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Common genetic polymorphisms 
define one-carbon metabolite 
responses to different forms of 
choline in healthy adult males
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1Department of Human Health Sciences, University of Guelph, Guelph, ON, Canada, 2Department of 
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Background: Responsiveness to nutrients can be determined by many types of 
variations, such as single-nucleotide polymorphisms (SNPs). Choline is an essential 
nutrient critical for proper organ function and exists in different forms, such as free 
choline or as derivatives, including phosphatidylcholine (PC). Although genetic 
variations in genes encoding enzymes that influence choline metabolism have 
been identified, little is known regarding individual responses to free choline and 
PC in relation to SNPs. Here, we determined the effect of different forms of choline, 
genotype, and their interaction on one-carbon metabolite concentrations in urine, 
which has utility in capturing the overall change in choline metabolism.
Methods: A randomized, double-blinded, crossover study was conducted in healthy 
adult males (n = 37) who were provided with a standardized meal containing 
600 mg choline, either as choline bitartrate (CB) or PC, or no choline (NC). Urine was 
collected at study baseline and pooled throughout the 6-h study duration. Choline 
dehydrogenase (CHDH) rs12676, betaine-homocysteine S-methyltransferase (BHMT) 
rs3733890, choline kinase alpha (CHKA) rs10791957, and phosphatidylethanolamine 
N-methyltransferase (PEMT) rs4646343 were genotyped.
Results: There was a main treatment effect for urinary choline change from 
baseline, reflective of differences in absorption by free choline versus PC 
(p < 0.01). A reduction in responsiveness to CB was found with genetic variation 
in CHDH rs12676, manifested as lower choline oxidation (p < 0.05), and 
downstream pathways in the methionine cycle (p < 0.01), whereas a reduction 
in responsiveness to PC occurred with genetic variation in BHMT rs3733890 
(p < 0.05). Genetic variations in CHKA rs10791957 and PEMT rs4646343 reflected 
differences in the partitioning of choline in response to CB and PC (p < 0.01). 
Multivariate analysis showed that groups with an accumulated number of effect 
alleles across all SNPs have contrasting responses to CB and PC that deviate 
from the patterns derived from treatment effect alone (p < 0.05).
Conclusion: Unique metabolite signatures in one-carbon metabolism arise in 
response to supplemental intake of different forms of choline, driven by genetic 
variations that regulate choline homeostasis. Our findings highlight the importance 
of nutrient–gene interactions in deciphering the complexity of individual metabolic 
responses, supporting the emerging concept of precision nutrition.
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1 Introduction

Current dietary recommendations are predominantly centered on 
a “one-size-fits-all” approach, but they ignore the fundamental 
principle that responses to nutrients and their requirements are highly 
individualistic (1). Precision nutrition, often grouped with 
personalized nutrition, is an emerging field that considers the sources 
of metabolic variations to help target specific treatments for specific 
groups of individuals for optimal health (2). There are many inputs 
that contribute to metabolic differences at the individual level, such as 
genetic, epigenetic, gut microbiome, and lifestyle factors (3). Among 
these, genetic variations have been studied extensively, particularly 
single-nucleotide polymorphisms (SNPs) (2, 4), which are single base-
pair substitutions in genes that can alter enzyme function and 
influence nutrient metabolism.

SNPs can modulate metabolic pathways through gene–nutrient 
interactions, offering valuable insights into individualized dietary 
requirements and the biological diversity of nutrient responses (5). 
Choline serves as a key example in which metabolic pathways are 
under the regulation of SNPs. As a precursor for several biomolecules, 
choline exerts a wide range of biological effects, such as cholinergic 
neurotransmission, cell membrane composition and signaling, lipid 
transport, and the provision of methyl groups within the 
interconnected biochemical network of pathways called one-carbon 
metabolism (6–8). Various functional SNPs in genes encoding 
enzymes involved in choline metabolism have been identified, 
indicating their impact on choline homeostasis (9, 10) (Figure 1).

In one route, choline is irreversibly oxidized to betaine via choline 
dehydrogenase (CHDH) and betaine aldehyde dehydrogenase. 
Betaine then donates a methyl group to homocysteine to form 
methionine via betaine:homocysteine methyltransferase (BHMT), 
and, in turn, is converted to dimethylglycine. Methionine is used for 
the biosynthesis of S-adenosylmethionine, a universal methyl donor 
for various acceptor molecules, including DNA, phospholipids, and 
proteins, and is subsequently converted to S-adenosylhomocysteine 
(11). CHDH rs12676 (A → C) is suggested to reduce the activity of 
CHDH, potentially limiting betaine production and impairing methyl 
group availability (12). BHMT rs3733890 (G → A) affects the methyl 
transfer from betaine to homocysteine, with the A allele associated 
with reduced methylation capacity (13).

In a separate pathway, choline is phosphorylated via the cytidine 
diphosphate (CDP)-choline pathway to synthesize 
phosphatidylcholine (PC), with choline kinase A (CHKA) as the first 
enzyme in the pathway (14). Additionally, the de novo pathway via 
phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes the 
sequential methylation of phosphatidylethanolamine using 
S-adenosylmethionine-derived methyl groups to synthesize PC, which 
can be converted to choline (15, 16). CHKA rs10791957 (C → A) 
contributes to the modulation of PC homeostasis, in which the A allele 
has been shown to direct more dietary choline to the CDP–choline 
pathway relative to the PEMT pathway (10). PEMT rs4646343 

(G → T) influences the activity of PEMT, with the T allele associated 
with lower endogenous PC production (17).

Although the endogenous production of choline is possible 
in humans, this amount is insufficient to meet physiological 
demands and therefore must be obtained through diet (18). The 
Institute of Medicine (now the National Academy of Medicine) 
in the United States established the adequate intake (AI) for 
choline at 550 mg/day for men and 425 mg/day for women (19), 
whereas the European Food Safety Authority set the AI at 
400 mg/day for adults (20). However, choline intake has been 
reported to be insufficient for various population groups globally, 
with the average choline intake among adults estimated to be 
293 mg/day (non-European countries) and 310 mg/day 
(European countries) (21). In light of this gap, recent discussions 
have emphasized the potential need for additional intake of 
choline through diet or supplementation to achieve the AI 
recommendations (22, 23).

