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Hepatocellular carcinoma (HCC) is one of the most common cancers globally,
with nearly 1 million new cases diagnosed annually. It is a complex disease, with
hepatitis B virus (HBV) and hepatitis C virus (HCV) infections being the most common
etiological factors worldwide. Despite advances in therapy, survival rates for advanced
and/or metastatic HCC remain low, with mortality rates 2.3 times higher in men
than women. The liver's immune system typically maintains an anti-inflammatory
environment, contributing to immune tolerance to exogenous, food-derived antigens.
However, disruption of the balanced interplay between immune factors within the
hepatic microenvironment—due to viral hepatitis, excessive alcohol intake, non-
alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis (NASH)—can
lead to chronic inflammation, oxidative stress, a cumulative mutational burden,
cirrhosis, and eventually, malignant transformation. Once HCC is established,
however, a functional pro-inflammatory immune response becomes critical to
controlling tumor progression, as evidenced by the recent success of immune
checkpoint inhibitor (ICl) treatments in HCC patients. In addition to ICls, other
novel immunotherapeutic intervention strategies, such as cancer vaccines and
adoptive T cell therapies, are currently being investigated. Furthermore, adequate
nutrition plays a critical role in modulating immune function, with vitamin D being
a key nutrient for immune/regulation. In this review, we will discuss the potential
role of vitamin D in HCC immunity and recent immunotherapeutic advances in
the management of this malignancy.

KEYWORDS
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Introduction

Hepatocellular carcinoma (HCC) is the most common form of liver cancer in the world,
with more than 1 million cases expected to be diagnosed in 2025 (1). HCC typically arises in
patients with liver cirrhosis resulting from various underlying causes, including chronic
hepatitis B (HBV) and hepatitis C (HCV) infections, alcohol-induced liver injury, metabolic
dysfunction-associated steatotic liver disease (MASLD), and non-alcoholic steatohepatitis
(NASH), among others. Of these, HBV and HCV infections account for the majority of HCC
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cases diagnosed worldwide, with NASH becoming the fastest growing
etiology for HCC in western countries (2, 3). Furthermore, the
Surveillance Epidemiology End Results (SEER) database has
demonstrated that HCC has become the fastest growing cause of
cancer-related death in the USA, illustrating its importance as a global
health problem (4).

The liver has a complex and dynamic cellular immune
microenvironment that includes combinations of cytotoxic, helper and
regulatory T lymphocytes, myeloid-derived suppressor cells (MDSCs),
dendritic cells (DCs), and natural killer (NK) cells (5, 6). The hepatic
immune microenvironment tends to enhance self-tolerance, while an
effective endogenous anticancer response depends on increased tumor
infiltration of activated T cells, which promotes expression of tumor-
specific antigens (TSAs) (7, 8). The balanced interplay between these
whether
proinflammatory milieu permeates the hepatic parenchyma (9-11).

cellular elements determines a tolerogenic or
For this reason, HCC is considered an immunogenic tumor and
immunotherapy has become a promising treatment modality in this
disease (12, 13).

One of the most valuable micronutrients, with regards to immune
function, is vitamin D (14). Many populations around the world suffer

from a deficiency in this essential vitamin, including Hispanic

10.3389/fnut.2025.1611829

Mexican Americans, non-Hispanic African Americans, and
individuals from various Middle Eastern countries (15). Additionally,
low levels of this vitamin are more commonly observed in individuals
with obesity and in older adults. Vitamin D is crucial for immune
regulation, and its deficiency has been associated with a higher risk of
developing HCC (16). Therefore, ensuring sufficient vitamin D levels
may contribute to better clinical outcomes in patients with HCC.
Given that HCC is widely regarded as a chemo-resistant
malignancy, targeted therapeutic approaches have been developed,
including tyrosine kinase inhibitors (TKIs) such as sorafenib,
lenvatinib, regorafenib, and cabozantinib, as well as antiangiogenic
agents like bevacizumab and ramucirumab. These therapies, whether
used individually or in combination, have demonstrated significant
clinical benefits, leading to their approval for the treatment of
advanced HCC (17). More recently, several immunotherapeutic
approaches have been investigated for the treatment of HCC,
including the use of immune checkpoint inhibitors (ICIs) (Figure 1),
vaccines, and adoptive T cell therapies, among others. ICIs, such as
atezolizumab, nivolumab, pembrolizumab, durvalumab, ipilimumab
and tremelimumab are antibodies that target regulatory immune
checkpoints, including the cytotoxic T lymphocyte-associated antigen
4 (CTLA-4) and programmed cell death protein 1 (PD-1) pathways,
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and have shown substantial clinical efficacy in the treatment of
advanced HCC (18, 19).

