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diabetic nephropathy by
mediating VAPB—-PTPIP51
complex to activate autophagy
and regulate MAM contact
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Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China

Background: Diabetic nephropathy (DN), a major complication of diabetes
mellitus (DM), poses a high mortality and a global health burden. Mitochondria-
associated endoplasmic reticulum membranes (MAMs) and mediated autophagy
are regarded as the crucial factors in the development of DN. The Yigi Huoxue
recipe (YHR), a traditional Chinese medicine formula, has been reported to treat
DN and regulate autophagy, while its underlying mechanism remains unclear.
Methods: Firstly, UPLC-MS/MS analysis was performed to identify the chemical
components of YHR. Then, C57BL/6 J mice were injected with streptozotocin
and fed with high-fat diet to induce DN. YHR (7.8, 15.6 g/kg/d) was administered
via intragastric gavage for 8 weeks. Biochemical parameters and oxidative
stress indicators were measured; H&E, PAS, and immunohistochemistry staining
of nephrin were performed. Mitochondrial Ca?* levels were assessed by flow
cytometry, while autophagosomes and MAMs were examined using transmission
electron microscopy (TEM). The expression levels of VAPB, PTPIP51, LC3 II/I,
P62 were detected by Western blot. Podocytes overexpressing PTPIP51 or VAPB
were analyzed for cell activity using the CCK-8 assay, autophagy flux by TEM,
and the expression of LC3 I/l and P62 by Western blot. In si-PTPIP51-transfected
and high-glucose (HG)-stimulated podocytes, CCK-8 assay, PCR, TEM, and
immunofluorescence staining were performed to detect the YHR-containing
serum on cell activity, mtDNA, MAMs, autophagosomes and LC3 expression.
Results: The chemical fingerprint of YHR was constructed and composed
chemicals were identified. In DN mice, YHR treatment reduced the elevated
fasting blood glucose (FBG), total cholesterol (TC), triglycerides (TG), blood urea
nitrogen (BUN), serum creatinine (Scr), urinary alouminuria (ALB), and microscale
albuminuria (MAU) levels. It also alleviated kidney and glomerulus damage,
mitochondrial Ca?*, oxidative stress, MAM abnormal contact, and activated
autophagy. The enhanced expression of MAM complex, VAPB—-PTPIP51, were also
inhibited in YHR-treated groups. The cell activity and autophagosome formation
were significantly inhibited in podocytes overexpressing PTPIP51 (oe-PTPIP51)
and VAPB (oe-VAPB). In contrast, in HG-podocytes, si-PTPIP51 promoted the
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cell activity, mtDNA copy number, MAM contact, autophagosomes formation
and LC3 expression. More importantly, the addition of YHR-containing serum
enhanced this effect.

Conclusion: YHR may protect kidneys in DN by regulating the MAM complex
VAPB-PTPIP51 to trigger autophagy, providing insights into TCM's clinical
application and DN drug development.

KEYWORDS

diabetic, nephropathy, Yiqi, Huoxue, recipe, autophagy, VAPB—PTPIP51,
mitochondria-associated endoplasmic reticulum membranes

1 Introduction

Diabetes mellitus (DM) is one of the most significant chronic
metabolic diseases worldwide, with its incidence rising due to major
changes in the aging population, obesity prevalence, diet, and
lifestyle. The Global Burden of Disease Study Organization has
indicated that 529 million individuals were affected by DM globally
in 2021, and this number is projected to reach 1.31 billion by 2050
(1). Notably, China has the highest prevalence of DM, with
approximately 141 million patients aged 20-79 years in 2021, and the
number continues to rise annually (2). Worsening, diabetic
nephropathy (DN), a severe complication of DM, can affect the entire
kidney, leading to irreversible renal function damage or failure (3-5)
Diabetes Care reports that DN occurs in up to 40% of patients with
DM, resulting in life-threatening end-stage renal disease (ESRD) (6,
7). Furthermore, the all-cause mortality rate patients with DN is
approximately 30 times higher than that of DM patients without
nephropathy (8).

Common treatments for DN include lifestyle interventions,
drugs, dialysis therapy, etc. Drugs used in clinical practice for treating
DN primarily aim to lower blood sugar levels to slow renal function
damage, including biguanides, sulfonylureas, glinides, a-glucosidase
inhibitors, and insulin (9). Despite these measures, many DN patients
still progress to ESRD. Therefore, innovative drugs are urgently
needed to enhance and broaden current DN treatment options. In
response to challenges in Western medicine treatment of DN,
researchers are increasingly emphasizing traditional Chinese
medicine (TCM) treatments. Yiqi Huoxue recipe (YHR), a traditional
Chinese medicine formula, has been reported to treat DN. Our
previous study demonstrated that YHR could notably improve renal
function in glucose- and insulin-injected GK rats, indicating its
potential to treat DN (10). Additionally, study has revealed that the
protective effect of YHR on DN was associated with the regulation of
podocyte autophagy to promote the degradation of advanced
glycation end products (11). However, the underlying mechanism
requires further investigation.