Dietary choline exists in multiple forms, including free 
choline and PC, each with distinct absorption and metabolic 
profiles (24). Free choline is rapidly absorbed in the small 
intestine by enterocytes via a carrier-mediated transport process 
(25). In contrast, PC requires a series of hydrolysis in the 
intestinal lumen by pancreatic phospholipase A2 to produce 
lysophosphatidylcholine, which can be taken up by enterocytes, 
resynthesized into PC, and incorporated into chylomicrons for 
transport through the lymphatic system or further be hydrolyzed 
to glycerophosphocholine, and ultimately to glycerophosphate 
and free choline (26). Thus, these differences suggest that free 
choline is more rapidly absorbed than PC and may have 
distinctive effects on subproducts of choline, including those in 
one-carbon metabolism. Building upon this, our recent focus was 
on the metabolic differences between choline forms (27), with an 

FIGURE 1

A simplified schematic of metabolic pathways with a focus on 
enzymes that influence choline metabolism. The single nucleotide 
polymorphisms under investigation were choline dehydrogenase 
(CHDH) rs12676, betaine:homocysteine methyltransferase (BHMT) 
rs3733890, choline kinase A (CHKA) rs10791957, and 
phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343. 
HCY, homocysteine; MET: methionine; SAM: S-adenosylmethionine; 
SAH: S-adenosylhomocysteine; PE: phosphatidylethanolamine; PC: 
phosphatidylcholine.

Abbreviations: ASCA, analysis of variance simultaneous component analysis; 

CHDH, choline dehydrogenase; BHMT, betaine:homocysteine methyltransferase; 

PEMT, phosphatidylethanolamine N-methyltransferase; CHKA, choline kinase A; 

CB, choline bitartrate; PC, phosphatidylcholine; NC, no choline; PCA, principal 

component analysis.
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initial series of studies investigating the impact of choline intake 
on the production of gut microbiota-associated metabolites (28, 
30). However, the role of genetic variation in modulating 
individual responses to free choline versus PC, particularly in the 
context of one-carbon metabolism, remains poorly understood. 
Further, gene–nutrient interactions are often examined in 
isolation, limiting their capacity to reflect the full complexity of 
these relationships. To fully incorporate the interplay among 
multiple SNPs, advanced multivariate modeling, such as principal 
component analysis and permutation testing, can help  
refine subgroup classifications and inform precision 
nutrition strategies.

Thus, this current study represents the first to determine 
genotype-specific effects of choline form on one-carbon metabolism 
using both individual SNP and multivariate analysis. Through this 
framework, we were able to assess not only the isolated impact of 
each SNP but also its combined influence on metabolic outcomes, 
offering an integrative view of gene–nutrient interactions. We 
targeted four functional SNPs (CHDH rs12676, BHMT rs3733890, 
CHKA rs10791957, and PEMT rs4646343), each representing a 
regulatory point in choline oxidation, methylation (via betaine), 
phosphorylation, and synthesis of the choline moiety (10). Using a 
randomized double-blinded crossover study design that provided 
free choline versus PC, compared to a no choline (NC) control, we 
measured changes in metabolite concentrations pooled over a 6-h 
study period. This approach has the utility in capturing the average 
rather than different parts of kinetics and serves as a sensitive marker 
of response variables in one-carbon metabolism. We hypothesized 
that responsiveness to free choline versus PC is diminished by SNPs 
in genes encoding key enzymes in one-carbon metabolism, with 
genotype-dependent differences that classify distinct metabolic 
subgroups. The objective of this research was to determine the effect 
of choline form, genotype, and their interaction on metabolite 
signatures of one-carbon metabolism.

2 Materials and methods

2.1 Study design and participants

This study was a post hoc analysis from a parent trial (27) with 
a revised sample size calculation of n = 37, providing 80% power to 
detect a 10% difference in choline-derived metabolite concentrations 
across three groups using a repeated measures design accounting 
for a 10% anticipated dropout rate. However, because the parent 
trial was not originally designed to assess genotype effects, our 
analyses contained, as expected, unequal genotype distributions 
and necessitated pooled comparisons, specifically grouping 
individuals with none or one copy of the variant allele versus 
individuals with two copies of the variant allele. We estimated that 
n = 10 per genotype group would provide 80% power to detect at 
least a 12% difference in choline concentration on the basis of a 
within-group variance of 1.1 and α = 0.05. Healthy adult males 
(n = 37) consumed 600 mg choline either as choline bitartrate (CB; 
Balchem, Montvale, NJ, USA) or as PC (Alcolec 40P; American 
Lecithin Company, Oxford, CT, USA), or NC in controls in a 
randomized, crossover study (27) (Figure 2). Each meal was 
administered within a single day with a 1-week washout break. 
Participants were free-living, without any chronic diseases, and had 
not taken probiotics, prebiotics, or antibiotics for 2 months leading 
up to the start of the study.

For each study session, participants arrived after a 10-h overnight 
fast, and a baseline blood sample was drawn by a phlebotomist using 
venipuncture. Participants were asked to collect their baseline urine 
in a wide-mouth specimen container (Thermo Fisher Scientific, 
Wilmington, DE, USA). Then a study meal was provided, either a 
choline supplement powder or no powder, which was mixed into one 
cup (237 mL) of tomato soup and served with a bagel with margarine–
butter spread and one cup of water. Participants consumed the study 
meal within a 15-min duration. Following the meal consumption, 

FIGURE 2

A diagram of the study design in which participants (n = 37) were randomized and double-blinded to receive a standardized meal containing 600 mg 
choline either as choline bitartrate (CB) or phosphatidylcholine (PC), or no choline (NC) control, with a 1-week washout break in between. For each 
study session, participants arrived after a 10-h overnight fast. Fasting blood at the first study baseline was used to isolate the buffy coat for genotyping. 
Urine was collected at study baseline and throughout the 6-h study period for quantification of one-carbon metabolites.
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participants were asked to collect their urine in a wide-mouth 
polyethylene bottle (Nalgene) throughout the 6-h study period. At 
4.5 h, a fixed snack (apple sauce) and water were provided. During 
each study session, participants refrained from consuming food or 
beverages outside those provided by study personnel.

Participants and study personnel, including those who analyzed 
the samples, were blinded from the order of the meal. Participants 
were recruited from Logan, UT, USA, and the surrounding areas. 
Written informed consent was obtained from each participant in the 
study. The experimental procedures were approved by the Institutional 
Review Board at Utah State University, and the study was registered 
with clinicaltrials.gov (NCT04255368). Sample analyses were 
conducted at the University of Guelph.