Cancer vaccines stimulate the immune system to recognize and
attack cancer cells. They fall into two categories: prophylactic and
therapeutic. Prophylactic vaccines prevent cancer by targeting cancer-
causing viruses or bacteria, for example, the HPV vaccine prevents
cervical and other HPV-related cancers (20). Therapeutic vaccines
train the immune system to identify and destroy existing cancer cells
(21-27). Despite their potential, cancer vaccines have yet to show
consistent success in clinical trials. Adoptive cell therapies (ACT),
using genetically engineered T cells, are also being investigated for
HCC. Advances in molecular engineering have enabled the
development of T cells modified to express chimeric antigen receptors
(CARs) or transduced T cell receptors (T-TCRs) that specifically
target tumor-associated antigens (TAAs) and TSAs (28-33). Key HCC
TAAs include alpha-fetoprotein (AFP), viral antigens, and cancer-
testis antigens like NY-ESO-1. Over 30 early-phase clinical trials of
CAR-T and T-TCR therapies targeting HCC TAAs/TSAs are currently
ongoing (34). Although still in early development, ACT strategies
show significant promise for HCC treatment (35, 36). Additionally,
the integration of data mining, machine learning, and artificial
intelligence (AI) has enhanced the discovery of personalized
immunotherapeutic targets, increasing the potential for novel HCC
therapies (37). This review explores the evidence supporting vitamin
D roles in cancer immunity and examines the impact of
immunotherapeutic strategies in HCC management.

Hepatocellular carcinoma and its
immunological microenvironment

To manage the constant influx of intestinal antigens, the liver
maintains a largely tolerogenic immune environment, unlike most
organs (38). This complicates the interaction between malignant
hepatocytes and hepatic immunity. HCC is often linked to chronic
liver inflammation from factors like viral hepatitis, alcohol use, or
NASH. Animal models show that pro-inflammatory cytokines, such
as lymphotoxin-a, tumor necrosis factor-oo (TNF-a), and interleukin-6
(IL-6), promote liver cancer and aggressive tumor traits (39, 40).
Conversely, immune cell infiltration in tumors is associated with
better outcomes, highlighting the role of immune activity in HCC
progression and prognosis (41, 42). Chronic liver damage activates
hepatic stellate cells (HSCs) (43), which respond by producing
extracellular matrix proteins, including collagen and growth factors
that drive endothelial cell migration, angiogenesis, and fibrosis,
ultimately leading to cirrhosis and distorted liver architecture (44).
HSCs also release transforming growth factor-p (TGF-B), which
promotes fibrosis and suppresses cell proliferation (45). In addition,
activated HSCs enhance immune tolerance by limiting lymphocyte
infiltration, upregulating PD-L1, and promoting recruitment and
differentiation of Tregs (46, 47). They also inhibit CD8" T cell
activation by disrupting IL-2 signaling and support the development
of MDSCs (48, 49). In this altered environment, pre-malignant
senescent hepatocytes secrete chemokines that weaken immune
surveillance and promote immunosuppression (50). This tumor-
permissive state in cirrhotic liver tissue is known as the “cancer field
effect” and is linked to immune and inflammatory gene signatures that
drive HCC development (51, 52). An immune-related cancer field
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signature has been found in up to 50% of adjacent cirrhotic tissue in
HCC patients, classified into immunosuppressive or pro-inflammatory
subtypes. The immunosuppressive type features strong TGFp
signaling, T cell exhaustion, high immune checkpoint expression, and
increased HCC risk (53). Key innate immune cells play crucial roles
in HCC development. Tumor-associated macrophages (TAMs) exist
as tumor-suppressive M1 and oncogenic M2 types, both abundant in
HCC. In co-culture, M1 TAMs promote cancer cell apoptosis and
inhibit invasion, while M2 TAMs drive tumor growth and metastasis
via pathways like TLR-4/STAT-3, TLR-4/NF-xB, and Wnt/f-catenin
(40, 54). (TANS)
immunosuppressive (N1) and oncogenic (N2) forms, with peritumoral
TANS linked to HCC progression, increased PD-L1, and reduced T
cells in non-alcoholic steatohepatitis (55). A lower neutrophil-to-T cell