Podocytes, an epithelial cell, contribute significantly to glomerular
filtration barrier formation (12, 13). High-glucose stimulation in
diabetes triggers changes in mTORC1, AMPK, and Sirtl nutrient
sensing pathways, thereby reducing podocyte autophagy. This
abnormal reduction in autophagy leads to insufficient podocyte
renewal, vacuolation and foot process fusion, increasing podocyte
injury, causing abnormal changes in functions and morphological
traits, and becoming a crucial event in DN (5, 14, 15). Autophagy, a
vital cellular metabolic process, is essential for cell homeostasis,
growth, differentiation, and self-renewal. Research indicates that
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augmenting autophagy can protect podocytes and mitigate kidney
damage (16). Thus, regulating podocyte autophagy could be a pivotal
strategy to alleviate podocyte injury and improve DN. As a key
mediator linking mitochondria and endoplasmic reticulum,
mitochondria-associated endoplasmic reticulum membranes (MAMs)
and their protein complexes have also been found to regulate
autophagy. MAMs are essential for autophagosome formation, can
regulate mitophagy by regulating ATG14 and Beclinl, and alterations
in MAMs can lead to autophagy-related disorders. Studies on the role
of MAMs in DN have reported complex findings. Xue et al. (17)
suggested that adequate MAM sites in podocytes have a protective
role against DN. In contrast, Wang et al. (18) reported that increased
MAMs in diabetic podocytes are correlated with podocyte damage
and renal insufficiency. These discrepant results indicate that the
stability of MAMs may be a critical factor, where reduced stability
could lead to mitochondrial dysfunction and podocyte injury. VABP-
PTPIP51, a MAM complex, is found to affect autophagy through
regulating mitochondrial-endoplasmic reticulum contact and
mitochondrial Ca* transport (19, 20). In addition, overexpression of
VABP-PTPIP51 diminishes autophagosome formation through
strengthening mitochondrial-ER contacts, while silencing the protein
releases this contact and triggers autophagy (21). Molecular docking
analysis in our previous study also demonstrated promising bindings
of active chemicals of YHR and VABP-PTPIP51 complex.
Consequently, we propose that YHR may regulate cell autophagy
function by interacting with the MAM complex VAPB-PTPIP51 to
ameliorate podocyte injury and ultimately achieve therapeutic effects
for DN. This project aims to construct high-sugar podocyte model
and mouse DN model to investigate the regulatory role of the MAM
complex VAPB-PTPIP51 in podocytes and to determine whether
YHR improves cell autophagy through targeting this process to
improve DN. This project aims to elucidate the mechanism of YHR’s
treatment of DN, providing theoretical research basis for the clinical
application of traditional Chinese medicine in treating DN.

2 Materials and methods
2.1 Preparation of aqueous extract of YHR

Composition of the YHR: Raw Astragalus Propinquus 24.0 g,
Chuanxiong Rhizoma 6.0 g, raw Rehmannia Radix 12.0 g, Radix
Puerariae 12.0 g, Radix Trichosanthis 6.0 g, with a total of 60 g. YJR
(600.0 g) was obtained from the TCM pharmacy of our hospital and
soaked in distilled water at room temperature 25 °C for 1 h, then
decocted 10 times the amount of water, filtered, and then distilled
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water is added and decocted again. The filtrates obtained from two
extractions were combined and concentrated using a rotary evaporator
at 80 rpm at 60 °C. The obtained aqueous extract of YHR, at a
concentration of 2 g/mL, was then prepared as a lyophilized powder
for storage.

2.2 Preparation of YHR-containing serum

The male SPF Sprague-Dawley (SD) rats, aged 8 weeks, were
divided into two groups—blank and YHR—with five rats in each
group. The YHR group received the drug at a dose of 10.8 g/kg via
gastric intubation, three times daily for 3 days, while the control group
was given pure water instead. After a 12-h fast, the rats received a final
dose and were euthanized an hour later under CO, anesthesia. Blood
was collected from both groups, and serum was isolated and labelled
as blank serum and YHR serum, respectively. The serum samples were
pooled, inactivated at 56 °C for 30 min, filtered, and stored at —20 °C
for in vitro experiments.

2.3 UPLC-MS/MS analysis of YHR

The chemical components of YHR were analyzed using SYNAPT
G2-Si UPLC-Q-TOF/MS system (Waters), equipped with
CORTECS® UPLC®T3 column (2.1 x 100 mm, 1.6 m, Waters). The
mobile phase was 0.1% formic acid in purified water and acetonitrile
at a flow rate of 0.3 mL/mL with an injection volume of 2 uL. An
electrospray ESI ion source was used, which was scanned in positive
and negative ion modes (50-1,200 m/z), respectively. The content of
the main components in the aqueous extract was then quantified by
measuring the chromatographic peak areas of the corresponding
compounds at each concentration. The method was validated for
specificity, linearity, precision, repeatability, stability, and recovery.