2.2 Study design justification

The chosen dose of 600 mg/day is within the physiologically 
relevant range and well below the Tolerable Upper Intake Level of 
3,500 mg/day (19). A single meal ingestion employed in this study is 
advantageous in capturing the acute metabolic response, coupled with 
a crossover design that serves to minimize unaccounted differences in 
personal characteristics in a parallel arm design. The larger study was 
intended to include adult males and females as well as two distinctive 
categories of BMI to examine the effect of sex and BMI on metabolite 
responses, but there was an insufficient number of females and a 
higher BMI category, leading to a post hoc analysis that included only 
males and pooled samples of all BMI categories.

2.3 Sample collection

Baseline venous blood samples were collected in EDTA tubes, 
placed on ice and then centrifuged at 2,000×g at 4 °C for 10 min. The 
buffy coat layer was isolated and transferred into cryogenic tubes 
containing DMSO and then mixed by inversion. Baseline and 6-h 
study urine in collection containers were kept on ice, gently mixed, 
and then transferred into cryogenic tubes. All aliquoted samples were 
immediately stored at −80 °C until further use.

2.4 Urinary choline, betaine, 
dimethylglycine, and methionine 
concentrations

Liquid chromatography tandem mass spectrometry (LC–MS/MS) 
was used to quantify urinary concentrations of free choline, betaine, 
dimethylglycine, and methionine, as previously described (29) with 
modifications (30, 31). Choline was measured separately using a 
Surveyor HPLC system (Thermo Fisher Scientific) interfaced with a 
TSQ Quantum Ultra Mass Spectrometer (Thermo Fisher Scientific). 
Betaine, dimethylglycine, and methionine were measured using a 
UHPLC Thermo Ultimate 3000 (Thermo Fisher Scientific) coupled to 
an EVOQ Qube Triple Quadrupole Mass Spectrometer (Bruker 
Daltonics, Bremen, Germany). The mass spectrometer was operated 
using electrospray ionization in positive ion mode.

Sample preparation was performed by mixing 50 μL of urine with 
100 μL of acetonitrile, 0.1% (v/v) formic acid, and isotope-labeled internal 

standards, including d13-choline (D-5185; CDN Isotopes, Pointe-Claire, 
QC, Canada) or with d3-betaine (D-6303; CDN Isotopes), 
d3-dimethylglycine (D-7024; CDN Isotopes), and 13C-methionine 
(A39248; Thermo Fisher Scientific). The mixture was vortexed and 
centrifuged at maximum speed for 5 min. The resulting supernatant was 
transferred to glass vials with disposable inserts and then diluted 1:1 with 
a solution of water:acetonitrile:formic acid in a ratio of 1:1:0.0005.

A 10 μL aliquot of the supernatant was injected onto a Prevail 
Silica analytic column (150 × 2.1 mm, 5 μm particle size; Grace, 
Columbia, MD, USA) with a matching guard column. The mobile 
phase consisted of 81% acetonitrile and 19% 15 mmol/L ammonium 
formate with 0.1% (v/v) formic acid. The flow rate was maintained at 
500 μL/min, with the column and autosampler temperatures set at 
25 °C and 5 °C, respectively. Calibration curves were constructed by 
diluting known concentrations of choline, betaine, dimethylglycine, 
and methionine in water.

The parent ion/daughter ion fragments were monitored in 
multiple-reaction monitoring mode to detect the following transitions: 
m/z 104.2 to 60.2 for choline, m/z 117.2 to 69.2 for d13-choline; m/z 
118.2 to 58.4 for betaine, m/z 121.2 to 61.4 for d3-betaine; m/z 104.2 
to 58.4 for dimethylglycine, m/z 107.2 to 61.4 for d3-dimethylglycine; 
and m/z 150.1 to 104.1 for methionine, m/z 151.1 to 105.1 for 
13C-methionine. The intra- and inter-assay percent coefficients of 
variation were 4% and 6% for choline, 3% and 4% for betaine, 5% and 
6% for dimethylglycine, and 3% and 6% for methionine, respectively. 
The data were acquired using XCalibur software (Thermo Fisher 
Scientific) for choline measurements, and Compass HyStar (Bruker 
Daltonics) for betaine, dimethylglycine, and methionine.

2.5 Urinary creatinine determination

Creatinine concentrations in urine were measured using a 
Creatinine (urinary) Colorimetric Assay Kit (#500701; Cayman 
Chemical; Ann Arbor, MI, USA) based on the Jaffe reaction that 
involves alkaline picrate treatment. The corrected absorbance was 
derived from the initial and final absorbance before and after 
acidification at 500 nm using an Azure Ao Microplate Reader AC3000 
(Azure Biosystems, Dublin, CA, USA). Creatinine concentrations 
were calculated using the linear regression of the standard curve by 
substituting corrected absorbance and were used to adjust urinary 
one-carbon metabolite concentrations.

2.6 End-point genotyping

Genomic DNA was isolated from the buffy coat of blood samples 
at study baseline using the DNeasy Tissue kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s protocol. The quantity and 
quality of genomic DNA samples were measured using an Epoch 
Spectrophotometer (Agilent BioTek, Santa Clara, CA, USA). PCR 
reactions composed of 20 ng DNA, and TaqMan SNP Genotyping 
Assay Mix (Thermo Fisher Scientific) and TaqMan Genotyping 
Master Mix (Thermo Fisher Scientific) were performed using 
Endpoint Genotyping on an Applied Biosystems QuantStudio 7 
System (Thermo Fisher Scientific) in the Advanced Analysis Centre 
Genomics Core at the University of Guelph. The chosen markers 
CHDH rs12676, BHMT rs3733890, CHKA rs10791957, and PEMT 
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rs4646343 represent functional variants that are known to influence 
choline homeostasis and are listed in Supplementary Table 1. All 
samples were run in duplicate reactions with in-run standards and 
negative water controls with the following conditions: 95 °C for 
10 min, followed by 40 cycles of 95 °C for 15 s, and 60 °C for 1 min. 
Pre- and post-PCR reads were analyzed using Design & Analysis 
Software 2 version 2.7.0 (Thermo Fisher Scientific).