Tumor-associated neutrophils also have

ratio in tumor tissue is linked to better patient survival, highlighting
the prognostic value of TANs in HCC (56). MDSCs include myeloid
progenitors and granulocytes that suppress NK cells and CD4*/CD8*
T cells, contributing to immune suppression in the HCC
microenvironment (57). MDSCs inhibit cytotoxic T lymphocytes
(CTLs) by producing inducible nitric oxide synthase (iNOS) and
reactive oxygen species (ROS), disrupt dendritic cell development,
impair NK cell function, reduce interferon-y (IFN-y) production, and
promote T cell apoptosis via the Tim-3/Gal-9 pathway. They also
stimulate Treg expansion by secreting immunosuppressive cytokines
IL-10 and TGF-P (58, 59). Tregs further suppress immunity in HCC
by inhibiting TNF-a and IFN-y, reducing T cell proliferation and
cytokine production (60). Notably, Treg accumulation around tumors
correlates with disease progression and poorer survival (61, 62). In the
healthy liver, NK cells are kept in a tolerogenic state due to inhibitory
killer cell immunoglobulin-like receptors (KIRs) (63). During liver
inflammation, circulating NK cells are recruited and activated by
Kupfer cell-derived cytokines such as IL-2, IL-12, IL-15, and IL-18
(64). However, NK cell dysfunction has been observed in chronic liver
diseases like NASH and viral hepatitis, contributing to an
immunosuppressive tumor microenvironment (TME) (65-67). In
HCC, reduced expression of NKG2D ligands, driven by TGF-p, has
been linked to disease progression and early recurrence (68, 69). CTLs
are key players in anti-cancer immunity in HCC and are linked to
better prognosis (41). While CTLs are central to the adaptive immune
response, some studies suggest their depletion reduces tumor burden,
whereas others show they help surveil premalignant hepatocytes (70).
Single-cell RNA sequencing reveals that CTLs in HCC are often
dysfunctional (71), likely due to T cell exhaustion and the presence of
immunosuppressive Tregs (62). Exhausted T cells show reduced
proliferation, impaired cytokine production, decreased cytotoxicity,
and increased expression of inhibitory receptors like CTLA-4, PD-1,
LAG-3, and TIM-3 (72, 73). Additionally, CD4" T helper 2 (TH2)
cells, induced by IL-10 from tumor-infiltrating MDSCs, can inhibit
CTL activity (74). Elevated TH2 cytokines (IL-4, IL-5, IL-10) are
associated with HCC progression and metastasis (52). Animal and
human studies suggest that B cells and tertiary lymphoid structures
can both promote and inhibit HCC growth, depending on the model
used (75-77). Notably, malignant hepatocytes secrete vascular
endothelial growth factor (VEGF), which contributes to an immune-
tolerant, tumor-promoting microenvironment in HCC (78, 79).
Overall, interactions among TAMs, TANs, MDSCs, Tregs, CTLs,
CD4" T cell subsets, B cells, and malignant hepatocytes drive changes
in the hepatic immune landscape, leading to a predominantly
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immunosuppressive environment that supports HCC development
and progression (80). Thus, the pivotal role of the tumor immune
microenvironment in HCC highlights the need to develop therapies
that target specific molecular interactions between malignant
hepatocytes and the immune system.

Role of vitamin D on inflammation,
immunity and management of HCC

Vitamin D is a fat-soluble nutrient essential for various
physiological processes, including calcium and phosphorus
absorption, immune regulation, and cell growth and differentiation.
Although the underlying mechanisms are still being studied, evidence
suggests that vitamin D deficiency contributes to the development of
immune-related disorders and cancers, including HCC (81-90)
(Figure 2). Vitamin D deficiency is influenced by factors such as
geographic location, season, skin pigmentation, age, and lifestyle. It is
more common in areas with limited sunlight, such as northern
latitudes or regions with high pollution, and among populations with
reduced sun exposure (91), older age, or darker skin pigmentation (81,
92). Vitamin D supports both innate and adaptive immunity by
regulating inflammation and maintaining immune balance (84).
Insufficient levels can disrupt this balance, potentially leading to
chronic inflammation, autoimmune diseases, and cancer. The Institute
of Medicine (IOM) recommends serum 25-hydroxy vitamin D
(25(OH)D) levels of at least 20 ng/mL (50 nmol/L) for optimal bone
health. Deficiency can be corrected through adequate sun exposure,
diet, and supplementation if necessary (91). Vitamin D exists in two
primary forms: vitamin D2 and vitamin D3. Vitamin D2 is derived
from ergosterol and found in sources like yeast, mushrooms, and
plants. Vitamin D3, on the other hand, is present in oily fish and
produced in the skin from 7-dehydrocholesterol following sun
exposure. Once in circulation, vitamin D3 is first converted in the liver