2.4 Animals and DN modeling

Male C57BL/6] mice (17-20 g) were housed in an specific
pathogen-free (SPF) environment with ad libitum dietary intake of
water and 12-h cyclic confinement and darkness. After 1 week of
acclimatization feeding, the mice were randomly assigned to either
the type 2 diabetes model group and control group. The mice in the
control group were fed a regular diet, while type 2 DM was modeled
by administering a high-fat diet (HFD, 35% fat, 26% carbohydrate,
26% protein) for 6 weeks. At the end of week 6, all mice were fasted
for 12 h. To induce the Type 2 Diabetes Mellitus (T2DM) model,
Streptozotocin (STZ) (45 mg/kg per injection), freshly prepared in
0.1 M sodium citrate buffer (Solarbio), was administered via
intraperitoneal injection once per week for four consecutive weeks
(22). Mice with fasting blood glucose FBG > 11.1 mM at 3 and 7 days
after the last streptozotocin (STZ) injection were considered type 2
DM model mice. Then two mice were randomly selected from each
group and euthanatized to obtain the kidney tissue. Hematoxylin and
Eosin (H&E) staining was then performed to confirm the
establishment of DN model. Following confirmation, the remaining
mice were retained, ensuring that there are at least 24 eligible model
mice for further experiments.

Frontiers in Nutrition

10.3389/fnut.2025.1634555

2.5 Animal grouping

The DN model mice were subsequently randomly assigned (n = 6
per group) to four experimental groups: the DN group, the YHR-low
group, the YHR-high group, and the positive control (metformin)
group. YHR groups were intragastric gavaged with YHR at 7.8 g/kg/d
for low group and 15.6 g/kg/d for high group, converted from clinical
doses, respectively. Metformin group was treated with 0.20 g/kg/d of
metformin in the distilled water. Control and DN groups were treated
with equal volume of saline. Drug administration was continued for
8 weeks. HFD was given to mice throughout the experiment.

2.6 Cell culture, transfection, and grouping

Mouse renal podocyte MCP-5 cells (Cellverse Co., Ltd.) were
cultured in DMEM low-glucose medium containing 10% fetal bovine
serum (FBS) at 37 °C in a 5% CO, incubator.

About 1 x 10° cells were seeded into a 24-well culture plate, and
cell transfection was performed when the cells reached 50%-70%
confluence. Over-expression PTPIP51 (oe-PTPIP51), over-expression
VAPB (oe-VAPB), and its negative control over-expression NC
(0e-NC) were provided by Shanghai Genepharma co., Ltd. The
oe-PTPIP51, oe-VAPB and oe-NC were transfected into MPC5 cells
using the Lipofectamine 3000 transfection kit according to the
manufacturer’s instructions. The transfection efliciency of the
introduced gene PTPIP51 and VAPB was verified by qRT-PCR 24 h
later. After that, cells were introduced into five groups: control group
cells were cultured in DMEM containing 5.5 mmol/L glucose for 72 h;
the high glucose (HG) group cells were cultured in DMEM containing
30 mmol/L glucose; the oe-NC group cells were transfected with
0e-NC and cultured in HG medium for 72 h; the oe-PTPIP51 group
cells were transfected with oe-PTPIP51 and cultured in HG medium
for 72h; and the oe-VAPB group cells were transfected with
oe-PTPIP51 and oe-VAPB, and cultured in HG medium for 72 h.

About 4 x 10° cells were seeded into a 12-well culture plate, and
cell transfection was performed when the cells reached 70%-80%
confluence. PTPIP51 siRNA (si-PTPIP51) and its negative control
siRNA NC (si-NC) were provided by GenePharma. The si-PTPIP51
and si-NC were transfected into MPC5 cells using the Lipofectamine
3000 transfection kit according to the manufacturer’s instructions. The
transfection efficiency of the introduced gene PTPIP51 was verified by
qRT-PCR 24 h later. After that, cells were introduced into five groups:
Control group cells were cultured in DMEM containing 5.5 mmol/L
glucose for 72 h; the HG group cells were cultured in DMEM
containing 30 mmol/L glucose; the si-NC group cells were transfected
with si-NC and cultured in HG medium for 72 h; the si-PTPIP51
group cells were transfected with si-PTPIP51 and cultured in HG
medium containing 10% blank serum for 72 h; the si-PTPIP51 + YHR
group cells were transfected with si-PTPIP51, and cultured in HG
medium containing 10% YHR-containing serum for 72 h (23).