2.7 Statistical analysis

SAS Version 9.4 (SAS Institute Inc., Cary, NC, USA) and 
MetaboAnalyst 6.0 (32) were used to analyze the data. A Χ2 test was 
used to assess whether genotype frequencies were in Hardy–Weinberg 
equilibrium (33). Normality and homogeneity of the data were 
examined using the Shapiro–Wilk test and Levene’s test, respectively, 
and Q-Q plots were used for visual inspection. Each metabolite was 
expressed as a change from baseline, where the concentration values 
of pooled urine throughout the 6-h study period were subtracted from 
the study baseline at 0 min. A mixed model was employed using 
PROC MIXED with treatment, genotype, and their interaction terms, 
followed by post hoc pairwise comparisons adjusted using the Tukey–
Kramer method. The subject was treated as a random effect.

Multiple types of variation are expected to arise with each 
experimental factor (34), as this was a multifactor study. Thus, a 
multivariate analysis approach is considered valuable when it reduces 
complex patterns into components, from which the proportion of the 
total variation explained by each experimental factor can be identified 
(35). To investigate the combined effects of SNPs as their overall 
contribution, SNPs were coded as 0, 1, or 2, representing the number 
of variant alleles (0 having no copy of the SNP; 1 having one copy of 
the SNP; and 2 having two copies of the SNP). Given the exploratory 
nature of our study and the potential for multiple SNPs to exert graded 
effects on choline metabolism, we prioritized the additive genotype 
model as a biologically plausible question. While dominant and 
recessive models can offer increased power under specific assumptions 
in genetics, they may impose constraints that obscure intermediate 
effects derived from heterozygosity. Thus, we coded genotype 
information as 0-1-2 based on its ability to preserve allelic dosage 
information, which aligns with our mechanistic interest in gene–
nutrient interactions. Thus, a polygenic score was derived by summing 
the number of copies of the SNP for all four genotypes of interest. The 
relative frequency of individuals in different bins of polygenic score 
was expressed as a histogram.

The metabolite data were log-transformed and range-scaled 
(mean-centered and divided by the range of each variable) for 
multivariate analysis. Principal component analysis (PCA) was 
conducted, in which data matrices were visualized in two-dimensional 
scatter plots of samples projected onto pairs of principal components. 
Permutational multivariate analysis of variance (PERMANOVA; 999 
permutations) was applied to the sample scores of each principal 
component. We utilized ANOVA simultaneous component analysis 
(ASCA), a multivariate extension of univariate ANOVA (36), using 
the two-factor design module within MetaboAnalyst. Our decision to 
use ASCA was guided by the specific analytical priorities of our study. 
Generalized linear mixed models (GLMMs) as well as repeated 
measures ASCA+ are suitable for formal inference of longitudinal 
designs, but may be prone to overparameterization or lack of 

convergence in high-dimensional settings with modest sample sizes. 
We are aware that GLMMs are generally more appropriate than 
ASCA-based methods, as GLMMs offer flexibility in handling 
imbalances in the dataset, missing data, and within-subject 
correlations. Our dataset was complete with no missing values, and 
polygenic scores were treated as categorical predictors with 
approximately symmetric distribution. We acknowledge that genotype 
group sizes at the SNP level reflected allele frequencies, but this was 
not due to sampling artifacts. Subject-level information was 
incorporated as a within-subject factor, all of which represented a 
pragmatic approach for complex modeling. We note that ASCA is 
particularly well-suited for decomposing multivariate data into effect-
specific matrices and applies PCA to each, thereby revealing 
covariance patterns among variables within each factor. In addition, 
reliable estimates of factor-level effects are achieved through ASCA 
with intuitive visualizations that support biological insight. This 
facilitates interpretation of coordinated biochemical responses, rather 
than isolated univariate effects or outcome prediction. Overall, ASCA 
provided the optimal balance of interpretability and strength in 
multivariate decomposition, aligning with our primary objective of 
identifying drivers of metabolic variations among groups of 
individuals. The total variation was partitioned into main treatment 
and genotype effects and their interaction. Principal component was 
applied to each effect matrix, and a scree plot was used to evaluate the 
contribution of each component to total variance. The component 
explaining the highest proportion of variance was extracted (in our 
case, component 1) to identify dominant patterns. To validate model 
significance, permutation tests (100 permutations) were employed 
within ASCA using Manly’s approach (37), which recalculates the 
total sum of squares for each factor and their interactions. An effect 
was considered significant if the observed sum of squares exceeded 
the 95th percentile of the permuted distribution. The Benjamini–
Hochberg false discovery rate adjustment was considered to correct 
PERMANOVA p-values. Statistical significance was declared at 
p ≤ 0.05. All data are expressed as mean ± SEM unless stated otherwise.

3 Results

3.1 Participant characteristics and 
genotype distribution

Participants (n = 37) in the study had an average age of 
26.3 ± 0.8 years and a BMI of 26.4 ± 0.8 kg/m2. The number of 
participants in each genotype is shown in Table 1 and conformed to 
Hardy-Weinberg equilibrium. The allele frequency distribution was 
0.770 for the C allele of CHDH rs12676; 0.608 for the A allele of 
BHMT rs3733890; 0.581 for the A allele of CHKA rs10791957; and 
0.419 for the T allele of PEMT rs4646343 (Table 1). Our interest was 
to compare individuals who are carriers of two copies of the variant 
allele compared to all other groups, thus, individuals with the 
non-variant and one variant copy carriers were pooled together.

3.2 One-carbon metabolite response

A treatment effect was present, where CB resulted in higher 
urinary concentration change from baseline compared to NC, whereas 
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no difference was found between PC and NC, as well as between PC 
and CB (p < 0.01; Figures 3A–D). There was no genotype effect alone 
for all SNPs examined (CHDH rs12676, BHMT rs3733890, CHKA 
rs10791957, and PEMT rs4646343) (Figures 3A–D). 
Supplementary Tables 2–5 show descriptive statistics groupwise.

There was a significant treatment and CHDH rs12676 genotype 
interaction for urinary change from baseline for choline, betaine, 
dimethylglycine, and methionine (p < 0.05 for choline, betaine, and 
dimethylglycine, p < 0.01 for methionine; Figure 3A). CB induced 
higher urinary change from baseline for choline, betaine, 
dimethylglycine, and methionine compared to NC in the AA + AC 
genotype group only, whereas these effects did not occur in the CC 
genotype group. In addition, lower urinary change from baseline for 
betaine, dimethylglycine, and methionine was found in the CC 
genotype group compared to the AA + AC genotype group. No other 
effects, including those from PC treatment, were found.

