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This review examines the differences in protein composition, digestion, and 
physiological effects on infants between human milk (HM) and infant formula 
(IF). The World Health Organization recommends exclusive breastfeeding for 
the first 6 months of life due to the numerous health benefits associated with 
it. However, when this is not possible, IF is used as an alternative. Differences 
between HM and IF remain, particularly in terms of protein composition and 
structure. Further optimization of IF is needed to better mimic HM and provide 
similar health benefits. Further improving IF formulation requires implementing 
a promising strategy, which in turn requires a thorough understanding of the 
mechanisms of protein digestion and amino acid (AA) absorption, as well as the 
metabolic and physiological effects of protein composition and structure. These 
are often altered by heat treatment and processing in IF. The main differences in 
the protein composition and structure of HM and IF are presented, including a 
synthesis of knowledge on the non-protein nitrogen (NPN) fraction. This fraction is 
too often neglected in milks, despite accounting for one fifth of the total nitrogen 
in HM. The influence of the protein composition and structure of HM and IF on the 
digestion of dietary protein and dietary AA absorption is compared, highlighting 
the need for data on the postprandial AA profile in infants from well-designed 
clinical trials. Finally, this review examines the differences in protein composition 
and digestion between HM and IF that lead to distinct metabolic, physiological 
and microbial outcomes. Future research should focus on understanding the 
role of partially digested proteins and the NPN fraction in shaping the infant gut 
microbiota and overall health.
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1 Introduction

The health benefits of breastfeeding for infants are globally recognized, and the World 
Health Organization (WHO) recommends an exclusive breastfeeding until 6 months of age 
(1). However, the rate of exclusive breastfeeding among infants aged 0–6 months remains low 
worldwide (48%) (1). Non-breastfed infants are therefore fed infant formula (IF), which aims 
to mimic as much as possible mature human milk (HM). Thanks to increased knowledge and 
scientific developments, the composition of IF has been improved over the past decades, in 
the frame of the European regulation (2). The generic formulation and processing route for 
producing powder IF is described hereafter (3). IFs, for healthy term infants, are commonly 
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formulated from skimmed cow milk (CM), although other protein 
sources can be used, such as goat milk or soy protein isolates. However, 
this will not be covered in the present review. In standard IF, the 
skimmed milk is enriched with whey proteins (WP) to mimic the 
average casein:whey protein ratio (40:60) of mature HM and thus 
cover the regulatory aminogram (2). Free amino acids (AAs) may also 
be added to standard IF to decrease the IF total protein content as 
some studies have reported that high protein content in IFs may 
contribute to infant overweight and obesity (4, 5). Purified whey 
proteins such as lactoferrin (LF), α-lactalbumin, and/or osteopontin 
can also be  used in some specific IFs. Lactose (and sometimes 
maltodextrin, although not present in HM), fat (usually based on a 
mixture of vegetable oils, to which milk fat ingredients can be added), 
minerals and vitamins are used for the IF formulation. The liquid 
preparation obtained is heat-treated to ensure sanitary safety, the mix 
is then concentrated usually before or after fat addition and 
homogenization for emulsion stability (average droplet diameter: 
0.1–1 μm). The mix is finally spray dried and packaged (3).

Despite the progress made by industrials in the last decades, 
discrepancies between HM and IF remain particularly in terms of fine 
composition and structure, referring here to protein quality, and 
resulting in different physiological properties in the infant. The 
present review aims to highlight the differences of composition and 
structure of proteins between HM and standard IF. The fate of 
digestion, as well as the metabolic and physiological impacts of HM 
vs. IF will then be addressed.

2 Proteins and non-protein nitrogen 
in human milk vs. infant formula

Milk nitrogenous compounds consist of a fraction of protein 
nitrogen (PN) and, to a lesser extent, a fraction of non-protein 
nitrogen (NPN). Milk proteins provide bioactive peptides and AAs 
required for the synthesis of protein contributing to the growth of the 
infant and the structural and functional development of its organs and 
tissues, but also for the synthesis of non-protein nitrogen compounds 
(NPN) (6, 7). Milk NPN fraction, identified as the acid-soluble 
nitrogen obtained after protein precipitation, consists of more than 10 
classes of compounds, the role of which for infant development is still 
being discussed.

The impact of different IFs and breastfeeding on atopic diseases 
and growth in pediatric cow’s milk protein allergy, as well as the effects 
of food processing on allergenicity, have recently been reviewed (8, 9). 
This topic is not presented here, as the focus is on the impact of the 
nature of proteins in human milk and cow’s milk-based infant 
formulas on digestion and gut physiology, which are less 
documented areas.

2.1 Proteins

The HM protein content (0.8–1.2 g/100 mL) is one of the 
lowest among other mammal milks, including donkey milk. 
However, it can rise to as much as 6 g/100 mL in some mammal 
milks, such as sheep’s milk. This correlated with the growth rate 
of infants, which is one of the lowest for humans and donkeys, and 
faster for sheep (10). Milk proteins are classified into three major 

classes: WPs, caseins and mucins (11). HM is a whey-dominant 
milk with a casein: WPs ratio of 40:60 in mature milk, while CM, 
the main source of protein and lactose in IFs, is a casein-dominant 
milk with a casein: WPs ratio of 80:20 (12, 13). Because of these 
differences, the manufacture of IFs requires the enrichment of 
their protein fraction in WPs to mimic the AA profile of HM. This 
enrichment generally results in an average casein: WPs ratio of 
40:60 for IFs, ranging from 30:70 to 80:20 (benchmark on 35 IFs 
available in France made in 2023). Despite this rebalance, the 
nature of proteins remains different between HM and IFs, 
resulting in a higher true protein content in IFs than in HM 
(14, 15).

2.1.1 Whey proteins
WPs have major relevance for the infant development because of 

their nutritional input and their bioactive functions, but their nature 
and concentration vary between HM and IFs.

2.1.1.1 α-Lactalbumin
α-La has a high nutritional value as mainly composed of essential 

AAs (63.2% of total AA content). α-La is a protein rich in cysteine 
(6.5% of residues vs. 3.1% in β-LG), and also in tryptophan (3.3% AA 
residues vs. 2.5% AA residues in β-LG), an essential AA involved in 
important metabolic pathways allowing brain maturation and the 
development of sleep–wake rhythm, through serotonin and melatonin 
synthesis (16). Human and bovine α-La present a similar structure 
and a high level of homology (~72%) (14), but a few differences in 
their glycosylation pattern might partly affect their functionality. α-La 
is the main whey protein in HM, accounting for ~27% of total 
proteins, while it is only the second most abundant whey protein in 
IFs, representing ~9.6% of total proteins and being almost three-fold 
less concentrated than in HM (17, 18). To balance the low-level of 
α-La in standard IFs, and thus of cysteine and tryptophan, it is 
necessary to increase the true protein content in IF compared to HM 
or to formulate an α-La-enriched IF, thus allowing to have a lower 
protein content in IF. The addition of free AAs is also another way to 
balance the low-levels of α-La in standard IFs. The latter strategy 
might be beneficial for the infant (19–21), however this can be costly 
and has to be done in agreement with the regulation. In addition, 
sensory and nutritional consequences of this free AA supplementation 
should be considered, as free AAs could modify the IF organoleptic 
properties and may not remain stable along the shelf-life of the 
IF. Finally, free AA bioavailability is expected to differ from that of 
AA-bound protein. This should be further examined to evaluate the 
impact of such strategy. Clinical studies have demonstrated that α-LA-
enriched IF may promote gastrointestinal tolerance and plasmatic AA 
concentrations in a similar way to that of HM-fed infants (19, 22–25).