2.7 Kidney organ index and biochemical
indicators detection

Animals were monitored weekly for body weight and 12-h fasting
blood glucose (FBG). Urine was collected through a 24-h metabolic
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cage after last drug administration, and blood was taken from the
orbits of the mice, centrifugated to obtain serum. After that, mice were
euthanized using CO,, their abdomen was opened and kidneys were
removed and weighted. Kidney organ index (%) was calculated using
the formula: 100* kidney weight/ body weight. Then serum and urine
samples were used to determinate of FBG, total cholesterol (TC),
triglycerides (TG), blood urea nitrogen (BUN), serum creatinine
(Scr), urinary albuminuria (ALB), and microscale albuminuria
(MAU) levels with a fully automated biochemical tester (Hitachi
3,110, Hitachi). The levels of malondialdehyde (MDA), the activity of
CAT, SOD, and GSH-PX in kidney tissues were calculated using the
relevant ELISA kits (NanJing JianCheng Bioengineering Institute)
according to the manufactures’ instructions with a microplate reader
(CMaxPlus, MD).

2.8 H&E staining

Kidney tissues were fixed in 4% paraformaldehyde for 72 h.
Subsequently, they underwent a series of treatments including
dehydration, paraffin embedding, and sectioning into 5 pm sections.
Kidney tissue sections were first deparaffinized by immersion in
xylene followed by hydration through a gradient series of ethanol to
distilled water. The sections were first stained with hematoxylin
(Sigma) for 10 min, rinsed, and then stained with eosin (Sigma) for
30 s. After sealing the sections, the sections were observed under the
microscope (Eclipse Ci-L, Nikon), and the results were recorded.
Finally, the mean glomerular area was also calculated among
the groups.

2.9 PAS staining

Paraffin sections were baked for 1h, then deparaffinized and
hydrated. The sections were then stained with periodic acid, washed,
and stained with Schiff’s liquid (Ebiogo), and the nuclei were stained
with Harry’s hematoxylin for 2 min. Finally, the results of pathological
changes in the kidneys of the mice of each group were observed by
light microscopy after dehydration, transparency, and sealing. The
PAS-positive components—mainly glycogen, fibronectin, collagen
fibers—were reddish-purple, and the nuclei showed blue color. A total
of 20 glomeruli in each sample was scored to determine the severity
of lesion, grading from 0 to 4, according to the percentage of
glomerulosclerosis. Then the glomerulosclerotic index (GSI) of the
sample was obtained based on the average score of these 20
glomeruli (24).

2.10 Immunohistochemistry staining

Following deparaffinization of mouse kidney tissue sections,
citrate repair solution was used to repair the antigen; then endogenous
peroxidase was blocked with blocking agent; the sections were closed
with sealing solution for 30 min; and the primary antibody anti-
nephrin (abcam, ab216341, 1:2000) was added and incubated at 4 °C
overnight. On the next day, the sections were rewarmed at 37 °C for
1 h, rinsed with running water, incubated with secondary antibody,
and rinsed with running water after incubation at 37 °C for 1 h. The
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sections were then subjected to 3,3"-Diaminobenzidine (DAB) color
development. The sections were stained with DAB and hematoxylin,
then dehydrated and sealed, and the images were captured and
processed by K-Viewer pathology analysis software and Image-Pro
Plus 6.0 management system for semi-quantitative analysis.

2.11 Mitochondrial Ca?* detection by flow
cytometry

Kidney tissue was minced and digested using pancreatic enzymes.
The supernatant was discarded after centrifugation at 600 g at room
temperature for 5 min. Cells were resuspended in Rhod-2 staining
solution (Beyotime Biotechnology) to achieve a cell density of 2 x 10°
cellsymL. The suspension was incubated at 37 °C for 30 min.
Subsequently, the suspension was centrifuged at 600 g at 4 °C for
3 min to pellet the cells, and the supernatant was discarded. After
washing with phosphate-buffered saline (PBS), repeat the
centrifugation procedure and discard the supernatant. Add an
appropriate amount of PBS to the pellet and analyze using a flow
cytometer (Novocyte, Agilent).

2.12 Quantitative real-time PCR

Total RNA was isolated from cultured cells and extracted using
the EZ-10 Spin Column Total RNA Isolation Kit (BBI). RNA was
subjected to reverse transcription reaction using TRUEscript RT
MasterMix (OneStep gDNA Removal) (Aidlab Biotechnologies Co.,
Ltd) according to the manufacturer’s specifications. Primers were
synthesized by Sangon Biotech, and the primer sequences are shown
in Supplementary Table S2.

2.13 Western blot assay

Kidney tissues were cut into shreds, incubated with Lysis Buffer
on ice to generate lysate, and then centrifuged to extract the
supernatant protein. The concentration of total protein was detected
using a BCA kit (Beyotime Biotechnology). About 50 pug sample was
loaded onto SDS-PAGE gels for electrophoresis and transferred to a
PVDF membrane. After blocking with non-fat milk solution, primary
antibodies—anti-LC3, anti-P62, anti-VAPB, and anti-PTPIP51
(1:1000, Affinity)—were added to the membrane for overnight, and
secondary antibody-anti-rabbit IgG HRP-linked antibody was added
for 1 h incubation. Following incubation, the membrane was washed
with Tris-Buffered Saline with Tween 20 (TBST). Immunoreactive
bands were developed by enhanced chemiluminescence (ECL)
reagents. The intensity of the bands was quantified using the Image
] software.

