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Common genetic polymorphisms
define one-carbon metabolite
responses to different forms of
choline in healthy adult males

Nisa Butt?, Jianzhang Dong?, Gia V. Shelp?, Elizabeth M. Poole?,
Justine R. Keathley?, Marica Bakovic! and Clara E. Cho'*

Department of Human Health Sciences, University of Guelph, Guelph, ON, Canada, ?Department of
Family Relations and Applied Nutrition, University of Guelph, Guelph, ON, Canada

Background: Responsiveness to nutrients can be determined by many types of
variations, such as single-nucleotide polymorphisms (SNPs). Choline is an essential
nutrient critical for proper organ function and exists in different forms, such as free
choline or as derivatives, including phosphatidylcholine (PC). Although genetic
variations in genes encoding enzymes that influence choline metabolism have
been identified, little is known regarding individual responses to free choline and
PC in relation to SNPs. Here, we determined the effect of different forms of choline,
genotype, and their interaction on one-carbon metabolite concentrations in urine,
which has utility in capturing the overall change in choline metabolism.

Methods: A randomized, double-blinded, crossover study was conducted in healthy
adult males (n = 37) who were provided with a standardized meal containing
600 mg choline, either as choline bitartrate (CB) or PC, or no choline (NC). Urine was
collected at study baseline and pooled throughout the 6-h study duration. Choline
dehydrogenase (CHDH)rs12676, betaine-homocysteine S-methyltransferase (BHMT)
rs3733890, choline kinase alpha (CHKA) rs10791957, and phosphatidylethanolamine
N-methyltransferase (PEMT) rs4646343 were genotyped.

Results: There was a main treatment effect for urinary choline change from
baseline, reflective of differences in absorption by free choline versus PC
(p < 0.01). A reduction in responsiveness to CB was found with genetic variation
in CHDH rs12676, manifested as lower choline oxidation (p < 0.05), and
downstream pathways in the methionine cycle (p < 0.01), whereas a reduction
in responsiveness to PC occurred with genetic variation in BHMT rs3733890
(p < 0.05). Genetic variations in CHKA rs10791957 and PEMT rs4646343 reflected
differences in the partitioning of choline in response to CB and PC (p < 0.01).
Multivariate analysis showed that groups with an accumulated number of effect
alleles across all SNPs have contrasting responses to CB and PC that deviate
from the patterns derived from treatment effect alone (p < 0.05).

Conclusion: Unique metabolite signatures in one-carbon metabolism arise in
response to supplemental intake of different forms of choline, driven by genetic
variations that regulate choline homeostasis. Our findings highlight the importance
of nutrient—gene interactions in deciphering the complexity of individual metabolic
responses, supporting the emerging concept of precision nutrition.
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1 Introduction

Current dietary recommendations are predominantly centered on
a “one-size-fits-all” approach, but they ignore the fundamental
principle that responses to nutrients and their requirements are highly
individualistic (1). Precision nutrition, often grouped with
personalized nutrition, is an emerging field that considers the sources
of metabolic variations to help target specific treatments for specific
groups of individuals for optimal health (2). There are many inputs
that contribute to metabolic differences at the individual level, such as
genetic, epigenetic, gut microbiome, and lifestyle factors (3). Among
these, genetic variations have been studied extensively, particularly
single-nucleotide polymorphisms (SNPs) (2, 4), which are single base-
pair substitutions in genes that can alter enzyme function and
influence nutrient metabolism.

SNPs can modulate metabolic pathways through gene-nutrient
interactions, offering valuable insights into individualized dietary
requirements and the biological diversity of nutrient responses (5).
Choline serves as a key example in which metabolic pathways are
under the regulation of SNPs. As a precursor for several biomolecules,
choline exerts a wide range of biological effects, such as cholinergic
neurotransmission, cell membrane composition and signaling, lipid
transport, and the provision of methyl groups within the
interconnected biochemical network of pathways called one-carbon
metabolism (6-8). Various functional SNPs in genes encoding
enzymes involved in choline metabolism have been identified,
indicating their impact on choline homeostasis (9, 10) (Figure 1).

In one route, choline is irreversibly oxidized to betaine via choline
dehydrogenase (CHDH) and betaine aldehyde dehydrogenase.
Betaine then donates a methyl group to homocysteine to form
methionine via betaine:homocysteine methyltransferase (BHMT),
and, in turn, is converted to dimethylglycine. Methionine is used for
the biosynthesis of S-adenosylmethionine, a universal methyl donor
for various acceptor molecules, including DNA, phospholipids, and
proteins, and is subsequently converted to S-adenosylhomocysteine
(11). CHDH rs12676 (A — C) is suggested to reduce the activity of
CHDH, potentially limiting betaine production and impairing methyl
group availability (12). BHMT rs3733890 (G — A) affects the methyl
transfer from betaine to homocysteine, with the A allele associated
with reduced methylation capacity (13).

In a separate pathway, choline is phosphorylated via the cytidine
diphosphate (CDP)-choline pathway  to synthesize
phosphatidylcholine (PC), with choline kinase A (CHKA) as the first
enzyme in the pathway (14). Additionally, the de novo pathway via
phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes the
sequential methylation of phosphatidylethanolamine using
S-adenosylmethionine-derived methyl groups to synthesize PC, which
can be converted to choline (15, 16). CHKA rs10791957 (C — A)
contributes to the modulation of PC homeostasis, in which the A allele
has been shown to direct more dietary choline to the CDP-choline
pathway relative to the PEMT pathway (10). PEMT rs4646343

Abbreviations: ASCA, analysis of variance simultaneous component analysis;
CHDH, choline dehydrogenase; BHMT, betaine:homocysteine methyltransferase;
PEMT, phosphatidylethanolamine N-methyltransferase; CHKA, choline kinase A;
CB, choline bitartrate; PC, phosphatidylcholine; NC, no choline; PCA, principal

component analysis.
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(G — T) influences the activity of PEMT, with the T allele associated
with lower endogenous PC production (17).

Although the endogenous production of choline is possible
in humans, this amount is insufficient to meet physiological
demands and therefore must be obtained through diet (18). The
Institute of Medicine (now the National Academy of Medicine)
in the United States established the adequate intake (AI) for
choline at 550 mg/day for men and 425 mg/day for women (19),
whereas the European Food Safety Authority set the AI at
400 mg/day for adults (20). However, choline intake has been
reported to be insufficient for various population groups globally,
with the average choline intake among adults estimated to be
293 mg/day and 310 mg/day
(European countries) (21). In light of this gap, recent discussions

(non-European countries)
have emphasized the potential need for additional intake of
choline through diet or supplementation to achieve the AI
recommendations (22, 23).