10.3389/fnut.2025.1611829

by vitamin D-25-hydroxylase to 25-hydroxyvitamin D (25(OH)D).
This is then further hydroxylated in the kidneys by 25-hydroxyvitamin
D-1a-hydroxylase to produce the active form, 1,25-dihydroxyvitamin
D3 (1,25(0OH),D) (93, 94). The active form binds to the vitamin D
receptor (VDR), forming a heterodimer with the retinoid X receptor
(RXR). This complex binds to vitamin D response elements (VDREs)
in DNA, regulating transcription of genes such as ¢-MYC and
CDKIA. Beyond its genomic effects, 1,25(OH),D also exerts
non-genomic actions that contribute to its wide range of biological
functions. These non-genomic actions involve the activation of several
intracellular signaling pathways, including phosphatidylinositol-3
kinase (PI3K), phospholipase C, phospholipase A2 (PLA2), and
p2lras. These pathways lead to the production of second messengers
such as cyclic AMP, calcium ions (Ca?**), and phosphatidylinositol
3,4,5-trisphosphate. These messengers, in turn, activate key protein
kinases, such as mitogen-activated protein (MAP) kinases, protein
kinase A (PKA), protein kinase C (PKC), Src, and Ca®*/calmodulin-
dependent kinase II, and influence ion channel function, particularly
calcium and chloride channels (95-98). Together, these mechanisms
account for the rapid cellular responses observed with vitamin D
activity. Vitamin D has drawn attention in liver cancer research due to
its direct and indirect antineoplastic effects. It influences
hepatocarcinogenesis by inhibiting hepatic stellate cells and Kupfter
cells, and exerts direct anti-proliferative, anti-angiogenic,
pro-apoptotic, and pro-differentiative effects on liver cancer cells. In
the liver’s physiological context, hepatocytes normally express low
levels of VDR; expression increases in NAFLD but decreases in NASH
and chronic hepatitis C. VDR activation in hepatocytes has been
linked to lipid accumulation and may contribute to steatosis. Kupffer
cells, which abundantly express VDR, show reduced LPS-induced
inflammation and downregulated IL-6, TNE and IL-1f upon
activation; VDR also mitigates ER stress—induced macrophage
inflammation. Hepatic stellate (Ito) cells express significant VDR

levels, and vitamin D or its analogs inhibit these cells via suppression
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FIGURE 2
Diagram illustrating human diseases linked to vitamin D deficiency.
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of TGF-p/Smad signaling. In liver cancer cells, VDR is present in
human HCC lines and patient samples, potentially regulated by KLF4.
Vitamin D supplementation or analogs inhibit proliferation and
induce apoptosis through multiple mechanisms: disruption of
HGF/c-Met/ERK signaling; increased E-cadherin with reduced Akt;
p27-mediated cell cycle arrest; HDAC2 reduction with p21 induction,
modulating p53, Bax, DR5, caspase-8, and Bcl-2; regulation of TLR7
and f-catenin; and activation of TXNIP with Notch pathway
inhibition, suppressing pro-inflammatory cytokines. These diverse
pathways highlight vitamin D multifaceted role in modulating liver
cell biology and the HCC microenvironment. Vitamin D modulates
fibrosis by interfering with Smad binding, a signaling mechanism
proposed to contribute to hepatic carcinogenesis (Figure 3).
Inflammatory liver conditions such as alcoholic liver disease, viral
hepatitis, NASH, and MAFLD can impair hepatic vitamin D
metabolism by disrupting the synthesis of 25(OH)D. Vitamin D
deficiency is commonly observed in these liver diseases (99, 100) and
has been linked to an elevated risk of developing HCC compared to
individuals with sufficient vitamin D levels (93). A meta-analysis by
Yietal. (101), which included 11 studies (6 case-control and 5 cohort)
involving 12,895 participants, reported that vitamin D deficiency was
associated with a significantly higher risk of HCC, supporting a
potential protective role for vitamin D in liver cancer development.
Similar findings were reported by Zhang et al. (82) in another meta-
analysis involving 6,357 participants. The role of vitamin D in immune
surveillance and regulation of angiogenesis in cancers, including
HCC, remains an active area of investigation (Figure 4). Chronic
inflammation, which promotes fibrosis, angiogenesis, and tumor
progression, is a key factor in HCC development. Vitamin D has
demonstrated anti-inflammatory effects in both HCC pathogenesis
and within the tumor microenvironment (17, 102). In activated
lymphocytes, 1,25(0OH),D suppresses nuclear factor-kappa B (NF-kB)
activity, leading to reduced production of interleukin-8 (IL-8), a
pro-inflammatory cytokine essential for angiogenesis (103, 104). By
dampening inflammation, vitamin D indirectly limits the formation
of new blood vessels in HCC. Furthermore, vitamin D has been shown
to reduce the expression of several angiogenic factors, including
hypoxia-inducible factor-1 (HIF-1), vascular endothelial growth
factor (VEGF), and IL-8, at both the protein and transcriptional levels