2.1.1.2 β-Lactoglobulin
In HM, β-lactoglobulin (β-LG) is totally absent while it is the most 

abundant WPs in CM accounting for ~50% of total WPs. β-LG is one 
of the main allergens found in cow’s milk, although infants with 
allergies are usually sensitive to several proteins found in cow’s milk, 
such as caseins or α-La (26). IgE-mediated food allergy reactions to 
dairy proteins can evolve during the first years of life. An allergic 
reaction to β-lactoglobulin is commonly reported at birth, before 
evolving towards caseins and then α-La by the end of the first 
year (27).
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2.1.1.3 Lactoferrin
Lactoferrin (LF) is a protein partially resistant to gastrointestinal 

digestion. Multiple physiological roles have been reported such as 
antimicrobial, immunomodulatory, anti-inflammatory, bifidogenic, 
anticarcinogenic, enzymatic and gene regulation activities (17, 28–32). 
With an average of 0.15 g/100 mL, LF is the second major WP of HM, 
accounting for ~16% of total proteins (17). LF level in CM is 10 times 
lower than in HM. Human and bovine LFs have a rather high 
homology (69%). LF supplementation in IFs has shown some benefits 
for infants, with a better weight-gain up to 6 month-old, a reduction 
of some infant diseases (e.g., lower respiratory tract illnesses), and the 
modulation of the gut microbiota that better mimics HM-fed infant 
microbiota (24, 33, 34). In vitro evaluation of the antiviral activity of 
LFs showed that the commercial sources of available bovine milk LFs, 
recombinant LFs and native human/bovine milk LFs influenced 
immune responses by significantly and variously modulating 
pro-inflammatory cytokine gene expression (35). The variation in LF 
bioactivity may be due to differences in processing conditions (e.g., 
thermal and high-pressure treatments), iron saturation, and purity 
(35, 36).

2.1.1.4 Immunoglobulins
Immunoglobulins (Igs) are the largest milk proteins. They are the 

main antimicrobial substances in milk and are divided into four 
classes: IgAs, IgMs, IgEs and IgGs. Taking all classes together, HM 
contains far more IgAs than CM. In HM, IgAs make up to almost 90% 
of total Igs (0.6 g/L in mature HM), while the major class in CM is 
IgGs (0.6 g/L) (37). However, in IFs the reported levels of secretory 
IgGs and IgAs are very low (38). Bovine milk immunoglobulins could 
maintain their structure resisting the temperature up to 75°C for 15 s, 
albeit losing their antigen-binding efficacy (39). In addition, the 
technical application for Holder pasteurization further influenced the 
retention rate of Igs and LF in HM (40).

2.1.1.5 Proteose-peptone
A minor fraction, called “proteose-peptone,” is present in WPs. 

Although little information exists in HM, the “proteose-peptone” 
fraction has been detailed in CM. It is a complex heterogeneous 
mixture of heat-resistant WPs divided in two classes according to their 
origin. The first class comprises non-hydrophobic, highly soluble 
fragments derived from proteolysis of the N-terminal region of 
β-casein by bovine plasmin, designated PP5, PP8S and PP8F. The 
second class consists of a complex heterogeneous group of 
hydrophobic glycoproteins, the main one being PP3, also known as 
LP28, and belonging to the fat globule membrane of CM (41). In CM, 
the “proteose-peptone” fraction accounts for 10% of total WPs. 
Differences in the “proteose-peptone” fraction composition exist 
between HM and CM (42). In HM, this fraction contains ~ 45% 
carbohydrates, whereas in CM it contains only ~ 11%. Regarding IFs, 
even though its concentration is not well characterized, the “proteose-
peptone” fraction is assumed to be present in WP ingredients used 
for IFs.

2.1.1.6 Glycomacropeptides
WPs used for IF usually derive from cheese making and thus 

contain a glycomacropeptide (GMP) fraction corresponding to the 
carboxyl-terminal fragment of casein-κ (43–106) cleaved by the action 
of chymosin used for cheese making. GMP accounts for 9–15% of 

total protein in IFs (107). Nutritionally, GMP is of little interest for 
infants as it lacks aromatic AAs (phenylalanine, tryptophan, tyrosine), 
cysteine and only has a single methionine residue, whereas it is rich in 
branched-chain AAs (isoleucine, leucine, valine) and threonine. In 
HM or IFs derived from ideal whey (obtained after skimmed milk 
microfiltration), GMP is absent. However, it is released by digestive 
enzymes during the first step of gastric digestion. It has been reported 
in adults and animal models that GMP may exert some health-
promoting activities (108, 109) and modulate microbiota composition 
and immune system response (22, 110–114), although these effects are 
not always observed (115). GMP is considered as a bioactive peptide 
in the literature (108, 109, 116), but there was no evidence of the 
concentration at which GMP in IFs may have a physiologic 
impact (115).

2.1.2 Caseins
Caseins are mainly under micellar forms in HM and IFs (90–95%), 

but human casein micelles are smaller than the bovine ones (30 to 
75 nm in HM vs. 100 to 200 nm in CM) (117). Bovine casein micelles 
are composed of four casein species - αs1-, αs2-, β- and κ-caseins - with 
a molar ratio of 4:1:3.5:1.5. However, only three of these are found in 
HM: αs1-, β- and κ-caseins, with a molar ratio of 1.5:7:1.5 (13, 118). 
Although HM and CM both contain β-caseins, they only share ~50% 
sequence homology and have different numbers of phosphorylation 
sites (0 to 5 in HM vs. 4 to 5 in CM) (118). During gastrointestinal 
digestion of β-caseins, small peptides rich in phosphorylated AA 
residues, known casein phosphopeptides (CPPs), are formed. These 
CPPs facilitate the absorption of calcium, zinc and other divalent 
cations as they are able to keep these cations soluble (119).

A commercial fraction of purified β-casein can be added to IFs to 
increase the β-casein content and achieve the proportion of β-casein 
present in HM. In 2022, using an in vitro digestion model, Huang et al. 
(120) investigated the effects of supplementing the IF with either 
β-casein or α-LA on digestion. They highlight that increasing the IF 
content of one of these proteins resulted in a digestion profile that 
better mimicked HM digestion. However, further research is needed 
to confirm these preliminary results.

The interest of non-micellar casein and its impact on IF structure, 
digestive behavior and physiological consequences will be discussed 
in a dedicated section in this review.

2.2 Non protein nitrogen

Very few recent reviews have been carried out to synthesize 
knowledge on this fraction, a too-often neglected fraction in milks, 
even though it accounts for one fifth of total N in HM (Table 1). The 
NPN fraction of milk contains more than 10 classes of compounds: 
urea, peptides, free AAs, creatine, creatinine, uric and orotic acids, 
ammonia, carnitine, choline, amino alcohols of phospholipids, amino 
sugars, nucleic acids and nucleotides, polyamines, low molecular 
weight peptide hormones and other biologically active compounds 
such as growth factor (121) (Table 2). Their concentration depends on 
the mammal species, but also on other parameters such as lactation 
stage, time of the day, diet, prematurity, etc. (122, 123).

The NPN fraction in HM accounts for approximately 20% of the 
total N (11.5–25.9%) in HM while it only accounts for approximately 
6% of the total N in CM (4.2–9.9%). In CM-based IFs, the NPN 
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content is variable among brands, accounting on average for 9% of the 
total N (4.9–13.0%) (Table 1).

