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Combination of Aspergillus niger
culture and glycyrrhizic acid
alleviates the toxic effects of
multi-mycotoxins on broiler
production performance and
nutrient metabolism

Jingiu Tu', Mengke Li*, Ping Wang?, Lijun Wang?, Sanjun Jin?,
Xinxin Li%, Juan Chang!, Qinggiang Yin**, Chaogqi Liu'*,
Qun Zhu?, Maolong Li2 and Fushan Lu?®

!College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China,
2Henan Delin Biological Product Co. Ltd., Xinxiang, China, *Henan Puai Feed Co. Ltd., Zhoukou, China

Introduction: Mycotoxins in animal diets cause a lot of economic loss in animal
husbandry annually. The objective of this experiment was to evaluate the effect
of combination of Aspergillus niger culture and glycyrrhizic acid (CANCGA) on
alleviating multi-mycotoxin toxicity for broiler production performance and
nutrient metabolism.

Methods: A total of 500 one-day-old male broilers were randomly divided into
10 groups, 5 replications in each group and 10 broilers in each replication. The
feeding period was 21 d. The dietary treatment included group A (the basal
diet as the control group); group B (0.03 mg/kg aflatoxin B, (AFB;) + 0.15 mg/
kg zearalenone (ZEN) + 1.5 mg/kg deoxynivalenol (DON), low-dose mycotoxin
diet); group C (0.07 mg/kg AFB; + 0.5 mg/kg ZEN + 3.0 mg/kg DON, high-dose
mycotoxin diet); groups D, E and F (basal diet supplemented with 0.2, 0.4 and
0.6 g/kg CANCGA, respectively); groups G, H and | (low-dose mycotoxin diet
supplemented with 0.2, 0.4 and 0.6 g/kg CANCGA, respectively); group J (high-
dose mycotoxin diet supplemented with 0.4 g/kg CANCGA).

Results: The results demonstrated that broiler mortality in groups B and
C was 2 and 6%, which in other groups was zero, indicating that CANCGA
addition in diets could decrease broiler mortality caused by multi-mycotoxins.
Average daily weight (ADG), metabolic rates of protein and phosphorus were
significantly declined, while the ratio of daily feed intake and daily gain were
significantly increased when dietary mycotoxin concentration was increased
(p < 0.05). Compared with the control group, low-dose mycotoxin in diet could
increase serum alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) activity (p < 0.05), while decrease serum total protein (TP), aloumin (ALB)
and total cholesterol (TC) levels (p < 0.05). However, CANCGA addition could
effectively reverse the above results. Compared with the low-dose mycotoxin
group, the addition of 0.4 g/kg CANCGA could decrease serum ALT, AST, alkaline
phosphatase (ALP), glucose (GLU), triglyceride (TG) and high-density lipoprotein
(HDL) levels (p < 0.05), while increase ALB, TC levels and ALB/Globulin (GLB)
(p < 0.05), indicating that CANCGA addition was able to reduce oxidative
stress of broilers induced by multi-mycotoxins. The contents of residual AFB;,
ZEN and DON in broiler excreta were significantly increased in the low-dose
mycotoxin group (p < 0.05), compared to the control group; however, CANCGA
addition could decrease AFB;, ZEA and DON contents in broiler excreta.
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Serum metabolomics showed that metabolites such as creatine, N-acetyl-L-
phenylalanine and linoleic acid as well as metabolic pathways related to glycine,
serine, threonine, cysteine, methionine, selenium compounds and linoleic acid
metabolisms were regulated by CANCGA addition to alleviate nutrient metabolic
disorders caused by multi-mycotoxins.

Discussion: In conclusion, CANCGA was found to be effective in alleviating
multi-mycotoxin toxicity for broilers’ growth performance through reducing
oxidative stress and positively regulating nutrient metabolisms.
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1 Introduction

Mycotoxins were toxic metabolites produced by Aspergillus spp.,
Penicillium spp., Fusarium spp. and other fungi during their growth
process (1). Over 300 kinds of mycotoxins were identified that pose
harm to both humans and animals (2). Among them, the most potent
and wide-distribution mycotoxins included aflatoxin B, (AFB,),
zearalenone (ZEN) and deoxynivalenol (DON) (3). These mycotoxins
could be generated at many stages including crop cultivation,
processing, transportation and storage of grains and their by-products
due to variations in environmental ask temperature and humidity (4,
5), posing significant health risks to both humans and animals. In
addition, the main component of an animals’ diet consists mainly of
grains, which are a favorable substrate for mycotoxin-producing fungal
species. These ingredients have high inclusion rates in animal
compound feed, and if contaminated, could be a source of
contamination of the final products (6, 7). Up to 88% of 74,821 samples
of diets and feed ingredients (e.g., corn, wheat and soybeans) collected
from 100 countries were polluted with multi-mycotoxins, in which
AFB,, ZEN and DON were detected in 23, 64 and 45% of the samples,
respectively (8). It was reported that 17,316 samples of feed and feed raw
materials from all over the world were analyzed for contamination with
aflatoxins, ochratoxin A, zearalenone, deoxynivalenol and fumonisins,
in which 72% of the samples were tested to be positive for at least one
mycotoxin and 38% were found to be co-contaminated (9).

The presences of mycotoxins are associated with carcinogenicity,
teratogenicity, hepatotoxicity, nephrotoxicity, embryotoxicity and
immunosuppression in animals (10-13). Moreover, their occurrence
could reduce body weight and feed conversion rates, increase
incidences of diarrhea and mortality in poultry (14, 15). AFB, was
demonstrated to significantly disrupt hepatic lipid and protein
metabolism in animals, which can lead to liver function damage and
affect production performance (16-18). ZEN, an estrogen analog,
competed with endogenous estrogen for receptor binding sites upon
entering the organism, results in reproductive toxicity (19-21). DON
contamination in animal feeds causes impairment of intestinal barrier
function (22, 23), leading to intestinal flora disorders in animals (24).
Once DON is absorbed into the body, it inhibits protein synthesis (1,
25, 26). However, mycotoxin contamination in feedstuffs or diets
typically involves multiple toxin types rather than single toxin. It was
observed that low concentration of multiple mycotoxins has a greater
detrimental impact on livestock than high concentration of single
mycotoxin (27-29). Coexistence of AFB;, ZEN and DON in poultry
diets could lead to an exacerbation of health issues in animals and
result in diminished economic returns due to their combined toxicity
(30). In addition, feeds contaminated with AFB,, ZEN and DON
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resulted in disruption of amino acid metabolic pathways such as
alanine, aspartic acid and glutamine (31) as well as impacting blood
glucose metabolites such as glycine, arginine and tryptophan (32).