10.3389/fnut.2025.1611829

(105, 106). Thus, vitamin D contributes significantly to maintaining
liver health through its anti-inflammatory, anti-proliferative, anti-
angiogenic, and pro-apoptotic properties, key mechanisms that help
prevent the onset and progression of HCC (107). VDR is expressed in
most immune cells, including B- and T-lymphocytes, monocytes,
macrophages, and DCs, and some of these are able to convert
25-hydroxy vitamin D to 1,25 (OH),D. For example, in the presence
of infection, activated macrophages and monocytes, induced by TLR
signaling and inflammatory cytokines, express CYP27B1 which
converts 25(OH)D into 1,25(OH),D. 1,25(OH),D then enhances
macrophages and monocyte antimicrobial activity by stimulating their
production of endogenous cathelicidin via VDR signaling (108-110).
Vitamin D also can affect neutrophils, eosinophils, and NK cells.
Neutrophils express VDRs and their exposure to vitamin D influences
their function by promoting the growth of neutrophil extracellular
traps (NETs) and reducing inflammatory cytokine production (111).
Vitamin D can also downregulate the expression of interleukin
(IL)-15, a cytokine involved in the recruitment of eosinophils and NK
cells, potentially impacting this aspect of innate immunity.
Experimental studies have also suggested that differentiation,
degranulation, cytokine secretion and cytotoxicity of NK cells can
be modulated by 1,25(OH)2D, but available data are inconsistent
(112-114). Macrophage production of 1,25(OH),D not only regulates
cathelicidin synthesis but can also influence lymphocyte function (93).
Local production of 1,25(OH),D by monocytes and macrophages
results in a shift from proinflammatory to tolerogenic state through
diverse mechanisms, including suppression of T cell proliferation and
modulation of their cytokine production by promoting differentiation
from helper T cell-1 (TH,) and helper T cell-17 (TH;;,) to a helper T
cell-2 (TH,) immune subset (115-117). Similar to helper T cells, CTLs
also express CYP27B1, and local conversion of 25(OH)D into
1,25(0OH),D can stimulate activation of VDR in response to infection
and mitogenic stimuli (118-121). Furthermore, a decreased CD4"/
CD8" T cell ratio, an indicator of increased immune activation, has
also been associated with low levels of 25(OH)D (122). It has also been
reported that 1,25(OH),D can modulate the differentiation and
functions of antigen-presenting cells (APCs) by decreasing expression
of major histocompatibility complex (MHC) class II and
co-stimulatory molecules on the cell surface, in this way interfering
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TABLE 1 Vitamin D modulates both innate and adaptive immunity by
interacting with a variety of immune cell types and influencing key
immune processes.

Cell type Function Effect

Dendritic cells Cell maturation Enhanced

Macrophages Cell differentiation Enhanced

APCs Cell presentation Reduced

Th1 Cell differentiation Reduced

Th2 Cell differentiation Enhanced

T-regs Cell differentiation Reduced

Th17 Decrease proliferation Reduced

B cells Decrease plasma cell Inhibition of

generation immunoglobulin secretion

It enhances innate defenses by promoting the antimicrobial activity of macrophages and
dendritic cells, while also shaping adaptive responses by modulating T cell differentiation
and inhibiting pro-inflammatory cytokine production.

with antigen presentation and IL-12 production, resulting in an
immature and tolerogenic phenotype (123-127). 1,25(OH),D can also
promote Treg differentiation directly and via its interaction APCs,
resulting in immunosuppression (128-130). Additionally, 1,25(OH),D
has been shown to suppress the expression of TLRs on monocytes,
inhibiting the production of inflammatory cytokines such as IL-2,
IL-6, and IL-17 (110, 131). 1,25(OH),D can also decrease
prostaglandin (PG) production through multiple pathways, including
suppression of cyclooxygenase-2 (COX-2), an enzyme that catalyzes
PG synthesis, increasing expression of 15-hydroxyprostaglandin
dehydrogenase, (a catalyzer of PG degradation) and decreasing
transcriptional regulation of PG receptors. This results in reduction of
PG levels and inhibition of cell proliferation in several neoplasms,
including breast, prostate and, possibly, liver cancers (132-134).
Table 1 summarizes some of vitamin D effects of different components
of the immune system. Besides its anti-inflammatory, antiangiogenic
and tolerogenic immune effects, Vitamin D has been shown to exert
direct antitumoral activities through several distinct mechanisms. For
example, 1,25(OH),D has been reported to increase expression of p21,
pl5, pl6 and p27, all critical cyclin kinase (CDK) inhibitors and
regulators of cell cycle kinetics and cell proliferation (135-140).