Dietary choline exists in multiple forms, including free
choline and PC, each with distinct absorption and metabolic
profiles (24). Free choline is rapidly absorbed in the small
intestine by enterocytes via a carrier-mediated transport process
(25). In contrast, PC requires a series of hydrolysis in the
intestinal lumen by pancreatic phospholipase A2 to produce
lysophosphatidylcholine, which can be taken up by enterocytes,
resynthesized into PC, and incorporated into chylomicrons for
transport through the lymphatic system or further be hydrolyzed
to glycerophosphocholine, and ultimately to glycerophosphate
and free choline (26). Thus, these differences suggest that free
choline is more rapidly absorbed than PC and may have
distinctive effects on subproducts of choline, including those in
one-carbon metabolism. Building upon this, our recent focus was
on the metabolic differences between choline forms (27), with an
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FIGURE 1

A simplified schematic of metabolic pathways with a focus on
enzymes that influence choline metabolism. The single nucleotide
polymorphisms under investigation were choline dehydrogenase
(CHDH) rs12676, betaine:homocysteine methyltransferase (BHMT)
rs3733890, choline kinase A (CHKA) rs10791957, and
phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343.
HCY, homocysteine; MET: methionine; SAM: S-adenosylmethionine;
SAH: S-adenosylhomocysteine; PE: phosphatidylethanolamine; PC:
phosphatidylcholine.
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initial series of studies investigating the impact of choline intake
on the production of gut microbiota-associated metabolites (28,
30). However, the role of genetic variation in modulating
individual responses to free choline versus PC, particularly in the
context of one-carbon metabolism, remains poorly understood.
Further, gene-nutrient interactions are often examined in
isolation, limiting their capacity to reflect the full complexity of
these relationships. To fully incorporate the interplay among
multiple SNPs, advanced multivariate modeling, such as principal
component analysis and permutation testing, can help

refine subgroup classifications and inform precision
nutrition strategies.

Thus, this current study represents the first to determine
genotype-specific effects of choline form on one-carbon metabolism
using both individual SNP and multivariate analysis. Through this
framework, we were able to assess not only the isolated impact of
each SNP but also its combined influence on metabolic outcomes,
offering an integrative view of gene-nutrient interactions. We
targeted four functional SNPs (CHDH rs12676, BHMT rs3733890,
CHKA rs10791957, and PEMT rs4646343), each representing a
regulatory point in choline oxidation, methylation (via betaine),
phosphorylation, and synthesis of the choline moiety (10). Using a
randomized double-blinded crossover study design that provided
free choline versus PC, compared to a no choline (NC) control, we
measured changes in metabolite concentrations pooled over a 6-h
study period. This approach has the utility in capturing the average
rather than different parts of kinetics and serves as a sensitive marker
of response variables in one-carbon metabolism. We hypothesized
that responsiveness to free choline versus PC is diminished by SNPs
in genes encoding key enzymes in one-carbon metabolism, with
genotype-dependent differences that classify distinct metabolic
subgroups. The objective of this research was to determine the effect
of choline form, genotype, and their interaction on metabolite

signatures of one-carbon metabolism.

10.3389/fnut.2025.1620538

2 Materials and methods
2.1 Study design and participants

This study was a post hoc analysis from a parent trial (27) with
a revised sample size calculation of n = 37, providing 80% power to
detect a 10% difference in choline-derived metabolite concentrations
across three groups using a repeated measures design accounting
for a 10% anticipated dropout rate. However, because the parent
trial was not originally designed to assess genotype effects, our
analyses contained, as expected, unequal genotype distributions
and necessitated pooled comparisons, specifically grouping
individuals with none or one copy of the variant allele versus
individuals with two copies of the variant allele. We estimated that
n =10 per genotype group would provide 80% power to detect at
least a 12% difference in choline concentration on the basis of a
within-group variance of 1.1 and a = 0.05. Healthy adult males
(n =37) consumed 600 mg choline either as choline bitartrate (CB;
Balchem, Montvale, NJ, USA) or as PC (Alcolec 40P; American
Lecithin Company, Oxford, CT, USA), or NC in controls in a
randomized, crossover study (27) (Figure 2). Each meal was
administered within a single day with a 1-week washout break.
Participants were free-living, without any chronic diseases, and had
not taken probiotics, prebiotics, or antibiotics for 2 months leading
up to the start of the study.

For each study session, participants arrived after a 10-h overnight
fast, and a baseline blood sample was drawn by a phlebotomist using
venipuncture. Participants were asked to collect their baseline urine
in a wide-mouth specimen container (Thermo Fisher Scientific,
Wilmington, DE, USA). Then a study meal was provided, either a
choline supplement powder or no powder, which was mixed into one
cup (237 mL) of tomato soup and served with a bagel with margarine-
butter spread and one cup of water. Participants consumed the study
meal within a 15-min duration. Following the meal consumption,

— CB \ NC \ 7/ PC
\ / \ /
\ / \ /
R’\\ ’// \\\\ ";
A\ \ Y
Randomization |———p 1-week 1-week
(n=37) PC washout CB wa/s’{\out NC
y\
/\ /\
/\ \
) \ | |
4 |}
NC PC CB
Baseline 6-h Baseline 6-h Baseline 6-h
o—0 o— 0 o— 0
 —  — I — |
[ZR =] - = == ] ]
FIGURE 2
A diagram of the study design in which participants (n = 37) were randomized and double-blinded to receive a standardized meal containing 600 mg
choline either as choline bitartrate (CB) or phosphatidylcholine (PC), or no choline (NC) control, with a 1-week washout break in between. For each
study session, participants arrived after a 10-h overnight fast. Fasting blood at the first study baseline was used to isolate the buffy coat for genotyping.
Urine was collected at study baseline and throughout the 6-h study period for quantification of one-carbon metabolites.
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participants were asked to collect their urine in a wide-mouth
polyethylene bottle (Nalgene) throughout the 6-h study period. At
4.5 h, a fixed snack (apple sauce) and water were provided. During
each study session, participants refrained from consuming food or
beverages outside those provided by study personnel.