Therefore, effectively addressing the risks associated with multi-
mycotoxins has become an urgent priority. Currently, three primary
approaches were employed to mitigate or eliminate mycotoxin risks:
physical, chemical, and biological methods (33). Among these options,
biological detoxification methods were considered specific, efficient, and
environmentally friendly. For instance, the previous report showed that
fourteen strains of Aspergillus niger isolated from peanuts demonstrated
complete inhibition of AFB, production through co-culturing (34). It
was discovered that one strain of Aspergillus niger consistently degraded
ZEN by over 95%, resulting in the formation of low-toxicity products
(35). Glycyrrhizic acid (GA), the main active compound extracted from
Glycyrrhiza glabra, has been shown to alleviate inflammation, oxidative
stress, and apoptosis (36). Also, GA is considered an effective treatment
for liver diseases (37). Its combination with probiotic complexes
attenuated DON-induced oxidative stress, inflammation and apoptosis
in IPEC-]2 cells (38). However, the combined effect of GA and Aspergillus
niger in reducing AFB, induced toxicity has not been studied. After
considering both functions of GA and Aspergillus niger, the combination
of Aspergillus niger culture and GA (CANCGA) was used in this study
for alleviating multi-mycotoxin toxicity caused by AFB,, ZEN and DON
in broiler production, so as to assess their mitigation potential and
provide a foundation for addressing issues related to multiple
mycotoxin contamination.

2 Materials and methods

The study and included experimental procedures were approved
by the guidelines of Animal Care and Use Ethics Committee of Henan
Agricultural University (SKLAB-B-2010-003-01). All animal
experiments were conducted in strict accordance with the institutional
guidelines for care and use of laboratory animals. Animal feeding
experiment was conducted in a chicken farm of Henan
Agricultural University.

2.1 CANCGA and mycotoxin preparation

Aspergillus niger with degrading AFB, and ZEN was preserved in
the Laboratory of Animal Nutrition and Feed Biotechnology in Henan
Agricultural University. GA was provided by Henan Delin Biological
Products Co., Ltd. The preparation of solid culture of Aspergillus niger
was made by mixing the three feed ingredients of bran, soybean meal
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and corn in the ratio of 7:2:1, taking 10 g of the mixture in a triangular
flask, after sterilization, adding 1 mL of Aspergillus niger seed solution
and 5 mL of sterile water, mixing thoroughly and cultivating at 30°C
for 5-7 d and then taking it out and drying and crushing the mixture
(39). The mycotoxin degradation experiments in vitro confirmed that
the degradation rates of AFB, and ZEA were 60.40 and 97.67%,
respectively, when 0.04% Aspergillus niger culture was applied. The
further research indicated that the degradation rate of AFB, was
increased to 68, 71 and 63% when 0.02, 0.04 and 0.06% of GA were
added. In addition, previous study in our laboratory confirmed that
GA could alleviate the damage of intestinal cells caused by DON (38).
Therefore, CANCGA was prepared by combining Aspergillus niger
culture with GA at both 0.04% addition (mixed in ratio 1:1 ratio) for
alleviating toxicity of AFB,;, ZEN and DON in the further broiler
feeding experiment.

2.2 Diet preparation and animal
management

500 one-day-old male Arbor Acres (AA) broilers were divided into
10 groups, each group consisting of 5 replications with 10 broilers per
replication. The broilers were reared in cages, allowing free access to diet
and water. Room temperature was around 25°C, but the temperature
under nurturing umbrella was 33-35°C, 29-32°C and 26-28°C for
one-week-old, two-week-old and three-week-old broilers, respectively.
The relative humidity was kept at 60 to 65%. The experimental period was
21 d. Daily feed intake, and dead broilers were recorded daily. Broiler
body weight in each replication was weighted at the age of 1 and 22 d.
Parameters such as average daily gain (ADG), average daily feed intake
(ADFI), feed-to-gain ratio (F/G) and mortality were calculated.
Additionally; a standard immunization program was implemented within
the first one week. The experimental groups were organized as follows:

Group A: the basal diet as the control group (0.002 mg/kg
AFB, + 0.041 mg/kg ZEN + 0.946 mg/kg DON).

Group B: low-dose mycotoxin diet (0.03 mg/kg AFB, + 0.15 mg/kg
ZEN + 1.5 mg/kg DON).

Group C: high-dose mycotoxin diet (0.07 mg/kg AFB, + 0.5 mg/kg
ZEN + 3.0 mg/kg DON).

Group D: basal diet supplemented with 0.2 g/lkg CANCGA.

Group E: basal diet supplemented with 0.4 g/kg CANCGA.

Group F: basal diet supplemented with 0.6 g/kg CANCGA.

Group G: low-dose mycotoxin diet supplemented with 0.2 g/
kg CANCGA.

Group H: low-dose mycotoxin diet supplemented with 0.4 g/
kg CANCGA.

Group I: low-dose mycotoxin diet supplemented with 0.6 g/
kg CANCGA.

Group J: high-dose mycotoxin diet supplemented with 0.4 g/
kg CANCGA.

The basal diets were formulated based on the broiler feeding
standards outlined in the NRC (1994) guideline. To adjust AFB, and
ZEN contents in diets, normal corn in the basal diet was substituted
with moldy corn, while DON content was adjusted with corn
by-product. The diet formulation and nutrient levels were listed in
Table 1.
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TABLE 1 Compositions and nutrient levels in broiler diet (%, air-dried
base).

Compositions Basic Low-dose High-dose
diet mycotoxin mycotoxin
Corn 56.82 44.00 29.05
Mold corn meal 0 12.00 24.00
Soybean meal 34.90 28.57 15.70
Corn by-products 0 7.00 22.00
Fish meal 1.80 1.80 1.80
Soybean oil 3.20 3.35 4.00
CaHPO, 1.15 0.42 0.00
CaCO;, 1.30 1.88 2.16
Methionine 0.23 0.23 0.23
Lysine 0.00 0.15 0.46
Salt 0.30 0.30 0.30
Premix* 0.30 0.30 0.30
Total 100.00 100.00 100.00
Nutritional levels®
ME (M]/kg) 12.58 12.55 12.53
Cp 23.16 23.93 23.80
Ca 1.08 1.17 1.21
Total P 1.28 1.21 1.01
Available P 0.30 0.30 0.30
Lysine 1.16 1.15 1.15
Methionine 0.57 0.57 0.57

CP = crude protein; DE = digestible energy; Ca = calcium; P = phosphorus; NDF = neutral
detergent fiber; ADF = acid detergent fiber.

