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Background: Gut microbiota’s role in hypertension is emerging, but systematic 
studies on microbiota-linked dietary indices (DI-GM, BGMS, UGMS) remain 
limited.
Methods: This study leveraged data from the National Health and Nutrition 
Examination Survey (NHANES) database spanning 1999–2020. A cross-sectional 
study design was employed to gather baseline information from 41,193 adult 
participants aged 20 years and older, encompassing sociodemographic 
characteristics and health-related factors. To investigate the associations 
between DI-GM, BGMS, UGMS, and the prevalence of hypertension, weighted 
logistic regression models, restricted cubic spline (RCS) analysis with three knots 
(positioned at the 10, 50, and 90th percentiles of the independent variables), and 
subgroup analyses were performed.
Results: The study findings demonstrate that both DI-GM and BGMS are 
significantly and inversely associated with the prevalence of hypertension. 
Specifically, each one-unit increase in DI-GM was linked to a 4% reduction in 
hypertension risk (OR = 0.96, 95% CI: 0.94–0.98, p  < 0.001), and each one-
unit increase in BGMS was associated with a 5% decrease in hypertension risk 
(OR = 0.95, 95% CI: 0.92–0.97, p < 0.001). Further RCS analysis demonstrated a 
linear relationship between DI-GM and BGMS with hypertension risk. Additionally, 
subgroup analyses stratified by age, gender, BMI, and diabetes status exhibited 
robust results (P for interaction >0.05).
Conclusion: DI-GM and BGMS exhibit significant inverse associations with 
hypertension prevalence, with BGMS displaying a stronger protective effect. No 
significant relationship was identified between UGMS and hypertension.
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Introduction

Hypertension is one of the leading causes of death and disability globally, accounting for 
approximately 9.4 million deaths annually (1, 2). According to existing literature, in 2010, 
approximately 31.1% of the global adult population—equivalent to 1.39 billion individuals—
was affected by hypertension, with the global prevalence of the disease continuing to rise 
steadily (3). Studies have demonstrated that dietary modifications can significantly reduce the 
incidence of hypertension, as the absorption and metabolism of nutrients are substantially 
influenced by the gut microbiota and its metabolites (4). Current evidence indicates that both 
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the composition of the gut microbiota and its associated metabolites 
play a pivotal role in the initiation and progression of cardiovascular 
diseases (5–7). Consequently, the gut microbiome is increasingly 
recognized as a potential target for novel therapeutic strategies aimed 
at preventing and managing hypertension.

Diet represents a critical environmental determinant that 
significantly shapes the compositional profile of the gut microbiota 
(8). In nutritional epidemiology, dietary indices serve as essential tools 
for quantifying dietary patterns (9, 10). Among the most widely used 
indices are the Healthy Eating Index (HEI), the Alternative Healthy 
Eating Index (aHEI), the Mediterranean Diet Score (MDS), and the 
DASH Diet (Dietary Approaches to Stop Hypertension) (11). While 
these indices effectively evaluate the relationship between dietary 
quality and health outcomes, their correlations with gut microbiota 
α/β diversity metrics exhibit heterogeneity (12–14). Unlike traditional 
dietary evaluation indicators (such as HEI, DASH), the Dietary Index 
for Gut Microbiota (DI-GM) systematically assesses the regulatory 
effects of 14 food/nutrient categories (10 beneficial components and 
4 restricted components), enabling quantitative analysis of the health 
status of the gut microbiota.

This study leverages data from the National Health and Nutrition 
Examination Survey (NHANES) spanning 1999–2020, employing a 
cross-sectional study design to investigate the association between the 
dietary index for the microbiota and its components and the risk of 
hypertension. The aim is to provide scientific evidence supporting 
precise nutritional interventions for hypertension management.

Methods

Data source

Data were extracted from the National Health and Nutrition 
Examination Survey (NHANES) database, which annually surveys 
approximately 5,000 individuals nationwide. NHANES conducted 
11 cycles of surveys between 1999 and 2020. NHANES has received 
ethical approval from the CDC’s research ethics review board 
[NHANES 1999–2004: Protocol #98–12; NHANES 2005–2010; 
Protocol #2005–06; NHANES 2011–2020: Protocol #2011–17, 
#2018–01 (Effective beginning October 26, 2017)]. NHANES ensures 
participant rights protection through informed written consent. For 
further details regarding the ethical review and consent procedures of 
NHANES, please refer to https://www.cdc.gov/nchs/nhanes/. The 
inclusion criteria for our study were as follows: adults aged 20 years or 
older with complete data on hypertension and the Dietary Intake 
Index for Gut Microbiota (DI-GM) (see Figure 1). A total of 41,193 
individuals satisfied these criteria and were included in the analysis.