Participants and study personnel, including those who analyzed
the samples, were blinded from the order of the meal. Participants
were recruited from Logan, UT, USA, and the surrounding areas.
Written informed consent was obtained from each participant in the
study. The experimental procedures were approved by the Institutional
Review Board at Utah State University, and the study was registered
with clinicaltrials.gov (NCT04255368). Sample analyses were
conducted at the University of Guelph.

2.2 Study design justification

The chosen dose of 600 mg/day is within the physiologically
relevant range and well below the Tolerable Upper Intake Level of
3,500 mg/day (19). A single meal ingestion employed in this study is
advantageous in capturing the acute metabolic response, coupled with
a crossover design that serves to minimize unaccounted differences in
personal characteristics in a parallel arm design. The larger study was
intended to include adult males and females as well as two distinctive
categories of BMI to examine the effect of sex and BMI on metabolite
responses, but there was an insufficient number of females and a
higher BMI category, leading to a post hoc analysis that included only
males and pooled samples of all BMI categories.

2.3 Sample collection

Baseline venous blood samples were collected in EDTA tubes,
placed on ice and then centrifuged at 2,000xg at 4 °C for 10 min. The
buffy coat layer was isolated and transferred into cryogenic tubes
containing DMSO and then mixed by inversion. Baseline and 6-h
study urine in collection containers were kept on ice, gently mixed,
and then transferred into cryogenic tubes. All aliquoted samples were
immediately stored at —80 °C until further use.

2.4 Urinary choline, betaine,
dimethylglycine, and methionine
concentrations

Liquid chromatography tandem mass spectrometry (LC-MS/MS)
was used to quantify urinary concentrations of free choline, betaine,
dimethylglycine, and methionine, as previously described (29) with
modifications (30, 31). Choline was measured separately using a
Surveyor HPLC system (Thermo Fisher Scientific) interfaced with a
TSQ Quantum Ultra Mass Spectrometer (Thermo Fisher Scientific).
Betaine, dimethylglycine, and methionine were measured using a
UHPLC Thermo Ultimate 3000 (Thermo Fisher Scientific) coupled to
an EVOQ Qube Triple Quadrupole Mass Spectrometer (Bruker
Daltonics, Bremen, Germany). The mass spectrometer was operated
using electrospray ionization in positive ion mode.

Sample preparation was performed by mixing 50 pL of urine with
100 pL of acetonitrile, 0.1% (v/v) formic acid, and isotope-labeled internal
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standards, including d13-choline (D-5185; CDN Isotopes, Pointe-Claire,
QC, Canada) or with d3-betaine (D-6303; CDN Isotopes),
d3-dimethylglycine (D-7024; CDN Isotopes), and 13C-methionine
(A39248; Thermo Fisher Scientific). The mixture was vortexed and
centrifuged at maximum speed for 5 min. The resulting supernatant was
transferred to glass vials with disposable inserts and then diluted 1:1 with
a solution of water:acetonitrile:formic acid in a ratio of 1:1:0.0005.

A 10 pL aliquot of the supernatant was injected onto a Prevail
Silica analytic column (150 x 2.1 mm, 5 pm particle size; Grace,
Columbia, MD, USA) with a matching guard column. The mobile
phase consisted of 81% acetonitrile and 19% 15 mmol/L ammonium
formate with 0.1% (v/v) formic acid. The flow rate was maintained at
500 pL/min, with the column and autosampler temperatures set at
25 °C and 5 °C, respectively. Calibration curves were constructed by
diluting known concentrations of choline, betaine, dimethylglycine,
and methionine in water.

The parent ion/daughter ion fragments were monitored in
multiple-reaction monitoring mode to detect the following transitions:
m/z 104.2 to 60.2 for choline, m/z 117.2 to 69.2 for d13-choline; m/z
118.2 to 58.4 for betaine, m/z 121.2 to 61.4 for d3-betaine; m/z 104.2
to 58.4 for dimethylglycine, m/z 107.2 to 61.4 for d3-dimethylglycine;
and m/z 150.1 to 104.1 for methionine, m/z 151.1 to 105.1 for
13C-methionine. The intra- and inter-assay percent coeflicients of
variation were 4% and 6% for choline, 3% and 4% for betaine, 5% and
6% for dimethylglycine, and 3% and 6% for methionine, respectively.
The data were acquired using XCalibur software (Thermo Fisher
Scientific) for choline measurements, and Compass HyStar (Bruker
Daltonics) for betaine, dimethylglycine, and methionine.

2.5 Urinary creatinine determination

Creatinine concentrations in urine were measured using a
Creatinine (urinary) Colorimetric Assay Kit (#500701; Cayman
Chemical; Ann Arbor, MI, USA) based on the Jaffe reaction that
involves alkaline picrate treatment. The corrected absorbance was
derived from the initial and final absorbance before and after
acidification at 500 nm using an Azure Ao Microplate Reader AC3000
(Azure Biosystems, Dublin, CA, USA). Creatinine concentrations
were calculated using the linear regression of the standard curve by
substituting corrected absorbance and were used to adjust urinary
one-carbon metabolite concentrations.

2.6 End-point genotyping

Genomic DNA was isolated from the buffy coat of blood samples
at study baseline using the DNeasy Tissue kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol. The quantity and
quality of genomic DNA samples were measured using an Epoch
Spectrophotometer (Agilent BioTek, Santa Clara, CA, USA). PCR
reactions composed of 20 ng DNA, and TagMan SNP Genotyping
Assay Mix (Thermo Fisher Scientific) and TagMan Genotyping
Master Mix (Thermo Fisher Scientific) were performed using
Endpoint Genotyping on an Applied Biosystems QuantStudio 7
System (Thermo Fisher Scientific) in the Advanced Analysis Centre
Genomics Core at the University of Guelph. The chosen markers
CHDH 1512676, BHMT rs3733890, CHKA rs10791957, and PEMT
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rs4646343 represent functional variants that are known to influence
choline homeostasis and are listed in Supplementary Table 1. All
samples were run in duplicate reactions with in-run standards and
negative water controls with the following conditions: 95 °C for
10 min, followed by 40 cycles of 95 °C for 15 s, and 60 °C for 1 min.
Pre- and post-PCR reads were analyzed using Design & Analysis
Software 2 version 2.7.0 (Thermo Fisher Scientific).