“Premix provides (per kg diet): VA 12000 IU; VD; 3,000 IU; VE 20 IU; VK; 1.0 mg; VB,

2.0 mg; Riboflavin (VB,) 6 mg; Nicotinic acid (niacin) 35 mg; Choline 1.3 g; Calcium
pantothenate 10 mg; VB; 3.5 mg; VB,, 0.01 mg; Biotin 0.15 mg; Folic acid 1.25 mg; Copper
(copper sulfate) 8 mg; Iron (ferrous sulfate) 100 mg; Manganese (manganese sulfate) 80 mg;
Zinc (zinc oxide) 60 mg; Iodine I (calcium iodate) 0.45 mg; Selenium (sodium selenite)
0.35 mg. The crude protein, calcium and total phosphorus levels are measured, and the
others are calculated.

*The CP, DE, Ca, P, cellulose and hemicellulose levels were measured, whereas the others
were calculated.

2.3 Sample collection and treatment

Excreta collection of broilers in each replication was performed
on days 18-20 of the feeding experiment, followed by spraying with
10% sulfuric acid solution for nitrogen fixation, dried at 65°C, and
ground for further use. At day 21, blood samples (2 mL) were collected
from the wing vein of five broilers in each group and stored in a
refrigerator at 4°C until serum precipitation occurred in the collection
tube. Subsequently, centrifugation was conducted at 1,520 x g for
10 min to obtain serum, which was then transferred to a sterilized
tube and stored at —80°C for future utilization.

2.4 Determinations of nutrient metabolic
rates and residues of AFB;, ZEN, and DON

The crude protein (CP), ether extract (EE), calcium (Ca) and
phosphorus (P) contents in diets and excreta were determined
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according to the methods of national standards GB/T 6432-2018,
GB/T 6433-2006, GB/T 6436-2002 and GB/T 6437-2018, respectively.
The calculation of nutrient metabolic rates was as follows: Nutrient
metabolic rate (%) = 100 x (nutrient content in diet—nutrient content
in excreta)/nutrient content in diet. Based on the growth performance
of broilers in each group at 21 d, broilers in groups A, B, E and H were
selected for the determination of excreta toxin residues. The contents
of AFB,, ZEN and DON in excreta were detected according to the
protocol of Suwei toxin detection kits (Suwei Biological Research Co.,
Ltd. Jiangsu, China). The calculation of AFB, degradation rate was as
follows: AFB, degradation rate (%) = (AFB, content in control group—
AFB, content in test group)/AFB, content in control group x 100.
DON and ZEN degradation rates were calculated in the same way
as AFB,.

2.5 Determination of serum biochemical
parameters

Using a fully-automated blood biochemistry analyzer to measure
the serum contents of glucose (GLU), triglyceride (TG), high-density
lipoprotein (HDL), total cholesterol (TC), low-density lipoprotein
(LDL), aspartate aminotransferase (AST), lactate dehydrogenase
(LDH), alkaline phosphatase (ALP), alanine transaminase (ALT), total
protein (TP) and albumin (ALB).

2.6 Serum pretreatment

Based on the growth performance of broilers in each group at 21 d,
broilers in groups A, B, E and H were selected for serum metabolomics
analysis. Serum sample was thawed at 4°C and vortexed for 1 min
using a vortex mixer (BE-2600, Haimen Qilin Bell Instrument
Manufacturing Co., Ltd., Nantong, China) to ensure thorough mixing.
And then transferred into 2 mL centrifuge tube. Subsequently, 400 pL
methanol (stored at —20°C) was added and vortexed for 1 min prior
to centrifugation. The sample was centrifuged at 13,680 x g and 4°C
for 10 min using a refrigerated centrifuge (H1850-R, Hunan Xiangyi
Laboratory Instrument Development Co., Ltd., Changsha, China). The
supernatant was carefully transferred to another 2 mL centrifuge tube,
then concentrated and dried before being dissolved in 150 pL 4 mg/L
2-chloro-L-phenylalanine (prepared with 80% methanol). The
resulting supernatant was filtered through a 0.22 pm filter membrane
before being added to the UPLC-MS vial for UPLC-MS detection.

2.7 Analysis of UPLC-MS

MS/MS analysis was performed using the Thermo Vanquish Ultra
High-Performance Liquid Chromatography (UHPLC) system
(Vanquish, Thermo, Massachusetts, United States) coupled with an
ACQUITY UPLC® HSS T3 column (2.1 x 100 mm, 1.8 pm). In
positive ion mode, the mobile phases consisted of 0.1% formic acid
diluted in water (A1) and 0.1% formic acid diluted in acetonitrile (B1);
in negative ion mode, the mobile phases were 5 mM ammonium
formate diluted in water (A2) and acetonitrile (B2). Thermo Orbitrap
Exploris 120 mass spectrometer (Orbitrap Exploris 120, Thermo,
Massachusetts, United States) was used to determine the serum
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metabolites. Mass spectrometry parameters were as follows: positive
ion spray voltage of 3.50 kV, negative ion spray voltage of —2.50 kV.

2.8 Statistical analyses

The animal experimental data were expressed as means + standard
error. The one-way ANOVA test was conducted using SPSS 26.0.
Statistical significance was considered at p < 0.05.

The data from metabolomics were processed by XCMS in R
package for peak detection, filtering, and alignment of raw mass
spectrometry files converted by Proteowizard. Substance identification
was conducted by searching and comparison with spectral databases
such as HMDB, MassBank, LipidMaps, mzCloud, KEGG, and
metabolite standards database of Nomi Metabolism. Differential
metabolites were selected based on criteria of p < 0.05 and VIP > 1.
Spearman correlation analysis was performed between differential
metabolites and production performance, serum biochemistry or three
kinds of toxin residues in excreta by using Nomi Metabolism platform.

Multivariate statistical methods including downscaling and
categorization such as principal component analysis (PCA) and
orthogonal-partial least squares discriminant analysis (OPLS-DA)
were employed to analyze the data from serum metabolomics in order
to identify the differential metabolites between different groups. The
significant differences were determined by t-test and the variable
importance projection (VIP) of the first principal component of
OPLS-DA. A KEGG pathway enrichment analysis was conducted for
the identified differential metabolites to evaluate their potential roles
in biological responses.

3 Results

3.1 Effects of CANCGA addition on broiler
growth performance

As presented in Table 2, mortality was significantly increased in
the low-dose or high-dose mycotoxin groups, compared to the control
group. However, supplementation with CANCGA made mortality
become zero to remain consistent with the control group, indicating
that CANCGA was able to alleviate multi-mycotoxin toxicity for
broilers. Moreover, compared to the basal diet, a significant (p < 0.05)
improvement of ADG and final body weight were observed when
0.4 g/kg CANCGA was added to the basal diet, while final body
weight, ADG, ADFI, and F/G were not significantly different when
0.2 g/kg and 0.6 g/kg CANCGA was added to the basal diet. Notably,
final body weight and ADG were significantly higher with the addition
of 0.4 g/kg CANCGA to the basal diet than with the 0.2 g/kg addition
(p < 0.05). ADG and ADFI were significantly decreased, while F/G was
significantly increased for broilers subjected to high-dose mycotoxin
diet, compared to both basal and low-dose mycotoxin diets (p < 0.05).