2.14 CCK-8 assay

MCP-5 cells were treated accordingly, then medium was changed,
and CCK-8 reagent (Beyotime Biotechnology) was added. The cells
were incubated, OD values were measured using a microplate reader
(CMaxPlus, MD), and the cell viability was calculated.
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2.15 mtDNA detection

MCP-5 cells (1 x 10°-1 x 107) were centrifuged to remove the
supernatant, and then the cells were collected. The mtDNA was
extracted from the mitochondria using the DNA extraction kit
(Solarbio), and then the mtDNA was amplified by PCR amplifier. The
amplified products were detected using 1.5% agarose gel
electrophoresis and scanned with a gel imager to obtain the integrated
optical density of each band and measure the copy number of mtDNA.

2.16 Immunofluorescence staining

Appropriate amount of cells were inoculated onto slides, treated
with drugs, discarded from the culture solution, and fixed by 4%
paraformaldehyde. The cells were then washed with PBS and added
with 0.5% Triton X-10 to permeate the cell membrane. Afterwards,
cells were rewashed with PBS; 3% BSA was added to seal the cells, and
then the cells were incubated with primary antibody—anti-LC3A/B
(1:200, affinity) antibody—and secondary antibody—anti-IgG H&L
(1:500, Abcam) sequentially. After that, DAPI staining solution
(Sigma) was added to stain the cell nuclei. Finally, the slides were
sealed and placed under an inverted fluorescence microscope (Ts2-FC,
Nikon) for observation.

2.17 Transmission electron microscopy

Firstly, kidney tissue or MCP-5 cells were fixed in 2.5%
glutaraldehyde for 3 h. This was followed by washing with PBS and
subsequent fixation in 1% osmium acid solution for 2 h. Afterward,
the samples were washed again and dehydrated by gradient ethanol.
Then, embedding agent/acetone mixture from V/V = 1/1, V/V = 3/1,
to total embedding agent was used to embed the samples. The samples
were heated overnight at 70 °C using a heated polymerizer (UVC3
Cryo Chamber, PELCO) and were cut into sections (70 nm). The
sections were further stained by 3% uranyl acetate-lead citrate
solution for 30 min and were observed under TEM (H7650, Hitachi).

2.18 MAM contact levels detection by TEM

The MAM:s contact sites were defined as the regions where the
distance between the endoplasmic reticulum (ER) and the
mitochondrial outer membrane was <50 nm. This criterion was
applied to TEM images to quantify the extent of close ER-
mitochondria contacts. The linear contact length between the ER and
mitochondrial membranes was measured using Image J software. To
eliminate potential bias arising from variations in mitochondrial size,
this measured contact length was normalized to the perimeter of the
corresponding mitochondrion.

2.19 Autophagy flux detection

The autophagy flux is commonly monitored using the GFP-LC3-
RFP-LC3AG probe. This assay relies on the differential stability of the
two tags: GFP-LC3 is degraded in autolysosomes, while REP-LC3AG
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remains stable in the cytoplasm. Thus, autophagy flux can
be quantified by comparing the signals from these two
fluorescent reporters.

2.20 Statistical assay

Data are presented as means + SD. The analysis was conducted
using GraphPad Prism 8.02 (GraphPad Software, San Diego, CA) and
SPSS 25.0 (SPSS, Chicago, IL, USA). The Shapiro-Wilk test and
Levene’s test were performed to test the normality of the model
residuals and the homogeneity of variance, respectively. Significant
differences among multiple groups were examined using one-way
ANOVA, followed by Tukey’s post-hoc test for uniform variance or
Dunnett’s T3 test for non-uniform variance. p < 0.05 was considered
statistically significant.

3 Results
3.1 The chemical fingerprint of YHR

To unravel the intricate chemical profile of the traditional Chinese
medicine YHR, we employed UPLC-MS/MS analysis to establish its
chemical fingerprint. This approach led to the identification of 44
chemicals in positive ion mode, 47 in negative ion mode (Figures 1 A,B,
Supplementary Table S1), with a total of 83 distinct compounds after
eliminating redundancies. Notable among these were Daidzin,
Jioglutin A, 3’-Methoxydaidzin, Puerarin-xyloside II, Genistein,
Rehmaglutin - B, etc,,
YHR’s constituents.

showcasing the rich diversity of

3.2 Effect of YHR on biochemical indexes
of DN mice

A combination of HFD and STZ injection was used to establish
the animal model to investigate the therapeutic effect of YHR
(Figure 2A). As shown in Figure 2B, after modeling, the body weight
of mice was decreased compared to the normal control mice, while
YHR administration at high dosage gained weight, so does metformin.
Conversely, kidney weight and the organ index increased post
modeling but were decreased by YHR administration at high-dosage
level. Additionally, the levels of FBG, TC, TG, BUN, Scr, ALB, and
MAU increased in the model group, and YHR treatment lowered
these indexes, especially in high-dosage groups (Figure 2C).