Dietary index for gut microbiota

In this study, the scoring system developed by Kase et al. was 
utilized to calculate the Dietary Index for Gut Microbiota (DI-GM). 
This index is based on 14 food groups or nutrients that serve as 
components of DI-GM. Specifically, fermented dairy products, 
chickpeas, soybeans, whole grains, fiber, cranberries, avocados, 
broccoli, coffee, and green tea are classified as beneficial components, 
whereas red meat, processed meat, refined grains, and high-fat diets 

(≥40% energy derived from fat) are categorized as detrimental 
components. The DI-GM scores were calculated using the 24-h 
dietary recall data collected during the National Health and Nutrition 
Examination Survey (NHANES) in the United States between 1999 
and 2020. For beneficial foods, a score of one is assigned if their intake 
reaches or exceeds the gender-specific median (the gender-specific 
median of the NHANES); otherwise, the score is 0. Conversely, for 
detrimental foods, a score of 0 is assigned if their intake reaches or 
exceeds the gender-specific median (or if fat intake constitutes ≥40% 
of total energy); otherwise, the score is one. The total DI-GM score 
ranges from 0 to 14 points, with beneficial foods contributing up to 10 
points (Beneficial DI-GM, BGMS) and detrimental foods contributing 
up to four points (Detrimental DI-GM, UGMS) (8).

Hypertension

According to the hypertension definition established by NHANES 
(National Health and Nutrition Examination Survey in the 
United States), hypertension is defined as: a self-reported physician 
diagnosis of hypertension, a systolic blood pressure (SBP) of 
≥140 mmHg, a diastolic blood pressure (DBP) of ≥90 mmHg, or 
current use of antihypertensive medication (15).

Covariates

Age and body mass index (BMI) are regarded as continuous 
variables. The gender of the participants is divided into two groups: 
male and female. Racial/ethnic classification includes non-Hispanic 
White, non-Hispanic Black, Mexican Americans, other Hispanics, 
and others. Marital status is classified into two categories: married or 
living with a partner, and unmarried, widowed, divorced or separated. 
Educational background is classified based on the “Adult Education 
Attainment Survey Questionnaire” for people aged 20 and above, 
covering the following categories: not having completed 9 years of 
compulsory education, not obtaining a diploma from nine to 12 years 
of education, graduating from high school or having equivalent 
qualifications, some university education or associate degree, 
graduating from university or higher education. Poverty income ratio 
is classified into low income (<1.30), middle income (1.30–3.49), and 
high income (≥3.50). Smoking status is recorded as never smoking, 
former smoker and current smoker. Drinking situation is classified 
as never drinking, former drinker and current drinker. The assessed 
health status includes cardiovascular diseases (CVD) (present or 
absent), diabetes (present or absent), and hyperlipidemia (present or 
absent). Furthermore, the diagnosis of cardiovascular diseases (CVD) 
was based on self-reported physician diagnoses obtained through 
individual interviews using standardized medical condition 
questionnaires. Participants were asked, “Has a doctor or other health 
professional ever told you  that you have congestive heart failure, 
coronary heart disease, myocardial infarction, or stroke?” An 
affirmative response to any of these conditions was considered as an 
indication of CVD. Hyperlipidemia was diagnosed if any of the 
following criteria were met: (1) current use of lipid-lowering 
medications; (2) elevated triglyceride levels (≥150 mg/dL); or (3) 
high cholesterol levels [total cholesterol ≥200 mg/dL, low-density 
lipoprotein cholesterol (LDL-C) ≥ 130 mg/dL, or high-density 
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lipoprotein cholesterol (HDL-C) < 40 mg/dL]. Diabetes diagnosis 
was determined based on the following criteria: (1) self-reported 
physician diagnosis; (2) glycated hemoglobin (HbA1c) level >6.5%; 
(3) fasting blood glucose ≥7.0 mmol/L; (4) random or 2-h post-load 
glucose level during an oral glucose tolerance test ≥11.1 mmol/L; or 
(5) current use of antidiabetic medications or insulin. For more 
detailed information on the measurement of covariates, please visit 
the NHANES website.1

Statistical analysis

Given the inclusion of hematological variables in our study, 
Mobile Examination Center (MEC) weights were applied. Specifically, 
for the periods 1999–2000 and 2001–2002, the weight calculation 
formula was wtmec4yr × 2 ÷ (11.625); for 2003–2018, it was wtmec2yr 

1  https://www.cdc.gov/nchs/nhanes/index.htm

÷ (11.625); and for 2017–2020, the formula was WTMECPRP × 1.625 
÷ (11.625) (16).