The variation of the NPN fraction in CM is often attributed to 
the variation of the urea level. The urea concentration in CM 
depends on factors related to the cow’s diet, such as dry matter 
content, crude protein content, percentage of rumen degradable and 
rumen non-degradable protein, energy/protein ratio, amount of 
easily digestible carbohydrates, and water intake. It is also influenced 
by physiological factors such as breed, body weight, mammary gland 
health, stage of lactation, age and parity (primiparous or 
multiparous) of cows, and seasonal factors (124, 125). Milk transport 
and storage time and processing technologies also play a significant 
role in modulating NPN concentration. The level of NPN increases 
with transport and storage time. It is also higher in cheese-derived 
whey due to its production process (hot or cold ripening) than in 
ideal whey obtained after skim milk microfiltration (126). The levels 
of NPN in IFs were reported to be highly dependent on the type of 
whey used. As a matter of facts, demineralized whey can be obtained 
from several processes such as ion-exchange and electrodialysis, but 
also processes such as micro- and ultra-filtration. In a study, 

Donovan and Lönnerdal (127) demonstrated that the level of NPN 
was the highest in ion-exchange whey, followed by electrodialyzed 
and ultrafiltered whey. The ultrafiltered whey contained the lowest 
amount of peptides in the NPN fraction due to the 10 kDa filtration, 
whereas the ion exchange demineralized whey contained a low 
amount of highly charged free AAs (Lysine, Glutamic acid, Arginine) 
(127). In a more recent study on IFs (126), the authors confirmed 
that demineralized cheese whey contained a higher content of NPN 
than the demineralized ideal whey.

2.2.1 Urea
Urea is the main NPN component in HM and CM, accounting for 

around 45 and 40% of this fraction, respectively. This represents 9% of 
the total N in HM and less than 3% of total N in CM. There is very 
little data available on the urea content of CM-based IFs (128), but it 
is estimated to account for around 43% of the NPN fraction and 
approximately 4% of the total N in IFs. N-urea becomes available after 
being released by intestinal bacterial ureases, which are expressed by 
some Bifidobacterium species (129, 130). Thus, the composition of the 
microbiota plays an important role in urea production.

TABLE 1  Concentration of total, protein and non-protein nitrogen, urea nitrogen and free amino acids nitrogen in human milk, cow milk and cow milk-
based infant formula (mean ± SD).

Components Unit Human milk Cow milk CM-based IF

Total nitrogen mg N/100 mL 195 ± 46 (57, 63, 77, 86, 259– 266) 531 ± 31 (63, 64, 259, 265, 267–278) 248 ± 34 (62, 64, 227, 263)

Protein nitrogen % TN 80.0 94.1 91.2

Non-protein nitrogen mg N/100 mL
39.1 ± 9.2 (57, 63, 259–266)

31.2 ± 9.2 (63, 64, 259, 265, 267–269, 

272– 276)
21.8 ± 7.5 (62, 64, 263)

% TN 20.0 5.9 8.8

Urea
mg N/100 mL

17.6 ± 4.3 (57, 63, 77, 259– 262, 265)
12.5 ± 3.3 (63, 64, 259, 265, 268, 269, 

272, 274)
9.4 ± 2.9 (56, 58, internal data)

% NPN 45.0 39.9 42.9

Free amino acids mg N/100 mL 5.2 (63, 77, 85, 260, 263, 264, 279–282) 1.5 (63, 64, 265, 278, 281) 1.4 (37, 58, 276, internal data)

% NPN 13.2 4.7 6.3

IF, infant formula; N, nitrogen; TN, total nitrogen; NPN, non-protein nitrogen.

TABLE 2  Concentration of creatine, creatinine, uric acid, orotic acid, glucosamine, sialic acid, carnitine, ammoniac and polyamines in human milk, cow 
milk and in cow milk-based infant formula (min - max).

mg /100 mL Human milk Cow milk CM-based IF

Creatine 1.53 (0.32–3.7) (121, 140, 277, 278) 2.33 (0.9–3.55) (140, 258, 261) 2.72 (279)

Creatinine 1.25 (0.22–3.5) (121, 140, 254, 277, 278) 0.59 (0.19–1.21) (128, 140, 258, 261) 0.37 (128)

Uric acid 0.73 (0.24–2.2) (121, 140, 253, 272, 274, 277) 0.95 (0.66–1.55) (140, 258, 261, 272, 274) 0.32 (0.3–0.32) (272, 274, 280)

Orotic acid 0 (147, 148, 272, 274) 1.05 (0.84–1.46) (261, 272, 274) 0.42 (0.3–0.6) (272, 274, 280)

Glucosamine 3.6 (1.6–4.7) (121, 140, 141) 12 (± 1.8) (281) 4.85 (± 0.06) (282)

Sialic acid 3.2 (121) 16–19 (283) 12–27 (283)

Carnitine 0.07 (0.04–0.09) (121, 258, 272, 274, 276) 0.28 (0.18–0.36) (128, 258, 272, 274) 0.17 (0.15–0.19) (128, 272, 274)

NH3 0.19 (0.16–0.21) (121, 140, 253) 0.74 (0.6–0.88) (140, 261) 0.17 (0.11–0.21) (107)

Polyamines 0.039 (121, 278, 284, 285) 0.0832 (286) 0.007–0.009 (128, 284, 287)

  Spermine 0.022 (0.013–0.034) 0.0410 (286) 0.001 (0–0.002) (287)

  Spermidine 0.015 (0.009–0.020) 0.0334 (286) 0.004 (287)

  Putrescine 0.002 (0.001–0.004) 0.0088 (286) 0.003 (287)

IF, infant formula.
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2.2.2 Free amino acids
Milk NPN also contains a fraction of free AAs, which is well-

documented in the literature for HM, CM and CM-based IFs. The total 
free AA content (mg N/100 mL) in HM is 4 times higher than in 
CM. The free AA fraction reaches 13% of the total NPN fraction in HM 
and 4.7% in CM. In HM and CM, the free AA fraction is mainly 
composed of proteinogenic AAs (88 and 74% of total free AAs, 
respectively) and a small fraction of non-proteinogenic AAs, mainly 
taurine in HM and carnitine in CM. The most abundant free AA is 
glutamic acid (39 and 27% of total free AAs in HM and CM, 
respectively), the second most abundant is glutamine for HM (18%), 
carnitine for CM (19%), and the third most abundant is taurine in HM 
(10%) and histidine for CM (13%). Taurine is only the fifth most 
abundant free AA in CM with a concentration 5 times lower 
than in HM.

In CM-based IFs, free AAs represent an average of only 6% of the 
NPN, consisting mainly of proteinogenic AAs (55% of the total free AAs). 
The non-proteinogenic AA fraction mainly consists of taurine (33% of 
total free AAs) and carnitine (12% of total free AAs), both of which can 
be added to IFs. As a result, taurine is the first most abundant free AA 
(33% of total free AAs), followed by carnitine, serine and glutamic acid, 
in CM-based IFs. Differences between IF brands are observed because 
different free AAs (other than taurine) can be added and different protein 
sources can be used for IF formulation.

Free AAs may be beneficial for infants. They can be directly absorbed 
and metabolized (121, 131). Glutamine and taurine, for example, which 
are highly represented in the free AA fraction, play essential roles during 
infant growth. Glutamine, in particular, is the precursor of non-essential 
AAs, including proline and arginine, which are produced by the intestinal 
mucosa (132). Taurine indirectly aids fat absorption by conjugating with 
bile acids to form bile salts (133, 134). However, studies have shown that 
taurine supplementation in IF does not modulate fat absorption; rather, 
it contributes to the development of a healthy microbiota, as taurine-
conjugated bile salts are less toxic to Bifidobacteria than glycine-
conjugated bile salts (135, 136).