For BHMT rs3733890, the GG + GA genotype group, as well as 
the AA genotype group, had higher choline change from baseline after 
CB compared to NC (p < 0.01; Figure 3B). The GG + GA genotype 
group also had higher urinary choline change from baseline after PC 
compared to NC, without differences between PC and NC in the AA 
genotype group. Treatment and genotype interacted to influence 
urinary betaine change from baseline (p < 0.05; Figure 3B), which was 
lower in the AA genotype compared to the GG + GA genotype group 
upon PC supplementation. An interaction between SNP and treatment 
was also detected for urinary dimethylglycine change from baseline 
(p < 0.05; Figure 3B), which was higher after PC compared to NC in 
the GG + GA genotype group, but absent in the AA genotype group. 
Urinary methionine change from baseline did not differ across groups.

For CHKA rs10791957, the CC + CA genotype, as well as the AA 
genotype groups, showed higher urinary choline change from baseline 
after CB compared to NC. Higher choline change from baseline after 
PC was observed compared to NC control in the CC + CA genotype 
group, but these effects were absent in the AA genotype group. No 
other differences occurred for urinary change from baseline for 
downstream products of one-carbon metabolism, including betaine, 
dimethylglycine, and methionine.

For PEMT rs4646343, the GG + GT genotype group had higher 
urinary choline change from baseline with CB or PC supplementation 
compared to the NC control. In contrast, these effects were not 
observed in the TT genotype group. As with the CHKA genotype, 
urinary change from baseline for betaine, dimethylglycine, and 
methionine did not show differences among groups.

3.3 Multivariate analysis

Our approach moved beyond the singular analysis of select SNPs 
and utilized a multivariate technique with dimensional reductions. We 
assessed the cumulative impact of SNPs using polygenic scoring that 
was determined by summing the number of risk alleles of each SNP 
across CHDH rs12676, BHMT rs3733890, CHKA rs10791957, and 
PEMT rs4646343. The polygenic scores were categorized as 2–8, and 
the relative frequency, as the proportion of individuals by different 
bins of scores, followed a normal distribution (Figure 4).

The PCA scores plot demonstrated that the first three components 
explained 59.2, 22, and 11.3% variation in the order of components 1, 
2, and 3 without distinctive patterns across treatments or polygenic 
scores (Figure 5). We leveraged ASCA to model genotype and treatment 
effects with an interaction. The scree plots (Supplementary Figure 1) 
showed a clear separation among the principal components 
contributing to the total variation in each dataset, with the first 
component showing the highest variation explained. Using the first 
component, sub-models were created for treatment, genotype, and 
interaction to identify major patterns associated with each factor 
(Figures 6A–C). The first component explained 95.7% of the variation 
for treatment, 62.4% for the genotype, and 50.7% for the interaction in 
the respective ASCA sub-models. Treatment and genotype (grouped by 
polygenic score) led to distinctive patterns in sub-models through 
ASCA. Within the interaction sub-model, there was a divergence in 
patterns in the groups with the polygenic scores of 2–5 (less 
accumulated number of effect alleles) versus groups with the polygenic 
scores of 6–8 (more accumulated number of effect alleles). The pattern 
from the polygenic scores of 2–5 aligned with the pattern derived from 

TABLE 1  Genotypic distribution of participants across single nucleotide polymorphisms (SNPs) in genes encoding key enzymes in one-carbon 
metabolism: choline dehydrogenase (CHDH) rs12676, betaine:homocysteine methyltransferase (BHMT) rs3733890, choline kinase A (CHKA) 
rs10791957, and phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343.

Gene and 
SNP

Genotype distribution Allele 
frequency

p-value Study comparisons

Individuals with 
none or one 
copy of the 
variant allele

Individuals with 
two copies of the 
variant allele

CHDH rs12676 AA AC CC C allele frequency NS AA + AC CC

4 9 24 0.770 13 24

BHMT rs3733890 GG GA AA A allele frequency NS GG + GA AA

8 13 16 0.608 21 16

CHKA rs10791957 CC CA AA A allele frequency NS CC + CA AA

6 19 12 0.581 25 12

PEMT rs4646343 GG GT TT T allele frequency NS GG + GT TT

15 13 9 0.419 28 9

Participant counts are reported for each genotype. All distributions conformed to Hardy–Weinberg equilibrium, as assessed by a Χ2 test. To maximize differences imposed by metabolic 
inefficiencies, individuals carrying two copies of the variant allele were compared against those with none or one copy of the variant allele. NS denotes not significant.
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treatment alone for CB, NC, and PC. Contrasting this, there was a 
misalignment with the polygenic scores of 6–8 away from the pattern 
derived from treatment alone for CB, NC, and PC. Sub-models of 
treatment, genotype, and interaction were validated through 100 
permutations, where the total sum of squares for treatment, genotype, 
and interaction was compared against that from the permuted data and 
shown as the histogram of the distribution (Figures 6D–F). The 
separation distance between the original and permuted samples, as 
determined by permutation statistics, did not show significance for 
treatment alone nor genotype alone. However, the interaction term was 
significant with p < 0.05, indicating that both treatment and genotype 
were important predictors of metabolite responses to CB and PC.

4 Discussion

The findings from this study support our hypothesis that 
targeted SNPs in genes involved in choline homeostasis are 
determinants of one-carbon metabolite responses following 

consumption of supplemental choline differing in form. Several key 
findings were uncovered: (1) a main treatment effect was detected 
for urinary choline change from baseline reflective of differences in 
metabolism afforded by water-soluble versus lipid-soluble choline; 
(2) genetic variation in CHDH rs12676 was manifested as lower 
choline oxidation and downstream pathways in the methionine 
cycle in response to CB; (3) metabolic inefficiencies were observed 
with genetic variation in BHMT rs3733890 that led to lower 
utilization of dimethylglycine in response to PC; (4) genetic 
variations in CHKA rs10791957 and PEMT rs4646343 were 
manifested as disturbances in choline phosphorylation and synthesis 
with differences in the partitioning of choline in response to CB and 
PC; and (5) multivariate analysis showed that groups with 
accumulated number of effect alleles possessed contrasting 
responses to CB and PC, deviating from the patterns derived from 
the treatment effect alone. Overall, we build on our ongoing 
endeavor investigating metabolic pathways involving choline as a 
versatile compound with a wide range of biological functions (6), 
and present novel evidence that the complexity of individual 