Respondents were categorized into two groups based on their 
hypertension status: the non-hypertension group (No-HTN) and the 
hypertension group (HTN). For continuous variables, data were 
described using weighted means (mean ± standard error), and 
differences between groups were assessed using the Wilcoxon rank-sum 
test tailored for complex survey designs. Categorical variables were 
presented as counts (n) and weighted percentages (%), with analyses 
conducted using the Rao-Scott chi-square test. Additionally, a weighted 
logistic regression model was constructed to examine the associations 
of DI-GM, BGMS, and UGMS with the risk of hypertension. Results 
were reported as odds ratios (ORs) with 95% confidence intervals (CIs). 
Specifically, Model 1 adjusted only for age; Model 2 further adjusted for 
gender, race/ethnicity, poverty-income ratio (PIR), marital status, and 
education level; Model 3 extended Model 2 by incorporating additional 
covariates, including smoking status, alcohol consumption, body mass 
index (BMI), cardiovascular diseases (CVD), hyperlipidemia, and 
diabetes. Based on the compositional analysis of BGMS and UGMS, no 
significant multicollinearity was observed between the two variables. 

FIGURE 1

Flow chart of data filtering.
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In Model 3, when analyzing BGMS (or UGMS), UGMS (or BGMS) was 
included as an additional covariate to account for potential 
confounding. All regression analyses incorporated survey weights, and 
continuous covariates with non-normal distributions were transformed 
using weighted quartile-based methods. To assess the robustness of the 
observed associations, pre-specified weighted subgroup analyses were 
performed, stratified by age, gender, BMI, and diabetes status, with 
interactions between subgroups evaluated using likelihood ratio tests. 
Furthermore, subgroup analyses based on UGMS were conducted for 
BGMS. Nonlinear relationships between DI-GM, BGMS, and UGMS 
with hypertension risk were explored using restricted cubic splines 
(RCS) with power constraints. All statistical analyses were conducted 
using R statistical software (version 4.2.2,2 R Foundation) and the 
WinStat statistical analysis platform (version 2.1, Beijing, China).

Results

Baseline characteristics

This study included a total of 58,744 participants aged 20 years or 
older from the National Health and Nutrition Examination Survey 
(NHANES) database, with data spanning the period from 1999 to 
2020. Among these, 7,045 participants were excluded due to missing 
DI-GM (diet and metabolism-related data). A total of 10,506 
participants were excluded due to incomplete demographic and 
chronic disease-related information, which included 9,032 participants 
excluded for missing data on age, race, marital status, education level, 
poverty income ratio (PIR), smoking, alcohol consumption, or body 
mass index (BMI), as well as an additional 1,204 participants excluded 
due to missing data on specific chronic conditions, including 
hypertension, cardiovascular disease, hyperlipidemia, and diabetes. 
Ultimately, 41,193 participants who met the inclusion criteria were 
enrolled in the study. Figure  1 presents the participant selection 
flowchart. Table 1 summarizes the baseline characteristics of the study 
population. Statistical analyses identified significant differences across 
several variables, including age, race/ethnicity, poverty-income ratio 
(PIR), educational attainment, smoking status, alcohol consumption, 
body mass index (BMI), and the presence of various chronic 
conditions (e.g., cardiovascular disease, hyperlipidemia, and diabetes).