3.2 Effects of CANCGA on nutrient
metabolic rates for broilers

Table 3 showed that high-dose mycotoxin diets without or with
CANCGA addition significantly decreased CP and P metabolic rates,
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TABLE 2 Effects of CANCGA on growth performance of broilers (n = 5).

Initial body
weight, g

Final body
weight, g

10.3389/fnut.2025.1628442

ADFI2, g

Mortality, %

Al 44.10 £ 0.22 762.50 + 15.03% 3420 +0.71% 51.65 + 1.68" 1.51 4 0.03° 0
B 4420 +0.27 775.08 + 41.38%¢ 34.80 + 1.98%¢ 52.67 + 2.68" 1.5240.13° 2
c 44.76 +0.34 363.67 + 11.85¢ 15.19 + 0.56¢ 40.52 +2.65° 2.67 +0.18° 6
D* 45.00 + 0.00 755.24 + 20.01° 33.81 +0.95 49.44 + 3.31° 1.46 +0.11° 0
E® 44.50 + 0.61 808.20 + 35.16° 36.37 + 1.68" 53.36 + 3.38" 1.47 +0.03° 0
F¢ 44.60 + 0.42 791.83 + 19.68% 35.58 + 0.95® 52.79 + 2.20° 1.48 + 0.04° 0
G 4423 +0.35 751.52 + 19.38° 33.73 £0.93¢ 51.29 + 1.48" 1.52 % 0.06° 0
H* 45.03 +0.13 778.08 + 16.78%* 34.91 + 0.80%¢ 52.63 + 0.82* 1.51 % 0.06° 0
r 44.84 +0.53 775.27 + 19.17°%¢ 34.78 +0.92% 51.09 + 2.24° 1.47 + 0.05° 0
Jro 44.30 +0.27 350.83 + 35.46 ¢ 14.60 + 1.69¢ 42314693 2.90 +0.55 0

'A: Basic diet.

’B: Low-dose mycotoxin group.

*C: High mycotoxin group.

“D: Basic diet + 0.2 g/kg CANCGA.

°E: Basic diet + 0.4 g/lkg CANCGA.

°F: Basic diet + 0.6 g/kg CANCGA.

’G: Low-dose mycotoxin group + 0.2 g/kg CANCGA.
H: Low-dose mycotoxin group + 0.4 g/lkg CANCGA.
°I: Low-dose mycotoxin group + 0.6 g/lkg CANCGA.
1]: High-dose mycotoxin group + 0.4 g/kg CANCGA.
""ADG: Average daily gain.

"?ADFI: Average daily feed intake.

PFeed to gain ratio.

*4 The different lowercase letters in the same column indicate significant differences (p < 0.05), while the same lowercase letters in the same column indicate insignificant differences (p > 0.05).

while increased EE metabolic rate, compared with the control group
(p <0.05). CANCGA addition in high-dose mycotoxin diet had
insignificant effect on nutrient metabolic rates. P metabolic rate was
significantly decreased (p <0.05), while EE metabolic rate was
significantly increased with dietary mycotoxin levels increasing
(p < 0.05). Compared with the control group, low-dose mycotoxin diet
had insignificant effect on other nutrient metabolic rates in spite of
increasing EE metabolic rate (p < 0.05). In low-dose mycotoxin diets,
0.4 g/kg CANCGA addition significantly increased EE metabolic rate,
0.6 g/kg CANCGA addition significantly decreased Ca metabolic rate,
compared with the low-dose mycotoxin diet without CANCGA
addition (p <0.05). Compared with the control group, 0.4 g/kg
CANCGA addition in the basal diet significantly decreased EE and Ca
metabolic rates (p < 0.05), while 0.2 g/kg and 0.6 g/kg CANCGA
additions in the basal diet had insignificant effect on nutrient
metabolic rates. In addition, CANCGA added at 0.4 g/kg in the low
mycotoxin group had significantly higher metabolic rates of EE and P
than the 0.2 g/kg addition (p < 0.05).

3.3 Effects of CANCGA on mycotoxin
contents in excreta of broilers

Based on the feeding experiment, the excreta and serum samples
from groups A, B, E and H were selected as the representative ones for
further analyses. As shown in Table 4, the contents of residual AFB,,
ZEN and DON in broiler excreta were significantly increased in the
low-dose mycotoxin group, compared to the control group (p < 0.05).
Furthermore, compared to the basal diet, residual AFB, content was
significantly decreased when 0.4 g/lkg CANCGA was added in the
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TABLE 3 Effects of CANCGA on nutrient metabolic rates for broilers (%,
n=5).

Groups cpt EE? Ca®? p

Al 65.17 +3.96° | 68.32 4255 = 57.23+5.07° | 66.50 + 3.03®
B 64.02 +2.00%° | 7535+0.64° | 55.85+3.26" | 62.70 + 0.98>¢
c 58.79 + 1.78 | 83.38 £2.15° | 53.62+3.71* = 43.59 +5.50°
D* 66.05+0.30° | 65.97+3.07¢ | 5530 +3.96" | 62.45 +3.05>¢
E° 70.17 £5.96° | 62.80+1.26° = 49.44 +0.53 | 69.40 + 6.38°
Fe 67.61 £ .00 | 67.28 +£3.16% | 52.97 +2.24>¢ | 63.83 +2.31%
G’ 62.02+3.48* | 7549+506° = 55.64+3.35% | 5696+ 523¢
H* 6820+ 1.73% | 82.37+1.92° | 61.11 £2.92° | 64.54 +1.78"¢
r 67.32+3.83° | 78.66+4.65° = 48.70 +3.20° | 58.66 + 5.24<

78.98 + 5.61 55.70 + 4.67
Jo 55.04 +3.43 ¢ . N 41.58 +2.14°¢

'A: basic diet.

?B: low-dose mycotoxin group.

*C: high mycotoxin group.

“D: basic diet + 0.2 g/kg CANCGA.

°E: basic diet + 0.4 g/kg CANCGA.

°F: basic diet + 0.6 g/kg CANCGA.

’G: low-dose mycotoxin group + 0.2 g/kg CANCGA.

8H: low-dose mycotoxin group + 0.4 g/lkg CANCGA.