FIGURE 3

The effect of choline treatment and genetic variations on urinary concentration change from baseline for choline, betaine, dimethylglycine, and 
methionine after choline bitartrate (CB), phosphatidylcholine (PC), or no choline (NC) consumption in a randomized, double-blinded crossover study, 
shown as box and whisker plots for (A) choline dehydrogenase (CHDH) rs12676, (B) betaine:homocysteine methyltransferase (BHMT) rs3733890, 
(C) choline kinase A (CHKA) rs10791957, and (D) phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343. Urinary metabolite concentrations 
were creatinine (Cr)-adjusted. The treatment (trt), genotype, and interaction effects were determined using a mixed model followed by the Tukey–
Kramer post hoc comparisons as denoted by *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. CB yielded a higher urinary choline concentration 
change from baseline compared to NC, without differences in PC compared to either NC or CB. Genetic variation in CHDH rs12676 yielded less 
response to CB, whereas genetic variation in BHMT rs3733890 showed lower utilization of dimethylglycine in response to PC. Genetic variations in 
CHKA rs10791957 and PEMT rs4646343 reflected disturbances in the partitioning of choline for choline recycling and synthesis. NS denotes not 
significant. Box-and-whisker plots display the minimum, median and maximum values for each group, n = 37.
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responses arises with different forms of choline that can be 
distinguished by common genetic polymorphisms.

The main treatment effect, wherein a higher change in urinary 
choline was found with CB supplementation compared to NC control, 
without differences between PC compared to either NC control or CB, 
reflects the contribution of solubility to choline metabolism. Choline 
salts, including CB, are common constituents of dietary supplements, 
whereas PC is found in various animal and plant source foods. Free 
choline is characterized by more rapid absorption as opposed to PC, 
which must first be cleaved by pancreatic phospholipase A2 IB to 
release its choline moiety prior to absorption (38). These differences 
may explain a slower turnover of choline from PC as opposed to CB 
in our study and are in agreement with other reports of delayed 
increase in plasma choline concentrations upon PC supplementation 
and not with water-soluble choline (39, 40). Choline assimilation from 
the lipidic choline pool may be beneficial in achieving a balanced 
increase (40), where the reliance on PC to recycle choline may occur 
depending on the availability of free choline (25). Together, variations 
in choline responses may arise from multiple mechanisms and/or 
pathways to support cellular demand, highlighting the complexity of 
metabolic regulation, thus warranting a closer examination of choline 
utilization and redistribution.

No other main effects of the treatment were observed outside of 
choline, but we detected an interaction effect between treatment and 
CHDH rs12676 genotype that arose with CB but not with PC. CHDH 
catalyzes the initial step in the oxidation of choline to betaine, and 

genetic variation in CHDH has been implicated in metabolic disorders 
(41). We found that the AA+AC genotype group of CHDH rs12676 
had higher urinary change from baseline for choline, betaine, 
dimethylglycine, and methionine upon CB supplementation 
compared to the NC control, but these elevations did not occur in the 
CC genotype group. Supporting the interaction effect, lower urinary 
change from baseline for betaine, dimethylglycine, and methionine 
were found after CB consumption in the CC genotype group 
compared to the AA + AC genotype group, indicating lower capacity 
through the methionine cycle. This suggests that the CHDH rs12676 
polymorphism may impair choline oxidation, thereby limiting betaine 
availability and downstream methylation reactions. Our study 
expands on prior evidence of higher betaine across water-soluble and 
lipid-soluble choline supplementation (39), which our study provides 
as a dimension of genotype in influencing choline and downstream 
metabolites, but we found no interaction effect with PC 
supplementation across the genotype groups of CHDH rs12676. 
Sample type and nutrient–nutrient interaction in different study 
designs may have contributed to distinctive metabolic outcomes, as 
with other genotypes that can govern the complex nature of 
choline homeostasis.

One marker that emerged with PC supplementation was an 
interaction between treatment and BHMT rs3733890 genotype, which 
did not arise with CB. BHMT catalyzes the transfer of a methyl group 
from betaine to homocysteine, forming dimethylglycine and 
methionine, which maintains the methionine cycle and supports 
cellular methylation capacity (42). The GG + GA genotype group of 
BHMT rs3733890 had higher urinary choline and dimethylglycine 
change from baseline upon PC supplementation compared to the NC 
control, but these effects were absent in the AA genotype group. The 
reduced capacity of betaine as a methyl donor was also observed in 
the AA genotype group compared to the GG + GA genotype group 
and aligns with impaired responses to PC, both upstream and 
downstream (choline and dimethylglycine). This suggests that the 
BHMT rs3733890 polymorphism may reduce enzyme efficiency, 
leading to shifts in choline metabolite flux. Previously, a lack of 
association between the BHMT rs3733890 genotype and susceptibility 
to choline deficiency (9) has been reported, which was attributed to 
the protein product of the gene variant that did not differ in either 
catalytic activity or betaine binding compared to the enzyme without 
the polymorphism (43, 44). However, the variant is known to have a 
functional role in choline dynamics (13) as a metabolic node between 
betaine and CDP-derived PC endpoints. CB supplementation can be 
juxtaposed as seen with higher urinary choline change from baseline 
compared to the NC control in the AA genotype group of BHMT 
rs3733890. Lower flux through BHMT can be reflected as an 
accumulation of choline, but the GG + GA genotype group also had 
higher choline with CB supplementation. Higher concentration of 
choline without elevation in the product of the BHMT reaction in 
these individuals may indicate that CB favors the entry into the CDP–
choline pathway rather than the methionine cycle. Methionine did not 
differ across genotype and treatment, but similar to another report, 
the loss of BHMT-catalyzed biosynthesis may not emerge with the 
presence of a larger methionine pool (45), although downstream 
transmethylation reactions would need to be investigated.

Subtle effects of urinary choline change from baseline occurred 
with the CHKA rs10791957 and PEMT rs4646343 genotypes when 
CB or PC was provided. PC synthesis occurs via two main pathways: 