The relationship between DI-GM, BGMS, 
and UGMS and the risk of hypertension

To evaluate the independent association between DI-GM and its 
subgroups (BGMS and UGMS) with the risk of hypertension, 
we constructed a multivariable weighted logistic regression model to 
examine their relationships (see Table 2). Table 2 summarizes the results 
of the multivariable weighted regression analyses for DI-GM, BGMS, 
and UGMS in relation to hypertension. To ensure robustness, 
we sequentially adjusted for potential confounding factors using three 
progressively adjusted models. Specifically, Model 1 included adjustment 
for age only; Model 2 further adjusted for gender, race/ethnicity, 

2  http://www.R-project.org

poverty-income ratio (PIR), marital status, and education level; and 
Model 3 extended Model 2 by incorporating additional covariates, 
including smoking status, alcohol consumption, body mass index 
(BMI), and comorbidities such as cardiovascular disease, hyperlipidemia, 
and diabetes. Additionally, when analyzing the association between 
BGMS (or UGMS) and hypertension risk, UGMS (or BGMS) was 
included as a covariate to account for potential confounding. The results 
indicated that, after adjusting for all potential confounders, both DI-GM 
and BGMS levels were significantly and inversely associated with the 
risk of hypertension. Specifically, each one-unit increase in DI-GM was 
associated with a 4% reduction in hypertension risk (OR = 0.96, 95% CI: 
0.94–0.98, p < 0.001), while each one-unit increase in BGMS was linked 
to a 5% decrease in hypertension risk (OR = 0.95, 95% CI: 0.92–0.97, 
p < 0.001). Notably, the protective effect of BGMS appeared slightly 
stronger than that of DI-GM, as reflected by the lower odds ratio. In 
contrast, no statistically significant association was found between 
UGMS levels and the risk of hypertension (p = 0.249).

Analysis of the dose–response relationship 
between DI-GM, BGMS, and UGMS and 
hypertension

The dose–response relationship between DI-GM and its 
subgroups (BGMS and UGMS) and the risk of hypertension was 
systematically assessed using multivariable-adjusted restricted cubic 
spline (RCS) analysis (see Figure  2). The results demonstrated a 
significant linear association, with an inverse trend observed between 
DI-GM levels and the risk of hypertension (overall p  = 0.001). 
Similarly, for the subgroup BGMS, a significant negative linear 
relationship was identified, indicating that as BGMS levels increased, 
the risk of hypertension significantly decreased (overall p < 0.001). In 
contrast, no significant dose–response relationship was observed 
between UGMS levels and the risk of hypertension (overall p > 0.05).

Subgroup analysis of DI-GM, BGMS, and 
the risk of hypertension

Subgroup analyses were performed to evaluate whether the 
associations of DI-GM and BGMS with hypertension were modified 
by specific factors (see Figure  3). After adjusting for potential 
confounding variables, stratified analyses were conducted across age 
groups (<35 years and ≥35 years), gender, BMI categories (<24 and 
≥24), and diabetes status (present or absent). The results indicated that 
the protective effects of DI-GM and BGMS remained consistent across 
all subgroups, with no statistically significant interactions observed (all 
interaction p > 0.05). Additionally, in the subgroup analysis for BGMS, 
further stratification by UGMS was included, with UGMS categorized 
into two groups based on its score (≤1 and >1). The findings indicated 
that in the subgroup with a UGMS score of ≤1, the association between 
BGMS and hypertension risk was not statistically significant (p > 0.05).

Discussion

This study, utilizing data from the National Health and Nutrition 
Examination Survey (NHANES) conducted in the United  States 
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TABLE 1  The weighted fundamental clinical characteristics of participants in the hypertension and non-hypertension groups.

Characteristic Overall, 
N = 156,805,661 

n = 41,193

No-HTN, 
N = 98,462,249 

n = 23,584

HTN, 
N = 58,343,411 N = 17,609

p

Age, mean (SE), 47.00 (0.20) 41.28 (0.19) 56.64 (0.22) <0.001

Sex, n (%) 0.29

 � Male 20,688 (49.25%) 11,851 (49.01%) 8,837 (49.65%)

 � Female 20,505 (50.75%) 11,733 (50.99%) 8,772 (50.35%)

Race, n (%) <0.001

 � Non-Hispanic White 19,138 (70.62%) 10,782 (69.62%) 8,356 (72.31%)

 � Non-Hispanic Black 8,628 (10.39%) 4,142 (8.99%) 4,486 (12.76%)

 � Mexican American 6,761 (7.54%) 4,379 (8.91%) 2,382 (5.23%)

 � Other Hispanic 3,243 (5.24%) 2,018 (5.89%) 1,225 (4.15%)

 � Other race 3,423 (6.20%) 2,263 (6.59%) 1,160 (5.55%)

Marry, n (%) 0.17

 � Married/living with partner 24,801 (64.13%) 14,398 (63.80%) 10,403 (64.70%)

 � Never married/Other 16,392 (35.87%) 9,186 (36.20%) 7,206 (35.30%)