2.2.3 Amino sugars
Milk provides N-containing oligosaccharides and amino 

sugar-containing glycoproteins and glycopeptides. Sialic acids 
(N-acetyl-neuraminic acid, Neu5Ac in HM and CM; 
N-gycolylneuraminic acid, Neu-5Gc, in CM), glucosamine and 
galactosamine are amino sugars present in the NPN fraction (288,  
289). Sialic acid is very abundant in HM, with 70 to 83% bound to 
HM oligosaccharides, 14 to 28% bound to glycoproteins, 2 to 3% 
in free form, and 0.3% bound to glycolipids (137). Because amino 
sugar-containing compounds are acid soluble and oligosaccharides 
are the third most abundant solid component in HM [5 to 15 g/L 
in mature milk, (138)], nitrogen from amino sugars contributes to 
a significant portion of the NPN fraction in HM (121). By contrast, 
oligosaccharides are only present in trace amounts in CM (30 to 
60 mg/L) (139). Three studies on HM reported the content of 
glucosamine (121, 140, 141) and one study reported the content of 
sialic acid in HM (121). The results showed that glucosamine N 
accounted for 9.1% of NPN and sialic acid nitrogen for 8.2% of 
NPN, making them the third and fourth most abundant N 
compounds in the NPN of HM. Glucosamine and galactosamine 
contribute to the development of the microbiota, 
especially Bifidobacteria.

2.2.4 Creatine and creatinine
Creatine and creatinine contribute, respectively, 3.9 and 3.2% to 

the NPN in HM, and 7.5 and 1.9% in CM. In IF, there was insufficient 
data to determine the contribution of creatine and creatinine to the 
NPN fractions.

2.2.5 Uric and orotic acids
Uric acid constitutes 1.9% of NPN in HM, 3% in CM, and 1.5% in 

CM-based IFs. Orotic acid is absent from HM, despite accounting for 
3.4% of NPN in CM. There is no data available for orotic acid in 
CM-based IFs.

2.2.6 Ammonia, nitrite and nitrate
Ammonia contributes 0.5% of the NPN in HM, and 2.4% of NPN 

in CM. Interestingly, ammonia contributes an average of only 0.8% of 
NPN in CM-based IFs.

Nitrite accounts for 0.24% of NPN in HM, whereas it is negligible 
in CM and CM-based IFs, accounting for just 0.0002 and 0.0001%, 
respectively. In contrast, nitrate is less abundant in HM than in CM 
and CM-based IFs, accounting for 0.001, 0.17, and 0.09% of NPN, 
respectively (142).

2.2.7 Polyamines
The contribution of polyamines (spermine, spermidine, 

putrescine and cadaverine) to the NPN fraction is low in milk (290). 
Studies have shown that the polyamine concentration is much higher 
in HM than in IF (0.093–0.140 mg/100 mL HM vs. 0.014 mg/100 mL 
IF) and intermediate in CM (0.041 mg/100 mL CM) (128, 143, 144). 
However, only the contribution of N from polyamines to the NPN 
fraction in HM has been calculated (0.1% of NPN) (134, 143). There 
is insufficient data on IFs to determine the contribution of polyamines 
to the NPN fraction, but it is expected to be  negligible in 
comparison to CM.

Despite their low content, polyamines are thought to be necessary 
for optimal gastrointestinal growth, as they are assumed to contribute 
to the regulation of cell growth and proliferation (143), and to 
modulate the composition of the microbiota. This has been observed 
in neonatal mice fed a polyamine-supplemented IF (145).

2.2.8 Nucleos(t)ides
The concentration of most nucleos(t)ides tends to decrease 

gradually as lactation progresses, but the decrease is less abrupt in 
HM than in CM (146–148). Similar compositions are observed in 
human and bovine colostrum, whereas differences in composition 
and concentrations are reported in mature milk (141, 143). Although 
the concentration of ribonucleotides reported in HM varies widely 
(10 to 200 μmol/L) (148), it appears that HM contains a higher 
concentration of nucleos(t)ides than CM. Cytidine and adenosine 
derivatives represent ~25% of the total nucleotides in HM, a higher 
amount than in CM. In HM, the concentrations of cytidine 
monophosphate (CMP), adenosine monophosphate (AMP), 
guanosine monophosphate (GMP), uridine monophosphate  
(UMP) were found to be  0.076 ± 0.006 mg N/100 mL, 
0.105 ± 0.061 mg N/100 mL, 0.024 ± 0.004 mg N/100 mL, 0.032 ±  
0.008 mg N/100 mL, respectively (141, 142, 144). GMP, UMP, and 
inosine monophosphate (IMP) were not detected in CM (140, 142–
144). The usual concentration of ribonucleotides (mono- and 
diphosphate) is about 1 to 2 orders of magnitude higher than that of 
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ribonucleosides (adenosine, guanosine, thymine, uridine, cytidine) 
in HM (148). In IF, the concentration of ribonucleos(t)ides appears 
to be a very negligible fraction of NPN, although insufficient data 
are currently available. Due to the limited data available and the 
variability of the values reported in the literature, it is difficult to 
assess the contribution of nitrogen from ribonucleos(t)ides to the 
NPN fraction in milk. However, nucleotides can be added to IF, 
which is a common practice.

2.2.9 Amino alcohols
Amino alcohols such as phosphoethanolamine, ethanolamine, 

phosphoserine, phosphatidylcholine, sphingosin, which mainly come 
from MFGM, and unesterified choline contribute to the NPN fraction. 
However, there is very little data on their concentrations in milk 
available in the literature. In 1989, Atkinson and Lönnerdal (121) 
estimated that 0.6 to 2 mg N/100 mL could be  derived from 
phosphoethanolamine and phosphatidylcholine, and 0.3 to 
0.9 mg N/100 mL from unesterified choline, in HM. Overall, amino 
alcohols may account for 2–7% of the NPN fraction in HM. There are 
insufficient data in the literature to evaluate their contribution to NPN 
in CM or in CM-based IFs.

Overall, although IFs are designed to closely resemble HM in 
terms of composition, there are still differences in their fine 
composition and structure. These differences are mainly due to 
the different milk source (bovine vs. human). HM is a bioactive 
fluid whose composition varies during lactation and depends on 
the mother’s diet. In contrast, IFs which are formulated to meet 
the infant’s nutritional needs between 0 and 6 months. IFs have a 
higher protein content to provide sufficient essential AAs to  
meet the infant’s nutritional needs, whereas HM provides  
other bioactive components that are partially lacking in IFs (149).

3 Protein digestion and amino acid 
absorption in infant

At birth, the infant faces many environmental changes, 
including a change in the way nutrients are delivered. Initially 
supplied by the placenta during the fetal period, ingested food is 
destructured throughout the infant’s gastrointestinal tract to 
allow for nutrient release and absorption, exposing the digestive 
system to compounds other than those present in the amniotic 
fluid (150). To meet this challenge, the infant’s organism and 
metabolism adapt and change during the first 2 years of life. This 
period is known as the critical period (151) is characterized by 
the infant’s extreme sensitivity due to the functional immaturity 
of many tissues and organs. Therefore, it is essential to control 
the environment to ensure the infant’s optimal growth and 
metabolic development.

3.1 Digestive specificities in infants

Maturation of digestive functions begins early in utero, with 
enteral feeding possible as early as 29 weeks of amenorrhea (152), 
but the digestive system is still immature at birth, which affects 
the infant’s ability to digest and absorb nutrients, 
including proteins.