FIGURE 4

A frequency distribution of polygenic scores binned from 2 to 8 as a 
combined effect of the presence of the variant allele in the 
genotypes of choline dehydrogenase (CHDH) rs12676, 
betaine:homocysteine methyltransferase (BHMT) rs3733890, choline 
kinase A (CHKA) rs10791957, and phosphatidylethanolamine 
N-methyltransferase (PEMT) rs4646343. Single-nucleotide 
polymorphisms (SNPs) were coded as 0, 1, or 2, representing the 
number of variant alleles (0 having no copy of the SNP; 1 having one 
copy of the SNP; and 2 having two copies of the SNP). Then the 
polygenic score was derived from summing the number of copies of 
the SNP. A line shows a fitted Gaussian distribution, n = 37.
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the CDP-choline pathway, which begins with the phosphorylation 
of choline by CHKA (14), and the de novo pathway, where 
phosphatidylethanolamine undergoes triple methylation reactions 
catalyzed by PEMT (15, 16). CHKA rs10791957 and PEMT 
rs4646343 are located within the first intron region of the respective 
gene that may play a regulatory role as an enhancer of transcription 
levels (46). The presence of the effect alleles of CHKA rs10791957 
is thought to confer protection from low-choline-associated organ 
dysfunction (17), in contrast to increased risk of low-choline-
associated organ dysfunction with the effect alleles of PEMT 
rs4646343 (47). In the paradigm of extra choline, higher urinary 

choline change from baseline was found in the AA genotype group 
of CHKA rs10791957 after CB supplementation compared to the 
NC control, without alterations in betaine, dimethylglycine, and 
methionine, which may reflect enhanced recycling of dietary 
choline (choline → PC → choline). We also observed higher choline 
change from baseline after CB and PC supplementation compared 
to NC control in the CC + CA genotype group of CHKA rs10791957 
and the GG + GT genotype group of PEMT rs4646343, an effect 
that appears to be driven by choline treatment through the intact 
pathways of PC synthesis. Urinary choline change from baseline did 
not differ in the TT genotype group of PEMT rs4646343 upon CB 

FIGURE 5

Principal component analysis (PCA) scores plot projected in the two-dimensional matrices of samples grouped by treatment and polygenic score. 
Participants (n = 37) were randomized and double-blinded to receive a standardized meal containing 600 mg choline either as choline bitartrate (CB) 
or phosphatidylcholine (PC), or no choline (NC) control, with a 1-week washout break in between. Single nucleotide polymorphisms (SNPs) were 
coded as 0, 1, or 2, representing the number of variant alleles (0 having no copy of the SNP; 1 having one copy of the SNP; and 2 having two copies of 
the SNP) for choline dehydrogenase (CHDH) rs12676, betaine:homocysteine methyltransferase (BHMT) rs3733890, choline kinase A (CHKA) 
rs10791957, and phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343. Then the polygenic score was derived by summing the number of 
copies of the SNP. The data were log-transformed and range-scaled (mean-centered and divided by the range of each variable). The scores plot shows 
that 59.2% of the variation was explained by the first principal component, 22% of the variation was explained by the second component, and 11.3% of 
the variation was explained by the third component. No distinctive patterns were observed across treatments and polygenic scores (not significant by 
PERMANOVA). Different symbols denote different treatment groups for CB, PC, or NC control, whereas different colors denote different groups of 
polygenic scores from 2 to 8.

https://doi.org/10.3389/fnut.2025.1620538
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Butt et al.� 10.3389/fnut.2025.1620538

Frontiers in Nutrition 10 frontiersin.org

or PC supplementation compared to NC control, which may 
indicate lower flux of choline despite choline provision. Past studies, 
albeit using other designs and populations, have demonstrated the 
partitioning of choline toward the maintenance of PC under various 
physiological states (48, 49). The current study yields further 
nuance to the effect of the alleles of genes involved in PC synthesis 
in explaining metabolic heterogeneity in response to CB or PC.

Our findings complement those from Ganz et al. (10), reporting 
the influence of genetic variation on choline partitioning and methyl 
donor utilization in healthy third-trimester pregnant, lactating, and 
non-pregnant women consuming choline at or above current 
recommendations. Given the distinct research questions, the study 
designs of Ganz et al. and ours diverged substantially; thus, any direct 
comparisons should be interpreted within the context of each study. 
For CHDH rs12676, Ganz et al. showed that variants appear to favor 
the use of dietary choline for PEMT-PC synthesis relative to CDP-PC, 
whereas our study demonstrated that the CC genotype group 
exhibited lower urinary change for betaine, dimethylglycine, and 
methionine in response to CB, with no effects following PC. For 
BHMT rs3733890, Ganz et al. reported a potential preferential use of 
dietary choline for CDP-PC synthesis, partitioning away from betaine 

synthesis, where our study supports a genotype-dependent response 
to PC, with the AA group showing reduced methyl donor utilization. 
CHKA rs10791957 variants were implicated in decreased use of 
dietary choline for PEMT-PC synthesis relative to CDP-PC synthesis 
in Ganz et al., and our study linked the AA genotype to enhanced 
recycling of dietary choline, as evidenced by elevated urinary choline 
following CB supplementation. Ganz et al. noted that PEMT 
rs4646343 variants had lower PEMT-PC/CDP-PC, indicative of lower 
PEMT activity, and our data showed that individuals with the 
GG + GT genotype had higher urinary choline following CB and PC 
supplementation, whereas the TT genotype group showed no 
response, suggesting impaired PC synthesis. Together, both studies 
identified key SNPs as potential modulators of choline metabolism in 
various settings, with our findings offering choline form-specific 
insights into gene–nutrient interactions.

This study leveraged a multivariate approach incorporating 
the interaction between treatment and genotype, which 
illuminated that genotype clusters having polygenic scores of 6–8 
deviated from the pattern derived from choline treatment. We 
grouped individuals based on the summation of the presence of 
variant alleles in line with the conceptual importance of 