PIR_group, n (%) <0.001

 � Low income 12,258 (20.21%) 6,832 (19.90%) 5,426 (20.75%)

 � Middle income 15,644 (35.58%) 8,735 (34.55%) 6,909 (37.31%)

 � High income 13,291 (44.21%) 8,017 (45.55%) 5,274 (41.94%)

Education, n (%) <0.001

 � Less than 9th grade 4,321 (4.97%) 2,039 (4.13%) 2,282 (6.39%)

 � 9-11th Grade 5,822 (10.51%) 3,103 (9.65%) 2,719 (11.95%)

 � High school grad/GED or equivalent 9,590 (24.02%) 5,219 (22.49%) 4,371 (26.61%)

 � Some college or AA degree 12,133 (31.50%) 7,177 (31.59%) 4,956 (31.34%)

 � College graduate or above 9,327 (28.99%) 6,046 (32.13%) 3,281 (23.70%)

Smoke, n (%) <0.001

 � Never 22,044 (53.59%) 13,353 (56.22%) 8,691 (49.14%)

 � Former 10,413 (25.23%) 4,814 (21.17%) 5,599 (32.09%)

 � Now 8,736 (21.19%) 5,417 (22.62%) 3,319 (18.77%)

Drink1, n(%) <0.001

 � Never 5,552 (10.69%) 2,929 (9.97%) 2,623 (11.91%)

 � Former 6,902 (13.56%) 2,982 (10.63%) 3,920 (18.52%)

 � Current 28,739 (75.75%) 17,673 (79.41%) 11,066 (69.57%)

BMI (kg.m2), mean (SE) 28.88 (0.06) 27.68 (0.07) 30.91 (0.08) <0.001

CVD, n (%) <0.001

 � No 36,602 (91.34%) 22,549 (96.40%) 14,053 (82.82%)

 � Yes 4,591 (8.66%) 1,035 (3.60%) 3,556 (17.18%)

Hyperlipidemia, n (%) <0.001

 � No 12,441 (31.01%) 8,844 (37.89%) 3,597 (19.40%)

 � Yes 28,752 (68.99%) 14,740 (62.11%) 14,012 (80.60%)

DM, n (%) <0.001

 � No 34,104 (87.28%) 21,586 (93.92%) 12,518 (76.07%)

 � Yes 7,089 (12.72%) 1,998 (6.08%) 5,091 (23.93%)

DI-GM, mean (SE) 4.53 (0.02) 4.53 (0.02) 4.54 (0.02) 0.39

BGMS, mean (SE) 2.22 (0.01) 2.22 (0.02) 2.22 (0.02) 0.72

UGMS, mean (SE) 2.31 (0.01) 2.30 (0.01) 2.32 (0.01) 0.13

N represents the weighted count to reflect the population distribution, while n represents the unweighted actual sample size count. BGMS, beneficial gut microbiota score; BMI, body mass 
index; CVD, cardiovascular disease; DI-GM, dietary index for gut microbiota; DM, diabetes mellitus; HTN, hypertension; PIR, poverty income ratio; SD, standard deviation; UGMS, 
unfavorable gut microbiota score.
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TABLE 2  Relationship between DI-GM and the risk of hypertension.

Characteristics Crude model Model 1 Model 2 Model 3

OR (95% CI) P-value
OR 

(95% CI)
P-value

OR 
(95% CI)

P-value
OR 

(95% CI)
P-value

DI-GM 1 (0.98, 1.02) 0.689 0.89 (0.87, 0.90) <0.001 0.92 (0.90, 0.94) <0.001 0.96 (0.94, 0.98) <0.001

BGMS 0.99 (0.97, 1.02) 0.587 0.87 (0.85, 0.89) <0.001 0.93 (0.91, 0.95) <0.001 0.95 (0.92, 0.97) <0.001

UGMS 1.02 (0.99, 1.05) 0.204 0.93 (0.91, 0.96) <0.001 0.94 (0.91, 0.97) <0.001 0.98 (0.95, 1.01) 0.249

DI-GM, Dietary Index of Gut Microbiota; OR, Odds Ratio (OR <1 indicates protective effect); CI, Confidence Interval; PIR, Poverty Income Ratio. Adjusted variables: Model 1 included age. 
Model 2 adjusted for age, gender, race, PIR, marital status, and education. Model 3 extended Model 2 by incorporating smoking status, alcohol consumption, body mass index (BMI), 
cardiovascular disease, hyperlipidemia, and diabetes. In Model 3, UGMS was included as a covariate when analyzing BGMS, and BGMS was included as a covariate when analyzing UGMS.