3.1.1 Protein digestion
Protein digestion starts in the gastric phase, where proteolysis is 

carried out by pepsin, secreted as pepsinogen and activated 
autocatalytically at a pH below 4 (153). Despite active acid secretion from 
birth, the infant’s gastric mucosa is still highly susceptible to acidity during 
the first two to 3 weeks of life, and thus prostaglandins (such as PGE2) 
stimulate mucus and bicarbonate production, inhibit acid secretion and 
increase mucosal hydrophobicity (154). As a result, the gastric pH is 
between 6.0 and 6.5 immediately after feeding and does not reach pH 5.0 
until 80 min after feeding due to the high buffering capacity of the milk 
diet (HM and IF) (155). At this pH, the rate of conversion of pepsinogen 
to pepsin is low and the activity of pepsin is probably reduced, as its pH 
optimum has been reported to be  2.0 for the hydrolysis of globular 
proteins (156) and may be different for the unstructured proteins that are 
caseins. The level of pepsin activity at 4 weeks postpartum has been 
reported to be 18% of that in adults (152) and to reach 100% only at 
2 years of age (125, 148, 151). Gastric proteolysis in infants is thus 
incomplete as compared to adults. A previous study (153) showed that the 
type of diet (HM vs. IF) has no effect on pepsin production during 
infancy. In vivo, gastric proteolysis in nine full-term neonates averaged 
15% of ingested protein (157), while in vitro gastric proteolysis of 5 to 15% 
of ingested protein is often reported for a static, semi-dynamic, or 
dynamic model of term neonates (120, 152–155). Overall, this suggests 
that a large proportion of dietary proteins enter the intestinal 
compartment partially or non-hydrolyzed. Several studies have reported 
that the rate of gastric emptying is influenced by the type of diet. HM is 
assumed to have a faster gastric emptying than IF, with a T1/2 of 36 to 
48 min in preterm and term infants for HM (158) and a T1/2 of 65 to 
78 min in preterm and term infants for IF (159). Two recent in vivo 
studies also confirmed faster gastric emptying with HM than with IF (157, 
160). Several factors have been reported to influence gastric emptying, 
including bolus volume, caloric density, lipid quality, and protein type and 
structure (161).

The pancreas plays an important role for intestinal proteolysis 
through its secretory activity of major proteases (162). Pancreatic juice 
contains inactive proteases in the form of zymogens and contribute to 
pH increase of the acidic gastric chyme thanks to sodium bicarbonate. 
The activation of these zymogens is the result of cascade mechanisms. 
Trypsin is the most important pancreatic enzyme, accounting for 20% 
(w/v) of the total protein in pancreatic juice. Its activity is detected as 
early as the 16th week of amenorrhea and increases throughout the 
fetal period, reaching 90% of that of adults at birth (43, 163). In 
infants, chymotrypsin activity is estimated to be 50 to 60% of that of 
children over 2 years of age (43). Other pancreatic proteases complete 
the action of trypsin, such as chymotrypsin, elastases and 
carboxypeptidases, the latter one being the only exopeptidases among 
the pancreatic proteases. The intestinal protein hydrolysis is completed 
by the action of the brush border peptidases. The addition of brush 
border peptidases to pancreatic proteases in an in  vitro digestion 
model raised the degree of proteolysis from 57 to 74% (44). At the end 
of the intestinal proteolysis, the luminal nitrogen is composed of small 
peptides of two to three AA residues (~60 to 70%), free AAs (~25 to 
30%), and a small fraction consisting of large peptides and undigested 
proteins (45). The undigested or unabsorbable nitrogen fraction is 
then available for fermentation by the colonic microbiota. Fermented 
nitrogen can either be reused by the bacteria, excreted in the feces or, 
to a lesser extent, absorbed by the host in the form of ammonia and 
free AAs (46, 47).
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3.1.2 Absorption of proteolysis products
A large proportion of peptides is absorbed in the jejunum, while 

free AAs are assumed to be  mainly absorbed in the ileum (48). 
Compared with the other two segments, the absorption of free AAs 
and their derivatives from bacterial fermentation in the colon is low. 
The complex structure of the intestinal epithelium, whose 
development begins in the fetus and ends shortly after birth, greatly 
increases the exchange surface area. Before entering the portal vein, 
di- and tripeptides may undergo a final stage of proteolysis in the 
cytoplasm of brush-border enterocytes. Free AAs are absorbed using 
several transport systems present in the apical and/or basolateral 
membranes of enterocytes: active (Na+-dependent) transporters and 
facilitated transport by simple diffusion across the membrane, while 
di- and tri-peptides are absorbed by a H + -dependent transporter 
(PepT1) (49). The absorption of AAs and peptides is developmentally 
regulated and influenced by diet, hormones and growth factors. The 
transport systems are present at birth, and the transport rates of 
peptides and most AAs tend to decrease with age (from birth to 
weaning), although the extent of these changes varies widely among 
individuals (43). Studies suggested that the high dietary levels of 
protein or AA lead to the transcriptional activation of the PepT1 
gene, resulting in the upregulation of peptide and AA transport 
(50–52).

3.1.3 Metabolic fate of dietary amino acids
From a quantitative perspective, the appearance of AAs in portal 

blood depends primarily on the composition and quantity of ingested 
proteins, as well as their digestibility. The main factors that determine 
the kinetics of AA appearance are the physicochemical nature of the 
proteins and how quickly they can transit and/or be digested through 
the digestive tract (53–55). A large proportion of AAs are used as they 
are, or can be transaminated for use as other AAs in protein synthesis. 
Another fraction enters specific metabolic pathways that convert AAs 
into non-protein nitrogen compounds. A final fraction can 
be catabolized to produce energy.

Free AAs first circulate through the splanchnic zone before 
reaching the peripheral circulation. In piglets, it has been reported 
that approximately 27% of total dietary nitrogen is retained in the 
splanchnic area following a meal (56). However, splanchnic extraction 
of AAs varies widely among AAs. For instance, up to 80% of dietary 
threonine and around 50% of dietary lysine are absorbed by the 
splanchnic area in piglets (57–59). Studies in adult humans have 
reported splanchnic extraction rates of up to 96% for glutamic acid, 
69% for alanine, and 64% for glutamine. In contrast, the rates were 
much lower for arginine (38%), phenylalanine (29%) and leucine 
(21%), expressed as a proportion of enteral intake (60). Several 
parameters influence the metabolic fate of AAs in the splanchnic zone, 
such as the tissues with discrepancies between liver and gastrointestinal 
tissues, the tissue cell characteristics, and the molecular form of AAs 
(56). After extraction of AAs by the splanchnic zone, the circulating 
pool of AAs consists of dietary AAs that have escaped splanchnic 
extraction, AAs from transamination of dietary AAs in the liver, and 
AAs from proteolysis of endogenous proteins. These circulating AAs 
are metabolized by peripheral organs. In piglets, 42% of dietary 
nitrogen retention occurred in the peripheral zone [including 31% in 
the muscle and 6% in the skin (56)].

As a growing organism, the neonate has a positive nitrogen 
balance (anabolic predominance), with protein losses inversely related 

to gestational age (61). However, in 2008, Kalhan and Bier (62) 
reported that the protein losses expressed as a function of metabolic 
weight (weight0.75) are not significantly different from those of adults, 
whereas they are significantly higher when related to body weight. In 
seven-day-old piglets, the rate of protein accretion was very high and 
dependent on enteral intake (63). Focusing on specific AAs, the rate 
of glutamine and phenylalanine appearance in circulating blood, 
expressed on a body weight basis, was higher in infants than in healthy 
adults, reflecting higher energy expenditure in the infant (62, 64). It 
was also demonstrated that a negative relationship between glutamine 
turnover and the irreversible oxidation of protein (urea synthesis) 
existed, thus suggesting that glutamine has an important role as a 
nitrogen source for other synthetic processes and accretion of body 
proteins in the newborn (64). Finally, tryptophan is an AA of 
importance for infants because it is a limiting AA in food, being 
present in low concentration in IFs. Tryptophan released after protein 
hydrolysis is mainly used for protein biosynthesis. The remaining 
fraction of free tryptophan is metabolized by the host in the intestine, 
liver and brain, or by the colonic microbiota (65). The kynurenine 
pathway in liver is the most significant degradation pathway of the 
tryptophan unused for protein synthesis (>90% of tryptophan in 
excess available) (66). It is metabolized to quinolinic acid, which in 
turn is converted to niacin (vitamin B3). Tryptophan is important for 
infants because it is also converted in the pineal gland to the 
neurotransmitters, serotonin and melatonin, which play an important 
role in sleep regulation. Interestingly, the transport of tryptophan 
across the blood–brain barrier is in competition with the transport of 
other large neutral AAs (LNAAs), namely histidine, isoleucine, 
leucine, methionine, phenylalanine, tyrosine and valine. As a result, a 
strong correlation between brain tryptophan concentration, brain 
serotonin concentration and plasma tryptophan/LNAA ratio has been 
demonstrated (67–69).