3.3 YHR treatment improved the kidney
injury of DN mice

H&E staining and periodic acid-Schiff (PAS) staining were used
to assess the histopathologic changes of kidney in DN mice. As
shown in Figures 3A,B,D,E, compared to the control mice, in the
model group, the kidney tissue of mice was severely damaged, with
glomerular atrophy, vacuolation of renal tubules, renal tissue
thylakoid stroma hyperplasia, glomerular basement membrane
thickening, enlarged balloon lumen. The glomerular area and
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Chemical fingerprint construction of YHR by UPLC-MS/MS analysis. (A) The chemical fingerprint of YHR at positive mode; (B) The chemical fingerprint
of YHR at negative mode. YHR: Yigi Huoxue recipe.

glomerulosclerotic index also increased. Compared to the model
group, the extent of kidney tissue damage in the YHR group was
significantly improved, marked by a reduction in the degree of
glomerular atrophy, basement membrane thickening, and tubular
vacuolization. These findings were further accompanied by
decreased glomerular areas and glomerulosclerotic indexes. In
addition, the expression of nephrin, indicators of podocyte, was also
detected in kidney tissues (Figures 3C,F). As a result, the model
group showed less positive expression of nephrin compared to that
in control group, and YHR treatment enhanced its expression
in kidney.
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3.4 YHR treatment alleviated the
mitochondrial Ca?* and oxidative stress in
DN mice

As the dysregulation of Ca2* fluxes is involved in DN, the
mitochondrial Ca** was detected. As shown in Figures 4A,B the
percent of mitochondrial Ca2* was dramatically increased in DN
model group compared to that in control group. Following YHR
treatment, the mitochondrial Ca2* decreased both in low and high
YHR groups. To evaluate the oxidative stress in DN mice, the SOD,
CAT, and GSH-PX activities, MDA content in kidney tissues was
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FIGURE 2
Detection of biochemical indexes of DN mice. C57BL/6 J mice were fed with high-fat diet and injected with streptozotocin to induce DN; then YHR at
different dosages as well as positive control metformin were intragastric gavaged for 8 weeks. (A) Schematic of the study design; (B) body weight,
kidney weight, and kidney organ index (%) of the mice were recorded and calculated. (C) FBG, TC, TG, BUN, Scr, ALB, and MAU levels were detected.
DN, diabetic nephropathy; STZ, streptozotocin; HFD, high-fat diet; YHR, Yigi Huoxue recipe; FBG, fasting blood glucose; ALB, urinary albuminuria;
MAU, microscale albuminuria. Data were expressed as mean + standard deviation, n = 6. Compared to the control group, 4 p < 0.05, 44 p < 0.01;
compared to the HFD + STZ group, * p < 0.05, ** p < 0.01.

determined after drug treatment. As shown in Figure 4C, the mice in
the DN group were under oxidative stress status with increased MDA
contents and suppressed SOD, CAT, and GSH-PX activities in kidney
tissues in comparison with those in control group. After treatment,
lower MDA contents and higher SOD, CAT, and GSH-PX activities in
the kidney tissues of YHR groups were observed.

3.5 Effect of YHR on MAM contact and
autophagy in kidney of DN mice

The MAM structure and autophagosome in kidney tissues were
observed using TEM. The result indicated that the ultrastructure of
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kidney tissues underwent significant changes. Compared to the
control group, the model group showed a significant decrease in cell
autophagy. Also, compared to the control group, the model group
showed a significant increase in ER-mitochondria contact levels,
suggesting more compact MAM of kidney tissues in the model
group. However, in the high-dose YHR group, kidney tissue
autophagy was significantly enhanced and the MAM contact was
relaxed compared to the model group (Figures 5A,B). The expression
of autophagy-related proteins was also detected. The LC3 II/I ratio
decreased, while p62 expression increased in model kidneys
compared to those of controls (Figure 5C). The administration of
YHR effectively counteracted these effects. In addition, the protein
expressions of VAPB and PTPIP51 were significantly increased in the
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model group, which were decreased after YHR treatment
(Figure 5D).

3.6 VAPB-PTPIP51 inhibited the autophagy
of podocytes in HG condition

To confirm the functional roles of PTPIP51 and VAPB,
we transfected MCP-5 cells with o0e-PTPIP51, or
oe-VAPB. Oe-PTPIP51 and oe-VAPB transfection significantly
increased the corresponding mRNA levels (Figure 6A). Under HG
conditions, cell viability was significantly reduced in groups treated
with oe-PTPIP51 or oe-VAPB compared to the oe-NC (Figure 6B).
Furthermore, analysis of autophagy-related proteins revealed that
exposure to HG significantly decreased the LC3 II/I ratio and
increased p62 expression compared to the control group. Additionally,
under HG conditions, transfection with oe-PTPIP51 or oe-VAPB led
to a more pronounced reduction in the LC3 II/I ratio and a greater
elevation of p62 than observed in the oe-NC group (Figure 6C).
Compared to the control group, the HG group showed a reduction in
autophagosomes and autophagic lysosomes. This reduction was also
evident in the oe-PTPIP51 and oe-VAPB groups as compared to the
0e-NC group (Figures 6D,E).