Frontiers in Nutrition

1,25(0OH),D has also been found to potentiate the function of KLF4,
which upregulates VDR transcription, and thus forms a Vitamin
D3-KLF4-VDR positive feedback loop, widely involved in induction
of HCC cell differentiation, mesenchymal-epithelial transition (MET),
inhibition of cell migration, invasion and proliferation (141), whereas
loss of KLF4 expression is associated with advanced clinicopathological
characteristics of HCC, significantly reduced CD8" T cells and
macrophage tumor infiltration, and predicts a poor prognosis for
HCC patients (142-145). 1,25(OH),D induces cell differentiation in
colorectal cancer by repressing WNT/f-catenin signaling via several
mechanisms, including increased nuclear export and decreased
availability of B-catenin, increased expression of the WNT/B-catenin
signaling inhibitor, Dickkopf-1 (DKK-1), and suppression of WNT/p-
catenin signaling downstream targets (i.e., c-Myc and cyclin D) (146-
149). All these mechanisms result in increased cell differentiation and
decreased migration and invasion. 1,25(0OH),D3 can induce apoptosis
through the mitochondrial pathway by suppression of the anti-
apoptotic proteins (i.e., BCL-2 and BCL-XL) and induction of
pro-apoptotic proteins (i.e., BAX, BAK and BAD) (150-156).
1,25(0OH),D has also been shown to potentiate the proapoptotic effects
of certain chemotherapeutic agents in different malignancies, through
decreased expression of ERK and AKT and upregulation of PTEN-
mediated signaling (157-161). In breast cancer cells, 1,25(OH),D has
been reported to induce massive autophagy through calcium/
calmodulin-dependent protein kinase kinase 2 (CAMKK?2) activation
of AMP-activated protein kinase (AMPK) (162). Additionally,
1,25(0OH),D promotes autophagy in irradiated, p53-expressing, breast
and lung cancer cells, but not in p53-null cells, establishing the
importance of this tumor suppressor in vitamin D-related autophagy
(163, 164).

Therapeutic use of vitamin D in_
cancer: animal and human studies

Despite promising epidemiological and preclinical data indicating
that 1,25(0OH),D signaling may offer a preventive or therapeutic
strategy against various cancers, including HCC, several challenges
have limited confirmation in clinical settings. The primary concern is
the risk of hypercalcemia and its associated adverse effects (165). A
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potential solution involves developing VDR agonists that replicate the
anticancer effects of 1,25(OH),D without significantly raising serum
calcium levels. However, current evidence supporting this approach
remains limited and preliminary. In murine models of prostate and
lung cancers, 1,25(OH),D treatment significantly reduced metastasis,
partly due to its antiangiogenic effects (166, 167). It has also been
shown to induce apoptosis and cell cycle arrest in tumor-associated
endothelial cells without affecting normal tissues in vivo (168),
suggesting a possible direct role in modulating endothelial function.
However, definitive mechanistic evidence remains limited. In mice
lacking renal 25(OH)D-la-hydroxylase, the enzyme critical for
producing active vitamin D, tumor development and heightened
inflammatory responses were observed (169). Furthermore, in
DEN-induced HCC models, loss of the vitamin D-upregulated protein
1 (VDUP1) led to increased tumor growth, enhanced cell proliferation,
elevated TNF-a levels, and NF-kB activation, reinforcing the role of
vitamin D-mediated pathways in hepatocarcinogenesis (170). In vivo
studies with squamous cell carcinoma and prostate cancer, xenografts
have shown that pre-treatment with 1,25(OH),D or its analogs
enhances the antitumor effects of paclitaxel (157, 171). Similarly,
1,25(0OH).D and analogs like paricalcitol and calcipotriol have been
found to reduce MUC1, CD44, and GLUT1 expression, increasing
pancreatic cancer cell sensitivity to gemcitabine in vitro. In
gemcitabine-resistant pancreatic cancer mouse models, combining