3.2 Impact of protein composition and 
structure on digestion of HM vs. IF

HM is a dynamic fluid that serves as the biological standard for 
infant nutrition, providing the essential nutrients and thousands of 
bioactive molecules that play critical roles in protecting against 
infection and inflammation, contributing to immune maturation, 
supporting organ development, and promoting healthy microbial 
colonization. Unlike IF, which targets 0- to 6-month-old infants, HM 
composition adapts during lactation to meet the specific needs of the 
developing infant, which vary by stage of lactation, and between term 
and preterm infants (70).

HM serves as the reference for IF formulation. IFs require 
numerous ingredients (up to fifty for some IFs) and production 
steps involving several heat treatments, either on the raw material 
during ingredient manufacturing or during IF production (3). 
The formulation and processing route of IFs can differ between 
industrials, contributing to variability of IFs in their protein 
composition and potential ingredient interactions. This can affect 
digestion kinetics and physiological effects (71, 72). With respect 
to proteins, several factors such as phosphorylation, size, charge, 
tertiary structure, AA content and glycosylation have been 
identified as influencing protein degradation (131). Casein and 
WPs, both in HM and IFs, differ chemically and structurally, 
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influencing their gastric behavior and digestive sensitivity. 
Interestingly, the ratio of casein to WPs influences gastric 
emptying and the degree of proteolysis (55, 73). Gastric emptying 
in infants aged three to 12 months was faster after the ingestion 
of HM or WP-dominant IF than casein-dominant IF (158), as 
casein coagulates near its isoelectric point (4.6). In contrast, 
unaggregated WPs remain soluble at the acidic pH of the infant 
stomach. In 2020, Halabi et  al. (74) demonstrated that the 
addition of LF within IF induced partial casein micelle 
disintegration even before heating. Some studies have also 
explored the effect of casein mineralization and organization on 
gastric behavior and digestive kinetics (75–77), showing that the 
lower the mineralization, the faster the proteolysis. These results 
may explain the variability in gastric half-emptying time reported 
by different studies for IFs, as the mineralization levels of casein 
in IFs on the market is highly variable (4 to 12 mmol micellar Ca 
per 10 g casein (78);) and can also explain why the gastric 
emptying is slower for IF than for HM, due to the lower 
mineralisation level of HM caseins [~3.2 mmol micellar Ca per 
10 g casein; (79)]. This can induce a different pattern of protein 
coagulation in the stomach, in addition to the different structure 
of human and bovine casein micelles (80–82) and the different 
size of fat droplets in HM and IF. Furthermore, there are different 
variants of β-casein (A1 and A2) in cow’s milk and IFs. Milk 
based on A2 β-casein is available on some markets. It has been 
reported that A2 β-casein cow’s milk has a different casein 
micelle size and different curd formation properties. This could 
potentially result in reduced gut discomfort related to milk (83). 
However, whether this remains true within the IF context 
requires further investigation.

Thermal treatments of proteins, such as those employed in 
ingredient and IF processing, are known to alter both protein 
structure and gastric behavior. Heat treatments increase the 
resistance of casein to gastric hydrolysis by forming casein/WP 
aggregates (84). A recent work also showed that the heat-induced 
denaturation of LF within IF significantly increased its 
susceptibility to hydrolysis (85). Changes in the surface properties 
of casein micelles, after WP binding, enhanced casein hydrolysis 
within IF (85) and increased the pH at which casein coagulates 
from ~4.9 to ~5.4 (86). The casein micelle organization was 
proved to be strongly dependent on the β-LG and LF contents in 
IF and on the heating temperature (74). The dairy protein 
ingredients used in IF formulations may be  dry or liquid, 
depending on the manufacturer. A main factor influencing 
protein denaturation and aggregation during the initial 
processing of the liquid raw materials is the heat intensity (87–
89). For dairy protein ingredients, the production process 
(serum, concentrate or isolate) appears to affect the rate of 
protein denaturation and aggregation, resulting in differences in 
digestibility (90).

Focusing on WPs, several studies have shown that β-LG in its 
native form remains intact in the stomach. Heat treatment can either 
accelerate its proteolysis in the intestine due to protein chain unfolding 
phenomenon (91–95), or reduce its digestibility by forming compact, 
aggregated WPs that hinder enzyme access to cleavage sites (96, 97). 
A study investigating the impact of heat treatment on proteins within 
IF revealed that IF containing α-La and LF preserved a higher 
proportion of native WPs than IF containing β-LG for high heat 

treatments (90°C/15 s, 75°C/15 min) (98). In its native form, LF has 
been shown to be  resistant to pepsin, enabling it to exert its full 
bioactivity in the gut. However, the pasteurization of HM results in 
the partial gastric hydrolysis of LF, as demonstrated in vitro under 
infant digestive conditions (99, 100).

The Maillard reaction (glycation), favored by the heat treatment 
that occurs during IF production and storage due to the presence of 
primary amines and of lactose (a reducing sugar), can also affect 
protein digestibility directly or indirectly by sterically hindering the 
cleavage sites of digestive enzymes (90). In 2020, Zenker et al. (101) 
showed that high levels of glycation in IFs increase the size of peptides 
during digestion, indicating reduced proteolytic efficiency. Reduced 
glycation levels in IFs may enhance the gastrointestinal comfort of 
infants, as indicated by the clinical trial of Sheng et al. (102). However, 
the latter result is confounded by the different nature of the prebiotics 
administered in the various IFs. In addition, Maillard reaction 
products, such as carboxymethyl lysine, may also affect intestinal 
physiology (103, 104).

A recent in vitro and in vivo study on HM and IF (164) showed 
that the microstructure of the digesta differs between HM and IF, and 
that gastric proteolysis of α-La and casein is significantly lower for 
HM than for IF. In addition, it was demonstrated that the quality 
(structure and composition) of dairy protein ingredients within IF 
formulation significantly influenced the microstructure of the IFs. 
These differences were found to modulate proteolysis kinetics as well 
as the breakdown of the emulsion during the early gastric phase (126), 
highlighting the importance of considering the quality of protein 
ingredients in IF manufacturing. Whenever possible, IFs should 
be designed to closely resemble HM, including its digestive behavior 
(3, 105).

The true ileal digestibility (TID) of HM vs. IF was recently 
measured in Yucatan mini-piglets as a model for human infants (106). 
It was shown that the TID of total nitrogen was lower for HM than for 
IF due to the greater proportion of NPN in HM. NPN remains largely 
unabsorbed and is transferred to microbiota. As previously discussed 
in this review, this may have physiological relevance. Additionally, the 
TID of seven AAs differed significantly, particularly for lysine, 
phenylalanine, threonine, valine, alanine, proline and serine. The 
digestible indispensable AA score (DIAAS) of IF was lower than that 
of HM (83 vs. 101). Moughan et al. highlighted that the current FAO 
(2013) recommendations for AA requirements for infants may require 
revision, as the recommended AA concentrations were not corrected 
for hydrolysis time and digestibility. This resulted in lower values for 
leucine, lysine and threonine (more than 16% difference) and histidine 
and tryptophan (more than 30% difference).