2.7 Statistical analysis

SAS Version 9.4 (SAS Institute Inc., Cary, NC, USA) and
MetaboAnalyst 6.0 (32) were used to analyze the data. A X* test was
used to assess whether genotype frequencies were in Hardy-Weinberg
equilibrium (33). Normality and homogeneity of the data were
examined using the Shapiro-Wilk test and Levene’s test, respectively,
and Q-Q plots were used for visual inspection. Each metabolite was
expressed as a change from baseline, where the concentration values
of pooled urine throughout the 6-h study period were subtracted from
the study baseline at 0 min. A mixed model was employed using
PROC MIXED with treatment, genotype, and their interaction terms,
followed by post hoc pairwise comparisons adjusted using the Tukey-
Kramer method. The subject was treated as a random effect.

Multiple types of variation are expected to arise with each
experimental factor (34), as this was a multifactor study. Thus, a
multivariate analysis approach is considered valuable when it reduces
complex patterns into components, from which the proportion of the
total variation explained by each experimental factor can be identified
(35). To investigate the combined effects of SNPs as their overall
contribution, SNPs were coded as 0, 1, or 2, representing the number
of variant alleles (0 having no copy of the SNP; 1 having one copy of
the SNP; and 2 having two copies of the SNP). Given the exploratory
nature of our study and the potential for multiple SNPs to exert graded
effects on choline metabolism, we prioritized the additive genotype
model as a biologically plausible question. While dominant and
recessive models can offer increased power under specific assumptions
in genetics, they may impose constraints that obscure intermediate
effects derived from heterozygosity. Thus, we coded genotype
information as 0-1-2 based on its ability to preserve allelic dosage
information, which aligns with our mechanistic interest in gene-
nutrient interactions. Thus, a polygenic score was derived by summing
the number of copies of the SNP for all four genotypes of interest. The
relative frequency of individuals in different bins of polygenic score
was expressed as a histogram.

The metabolite data were log-transformed and range-scaled
(mean-centered and divided by the range of each variable) for
multivariate analysis. Principal component analysis (PCA) was
conducted, in which data matrices were visualized in two-dimensional
scatter plots of samples projected onto pairs of principal components.
Permutational multivariate analysis of variance (PERMANOVA; 999
permutations) was applied to the sample scores of each principal
component. We utilized ANOVA simultaneous component analysis
(ASCA), a multivariate extension of univariate ANOVA (36), using
the two-factor design module within MetaboAnalyst. Our decision to
use ASCA was guided by the specific analytical priorities of our study.
Generalized linear mixed models (GLMMs) as well as repeated
measures ASCA+ are suitable for formal inference of longitudinal
designs, but may be prone to overparameterization or lack of
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convergence in high-dimensional settings with modest sample sizes.
We are aware that GLMMs are generally more appropriate than
ASCA-based methods, as GLMMs offer flexibility in handling
imbalances in the dataset, missing data, and within-subject
correlations. Our dataset was complete with no missing values, and
polygenic scores were treated as categorical predictors with
approximately symmetric distribution. We acknowledge that genotype
group sizes at the SNP level reflected allele frequencies, but this was
not due to sampling artifacts. Subject-level information was
incorporated as a within-subject factor, all of which represented a
pragmatic approach for complex modeling. We note that ASCA is
particularly well-suited for decomposing multivariate data into effect-
specific matrices and applies PCA to each, thereby revealing
covariance patterns among variables within each factor. In addition,
reliable estimates of factor-level effects are achieved through ASCA
with intuitive visualizations that support biological insight. This
facilitates interpretation of coordinated biochemical responses, rather
than isolated univariate effects or outcome prediction. Overall, ASCA
provided the optimal balance of interpretability and strength in
multivariate decomposition, aligning with our primary objective of
identifying drivers of metabolic variations among groups of
individuals. The total variation was partitioned into main treatment
and genotype effects and their interaction. Principal component was
applied to each effect matrix, and a scree plot was used to evaluate the
contribution of each component to total variance. The component
explaining the highest proportion of variance was extracted (in our
case, component 1) to identify dominant patterns. To validate model
significance, permutation tests (100 permutations) were employed
within ASCA using Manly’s approach (37), which recalculates the
total sum of squares for each factor and their interactions. An effect
was considered significant if the observed sum of squares exceeded
the 95th percentile of the permuted distribution. The Benjamini-
Hochberg false discovery rate adjustment was considered to correct
PERMANOVA p-values. Statistical significance was declared at
p <0.05. All data are expressed as mean + SEM unless stated otherwise.

3 Results

3.1 Participant characteristics and
genotype distribution

Participants (n=37) in the study had an average age of
26.3+0.8 years and a BMI of 26.4 + 0.8 kg/m>. The number of
participants in each genotype is shown in Table 1 and conformed to
Hardy-Weinberg equilibrium. The allele frequency distribution was
0.770 for the C allele of CHDH rs12676; 0.608 for the A allele of
BHMT rs3733890; 0.581 for the A allele of CHKA rs10791957; and
0.419 for the T allele of PEMT rs4646343 (Table 1). Our interest was
to compare individuals who are carriers of two copies of the variant
allele compared to all other groups, thus, individuals with the
non-variant and one variant copy carriers were pooled together.

3.2 One-carbon metabolite response

A treatment effect was present, where CB resulted in higher
urinary concentration change from baseline compared to NC, whereas
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TABLE 1 Genotypic distribution of participants across single nucleotide polymorphisms (SNPs) in genes encoding key enzymes in one-carbon
metabolism: choline dehydrogenase (CHDH) rs12676, betaine:homocysteine methyltransferase (BHMT) rs3733890, choline kinase A (CHKA)
rs10791957, and phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343.

Gene and Allele

SNP

Genotype distribution

frequency

Study comparisons

Individuals with
two copies of the
variant allele

Individuals with
none or one
copy of the
variant allele

CHDH 1512676 AA AC CcC C allele frequency NS AA+AC CcC
4 9 24 0.770 13 24
BHMT 153733890 GG GA AA A allele frequency NS GG+ GA AA
8 13 16 0.608 21 16
CHKA rs10791957 CcC CA AA A allele frequency NS CC+CA AA
6 19 12 0.581 25 12
PEMT rs4646343 GG GT T T allele frequency NS GG+ GT TT
15 13 9 0.419 28 9

Participant counts are reported for each genotype. All distributions conformed to Hardy—-Weinberg equilibrium, as assessed by a X* test. To maximize differences imposed by metabolic
inefficiencies, individuals carrying two copies of the variant allele were compared against those with none or one copy of the variant allele. NS denotes not significant.

no difference was found between PC and NC, as well as between PC
and CB (p < 0.01; Figures 3A-D). There was no genotype effect alone
for all SNPs examined (CHDH rs12676, BHMT rs3733890, CHKA
rs10791957, and PEMT  rs4646343) 3A-D).
Supplementary Tables 2-5 show descriptive statistics groupwise.