°I: low-dose mycotoxin group + 0.6 g/kg CANCGA.

1J: high-dose mycotoxin group + 0.4 g/kg CANCGA.

"CP: crude protein.

EE: ether extract.

PCa: calcium.

'P: phosphorus.

=4 The different lowercase letters in the same column indicate significant differences
(p < 0.05), while the same lowercase letters in the same column indicate insignificant
differences (p > 0.05).
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basal diet (p < 0.05); however, CANCGA addition had the tendency
to decrease ZEN and ZON contents in excreta. Compared to the
low-dose mycotoxin group, ZEN residue was significantly decreased
by 0.4 g/kg CANCGA addition (p <0.05); however, CANCGA
addition had the tendency to decrease AFB, and ZON contents
in excreta.

3.4 Effect of CANCGA on serum
biochemical parameters of broilers

Figure 1 indicated that serum ALP, LDH, TP, ALB, GLU, TC and
TG levels in low-dose mycotoxin group were significantly decreased
(p < 0.05), while AST level was significantly increased (p < 0.05),
compared with the control group. However, the addition of 0.4 g/kg
CANCGA to the basal diet could decrease serum ALP, TG and LDL
levels (p < 0.05), while increase HDL level (p < 0.05). Compared with
the low-dose mycotoxin group, the addition of 0.4 g/lkg CANCGA
could decrease serum ALT, AST, ALP, GLU, TG and HDL levels
(p < 0.05), while increase ALB, TC levels and ALB/GLB (p < 0.05). It
was inferred that CANCGA addition was able to reduce tissue and
organ damage and lipid metabolism disorders of broilers induced by
multi-mycotoxins.

3.5 Analysis of serum differential
metabolites

In order to study the mechanism of CANCGA for alleviating
multi-mycotoxin toxicity, nutrient metabolism of broilers was
analyzed by UPLC-MS spectrometry (Figures 2A,B). In Figure 2C, the
horizontal coordinates indicated the similarity between the real
grouping of the samples and the 100 random groupings, the vertical
coordinates indicated the model evaluation parameters, Q2 and R2
points in the upper right corner indicated the model evaluation
parameters of the real grouping. If both Q2 fell below R2, it means that
the results are reliable. The results of PCA and OPLS-DA in Figure 2
revealed notable differences of metabolites in broiler serum. In the
comparisons of group B vs. group A, group H vs. group B, group H vs.
group A, group E vs. group A, about 26, 16, 31 and 18 differential
metabolites were identified, respectively (Table 5). Nine metabolites
were significantly up-regulated, and seventeen metabolites were
down-regulated in the comparison of group B vs. group A (p < 0.05).

TABLE 4 Effects of CANCGA on toxin contents in the excreta of broilers
(ng/kg, n = 5).

Group ~ AFB,  ZEN  DON

Al 5.70 + 0.54° 2.42 +0.25° 190.69 + 4.16°
B? 8.64 +0.72* 7.37 £0.59* 222.68 + 13.74*
E? 3.30 £ 0.24° 1.86 + 0.28° 187.35 + 12.67°
H* 8.52 +0.85* 6.21 +0.47° 216.65 + 10.60*

'A: basal diet.

?B: low-dose mycotoxin group.

’E: basal diet + 0.4 g/kg CANCGA.

“H: low-dose mycotoxin group + 0.4 g/kg CANCGA.

=< The different lowercase letters in the same row indicate significant differences (p < 0.05),
whereas the same lowercase letters or without lowercase letters in the same row indicate
insignificant differences (p > 0.05).
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Seventeen metabolites were significantly up-regulated, and fourteen
metabolites were down-regulated in the comparison of group H vs.
group A (p < 0.05). Six metabolites were significantly up-regulated,
and twelve metabolites were down-regulated in the comparison of
group E vs. group A (p < 0.05). Eleven metabolites were significantly
up-regulated, and five metabolites were down-regulated in the
comparison of group H vs. group B (p < 0.05).

The distribution and alteration of distinct metabolites between the
experimental groups and the control group were illustrated in
Figure 2D-F Additionally, the top five metabolites exhibiting
statistically significant differences among the groups were highlighted
in the volcano plot. Compared to group A, (15Z)-tetracosenoic acid
and phthalic acid were downregulated, while 2,3-butanediol,
N-acetylaspartylglutamate and 9-cis-retinol were upregulated in
group B (Figure 2D). Compared to group B, linoleic acid and glycitein
were downregulated, while hydroquinone, oxalureate and
2,3-butanediol were upregulated in group H (Figure 2E). Furthermore,
compared to group A, (15Z)-tetracosenoic acid, phthalic acid and
hydroxykynurenine were downregulated, while 2,3-butanediol and
nicotinic acid were upregulated in group H (Figure 2F). The
differential metabolites in each group were analyzed using Venn plots
(Figure 2G). In four comparisons such as group B vs. group A, group
H vs. group B, group H vs. group A, group E vs. group A, two common
differential metabolites (2,3-butanediol and hydroxykynurenine) were
identified. Additionally, seven common metabolites (dimethylglycine,
2,3-butanediol, selenocysteine, jasmonic acid, hydroxykynurenine,
3-ketosphingosine and glycitein) were found in the comparisons of
group B vs. group A, group H vs. group B.

3.6 KEGG enrichment analysis for serum
differential metabolites

To further elucidate the metabolic pathways associated with the
differential metabolites in serum, KEGG pathway enrichment analysis
was conducted for the following four comparisons: group B vs. group
A, group H vs. group B, group H vs. group A, group E vs. group A
(Figures 3A-D). Compared with group A, the differential metabolites
in group B were primarily enriched in alanine, aspartate and glutamate
metabolism pathway; glycine, serine and threonine metabolism
pathway; arginine and proline metabolism pathway; steroid hormone
biosynthesis pathway (Figure 3A). Compared with group B, the
differential metabolites in group H were primarily enriched in the
pathways related to glycine, serine and threonine metabolism as well
as cysteine and methionine metabolism (Figure 3B). The differential
metabolites observed in group H were predominantly associated with
selenocompound metabolism, arginine and proline metabolism as
well as ABC transporters, compared with group A (Figure 3C).