3.3 Impact of protein composition and 
structure on absorption of dietary amino 
acids of HM vs. IF

The kinetics of AA appearance in plasma can be  significantly 
impacted by several parameters, with the gastric emptying rate being 
the most important factor (55, 165). Previous studies on the casein 
fraction in IFs have shown that the degree of casein mineralization 
affects their supramolecular organization, which in turn influences 
their behavior in the stomach (76, 78). In other dairy matrices, it has 
been confirmed that the supramolecular organization of casein 
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influences the gastric emptying rate and, subsequently, postprandial 
AA kinetics (77, 166). Another factor influencing the appearance of 
AA in the plasma is the rate of protein digestion, which in turn is 
modulated by protein structure. Specifically, the structure of WPs is 
easily modified in IFs, due to the numerous heat treatments. In vivo 
studies comparing postprandial AA concentrations in neonatal piglets 
fed native or denatured WP solutions have shown that higher plasma 
levels of essential AAs are observed within the first 60 min with native 
WP than with denatured WP (167). Similarly, in rodents fed diets 
containing 40% IF with either native or heat-denatured WPs (168), 
the consumption of native WPs resulted in higher plasma levels of 
total AAs than heat-denatured WPs.

A study in neonatal mini-piglets investigated how the 
composition and structure of protein ingredients within IFs affects 
plasma AA kinetics and concentrations (107). Although no 
difference in plasma AA kinetics was observed, both preprandial 
and postprandial AA concentrations in the plasma were modulated 
by the quality of the protein within the IFs. Interestingly, the whey 
origin within the IFs (either cheese or ideal whey) was found to 
modify AA homeostasis, resulting in increased plasma total and 
essential AA concentrations in piglets fed cheese whey IFs 
compared to ideal whey IFs. In line with previous studies (169), the 
importance of using cheese whey to increase plasma threonine 
concentration was emphasized, given that the cheese whey contains 
a significant amount of GMP, a threonine-rich peptide (107). 
Several other studies focusing on the casein/WP ratio in IFs found 
that an increased WP content in IFs was associated with higher 
plasma threonine concentrations, which were directly related to the 
AA profile of the predominant proteins (23, 170, 171). Several 
authors have suggested that increased threonine intake may 
be related to the limited ability of infants to eliminate threonine, 
given that it leads to higher plasma threonine levels (107, 169, 170, 
172, 173). Interestingly, formula-fed term infants have been 
reported to have higher baseline and postprandial plasma 
concentrations of threonine, urea and valine, than breastfed term 
infants (174).

Several studies have attempted to compare the levels of AAs in the 
plasma of infants fed HM vs. formula. Most emphasized that the 
different protein profile in IFs compared to HM impacts the plasma 
concentration of AAs, as well as urea and other compounds, in 
preterm (169, 170, 172) and term (23, 170, 175–177) infants. However, 
only one study was conducted under presumed isonitrogenous 
conditions. This study showed that the postprandial plasma 
concentration of essential AAs was ~18% lower in HM-fed infants 
than in formula-fed infants. This suggests that the nature and structure 
of proteins may play a modulating role in AA absorption (178), in 
addition to the molecular form of nitrogen. It is likely that nitrogen 
was present in HM in lower proportions as true proteins than in IF.

Comparable data on HM and IF is lacking in this area due to 
differences in the design of the studies carried out, the nitrogen 
content of the matrices under study, the absence of a dietary 
adaptation period prior to sampling, the lack of sampling kinetics and 
imprecision regarding the timing of blood sampling in relation to the 
last meal. Furthermore, plasma AA concentrations, as measured in the 
systemic circulation, are influenced by first-pass extraction from 
splanchnic tissues, as well as by protein turnover and AA metabolism 
in the whole organism. These factors could differ between matrices 
(i.e., within IFs and HM).

4 Infant diet impact on microbiota, 
intestinal and brain development

Early nutrition plays an essential role in programming adult 
health and disease, including metabolic, cardiovascular, and immune 
diseases, as well as programming food preferences and eating 
behaviors (179, 180). The health benefits provided by HM are not yet 
fully realized with IF feeding. Therefore, improving the functional 
effects of IFs is an important goal in order to reduce the gap in terms 
of physiological and metabolic health between breastfed and 
formula-fed infants.

In the short term, HM has been associated with a lower risk of 
neonatal mortality. HM appears to be protective against sudden infant 
death syndrome as compared to IF (181). The reduced risk prevalence 
was a function of the breastfeeding rate, with a greater reduction for 
exclusive or predominant breastfeeding. Furthermore, there is 
convincing evidence that HM reduces the risk of developing diarrhea 
(0–5 years) (181–183) and acute otitis media (0–2 years) (183–185). 
In the long term, HM-fed infants may be at a lower risk (− 22%) of 
being overweight or obese in adulthood compared to formula-fed 
infant (4, 186–190). Furthermore, HM may prevent type II diabetes 
in adulthood compared to IF (181, 191–193).

The infant development initiated in utero continues from birth up 
to 2–3 years of age. Many changes occur during the early postnatal 
period, especially regarding intestinal development through 
morphological changes, functional maturation such as microbiota 
establishment (194, 195) and brain development (synaptogenesis and 
myelination) (196). Environmental factors such as infant nutrition 
(HM vs. IF) are essential determinants of the postnatal development, 
reported to modulate the gut microbiota (197–199), and thus the 
global microbiota-gut-brain axis (199, 200).

4.1 Microbiota, a key determinant of the 
infant health through its role on the gut 
brain-axis

Gut microbiota represents a complex bacterial ecosystem that 
colonizes the digestive tract. Itferments indigestible nutrients (such as 
HMOs or urea) and produces various metabolites including SCFAs 
(201). The early development of microbiota is under the influence of 
many parameters like the mode of delivery, the maternal genetic, the 
use of antibiotics and the environment as well as the maternal and 
infant nutrition (15, 180, 202, 203).

A lower fecal α-diversity was observed in HM-fed infants 
compared to formula-fed infants at 40 days of age, the difference being 
further reduced at 6 months of age (204–207). Indeed, gut microbiota 
abundance and evenness increased in HM-fed infants after 3 months 
of age unlike that in formula-fed infants for whom these indexes were 
already high at 40 days of age gut microbiota (207). A lower α-diversity 
was also measured in different intestinal segments (ileum, colon and 
rectum) in 3 weeks-old HM-fed piglets than in formula-fed piglets 
(198, 206), suggesting a specific role of HM components. 
Actinomycetota (formerly Actinobacteria) is the major phyla in gut 
microbiota of 3- and 6-month-old HM-fed and formula-fed infants, 
representing over 42 to 74% of the total phyla. The microbiota of 
HM-fed infants is characterized by a lower relative abundance of 
Bacillota (formerly Firmicutes) than that of formula-fed infants (205, 
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207), but Bacillota remains the second major phylum in 6-month-old 
HM-fed infants. Dissimilarities also exist at the genus level. 
Bifidobacterium (including Bifidobacterium spp., Bifidobacterium 
breve, Bifidobacterium infantis, Bifidobacterium longum) is frequently 
described as the dominant genus in the fecal content of 0- to 
9-month-old HM-fed infants unlike that in formula-fed infants (203, 
207–209), although some studies reported no difference (210, 211).