FIGURE 2

Restricted cubic spline plots depicting the additive interaction between DI-GM (A), BGMS (B), UGMS (C) and hypertension.

between 1999 and 2020, employed a cross-sectional research design 
to systematically evaluate the associations of the Dietary Index for Gut 
Microbiota (DI-GM), its beneficial component (Beneficial Gut 
Microbiota Score, BGMS), and its unfavorable component 
(Unfavorable Gut Microbiota Score, UGMS) with the risk of 
hypertension. After adjusting for demographic characteristics (age, 
gender, race/ethnicity), socioeconomic factors (poverty-income ratio, 
marital status, education level), lifestyle behaviors (smoking, alcohol 
consumption), and metabolic-related indicators [body mass index 
(BMI), history of cardiovascular disease, hyperlipidemia, and diabetes 
mellitus] using a multivariable logistic regression model, it was found 
that each one-unit increase in the DI-GM score was associated with a 
significant 4% reduction in the risk of hypertension (OR = 0.96, 95% 
CI: 0.94–0.98, p  < 0.001). Similarly, each one-unit increase in the 
BGMS score was associated with a 5% decrease in the risk of 
hypertension (OR = 0.95, 95% CI: 0.92–0.97, p  < 0.001). These 
findings suggest that both DI-GM and BGMS exert clear protective 
effects against hypertension, with BGMS, as the core component of 
DI-GM, demonstrating a stronger independent protective effect. In 
contrast, no statistically significant association was observed between 
UGMS and the risk of hypertension (p > 0.05). Further subgroup 
analysis revealed that among individuals with a UGMS score ≤1, the 
protective effect of BGMS was attenuated by the influence of the 
UGMS dietary pattern, resulting in a relatively higher risk of 

hypertension. These results suggest that even when adhering to the 
BGMS dietary pattern, failure to adequately control the intake of 
harmful components—such as red meat, processed meat, refined 
grains, and high-fat diets (with a fat energy ratio ≥40%)—may still 
contribute to an elevated risk of hypertension. The results of this study 
not only confirm the value of the overall DI-GM score and the BGMS 
component in hypertension prevention but also highlight the complex 
interplay between dietary patterns and gut microbiota, providing new 
insights for precision nutritional interventions.

To the best of our knowledge, this study represents the first 
systematic investigation into the association between the dietary index 
for gut microbiota (DI-GM) and the risk of hypertension. Current 
evidence suggests that the pathophysiology of hypertension involves 
intricate interactions between genetic predispositions and environmental 
influences. However, genome-wide association studies (GWAS) indicate 
that genetic factors account for less than 5% of the variance in 
hypertension incidence (17). Conversely, modifiable lifestyle factors exert 
a more pronounced influence on blood pressure regulation. For example, 
changes in body mass index (BMI) and sodium intake can lead to 
approximate fluctuations of 5 mmHg in blood pressure levels (18). In 
terms of dietary determinants, extensive prospective cohort studies have 
demonstrated that dietary patterns rich in fruits and vegetables, with 
restricted consumption of sweets and refined grains, and prioritizing 
healthy fats and proteins, are associated with a significant reduction in 
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hypertension risk. Notably, both the Mediterranean diet and the DASH 
(Dietary Approaches to Stop Hypertension) diet, renowned for their 
antihypertensive properties, have been extensively validated (19–21). The 
Mediterranean diet confers cardiovascular protection by enhancing the 
production of short-chain fatty acids (SCFAs), with its core 
components—predominantly plant-based foods supplemented with 
olive oil, moderate amounts of poultry and fish, and limited red meat—
proven to effectively mitigate hypertension risk (22). This study 
specifically highlights the potential utility of the DI-GM score, which 
exhibits a robust positive correlation with the classical Mediterranean 
Diet Score (MDS) (r = 0.42, p < 0.0001) (23). These findings suggest that 
the DI-GM score, grounded in gut microbiota characteristics, may serve 
as a novel quantitative metric and intervention target for dietary 
strategies aimed at preventing hypertension.