Further KEGG enrichment analysis was conducted for the
common differential metabolites in the comparisons of group B vs.
group A, group H vs. group B, revealing the significant associations
with three pathways such as selenocompound metabolism, alpha-
linolenic acid metabolism as well as glycine, serine and threonine
metabolism (Figure 3D). These findings indicated that mycotoxins
impacted amino acid synthesis and metabolism as well as steroid
hormone biosynthesis pathways to induce organism damage.
However, supplementation with CANCGA could mitigate mycotoxin-
induced damage by modulating amino acid synthesis and metabolism
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FIGURE 1
Effect of CANCGA on serum biochemical parameters of broilers (n = 5) (A—C). A: basal diet; B: low-dose mycotoxin group; E: Basal diet + 0.4 g/kg
CANCGA; H: Low-dose mycotoxin group + 0.4 g/kg CANCGA. =< The values with different lowercase letters on each bar indicate significant difference
(p < 0.05), whereas the values with the same lowercase letters on each bar indicate insignificant difference (p > 0.05).

pathways along with selenium complex metabolism and a-linolenic
acid metabolism.

3.7 Correlation between serum differential
metabolites and growth performance,
serum biochemical parameters or toxin
residues in excreta

The relationships between differential metabolites in serum and
serum biochemical indices, ADFI, ADG, nutrient metabolic rates
or residual levels of mycotoxins in excreta were illustrated in
Figure 4. Serum metabolites including 2,3-butanediol, 9-cis-retinol,
and Se-methylselenocysteine were significantly positively
(p < 0.05).

selenocysteine, phthalic acid, and 2-keto-glutaramic acid were

correlated with serum TG level Conversely,
significantly negatively correlated with serum TG level (p < 0.05).
Serum ALP level was positively correlated with the N-acetyl-D-
tryptophan (p < 0.05). Serum AST level was significantly positively
correlated with oxalureate and nicotinic acid (p < 0.05). Serum
N-acetylornithine level was significantly negatively correlated with
F/G (p < 0.05). Serum anserine level was significantly negatively
correlated with AFB, residue in excreta, while creatine was
significantly negatively correlated with ZEN residue in excreta.
Both serum creatine and L-homoserine levels showed significant
negative correlations with EE metabolic rate, whereas P metabolic
rate had a

significant positive correlation with serum
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2-methoxyestradiol level. The above results indicated that serum
differential metabolites had close correlation with broiler growth
performance, serum biochemical parameters or toxin residues
in excreta.

4 Discussion

About 70% of contaminated feed ingredients contain more
than one mycotoxin, posing a serious threat to animal health (1).
Previous studies showed the potential of microbial products and
plant extracts for this purpose (40). Combining plant extracts with
microorganisms may enhance mycotoxin-degradation efficiency
because plant extracts contain active compounds capable of
binding toxin molecules or promoting their breakdown, thereby
mitigating cellular and tissue damage from mycotoxins (41). The
research in our laboratory demonstrated that Aspergillus niger solid
cultures could degrade AFB, and ZEN effectively. Another research
showed that GA promoted cell proliferation enhanced intestinal
barrier function, improved nutrient transport and absorption, and
reduced DON-induced damage in piglet intestinal epithelial cells
(38). Therefore, the combination of Aspergillus niger solid cultures
with GA may be able to alleviate AFB,, ZEN and DON toxicity.
This study proved the effectiveness of this combination in
alleviating multi-mycotoxins toxicity for broilers. The reason may
be due to the ability of Aspergillus niger cultures to degrade AFB,
and ZEN, as well as the GA favoring nutrient transport and
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absorption in the intestine and alleviating the impairment of

nutrient transport by DON.

The consumption of mycotoxin-contaminated feed reduces
growth performance and increases pathological traits in broilers (42,

Frontiers in Nutrition

08

43). High mortality and low ADG of broilers induced by multi-
mycotoxins in this study correspond to the above reports. The reasons
are that the mycotoxins often cause tissue and organ damage, impair
nutrient digestion and utilization, and weaken immune function (44,
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TABLE 5 The expression levels of differential metabolites in different groups.

10.3389/fnut.2025.1628442

Differential .B Hvs. A Evs. A
metabolites name
Dimethylglycine 8.44E+07 1.14E+08 1.01E+08 9.99E+07 Down — — Down
5-Hydroxypentanoic acid 1.88E+07 2.26E+07 2.53E+07 2.42E+07 Down — — —
L-Glutamic gamma-
semialdehyde 1.58E+07 2.07E+07 2.30E+07 2.38E+07 Up — Up —
Creatine 1.42E+08 6.15E+07 1.33E+08 4.45E+07 Down — Down Down
2-Keto-glutaramic acid 2.08E+07 2.79E+07 2.79E+07 3.15E+07 Down — Down Down
Phthalic acid 5.79E+07 7.73E+07 7.55E+07 8.45E+07 Up Up Up Up
2,3-Butanediol 1.11E+08 2.72E+07 5.55E+07 5.84E+06 Down — — Down
Cyromazine 6.57E+06 7.69E+06 8.68E+06 8.26E+06 Down — — —
3-Indoleacrylate 1.24E+07 1.59E+07 1.60E+07 1.18E+07 Up — — —
8-Amino-7-oxononanoate 2.03E+07 1.07E+07 2.50E+07 2.13E+07 Down Down Down —
Selenocysteine 1.14E+07 3.30E+07 1.66E+07 4.30E+07 Down — Down Down
Methoxamine 1.41E+08 1.69E+08 1.73E+08 1.64E+08 Down — Down —
gamma-Glutamyl-beta-
aminopropiononitrile 3.44E+06 1.51E+07 4.65E+06 2.13E+07 Down Up — —
(—)-Jasmonic acid 6.37E+06 1.27E+07 6.84E+06 8.47E+06 Down Down Down Down
Hydroxykynurenine 2.09E+07 3.53E+07 6.95E+07 6.31E+07 Up Down — —
3-Ketosphingosine 4.48E+07 1.51E+07 1.34E+08 4.54E+07 Up Down — —
Glycitein 2.17E+09 1.26E+09 2.78E+09 2.43E+09 Up — Up —
9-cis-Retinol 1.70E+08 8.34E+07 1.16E+08 7.33E+07 Down — — —
Aldosterone 1.69E+07 2.81E+07 3.16E+07 3.23E+07 Down — — —
Antibiotic JI-20A 9.42E+07 2.19E+08 1.14E+08 1.79E+08 Down — Down —
(R)-3-Hydroxybutyric acid 2.17E+07 7.70E+07 1.68E+07 2.42E+08 Down — — —
Anserine 3.81E+06 4.59E+06 4.79E+06 2.50E+06 Up — Up —
2-Methoxyestradiol 8.08E+06 6.53E+06 9.05E+06 6.13E+06 Up — — Up
N-Acetylaspartylglutamate 6.89E+06 3.99E+06 4.76E+06 4.92E+06 Up — — —
13-L-Hydroperoxylinoleic acid 1.87E+07 9.29E+06 1.69E+07 1.51E+07 DOWN — Down Down
(15Z)-Tetracosenoic acid 2.32E+04 3.87E+07 3.06E+07 2.63E+07 DOWN Up Up —
Hydroquinone 1.26E+08 1.44E+08 1.87E+08 3.30E+07 — Up — —
L-Homoserine 1.12E+08 1.03E+08 1.65E+08 7.48E+07 — Up — —
Oxalureate 4.16E+07 4.31E+07 2.42E+07 9.04E+06 — Up Up —
Acetaminophen 1.70E+07 1.62E+07 1.85E+07 1.05E+07 — Up — —
L-Kynurenine 5.86E+06 5.92E+06 9.90E+06 3.81E+06 — Down — —
Linoleic acid 4.55E+07 3.08E+07 6.97E+07 5.41E+07 — Up — —
beta-Carotene 4.53E+07 9.04E+07 3.63E+07 3.23E+07 — Up — —
L-Methionine 2.91E+07 3.03E+07 3.18E+07 2.32E+07 — Up Up —
N-Acetyl-D-tryptophan 1.03E+06 1.17E+06 7.04E+05 6.35E+05 — — Down —
Dihydrouracil 8.58E+06 1.47E+07 1.09E+07 1.64E+07 — — Up —
Nicotinic acid 9.60E+08 8.00E+08 5.88E+08 3.06E+08 — — Down —
Anabasine 1.20E+07 1.45E+07 1.48E+07 1.66E+07 — — Down Down
Gabapentin 3.57E+07 4.74E+07 5.13E+07 5.65E+07 — — Up —
N-Acetylornithine 6.70E+07 5.48E+07 7.80E+07 4.77E+07 — — Up —
Mannitol 4.28E+08 1.77E+08 2.18E+08 1.57E+08 — — Up —
Se-Methylselenocysteine 9.46E+07 1.58E+07 3.15E+07 7.36E+06 — — Up —
(Continued)
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TABLE 5 (Continued)