Besides HMOs, lipids and lactose (193, 212–214), it has been 
demonstrated that proteins and NPN are able to modulate the 
microbiota composition (15). Firstly, the impact of the nitrogenous 
fraction on microbiota shaping is frequently associated to proteins 
having immunomodulatory properties such as LF, lysozyme or Igs, 
but can also be  due to other proteins and to NPN. Regarding 
immunological proteins, LF decreases the iron availability for 
bacteria due to its bacteriostatic property and is able to decrease 
E. coli, Pseudomonas aeruginosa and Candida albicans (215). 
Moreover, lysozyme can hydrolyze the peptidoglycan polymers found 
in the cell walls of bacteria, thereby lysing Gram-positive bacteria. 
However, it can also act synergistically with LF, contributing to the 
degradation of Gram-negative bacteria (216). Other studies have 
suggested that the undigested proteins from IF could also contribute, 
albeit to a lesser extent, to modulating the gut microbiota. 
Supplementating IF with α-La and GMP has been shown to increase 
the relative abundance of Clostridiaceae, Enterobacteriaceae and 
Streptococcus in preterm piglets after 19 days of feeding (217), 
whereas no difference was observed in six-month-old term 
infants (218).

Other nitrogenous compounds that could influence the 
microbiota include NPN, particularly urea, for which a role has been 
reported. Indeed, some bacteria possess urease genes, including 
certain Bifidobacterium species (e.g., B. longum subsp. Infantis); 
meaning that urea could act as a growth factor for these species (130, 
219). Supplementation the IF with nucleotides was shown to decrease 
the ratio of Bacteroides-, Porphyromonas-, Prevotella- to 
Bifidobacterium-species in the fecal microbiota of 20-week-old 
infants (220).

4.2 Impact of infant diet on gut immune 
and barrier functions and brain 
development and their relationships with 
gut microbiota

Food in direct contact with the intestinal epithelium plays a 
recognized role in the maturation of the intestinal barrier, immune 
and endocrine functions. The structural and functional development 
of the gut depends on the type of the diet consumed (HM vs. IF). 
Intestinal growth is enhanced by bioactive components of HM, such 
as growth factors, absent or present in low amount in IF (194, 221).

It is acknowledged that the postnatal development of intestinal 
permeability in humans and porcine models follows a bell curve (222–
224). During the first weeks of life, higher permeability is most 
commonly reported in HM-fed infants as compared to formula-fed 
infants (225), and in HM-fed and sow’s milk-fed piglets as compared 
to formula-fed piglets (199, 226). This has been associated with a 
reduced expression of genes involved in tight junction proteins in 
HM-fed piglets compared to formula-fed ones (199, 227). However, 
conflicting data have been observed in animal models, such as no 

change in jejunal or ileal permeability and/or increased expression of 
tight junction proteins in sow’s milk- vs. formula-fed piglets (206, 226, 
228), and no change in the lactulose/mannitol ratio in breastfed 
infants (229–231). Such discrepancies may be related to the specificity 
of epithelial permeability in the intestinal segments studied in animal 
models, which cannot easily be  recapitulated by an overall 
measurement such as the lactulose/mannitol ratio in infants. High 
intestinal permeability can lead to an increased passage of molecules 
across the epithelium, thereby promoting immune system 
development and tolerance to commensal bacteria and dietary 
antigens (226). Accordingly, HM-induced enhancement of the 
mucosal immune system has been reported in breastfed infants (232–
234) and in piglets fed only HM (199). Fecal calprotectin content, a 
valuable marker of the state of intestinal mucosal inflammatory 
infiltration, was higher in HM-fed infants compared to formula-fed 
infants during the first weeks of life (225, 231, 235–237).

Several immunological factors, such as LF and IGs (IgG, IgA, 
IgM), which are more abundant in HM than in IF (38), anti-
inflammatory cytokines (such as TGF-β and IL-10), pro-inflammatory 
cytokines [IL-1b, IL-6, IL-8, IL-12, TNF-α, IFN-γ; (15)] and other 
minor proteins present in HM but not in IF (17), are likely to 
contribute to the immune system boost in addition to dietary-induced 
changes in microbiota composition. The importance of the Bacillota 
phylum in inducing a pre-weaning peak in intestinal inflammatory 
markers has been demonstrated in rodents and piglets. Accordingly, 
our study comparing HM-fed and IF-fed piglets supports the 
relationship between microbiota and the mucosal immune system 
maturation. Several significant positive correlations were observed 
between Anaerovibrio, Mitsuokella and Veillonella genera belonging to 
Veillonellaceae family (Bacillota phylum) and genes encoding anti- 
and pro-inflammatory cytokines (IL-10, IL-10Ra, SOCS3, CCL2, 
IL-1bR, IL-8, TNF-α) and cellular signaling (ICAM1, MYD88) (199). 
This boost of the mucosal immune system has been shown to 
be essential for both immune ontogeny and regulation of susceptibility 
to immunopathologies later in life (199, 238). Moreover, in infants, 
positive correlations between fecal calprotectin excretion and 
colonization by some taxa of the Bacillota phylum support the role of 
bacteria in maturation of the intestinal immune system (239). The 
quality of the protein ingredients in IFs has also been reported to 
moderately affect the gut physiology and microbiota of three-week-old 
mini-piglets used as a model of human infants (115). This suggests 
that the quality of WP and casein (structure and composition) may 
mediate some of the physiological properties of IFs.

Similar to the gut, brain development begins in utero and continues 
throughout the first years of life. The postnatal period is crucial for the 
development of the central nervous system (240). While some steps in 
the development of neurons that begin at birth, such as visual and 
auditory processing, are rapidly developed, others, such as 
synaptogenesis and synaptic refinement, take longer to be  fully 
developed (240, 241). These processes occur from birth to 3 years of age. 
It has been established that HM and IF have different effects on brain 
development and function. A large observational study (>17,000 healthy 
infants) has provided strong evidence that HM is more beneficial for 
optimal infant neurodevelopment than IF (242). It has also been 
demonstrated that HM is associated with higher myelination than IF at 
2 years of age. Better myelination resulted in superior language and 
motor function in HM-fed infants, which is consistent with the superior 
cognitive performance observed in HM-fed infants compared to IF-fed 
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infants during the first 6 months of life (243–245). Later in life, better 
cognitive function was observed in 10-19-year-olds who were breastfed 
as infants, compared to those who were formula-fed during infancy 
(246). However, several other environmental factors may affect child 
development. Supporting these clinical observations in infants, HM and 
IF diets were found to induce different genes expression profiles related 
to blood–brain barrier, endocrine and immune functions, 
neurosynaptogenesis, and metabolite levels in various brain regions, 
particularly the hypothalamus and hippocampus, in piglets (199).

The difference in brain development profiles between infants fed 
HM and IF can mainly be  explained by differences in food 
composition related to components of the milk fat globule membrane 
(MFGM), such as polar lipids (244, 247) and to polyunsaturated fatty 
acids (248–251). Furthermore, a recent study in piglets demonstrated 
that the composition and structure of WPs and caseins did not affect 
the expression of several genes associated with hypothalamic 
development (115).

5 Conclusion

HM is a biofluid that provides the necessary nutrients to support 
infant growth. It contains many components that have been shown to 
affect metabolism, gut physiology, and the development of infant gut 
microbiota. Proteins are among the most important of these 
components for optimal growth. When formulating IF, the quality of 
the protein ingredient must be  considered, although difficulties 
remain due to the different protein profiles of bovine and human milk. 
The nutritional value of milk from other mammals requires further 
investigation. There is a lack of data on the causal relationship between 
the protein composition and quality of IF and the plasma AA profile, 
highlighting the need for convincing studies. Furthermore, the 
quantity of HM compounds that reach the colon, and the impact of 
partially digested proteins (e.g., HM-derived peptides) on the 
composition of the microbiota, must be  investigated to fully 
comprehend the role of the HM nitrogenous fraction in shaping the 
infant gut microbiota. In particular, the NPN fraction may 
be  important, despite not yet being considered in current 
IF formulations.
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