Frontiers in Nutrition

3.7 YHR activated the autophagy of
podocytes via inhibiting PTPIP51

In podocytes treated with HG for in vitro simulation of DN,
we also investigate the effect of YHR on cell autophagy. MCP-5 cells
were transfected with si-PTPIP51, and significant decreases in both
mRNA and protein expression levels of PTPIP51 were confirmed
(Figures 7A,B). Treatment with high glucose (HG) decreased the
viability of podocytes, while si-PTPIP51 transfection and YHR
addition restored the cell viability (Figure 7C). The mtDNA copy
number was also decreased in the HG group but was increased by
both si-PTPIP51 transfection and YHR treatment (Figure 7D). The
microscopic state of the cell was also observed using TEM. It could
be observed that revealed that the si-NC group had fewer
autophagosomes in renal podocytes, with disrupted MAM, higher
ER-mitochondria contact levels, and tighter MAM contacts compared
to the control. The si-PTPIP51 group showed an increase in
autophagosomes, improved MAM, and slightly looser contacts, which
were further improved by YHR (Figures 7E,F). Immunofluorescence
staining also showed that the immunofluorescence intensity of LC3
was weakened in the si-NC group compared to that in control group,
while si-PTPIP51 transfection and YHR treatment enhanced the
positive intensity of LC3 in podocytes (Figures 7G,H).
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Discussion

Diabetes, a prevalent chronic metabolic disorder, significantly
contributes to the global disease burden. Its most critical complication,
DN, is the leading cause of ESRD and renal failure, with a high
mortality rate and posing a grave health risk. Identifying effective
treatments to mitigate kidney damage and slow DN’s progression is of
paramount importance. TCM, with its long-standing history, is
emerging as a promising approach in DN treatment (25). In a
Taiwanese study of 107,294 DN patients, reduced ESRD and mortality
rates were correlated with TCM treatments (26). Another study
involving 45 patients indicated that a TCM recipe, Zishen Tongluo,
outperformed Benazepril in enhancing metabolism and kidney
function in early stage DN patients (27). Recently, interest in exploring
the efficacy and mechanisms of Chinese herbal compounds, herbs,
and their active ingredients on DN for novel drug development is

Frontiers in Nutrition

evident (28). Our research focused on YHR, a clinical formula from
our hospital, to investigate its effects on DN recovery and its
underlying mechanisms. The results signified that YHR significantly
alleviated the damage of the kidney in DN mice and podocytes by HG
stimulation, potentially via the regulation of MAM complex VAPB-
PTPIP51 to trigger autophagy (Figure 8).

TCM treatment emphasizes a holistic approach, while its
advantages of multi-target, low-toxicity treatments are hindered by
the complexity of its components, making the identification of active
chemicals and mechanisms increasingly vital for research
advancements (29). YHR comprises five TCM herbal medicines, with
complex chemical compositions. Through UPLC-MS/MS chemical
analysis, we mapped YHR’ fingerprint to pinpoint its active
compounds, identifying 83 in total, including Isoastragaloside I,
Rehmannioside A, Jioglutin A, Puerarin-xyloside II, Genistein,
Rehmaglutin B, Formononetin, Biochanin A, Cistanoside A, and
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Overexpression of VAPB-PTPIP51 suppressed podocyte autophagy. MCP-5 cells were transfected with oe-PTPIP51, oe-VAPB or negative control (oe-
NC), and stimulated with HG (50 mmol/L glucose). (A) The mRNA expressions of PTPIP51 and VAPB were detected by gRT-PCR. n = 3. (B) The cell
activity was detected by CCK-8 assay. n = 6. (C) The protein expression of autophagy indicators, LC3 Il/I and p62, were detected by Western blot.
(D) Changes in autophagosomes and autophagic lysosomes in MPC-5 cells. n = 3. (E) Changes in the number of autophagosomes and autophagic
lysosomes in MPC-5 cells by subgroups. n = 3. HG: high glucose. Compared to the control group, 4 p < 0.05, 44 p < 0.01; compared to HG group, *
p < 0.05, ** p < 0.01; compared to the oe-NC group, # p < 0.05, ## p < 0.01

others etc. Some studies suggest these compounds as the active
components of YHR for DN treatment. Genistein, a primary
component in Radix Puerariae, has been shown to effectively suppress
inflammation in mouse renal tubule cells and reduce lipid
peroxidation levels in the plasma and urine of diabetic mice under
HG and albumin conditions (30). Formononetin, found in Astragalus
propinquus, is reported to decrease renal tubular cell apoptosis and
mitochondrial damage, alleviate ALB, and ameliorate kidney damage
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DN rats (31). Biochanin A exhibits anti-diabetic,

antihyperlipidemic, antioxidant properties, and protective effects

in

against DN, potentially by modulating the apoptotic cascade
involving TGF-B1, PAR-2, and the NF-xB/NLRP3 axis (32, 33).
Isoastragaloside I, a saponin in Astragalus propinquus, promotes the
differentiation of pancreatic duct organoids into insulin-producing
cells (
HG-induced apoptosis and oxidative stress in renal tubule epithelial