paricalcitol with gemcitabine significantly suppressed tumor growth
(83). These findings suggest that vitamin D or its analogs may enhance
the efficacy of cytotoxic therapies in certain cancers. The immune-
regulatory function of vitamin D is well established, but its impact on
cancer immunosurveillance and the efficacy of immunotherapy is still
not fully understood. A recent study showed that mice with enhanced
vitamin D availability exhibit enhanced immune-mediated resistance
to transplantable cancers and improved responses to checkpoint
blockade immunotherapies. In humans, a high vitamin D-VDR gene
signature is associated with a lower cancer risk, improved survival,
including HCC, and better responses to immune checkpoint
inhibitors. In mice, this resistance is linked to vitamin D’s effects on
intestinal epithelial cells, which shift the microbiome to favor
Bacteroides fragilis, a bacterium that promotes cancer immunity. These
findings reveal a previously overlooked link between vitamin D, gut
microbial communities, and immune responses to cancer, suggesting
that vitamin D levels may influence both cancer immunity and the
success of immunotherapy (172). The vast majority of clinical trials
exploring the safety and activity of 1,25(OH),D, and its analogs, have
been plagued by unreliable dosing, poor pharmacokinetic data, and
few tumor responses (173-177). The vitamin D analog seocalcitol has
created interest based on its ability to induce differentiation and
growth inhibition in cancer cell lines and in vivo. Based on these
findings, a total of 56 patients with advanced HCC were treated with
oral seocalcitol for up to 1 year, with the dose titrated based on serum
calcium levels. In this study, 2 out of 33 patients were reported to have
complete tumor responses (CR) and 12 had stable disease, with one
CR lasting at least 36 months at the time of report. Seocalcitol was well
tolerated, with the main adverse effect reported being hypercalcemia
and related symptoms (178). This study provided preliminary “proof
of concept” for additional studies using vitamin D analogs in HCC. A
phase II study by Beer et al. (179) combined a 0.5 pg/kg weekly oral
dose of 1,25(0OH),D on day 1 with a weekly docetaxel dose on day 2,
in patients with castrate resistant prostate cancer. No toxicities were
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reported and 30 out of 37 patients had a >50% reduction in PSA level.
Based on these encouraging results the ASCENT 1 study randomized
250 prostate cancer patients to treatment with docetaxel +
1,25(0OH),D. Investigators reported PSA response rates of 63% in the
1,25(0OH),D treated group and 52% in the placebo group (p = 0.07).
Median overall survival (OS) was 24.5 months in the 1,25(OH),D
group and 16.4% in the placebo arm with a death hazard ratio of 0.67
(33% reduction in mortality, p = 0.04) (180). The confirmatory phase
III study (ASCENT II) treated 900 prostate cancer patients with the
same docetaxel/1,25(OH),D plus prednisone combination, compared
with a standard, higher dose docetaxel and prednisone, once every
3 weeks. Unfortunately, interpretation of ASCENT II was difficult due
to a flawed design and the study was halted after the death rate in the
experimental arm exceeded that found in the standard treatment
group (107). Vitamin D interferes with cancer development and
progression by downregulating inflammation, modulating angiogenic
factor expression within the tumor microenvironment, and promoting
cancer cell death through apoptosis and autophagy. These direct and
indirect actions highlight the complex interplay between vitamin D,
immune regulation, angiogenesis, and tumor proliferation. Further
research is needed to better understand these mechanisms and their
potential in developing targeted therapies for HCC. At the very least,
ensuring sufficient serum vitamin D levels may help enhance the
effectiveness of existing treatments in patients with HCC.