Extensive research has demonstrated that dietary nutrient intake 
exerts a significant regulatory influence on the structure and 
functional activity of trillions of microorganisms residing in the 
human gut (24–28). A prospective cohort study conducted in the 
Chinese population revealed that, compared to healthy controls, 
patients with hypertension exhibited a marked reduction in intestinal 
microbiota diversity (29). Of greater significance, animal experiments 
utilizing fecal microbiota transplantation technology have provided 
direct evidence of the causal relationship between the intestinal 
microbiota and hypertension: when the intestinal microbiota from 
spontaneously hypertensive rats (SHRSP) was transplanted into 
normotensive Wistar-Kyoto (WKY) rats, the recipient rats displayed 
a substantial increase in blood pressure (30). Current evidence 
highlights significant differences in the composition of intestinal 
microbiota between hypertensive patients and healthy individuals. 
These differences are primarily characterized by: (1) a reduced 
abundance of short-chain fatty acid (SCFA)-producing bacteria, such 
as Roseburia and Faecalibacterium; and (2) an increased relative 
abundance of Gram-negative bacteria (5). Mechanistically, SCFAs, as 
key metabolites derived from the fermentation of dietary fiber by gut 
microbiota, regulate blood pressure via the “gut-vascular axis.” 
Specifically, after absorption into the circulatory system, SCFAs 
activate host receptors such as Olfr78 and Gpr41, thereby modulating 

blood pressure homeostasis through the regulation of renin secretion 
and vascular tone (31, 32). Conversely, lipopolysaccharide (LPS), a 
major component of the cell wall of Gram-negative bacteria and a 
potent endotoxin, may contribute to the development of hypertension 
through multiple pathophysiological mechanisms, including systemic 
inflammation, activation of the sympathetic nervous system, and 
neuroinflammation induction (5). In this study, the DI-GM scoring 
system was developed based on rigorous scientific evidence, with its 
components selected for their regulatory effects on intestinal 
microbiota diversity, SCFA production capacity, and the abundance 
of specific beneficial bacterial taxa (8).

Aging is a major independent risk factor for the development of 
hypertension. Epidemiological data from the Framingham Heart Study 
in the United States indicate that individuals aged 55–65 have a lifetime 
risk of developing hypertension as high as 90%. Among those aged 
65–89, 87% of men and 93% of women with hypertension exhibit 
isolated systolic hypertension (33). Baseline analyses reveal that 
without adjustment for confounding factors such as age, the 
associations between DI-GM, BGMS, and UGMS and hypertension do 
not achieve statistical significance. However, in the multivariate 
weighted logistic regression model (Model 1), after adjusting solely for 
age, DI-GM and BGMS demonstrate significant statistical associations 
with hypertension (p < 0.001). Further subgroup analyses show that 
regardless of whether groups are divided at the age boundary of 35 
(<35 years vs. ≥35 years), DI-GM and BGMS exhibit significant 
protective effects against hypertension.

The significant findings of this study not only enhance our 
understanding of the interaction mechanism among diet, gut 
microbiota, and hypertension but also represent a critical 
breakthrough in translating basic research into clinical application. 
The quantitative assessment tool and well-defined intervention targets 
developed in this study provide a robust scientific foundation for 
transforming hypertension prevention and control models, facilitating 
a transition from traditional “disease treatment” approaches to more 
advanced “health maintenance” strategies.

However, this study also has several limitations that warrant 
consideration. First, the cross-sectional design of the National Health and 

FIGURE 3

Forest plot of weighted subgroup analysis examining the association between DI-GM (A), BGMS (B), and hypertension.
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Nutrition Examination Survey (NHANES) database precludes the 
establishment of a definitive causal relationship. Future prospective 
cohort studies are needed to validate the temporal associations observed. 
Second, the DI-GM index is constructed based on intake data for 14 
specific dietary components; any missing data for these components 
results in sample exclusion, which may introduce potential selection bias 
during the screening process. Furthermore, despite rigorous adjustment 
for multiple known confounding factors, residual confounding effects and 
the influence of unmeasured factors (e.g., genetic background) cannot 
be entirely ruled out. Finally, the reliance on self-reported dietary intake 
data and covariate information may introduce issues such as recall bias.

Conclusion

This study found a significant negative correlation between the 
dietary index of gut microbiota (DI-GM) and the risk of hypertension 
in adults over 20 years old. Among them, the protective effect of the 
dietary score of beneficial gut microbiota (BGMS) was more 
significant. These findings highlight the potential of diet intervention 
measures focusing on gut microbiota as a promising strategy for 
preventing hypertension.
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