FIGURE 6

Analysis of variance simultaneous component analysis (ASCA) of treatment, genotype, and their interaction. Participants (n = 37) were randomized and 
double-blinded to receive a standardized meal containing 600 mg choline either as choline bitartrate (CB) or phosphatidylcholine (PC), or no choline 
(NC) control, with a 1-week washout break in between. To capture the cumulative effect of genotypes, single-nucleotide polymorphisms (SNPs) were 
coded as 0, 1 or 2, representing the number of variant alleles (0 having no copy of the SNP; 1 having one copy of the SNP; and 2 having two copies of 
the SNP) for choline dehydrogenase (CHDH) rs12676, betaine:homocysteine methyltransferase (BHMT) rs3733890, choline kinase A (CHKA) 
rs10791957 and phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343 then the polygenic score was derived from summing the number 
of copies of the SNP. Sub-models of (A) treatment, (B) genotype, and (C) interaction were projected to identify major patterns associated with each 
factor, as computed scores based on the first component. The first component explained 95.7% of the variation for treatment, 62.4% of the variation 
for genotype, and 50.7% of the variation for the interaction between treatment and genotype in the respective ASCA sub-models. Within the 
interaction sub-model, the groups with the polygenic scores of 2–5 (less accumulated number of effect alleles) showed divergent patterns compared 
to the groups with the polygenic scores of 6–8 (more accumulated number of effect alleles) wherein the polygenic scores of 6–8 deviated from the 
pattern derived from treatment alone for CB, NC, and PC but not with the polygenic scores of 2–5. Model validation is shown as histograms of the 
distribution formed by 100 permutations. The total sum of squares for (D) treatment, (E) genotype, and (F) interaction was compared against that from 
the permuted data. Significance indicates the observed sum of squares exceeding the 95th percentile of the permuted distribution. Only the interaction 
term was significant, indicating the importance of both treatment and genotype factors in shaping the patterns of metabolite response to different 
forms of choline. The data were log-transformed and range-scaled (mean-centered and divided by the range of each variable). NS denotes not 
significant.
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examining cumulative effects, which a single SNP (and even a 
single gene) is unlikely to account for the complex phenotypes 
(50). In support of this, distinctive structures were absent in our 
classical PCA when only the individual factors were considered, 
but it became apparent once an interaction term was included 
through ASCA (36). We elected to employ ASCA based on the 
ability to calculate the permuted variation associated with each 
factor and interaction. This approach has the advantage of 
decomposing principal components separately and performing 
PCA on each partition that can further be validated. Based on the 
first component, which explained the largest percent variation, 
the divergence between the polygenic scores of 6–8 (with the 
accumulated risk alleles) versus 2–5 suggests the importance of 
all four SNPs (CHDH rs12676, BHMT rs3733890, CHKA 
rs10791957, and PEMT rs4646343) in dictating subgroups of 
individuals who are less responsive to CB and PC. The overall 
patterns, revealed through ASCA, offer utility in detecting unique 
responses to choline treatment that may extend to functional 
relevance for individual phenotype. Sub-model validations 
through permutations also reinforced that the interaction term 
(not individual factors alone) was a significant determinant of 
differential metabolic responses. Although not comparable, our 
results are concurrent with other studies that show value in 
grouping SNPs from similar metabolic pathways to allow for the 
identification of shared SNP signatures in explaining hepatic 
steatosis (51, 52). These types of integration can serve as an 
initial step toward the larger goal of identifying sources of 
heterogeneity to understand meaningful patterns between SNPs 
and health (2). We also acknowledge that there may be effects on 
the activity of the same enzyme from multiple SNPs, which a 
variant at one locus may manifest its effect when a variant at 
another locus is present (53). Thus, the development of 
algorithms to capture these interactions will clarify how multiple 
hits from genetic variations contribute to perturbations in 
metabolic pathways.

The implication of our research is that the future of precision 
nutrition holds promise in deciphering complex patterns of genetic 
variations to predict metabolic inefficiencies. Select SNPs can be 
grounded in a hypothesis-driven approach within nutrient-specific 
metabolic pathways, and this study focused on those that influence 
choline metabolism. As various forms of choline exist that can be 
obtained exogenously, SNPs alone without considering components 
of choline, or treatment alone without considering SNPs, would not 
suffice in identifying meaningful patterns of metabolic responses. Our 
study suggests that the stimulation of choline oxidation, use of the 
methionine cycle, and choline synthesis can be triggered with CB or 
PC in a genotype-dependent manner. The accumulated presence of 
the variant alleles across the select SNPs may render individuals to be 
less responsive to CB or PC, which may necessitate strategies to restore 
choline homeostasis. When different groups of individuals can be 
stratified on the basis of biomarkers of metabolism, better estimates 
of their nutrient requirements can be made, which would yield 
broader translational relevance to refine dietary interventions and 
guidelines. These outlooks, combined with the use of computational 
tools, can then parse individual characteristics. Extending further, the 
ultimate goal of precision nutrition would comprise mechanistic and 
functional evidence of the gene that can positively influence the 
guidance of clinical practice and dietary recommendations (54), 

including those centered on choline, thus may help optimize health in 
various subgroups of the population.

There are many limitations in this study. First, the genotype 
distribution was not equal since it was a post hoc design, and the 
modest sample size (n = 37) may have limited the ability to detect 
subtle genotype–treatment interactions, particularly when 
stratified by genotype and treatment groups. Although our study 
had utility in informing future studies to target SNPs, larger 
analyses are needed to validate our findings. Second, our final 
participant pool included only adult males and was mostly 
comprised of those of European descent, limiting the 
generalizability of our findings to other subgroups of the 
population. Of note, premenopausal adult women have a lower 
requirement for choline because of estrogen-mediated induction 
of the PEMT gene that enables endogenous biosynthesis of the 
choline moiety (47). The effect of SNPs, including PEMT 
rs4646343, can be regulated by estrogen, which may impact 
metabolic responses to CB or PC. The disparate frequency of 
functional variants in choline metabolism has also been found in 
racial and ethnic groups (17), with the existence of dietary 
selective pressures (55); thus, broader genetic patterns in relation 
to metabolic outcomes need to be further studied. Finally, this 
study specifically focused on choline and downstream 
metabolites, but other pathways can influence choline availability, 
including the gut microbial conversion of choline to 
trimethylamine and subsequent oxidation to trimethylamine-N-
oxide (TMAO) (56). We have previously shown differential 
TMAO response to a meal challenge containing choline and other 
substrates and found that the elevation in TMAO was a function 
of the gut microbiota composition and genotype (27, 28, 57). 
Studies that link one-carbon metabolism with an integrative 
analysis that includes host and gut microbiota factors would 
provide additional insights into metabolic heterogeneity.

In conclusion, genetic variations in key genes regulating choline 
metabolism (CHDH, BHMT, CHKA, and PEMT) modulate 
metabolite profiles across distinct biochemical pathways, reflecting 
individualized metabolic responses to different forms of choline 
supplementation. Genetic variation in CHDH rs12676 impaired 
choline oxidation and disrupted the methionine cycle specifically 
in response to CB, while the metabolic effects of BHMT rs3733890 
were evident only with PC supplementation. CHKA rs10791957 and 
PEMT rs4646343 further distinguished individuals with altered PC 
synthesis capacity. The combined effects of these variant alleles may 
diminish responsiveness to choline supplementation, grouping 
individuals according to their cumulative metabolic perturbations. 
Collectively, considering genetic variations and nutrients together, 
including solubility, offers a refined understanding of metabolic 
heterogeneity. Our findings suggest new possibilities for advancing 
precision nutrition that integrates the complex interplay of gene–
nutrient interactions and moving beyond the scope of conventional 
dietary guidelines.
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