(Figures

There was a significant treatment and CHDH rs12676 genotype
interaction for urinary change from baseline for choline, betaine,
dimethylglycine, and methionine (p < 0.05 for choline, betaine, and
dimethylglycine, p < 0.01 for methionine; Figure 3A). CB induced
higher urinary change from baseline for choline, betaine,
dimethylglycine, and methionine compared to NC in the AA + AC
genotype group only, whereas these effects did not occur in the CC
genotype group. In addition, lower urinary change from baseline for
betaine, dimethylglycine, and methionine was found in the CC
genotype group compared to the AA + AC genotype group. No other
effects, including those from PC treatment, were found.

For BHMT 153733890, the GG + GA genotype group, as well as
the AA genotype group, had higher choline change from baseline after
CB compared to NC (p < 0.01; Figure 3B). The GG + GA genotype
group also had higher urinary choline change from baseline after PC
compared to NC, without differences between PC and NC in the AA
genotype group. Treatment and genotype interacted to influence
urinary betaine change from baseline (p < 0.05; Figure 3B), which was
lower in the AA genotype compared to the GG + GA genotype group
upon PC supplementation. An interaction between SNP and treatment
was also detected for urinary dimethylglycine change from baseline
(p < 0.05; Figure 3B), which was higher after PC compared to NC in
the GG + GA genotype group, but absent in the AA genotype group.
Urinary methionine change from baseline did not differ across groups.

For CHKA rs10791957, the CC + CA genotype, as well as the AA
genotype groups, showed higher urinary choline change from baseline
after CB compared to NC. Higher choline change from baseline after
PC was observed compared to NC control in the CC + CA genotype
group, but these effects were absent in the AA genotype group. No
other differences occurred for urinary change from baseline for
downstream products of one-carbon metabolism, including betaine,
dimethylglycine, and methionine.
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For PEMT rs4646343, the GG + GT genotype group had higher
urinary choline change from baseline with CB or PC supplementation
compared to the NC control. In contrast, these effects were not
observed in the TT genotype group. As with the CHKA genotype,
urinary change from baseline for betaine, dimethylglycine, and
methionine did not show differences among groups.

3.3 Multivariate analysis

Our approach moved beyond the singular analysis of select SNPs
and utilized a multivariate technique with dimensional reductions. We
assessed the cumulative impact of SNPs using polygenic scoring that
was determined by summing the number of risk alleles of each SNP
across CHDH rs12676, BHMT rs3733890, CHKA rs10791957, and
PEMT rs4646343. The polygenic scores were categorized as 2-8, and
the relative frequency, as the proportion of individuals by different
bins of scores, followed a normal distribution (Figure 4).

The PCA scores plot demonstrated that the first three components
explained 59.2, 22, and 11.3% variation in the order of components 1,
2, and 3 without distinctive patterns across treatments or polygenic
scores (Figure 5). We leveraged ASCA to model genotype and treatment
effects with an interaction. The scree plots (Supplementary Figure 1)
showed a clear separation among the principal components
contributing to the total variation in each dataset, with the first
component showing the highest variation explained. Using the first
component, sub-models were created for treatment, genotype, and
interaction to identify major patterns associated with each factor
(Figures 6A-C). The first component explained 95.7% of the variation
for treatment, 62.4% for the genotype, and 50.7% for the interaction in
the respective ASCA sub-models. Treatment and genotype (grouped by
polygenic score) led to distinctive patterns in sub-models through
ASCA. Within the interaction sub-model, there was a divergence in
patterns in the groups with the polygenic scores of 2-5 (less
accumulated number of effect alleles) versus groups with the polygenic
scores of 6-8 (more accumulated number of effect alleles). The pattern
from the polygenic scores of 2-5 aligned with the pattern derived from
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The effect of choline treatment and genetic variations on urinary concentration change from baseline for choline, betaine, dimethylglycine, and
methionine after choline bitartrate (CB), phosphatidylcholine (PC), or no choline (NC) consumption in a randomized, double-blinded crossover study,
shown as box and whisker plots for (A) choline dehydrogenase (CHDH) rs12676, (B) betaine:homocysteine methyltransferase (BHMT) rs3733890,

(C) choline kinase A (CHKA) rs10791957, and (D) phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343. Urinary metabolite concentrations
were creatinine (Cr)-adjusted. The treatment (trt), genotype, and interaction effects were determined using a mixed model followed by the Tukey—
Kramer post hoc comparisons as denoted by *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. CB yielded a higher urinary choline concentration
change from baseline compared to NC, without differences in PC compared to either NC or CB. Genetic variation in CHDH rs12676 yielded less
response to CB, whereas genetic variation in BHMT rs3733890 showed lower utilization of dimethylglycine in response to PC. Genetic variations in
CHKA rs10791957 and PEMT rs4646343 reflected disturbances in the partitioning of choline for choline recycling and synthesis. NS denotes not
significant. Box-and-whisker plots display the minimum, median and maximum values for each group, n = 37.

treatment alone for CB, NC, and PC. Contrasting this, there was a
misalignment with the polygenic scores of 6-8 away from the pattern
derived from treatment alone for CB, NC, and PC. Sub-models of
treatment, genotype, and interaction were validated through 100
permutations, where the total sum of squares for treatment, genotype,
and interaction was compared against that from the permuted data and
shown as the histogram of the distribution (Figures 6D-F). The
separation distance between the original and permuted samples, as
determined by permutation statistics, did not show significance for
treatment alone nor genotype alone. However, the interaction term was
significant with p < 0.05, indicating that both treatment and genotype
were important predictors of metabolite responses to CB and PC.