10.3389/fnut.2025.1628442

Differential Al B? E? H* Bvs. A Hvs.B Hvs.A Evs.A
metabolites name

D-Octopine 3.05E+07 1.72E+07 3.90E+07 8.89E+06 — — Down —
Alprenolol 6.20E+07 1.13E+08 8.31E+07 1.37E+08 — — Down Down
Protoporphyrinogen IX 1.51E+09 3.38E+09 2.73E+09 3.69E+09 — — Up —
Gallic acid 2.41E+07 1.51E+07 1.34E+07 1.42E+07 — — Up —
N-Acetylleucine 2.97E+07 2.02E+07 3.90E+07 1.47E+07 — — Up Up
Guanidinosuccinic acid 5.03E+08 4.34E+07 6.51E+07 1.18E+08 — — Up —
N-Acetylanthranilate 3.90E+06 2.55E+06 2.32E+06 2.02E+06 — — Up —
N-Acetyl-L-phenylalanine 8.37E+06 5.70E+06 7.44E+06 4.11E+06 — — — Down
Indole 3.79E+07 4.41E+07 4.78E+07 4.50E+07 — — — Down
Aminomalonic acid 1.28E+07 1.96E+07 8.42E+07 2.50E+07 — — — Down
Guanosine 9.26E+06 1.95E+07 2.51E+07 1.92E+07 — — — Up
Resveratrol 2.21E+07 2.42E+07 6.47E+06 1.37E+07 — — — Up
Dehydroepiandrosterone 1.74E+07 1.15E+07 9.07E+06 1.47E+07 — — — Up
Alpha-dimorphecolic acid 1.18E+07 7.09E+06 3.28E+06 2.05E+07 — — — Down

'A: basal diet.

?B: low-dose mycotoxin group.

°E: basal diet + 0.4 g/lkg CANCGA.

*H: low-dose mycotoxin group + 0.4 g/lkg CANCGA.

The “E” in the table denotes scientific notation, where it represents 10 raised to the negative power of the given date; for example, “8.44E + 07” means 8.44 x 10—7.

45). However, EE metabolic rate was increased with dietary mycotoxin
levels increasing, likely due to ZEN similar to endogenous estrogen
promoting fat metabolism (46). 0.04 and 0.06% CANCGA
supplementation improved growth performance and nutrient
metabolisms as well as reduced mortality and mycotoxin levels in
feces for broilers exposed to mycotoxins, owing to mycotoxin
degradation and detoxification of CANCGA. No significant
differences in broiler growth performance were observed with higher
or lower CANCGA additions, indicating that the lower cost CANCGA
additions were also effective in alleviating the toxic impacts of multi-
mycotoxins in production practice.

As mycotoxins are primarily metabolized in the liver, it is the main
target for their toxic effects (47). Exposure to mycotoxin-contaminated
diets elevated serum AST and ALT levels, leading to hepatic
dysfunction, consistent with prior findings (48), and further
supporting the link between organ damage and low broiler
productivity due to mycotoxins (49). CANCGA addition significantly
increased serum TP and ALB levels, while reduced serum AST, ALT
and ALP levels, demonstrating the efficacy of CANCGA in mitigating
tissue and organ damages induced by multi-mycotoxins, mainly due
to the hepatoprotective activity of GA (50) and mycotoxin-degradation
ability of Aspergillus niger culture.

To further investigate the impact of mycotoxin exposure and
CANCGA supplementation on nutrient metabolisms in broilers,
serum metabolomics was conducted in groups A, B, E, and H. The
results demonstrated that mycotoxin exposure induced significant
alterations in serum metabolites. Specifically, the upregulation of
2,3-butanediol and 9-cis-retinol indicated that mycotoxins disrupt
intracellular energy and retinol metabolism, thereby exacerbating
oxidative stress and inflammation (51, 52). Compared with the basal
diet group, the downregulation of (15Z)-tetracosenoic acid and
phthalic acid in the low mycotoxin group reflected the inhibition of
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normal fatty acid metabolism by mycotoxins, which promoted hepatic
lipid accumulation (53) and aggravated liver injury. However,
supplementation with CANCGA helped to restore these key
metabolites to normal levels. The observed changes in antioxidant
metabolites (hydroquinone and glycitein) (54) and lipid metabolites
(linoleic acid) (55) suggested that the CANCGA mitigates mycotoxin-
induced damage by modulating fatty acid metabolism and enhancing
antioxidant defenses, ultimately contributing to the restoration of
metabolic balance.

The KEGG pathway enrichment analysis revealed significant
metabolic disturbances caused by multi-mycotoxins. These
mycotoxins predominantly disrupted normal ketone body metabolism
and impaired energy-metabolism stability by interfering with alanine,
aspartate, and glutamate metabolisms as well as the synthesis and
degradation of ketone bodies. This disruption led to inflammation and
lipid metabolism disorders, exacerbating liver damage (56). The
enrichments of glycine, serine and threonine metabolisms may
indicate the organism’s response to oxidative stress and cellular
damage caused by mycotoxins, potentially through the enhancement
of antioxidant defense mechanisms. Following the addition of
CANCGA, pathway enrichment analysis suggested a partial alleviation
of the metabolic disturbances induced by mycotoxins.

