).

5 Conclusion

HM is a biofluid that provides the necessary nutrients to support
infant growth. It contains many components that have been shown to
affect metabolism, gut physiology, and the development of infant gut
microbiota. Proteins are among the most important of these
components for optimal growth. When formulating IF, the quality of
the protein ingredient must be considered, although difficulties
remain due to the different protein profiles of bovine and human milk.
The nutritional value of milk from other mammals requires further
investigation. There is a lack of data on the causal relationship between
the protein composition and quality of IF and the plasma AA profile,
highlighting the need for convincing studies. Furthermore, the
quantity of HM compounds that reach the colon, and the impact of
partially digested proteins (e.g., HM-derived peptides) on the
composition of the microbiota, must be investigated to fully
comprehend the role of the HM nitrogenous fraction in shaping the
infant gut microbiota. In particular, the NPN fraction may
be important, despite not yet being considered in current
IF formulations.
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