4 Discussion

The findings from this study support our hypothesis that
targeted SNPs in genes involved in choline homeostasis are
determinants of one-carbon metabolite responses following
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consumption of supplemental choline differing in form. Several key
findings were uncovered: (1) a main treatment effect was detected
for urinary choline change from baseline reflective of differences in
metabolism afforded by water-soluble versus lipid-soluble choline;
(2) genetic variation in CHDH rs12676 was manifested as lower
choline oxidation and downstream pathways in the methionine
cycle in response to CB; (3) metabolic inefficiencies were observed
with genetic variation in BHMT rs3733890 that led to lower
utilization of dimethylglycine in response to PC; (4) genetic
variations in CHKA rs10791957 and PEMT rs4646343 were
manifested as disturbances in choline phosphorylation and synthesis
with differences in the partitioning of choline in response to CB and
PC; and (5) multivariate analysis showed that groups with
accumulated number of effect alleles possessed contrasting
responses to CB and PC, deviating from the patterns derived from
the treatment effect alone. Overall, we build on our ongoing
endeavor investigating metabolic pathways involving choline as a
versatile compound with a wide range of biological functions (6),
and present novel evidence that the complexity of individual
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FIGURE 4
A frequency distribution of polygenic scores binned from 2 to 8 as a
combined effect of the presence of the variant allele in the
genotypes of choline dehydrogenase (CHDH) rs12676,
betaine:homocysteine methyltransferase (BHMT) rs3733890, choline
kinase A (CHKA) rs10791957, and phosphatidylethanolamine
N-methyltransferase (PEMT) rs4646343. Single-nucleotide
polymorphisms (SNPs) were coded as O, 1, or 2, representing the
number of variant alleles (0 having no copy of the SNP; 1 having one
copy of the SNP; and 2 having two copies of the SNP). Then the
polygenic score was derived from summing the number of copies of
the SNP. A line shows a fitted Gaussian distribution, n = 37

responses arises with different forms of choline that can be
distinguished by common genetic polymorphisms.

The main treatment effect, wherein a higher change in urinary
choline was found with CB supplementation compared to NC control,
without differences between PC compared to either NC control or CB,
reflects the contribution of solubility to choline metabolism. Choline
salts, including CB, are common constituents of dietary supplements,
whereas PC is found in various animal and plant source foods. Free
choline is characterized by more rapid absorption as opposed to PC,
which must first be cleaved by pancreatic phospholipase A2 IB to
). These differences

may explain a slower turnover of choline from PC as opposed to CB

release its choline moiety prior to absorption (

in our study and are in agreement with other reports of delayed
increase in plasma choline concentrations upon PC supplementation
and not with water-soluble choline (39, 40). Choline assimilation from
the lipidic choline pool may be beneficial in achieving a balanced
increase (40), where the reliance on PC to recycle choline may occur
depending on the availability of free choline (25). Together, variations
in choline responses may arise from multiple mechanisms and/or
pathways to support cellular demand, highlighting the complexity of
metabolic regulation, thus warranting a closer examination of choline
utilization and redistribution.

No other main effects of the treatment were observed outside of
choline, but we detected an interaction effect between treatment and
CHDH rs12676 genotype that arose with CB but not with PC. CHDH

catalyzes the initial step in the oxidation of choline to betaine, and
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genetic variation in CHDH has been implicated in metabolic disorders
(41). We found that the AA+AC genotype group of CHDH rs12676
had higher urinary change from baseline for choline, betaine,
dimethylglycine, and methionine upon CB supplementation
compared to the NC control, but these elevations did not occur in the
CC genotype group. Supporting the interaction effect, lower urinary
change from baseline for betaine, dimethylglycine, and methionine
were found after CB consumption in the CC genotype group
compared to the AA + AC genotype group, indicating lower capacity
through the methionine cycle. This suggests that the CHDH rs12676
polymorphism may impair choline oxidation, thereby limiting betaine
availability and downstream methylation reactions. Our study
expands on prior evidence of higher betaine across water-soluble and
lipid-soluble choline supplementation (39), which our study provides
as a dimension of genotype in influencing choline and downstream
metabolites, but we found no interaction effect with PC
supplementation across the genotype groups of CHDH rs12676.
Sample type and nutrient-nutrient interaction in different study
designs may have contributed to distinctive metabolic outcomes, as
with other genotypes that can govern the complex nature of
choline homeostasis.

One marker that emerged with PC supplementation was an
interaction between treatment and BHMT rs3733890 genotype, which
did not arise with CB. BHMT catalyzes the transfer of a methyl group
from betaine to homocysteine, forming dimethylglycine and
methionine, which maintains the methionine cycle and supports
cellular methylation capacity (42). The GG + GA genotype group of
BHMT rs3733890 had higher urinary choline and dimethylglycine
change from baseline upon PC supplementation compared to the NC
control, but these effects were absent in the AA genotype group. The
reduced capacity of betaine as a methyl donor was also observed in
the AA genotype group compared to the GG + GA genotype group
and aligns with impaired responses to PC, both upstream and
downstream (choline and dimethylglycine). This suggests that the
BHMT 1rs3733890 polymorphism may reduce enzyme efficiency,
leading to shifts in choline metabolite flux. Previously, a lack of
association between the BHMT rs3733890 genotype and susceptibility
to choline deficiency (9) has been reported, which was attributed to
the protein product of the gene variant that did not differ in either
catalytic activity or betaine binding compared to the enzyme without
the polymorphism (43, 44). However, the variant is known to have a
functional role in choline dynamics (13) as a metabolic node between
betaine and CDP-derived PC endpoints. CB supplementation can be
juxtaposed as seen with higher urinary choline change from baseline
compared to the NC control in the AA genotype group of BHMT
rs3733890. Lower flux through BHMT can be reflected as an
accumulation of choline, but the GG + GA genotype group also had
higher choline with CB supplementation. Higher concentration of
choline without elevation in the product of the BHMT reaction in
these individuals may indicate that CB favors the entry into the CDP-
choline pathway rather than the methionine cycle. Methionine did not
differ across genotype and treatment, but similar to another report,
the loss of BHMT-catalyzed biosynthesis may not emerge with the
presence of a larger methionine pool (45), although downstream
transmethylation reactions would need to be investigated.

Subtle effects of urinary choline change from baseline occurred
with the CHKA rs10791957 and PEMT rs4646343 genotypes when
CB or PC was provided. PC synthesis occurs via two main pathways:


https://doi.org/10.3389/fnut.2025.1620538
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Butt et al. 10.3389/fnut.2025.1620538
PC1 (59.2%) PC2 (22%) PC3 (11.3%)
34
el
Q
2
a
©
N
g
0
Q
N
N
N
g
0.504 A A
a A
0.25 + 0" o
- B ) 2 o+ = B
soat PA i+ OA o sk L8O 4 b
Aot & 8 9 at A4 8&a o 2 =
605 ki | Af. A @Aifﬁ—# %3 8k 2
. o o o o ,0 (]
o+ A qofa @o ot A 3 8
Qo+t + +& o of AQ o ==
o il = o Fowm T N
o A p A o
- - o o
025 = 8 e
° * + + #
A A
05 0.0 05 0.6 03 0.0 0.3 0.6 -0.25 0.00 0.25 0.50
®: 03 @+ @5 @ @7 @
O Nne + SRAN-S
FIGURE 5

polygenic scores from 2 to 8.