). Rehmannioside A in Rehmannia Radix mitigates
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cells (35). Collectively, these findings underscore the therapeutic =~ podocyte damage. These benefits are accompanied with relaxed the
potential of YHR in managing diabetic nephropathy. MAM contact, reduced mitochondrial calcium transport, and

Our in vitro and in vivo studies have also revealed the beneficial =~ autophagy activation. MAM, a crucial linker between the
effects of YHR on DN-induced kidney injury and HG-induced  mitochondria and endoplasmic reticulum, controls calcium
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FIGURE 8

Schematic diagram illustrating the mechanism by which YHR alleviates renal injury in diabetic nephropathy. The figure was partly generated using
Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

homeostasis, mitochondrial function, lipid metabolism, autophagy,
and apoptosis. Dysregulation of MAM has been implicated in the
onset and progression of diabetes and DN. The stability of MAM
structure is consistently affected under conditions of glucose toxicity
and insulin resistance (36). Studies have observed disrupted MAM
integrity in DN patients, which is correlated with lipid accumulation
and kidney impairment (37). Blocking intracellular ER-mitochondria
contact has been found to counter DN by limiting aberrant MAM
production (38, 39). MAM disruption can also influence ER-
mitochondrial Ca2 + transport, and excessive mitochondrial calcium
loading resulting in podocyte protein filtration dysfunction is one
crucial feature of DN (40). Additionally, Yu et al. (41) have reported
that inhibition of MAM-related autophagy could promote the
Alzheimer’s disease. In sum, it is suggested that YHR’s therapeutic
effect on DN-induced kidney injury involves relaxed MAM contact,
reduced mitochondrial calcium overload, and autophagy activation.
In further studies of the HG-activated podocytes, YHR was found
to function via autophagy activation through MAM complex VAPB-
PTPIP51. Research indicates that enhancing autophagy can protect
podocytes and mitigate kidney injury (16). The active chemicals in
YHR, including Genistein (42), Biochanin A (43), Cistanoside A (44),
Jionoside A1 (45), have also been found to boost autophagy to alleviate
damages across a spectrum of diseases. Dai et al. (46) have reported
that YHR delayed intervertebral disc degeneration by promoting the
formation of Beclin1-VPS34 complex to activate autophagy. Another
study also reveals the autophagy regulation effect of YHR in DN,
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associated with the mMTOR/S6K1/LC3 pathway (11). The formation of
MAM depends partly on the interaction between MAM complex
VABP-PTPIP51, while overexpression of VABP-PTPIP51 leads to the
suppression of autophagosome formation (19). Previous studies on
VABP-PTPIP51 have primarily focused on its role in aging-related
diseases (47). However, in this study, we demonstrate its role in DN
where high expression of VABP-PTPIP51 results in autophagy
inhibition and podocytes dysfunction. After inhibiting PTPIP51, an
increase in the number of autophagosomes was observed, indicating
that the autophagic process was activated. More importantly, YHR
further activated autophagy, alleviating these abnormal conditions. It
is proposed that YHR induces autophagy by modulating the MAM
complex VAPB-PTPIP51.

It is necessary to acknowledge the limitations of this study, which
serves as a preliminary exploration of YHR’s efficacy and possible
mechanisms in treating DN. Further in-depth research is required to
ascertain these mechanisms. Additionally, although YHR has been
revealed as a TCM for in treating DN by this study, the full
characterization of its key pharmacodynamic chemicals remains
incomplete, which warrants further exploration. While active
compounds Isoastragaloside I is certified by Xu to alleviate diabetes
by improving insulin resistance, the contributions of the other
components remain to be investigated (48). This gives further
indication for our next research.

In summary, we established HG cell and DN mouse models to
identify overexpression of VAPB-PTPIP51, alterations in MAM
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structure, mitochondrial calcium overload, and inhibition of
autophagy, alongside kidney and podocyte damages. YHR’s
therapeutic impact in DN appears to involve enhancing autophagy,
modulating mitochondrial calcium levels through the MAM
complex VAPB-PTPIP51. This research aims to elucidate the
mechanisms of YHR in treating DN, offering a theoretical
foundation for the clinical application of TCM and the development
of new drugs for DN therapy.
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