This study showed that there were significant increases in
metabolites related to glycine, serine and threonine metabolisms as
well as cysteine and methionine metabolisms by CANCGA addition.
Glycine, serine and threonine are critical amino acids involved in
one-carbon metabolism, which is essential for DNA synthesis, repair
and cell proliferation (57). Moreover, glycine exhibits detoxifying and
hepatoprotective properties, while serine and cysteine are integral to
the synthesis of glutathione (GSH), a principal antioxidant in the body
that effectively neutralizes free radicals and safeguards cells from
oxidative damage (58). Methionine is involved in methylation
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FIGURE 3
KEGG pathway enrichment of differential metabolites. Differential metabolites were enriched in KEGG pathways in group B vs. group A, group H vs.
group B, group H vs. group A (A—C); The differential metabolites were enriched in three pathways by KEGG analysis in group B vs. group A and group H
vs. group B (D).

reactions, which are crucial for maintaining cellular function and
stability (59). Consequently, CANCGA addition not only directly
degrades mycotoxins but also facilitates the restoration of metabolic
pathways, thereby enhancing the synthesis of antioxidants such as
GSH and bolstering detoxification processes. It stimulated one-carbon
metabolism, promoting cellular repair and regeneration, and
mitigating the metabolic disturbances and hepatic damage induced by
mycotoxins. Simultaneously, the enrichment of lipid metabolism-
related pathways such as alpha-linolenic acid metabolism and
unsaturated fatty acid biosynthesis by CANCGA addition indicated a
reduction in lipid oxidation, leading to a more balanced fatty acid
metabolism, thereby mitigating the impact of mycotoxins on lipid
metabolism (60).
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Furthermore, the enrichment of selenocompound metabolism
by CANCGA addition was intricately linked to the body’s
antioxidant capacity, immune regulation and anti-inflammatory
responses (61). It is inferred that CANCGA modulated selenium
metabolism, enhancing the synthesis and activity of antioxidant
enzymes, reducing toxin-induced inflammation, and
strengthening the body’s defense against oxidative stress caused
by mycotoxins. In conclusion, the mycotoxin group exhibited
significant disruptions in amino acid metabolism, lipid
metabolism and antioxidant pathways, which were closely
associated with oxidative stress, inflammation and hepatocellular
damage caused by mycotoxins. After the addition of CANCGA,

the disturbed metabolic pathways are restored to the normal
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FIGURE 4

Correlation analysis between serum metabolites and other parameters. Red indicates positive correlation, blue indicates negative correlation; *
represents p < 0.05, * * represents p < 0.01, and * * * represents p < 0.001. ALT: alanine aminotransferase; AST: aspartate aminotransferase; ALP: alkaline
phosphatase; ALB: albumin; TG: triglycerides; ADG: average daily gain; ADFI: average daily feed intake; F/G: daily feed intake/daily gain; AFB;: aflatoxin
B; residue in excreta; DON: deoxynivalenol residue in excreta; ZEN: zearalenone residue in excreta; CP: crude protein metabolic rate; EE: ether extract
metabolic rate; CA: calcium metabolic rate; P: phosphorus metabolic rate.

levels, especially in anti-oxidative capacity and lipid  Moreover, lipid metabolism provided energy support for sustaining
metabolism regulation. antioxidant and immune functions under mycotoxin stress. The
The differential metabolites common to the four groups were  strong positive correlation observed between AST and oxalureate
2,3-butanediol and hydroxylurine. The production of 2,3-butanediol =~ suggested that mycotoxin-induced oxidative stress in the liver
by intestinal microbes (62) suggested that the intestinal microbiome  promoted purine metabolism, leading to high production of
underwent adaptive changes to counteract mycotoxin-induced stress. ~ oxalureate (66). Furthermore, the positive association between
CANCGA supplementation facilitated adjustments in the gut  AST and nicotinic acid implied that mycotoxin-induced stress
microflora without altering the protective role of 2,3-butanediol. =~ might augment the demand for nicotinic acid to enhance
Hydroxykynurenine, an intermediate in tryptophan metabolism (63), =~ NAD + synthesis, thereby bolstering cellular anti-oxidative
highlighted the tryptophan pathway’s role in sustaining antioxidant  capacity and facilitating liver and tissue resilience against oxidative
capacity and immune function regulated with or without stress (67).
CANCGA intervention. The significant negative correlation between serum anserine and
The level of serum TG was found to be correlated with  AFB, residue in excreta suggested that the anti-oxidative properties of
selenocysteine and methyl selenocysteine, both of which played a  anserine might mitigate oxidative damage induced by AFB,, thereby
role in the selenium metabolism pathway identified through KEGG  reducing its presence in the body (68). Additionally, a significant
enrichment analysis. Previous study demonstrated that negative correlation was observed between creatine level and ZEN
selenocysteine could reduce TG levels (64). This study showed that  residue in excreta. KEGG enrichment analysis revealed that creatine
CANCGA supplementation increased the level of selenocysteine, =~ was involved in metabolic pathways related to glycine, serine,
resulting in low TG levels. Additionally, a significant positive  threonine, arginine and proline metabolisms, all of which occur
correlation was observed between TG and 9-cis-retinol, suggesting  primarily in the liver. Disruption of these pathways due to liver
a link between lipid metabolism and anti-oxidative function. It was ~ damage led to low creatine levels. CANCGA supplementation could
reported that 9-cis-retinol regulated the expression of antioxidant =~ restore the nutrient metabolic disorders induced by
genes, thereby enhancing cellular tolerance to oxidative stress (65).  multi-mycotoxins.
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5 Conclusion

The mortality was increased and growth performance was
decreased when broilers were exposed to both low-dose and high-dose
multi-mycotoxins. However, dietary CANCGA supplementation could
decrease broiler mortality, improve growth performance and nutrient
metabolic rates, and alleviate tissue and organ damages caused by
mycotoxins. CANCGA ameliorated nutrient metabolic disorders
induced by mycotoxins through modulation of pathways involved in
glycine, serine and threonine metabolism, cysteine and methionine
metabolism, selenium complex metabolism as well as linoleic acid
metabolism. This study investigated the role of CANCGA and its
mechanism in mitigating the negative effects of mycotoxins on broilers,
assessed its value and effectiveness as a feed additive in practical
production, and provided an effective mycotoxin mitigation strategy.
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