Principal component analysis (PCA) scores plot projected in the two-dimensional matrices of samples grouped by treatment and polygenic score.
Participants (n = 37) were randomized and double-blinded to receive a standardized meal containing 600 mg choline either as choline bitartrate (CB)
or phosphatidylcholine (PC), or no choline (NC) control, with a 1-week washout break in between. Single nucleotide polymorphisms (SNPs) were
coded as 0, 1, or 2, representing the number of variant alleles (0 having no copy of the SNP; 1 having one copy of the SNP; and 2 having two copies of
the SNP) for choline dehydrogenase (CHDH) rs12676, betaine:homocysteine methyltransferase (BHMT) rs3733890, choline kinase A (CHKA)
rs10791957, and phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343. Then the polygenic score was derived by summing the number of
copies of the SNP. The data were log-transformed and range-scaled (mean-centered and divided by the range of each variable). The scores plot shows
that 59.2% of the variation was explained by the first principal component, 22% of the variation was explained by the second component, and 11.3% of
the variation was explained by the third component. No distinctive patterns were observed across treatments and polygenic scores (not significant by
PERMANOVA). Different symbols denote different treatment groups for CB, PC, or NC control, whereas different colors denote different groups of

the CDP-choline pathway, which begins with the phosphorylation
of choline by CHKA (14), and the de novo pathway, where
phosphatidylethanolamine undergoes triple methylation reactions
catalyzed by PEMT (15, 16). CHKA rs10791957 and PEMT
rs4646343 are located within the first intron region of the respective
gene that may play a regulatory role as an enhancer of transcription
levels (46). The presence of the effect alleles of CHKA rs10791957
is thought to confer protection from low-choline-associated organ
dysfunction (17), in contrast to increased risk of low-choline-
associated organ dysfunction with the effect alleles of PEMT
rs4646343 (47). In the paradigm of extra choline, higher urinary
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choline change from baseline was found in the AA genotype group
of CHKA rs10791957 after CB supplementation compared to the
NC control, without alterations in betaine, dimethylglycine, and
methionine, which may reflect enhanced recycling of dietary
choline (choline — PC — choline). We also observed higher choline
change from baseline after CB and PC supplementation compared
to NC control in the CC + CA genotype group of CHKA rs10791957
and the GG + GT genotype group of PEMT rs4646343, an effect
that appears to be driven by choline treatment through the intact
pathways of PC synthesis. Urinary choline change from baseline did
not differ in the TT genotype group of PEMT rs4646343 upon CB
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FIGURE 6

Analysis of variance simultaneous component analysis (ASCA) of treatment, genotype, and their interaction. Participants (n = 37) were randomized and
double-blinded to receive a standardized meal containing 600 mg choline either as choline bitartrate (CB) or phosphatidylcholine (PC), or no choline
(NC) control, with a 1-week washout break in between. To capture the cumulative effect of genotypes, single-nucleotide polymorphisms (SNPs) were
coded as 0, 1 or 2, representing the number of variant alleles (O having no copy of the SNP; 1 having one copy of the SNP; and 2 having two copies of
the SNP) for choline dehydrogenase (CHDH) rs12676, betaine:homocysteine methyltransferase (BHMT) rs3733890, choline kinase A (CHKA)
rs10791957 and phosphatidylethanolamine N-methyltransferase (PEMT) rs4646343 then the polygenic score was derived from summing the number
of copies of the SNP. Sub-models of (A) treatment, (B) genotype, and (C) interaction were projected to identify major patterns associated with each
factor, as computed scores based on the first component. The first component explained 95.7% of the variation for treatment, 62.4% of the variation
for genotype, and 50.7% of the variation for the interaction between treatment and genotype in the respective ASCA sub-models. Within the
interaction sub-model, the groups with the polygenic scores of 2-5 (less accumulated number of effect alleles) showed divergent patterns compared
to the groups with the polygenic scores of 6-8 (more accumulated number of effect alleles) wherein the polygenic scores of 6-8 deviated from the
pattern derived from treatment alone for CB, NC, and PC but not with the polygenic scores of 2—5. Model validation is shown as histograms of the
distribution formed by 100 permutations. The total sum of squares for (D) treatment, (E) genotype, and (F) interaction was compared against that from
the permuted data. Significance indicates the observed sum of squares exceeding the 95th percentile of the permuted distribution. Only the interaction

significant.

term was significant, indicating the importance of both treatment and genotype factors in shaping the patterns of metabolite response to different
forms of choline. The data were log-transformed and range-scaled (mean-centered and divided by the range of each variable). NS denotes not

or PC supplementation compared to NC control, which may
indicate lower flux of choline despite choline provision. Past studies,
albeit using other designs and populations, have demonstrated the
partitioning of choline toward the maintenance of PC under various
physiological states (48, 49). The current study yields further
nuance to the effect of the alleles of genes involved in PC synthesis
in explaining metabolic heterogeneity in response to CB or PC.
Our findings complement those from Ganz et al. (10), reporting
the influence of genetic variation on choline partitioning and methyl
donor utilization in healthy third-trimester pregnant, lactating, and
non-pregnant women consuming choline at or above current
recommendations. Given the distinct research questions, the study
designs of Ganz et al. and ours diverged substantially; thus, any direct
comparisons should be interpreted within the context of each study.
For CHDH rs12676, Ganz et al. showed that variants appear to favor
the use of dietary choline for PEMT-PC synthesis relative to CDP-PC,
whereas our study demonstrated that the CC genotype group
exhibited lower urinary change for betaine, dimethylglycine, and
methionine in response to CB, with no effects following PC. For
BHMT 153733890, Ganz et al. reported a potential preferential use of
dietary choline for CDP-PC synthesis, partitioning away from betaine
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synthesis, where our study supports a genotype-dependent response
to PC, with the AA group showing reduced methyl donor utilization.
CHKA 1510791957 variants were implicated in decreased use of
dietary choline for PEMT-PC synthesis relative to CDP-PC synthesis
in Ganz et al,, and our study linked the AA genotype to enhanced
recycling of dietary choline, as evidenced by elevated urinary choline
following CB supplementation. Ganz et al. noted that PEMT
rs4646343 variants had lower PEMT-PC/CDP-PC, indicative of lower
PEMT activity, and our data showed that individuals with the
GG + GT genotype had higher urinary choline following CB and PC
supplementation, whereas the TT genotype group showed no
response, suggesting impaired PC synthesis. Together, both studies
identified key SNPs as potential modulators of choline metabolism in
various settings, with our findings offering choline form-specific
insights into gene-nutrient interactions.

This study leveraged a multivariate approach incorporating
the interaction between treatment and genotype, which
illuminated that genotype clusters having polygenic scores of 6-8
deviated from the pattern derived from choline treatment. We
grouped individuals based on the summation of the presence of
variant alleles in line with the conceptual importance of
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examining cumulative effects, which a single SNP (and even a
single gene) is unlikely to account for the complex phenotypes
(50). In support of this, distinctive structures were absent in our
classical PCA when only the individual factors were considered,
but it became apparent once an interaction term was included
through ASCA (36). We elected to employ ASCA based on the
ability to calculate the permuted variation associated with each
factor and interaction. This approach has the advantage of
decomposing principal components separately and performing
PCA on each partition that can further be validated. Based on the
first component, which explained the largest percent variation,
the divergence between the polygenic scores of 6-8 (with the
accumulated risk alleles) versus 2-5 suggests the importance of
all four SNPs (CHDH rs12676, BHMT rs3733890, CHKA
rs10791957, and PEMT rs4646343) in dictating subgroups of
individuals who are less responsive to CB and PC. The overall
patterns, revealed through ASCA, offer utility in detecting unique
responses to choline treatment that may extend to functional
relevance for individual phenotype. Sub-model validations
through permutations also reinforced that the interaction term
(not individual factors alone) was a significant determinant of
differential metabolic responses. Although not comparable, our
results are concurrent with other studies that show value in
grouping SNPs from similar metabolic pathways to allow for the
identification of shared SNP signatures in explaining hepatic
steatosis (51, 52). These types of integration can serve as an
initial step toward the larger goal of identifying sources of
heterogeneity to understand meaningful patterns between SNPs
and health (2). We also acknowledge that there may be effects on
the activity of the same enzyme from multiple SNPs, which a
variant at one locus may manifest its effect when a variant at
another locus is present (53). Thus, the development of
algorithms to capture these interactions will clarify how multiple
hits from genetic variations contribute to perturbations in
metabolic pathways.

The implication of our research is that the future of precision
nutrition holds promise in deciphering complex patterns of genetic
variations to predict metabolic inefficiencies. Select SNPs can be
grounded in a hypothesis-driven approach within nutrient-specific
metabolic pathways, and this study focused on those that influence
choline metabolism. As various forms of choline exist that can be
obtained exogenously, SNPs alone without considering components
of choline, or treatment alone without considering SNPs, would not
suffice in identifying meaningful patterns of metabolic responses. Our
study suggests that the stimulation of choline oxidation, use of the
methionine cycle, and choline synthesis can be triggered with CB or
PC in a genotype-dependent manner. The accumulated presence of
the variant alleles across the select SNPs may render individuals to be
less responsive to CB or PC, which may necessitate strategies to restore
choline homeostasis. When different groups of individuals can be
stratified on the basis of biomarkers of metabolism, better estimates
of their nutrient requirements can be made, which would yield
broader translational relevance to refine dietary interventions and
guidelines. These outlooks, combined with the use of computational
tools, can then parse individual characteristics. Extending further, the
ultimate goal of precision nutrition would comprise mechanistic and
functional evidence of the gene that can positively influence the
guidance of clinical practice and dietary recommendations (54),
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including those centered on choline, thus may help optimize health in
various subgroups of the population.

There are many limitations in this study. First, the genotype
distribution was not equal since it was a post hoc design, and the
modest sample size (n = 37) may have limited the ability to detect
subtle genotype-treatment interactions, particularly when
stratified by genotype and treatment groups. Although our study
had utility in informing future studies to target SNPs, larger
analyses are needed to validate our findings. Second, our final
participant pool included only adult males and was mostly
comprised of those of European descent, limiting the
generalizability of our findings to other subgroups of the
population. Of note, premenopausal adult women have a lower
requirement for choline because of estrogen-mediated induction
of the PEMT gene that enables endogenous biosynthesis of the
choline moiety (47). The effect of SNPs, including PEMT
rs4646343, can be regulated by estrogen, which may impact
metabolic responses to CB or PC. The disparate frequency of
functional variants in choline metabolism has also been found in
racial and ethnic groups (17), with the existence of dietary
selective pressures (55); thus, broader genetic patterns in relation
to metabolic outcomes need to be further studied. Finally, this
study specifically focused on choline and downstream
metabolites, but other pathways can influence choline availability,
including the gut microbial conversion of choline to
trimethylamine and subsequent oxidation to trimethylamine-N-
oxide (TMAO) (56). We have previously shown differential
TMAO response to a meal challenge containing choline and other
substrates and found that the elevation in TMAO was a function
of the gut microbiota composition and genotype (27, 28, 57).
Studies that link one-carbon metabolism with an integrative
analysis that includes host and gut microbiota factors would
provide additional insights into metabolic heterogeneity.

In conclusion, genetic variations in key genes regulating choline
metabolism (CHDH, BHMT, CHKA, and PEMT) modulate
metabolite profiles across distinct biochemical pathways, reflecting
individualized metabolic responses to different forms of choline
supplementation. Genetic variation in CHDH rs12676 impaired
choline oxidation and disrupted the methionine cycle specifically
in response to CB, while the metabolic effects of BHMT rs3733890
were evident only with PC supplementation. CHKA rs10791957 and
PEMT rs4646343 further distinguished individuals with altered PC
synthesis capacity. The combined effects of these variant alleles may
diminish responsiveness to choline supplementation, grouping
individuals according to their cumulative metabolic perturbations.
Collectively, considering genetic variations and nutrients together,
including solubility, offers a refined understanding of metabolic
heterogeneity. Our findings suggest new possibilities for advancing
precision nutrition that integrates the complex interplay of gene-
nutrient interactions and moving beyond the scope of conventional
dietary guidelines.
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