Emerging immunotherapies in HCC

Systemic treatment of HCC is particularly challenging due to its
intrinsic chemoresistance and the frequent presence of underlying
liver dysfunction, factors that contribute to increased toxicity, limited
treatment efficacy, and poor outcomes (17). As noted earlier, the
hepatic microenvironment fosters immune tolerance, which enables
HCC cells to evade immune detection. This immunosuppressive
landscape has driven the development of immunotherapeutic
approaches for HCC, including immune checkpoint inhibitors (ICIs)
and engineered adoptive cell therapies that target TSAs associated
with HCC.

Immune checkpoint inhibitor therapy
in HCC

Immune molecular checkpoints deliver inhibitory signals to
different cellular components of the immune system and interfere
with their ability to recognize and mount an effective response against
cancer cells. The use of specific antibodies that block activation of
these regulatory molecules associated with immune exhaustion (i.e.,
CTLA-4, PD-1 and PD1-L1), and known IClIs has rapidly extended
the therapeutic armamentarium against HCC and other malignancies.
The fully human CTLA-4 inhibitor, tremelimumab, was first tested in
advanced, HCV-associated HCC patients, showing a response rate
(RR) of 17%, a median time to progression (TTP) of 6.5 months and
a probability of 1 year survival of 43% (181). Another study using
tremelimumab in HCC patients reported resulting in 26% RR, TTP of
7.4 months and overall survival (OS) of 12.3 months (182). The
clinical efficacy of PD-1/PD-L1 IClIs resides in its ability to augment
the effector function of tumor-specific CTLs, resulting in cancer cell
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eradication (183). A phase I/II study of the PD-1 inhibitor nivolumab
in 262 patients with advanced, HBV and HCV-infected and non-viral
infected HCC, demonstrated a RR of 15 to 20% across dose escalation
and OS of 15 months on the expansion cohorts (184). A follow-up
phase III study comparing nivolumab with sorafenib as first-line
therapy in unresectable HCC failed to show OS superiority of
nivolumab over sorafenib. Pembrolizumab, a humanized anti-PD-1
monoclonal antibody, was evaluated as second-line therapy in 104
patients with advanced HCC, following sorafenib therapy.
Investigators reported a RR of 17%, progressive-free survival (PFS) of
4.9 months, OS of 12.9 months and a 1-year survival of 54% (185). A
phase III, placebo-controlled study of pembrolizumab in 413
previously treated HCC patients confirmed a RR of 16.9%, with a
median duration of response of 13.8 months (186). No significant
toxicities were reported in patients treated with nivolumab or
pembrolizumab in these studies. Based on these results, both
nivolumab and pembrolizumab received regulatory approval as
second-line therapy in HCC following treatment with sorafenib. A
phase I/IT study using durvalumab, an anti-PD-L1 antibody, has
reported RR of 10%, a median OS of 13.2 months and a 56% 1-year
survival rate, with a favorable safety profile. The rationale behind
combined CTLA-4/PD-1 blockade is based on the non-redundant
biologic role of both pathways within the anticancer immunity cycle,
with CTLA-4 being a driver of immune-suppression in APCs and
Tregs and PD-1/PD-L1 acting predominantly as down-regulators of
CTL response. The safety and efficacy of three different dosing
schedules of the CTLA-4 inhibitor ipilimumab and nivolumab was
evaluated in advanced HCC following prior sorafenib treatment at
three different doses: nivolumab (1 mg/kg) + ipilimumab (3 mg/kg)
or nivolumab (3 mg/kg) + ipilimumab (1 mg/kg) every 3 weeks for
four doses followed by nivolumab maintenance (240 mg flat dose
every 2 weeks), and nivolumab (3 mg/kg) + ipilimumab (1 mg/kg)
every 6 weeks, until disease progression or toxicity. In this study the
reported incidence of adverse events was 37% and RR was 31%.
Following these results this combination received approval as second
line treatment in advanced HCC. Durvalumab and tremelimumab
combination treatment was also tested in a phase I/II study of 40
patients with advanced HCC, 70% with prior systemic treatment and
50% were not virally infected. Incidence of treatment-related AEs was
20%, RR was 15% and disease-control at 16 weeks was 57%. More
recently a multicenter phase 1 clinical trial evaluated the effectiveness
of atezolizumab (an anti-PD-L1 antibody) combined with
bevacizumab (an anti-VEGF antibody) in the treatment of HCC
(187). The results revealed a RR of 36%, the median OS of 17.1 months,
and median PFS of 5.6 months for the combination, compared to
atezolizumab monotherapy. A follow-up, global, phase 3 study
compared treatment with atezolizumab and bevacizumab to sorafenib
as a first line treatment for HCC (188). The RR for the atezolizumab-
bevacizumab combination group was 27.3%, median PFS was
6.8 months and survival rates at 6 and 12 months were 84.8 and 67.2%,
respectively, all statistically superior to sorafenib treatment. Based on
these encouraging results, a combination treatment with atezolizumab
with bevacizumab was recently approved as the preferred first-line
treatment for advanced HCC. Results of these studies have changed
the landscape of immunotherapy’s role in HCC and established ICI
treatment as standard of care in this disease.

Evidence shows that in various cancers, including HCC, Vitamin
D modulates immune responses and inflammatory processes within
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the TME by influencing both innate and adaptive immunity. Through
these mechanisms, it may decrease immune tolerance to ICIs and
synergistically improve their therapeutic efficacy. As above discussed,
it is important to note that a wide range of immune cells, including T
cells and macrophages, express both the VDR and la-hydroxylase.
This dual expression endows these cells with critical functions: they
can directly respond to vitamin D signaling, influencing immune
responses, and they are also capable of locally activating vitamin D
within tissues. Vitamin D modulates immune cells, reducing
immunosuppression within the tumor microenvironment and thereby
enhancing the therapeutic efficacy of ICIs. Vitamin D can increase
CD8" T cell activity, strengthen T cell cytotoxicity, and further
improve the effectiveness of ICIs.

Challenges associated with ICI
therapy

Although ICIs are effective against many cancers, most patients
eventually develop resistance. These therapies are costly and often
inaccessible to patients in low-income regions or without insurance.
Additionally, a small subset of patients experienced severe immune-
related toxicities affecting organs like the colon, brain, skin, eyes, and
liver, requiring immunosuppressive treatment. With new ICIs
emerging, further research is needed to better understand their
molecular mechanisms, resistance pathways, and ways to reduce side
effects, particularly in HCC.

Vaccine therapy in HCC

Cancer vaccine therapy aims to induce tumor control and/or
sustained remission in cancer patients by promoting the detection,
identification and eradication of malignant cells by the immune
system, representing a promising immunotherapeutic strategy against
HCC. As previously mentioned, cancer vaccines fall into two main
categories: preventive and therapeutic. Preventive vaccines have
shown efficacy in patients with established risk factors, such as viral
infections, and vaccination against HBV and HPV has been successful
in preventing HCC and cervical cancer, respectively. This preventive
vaccination strategy may stimulate immune responses against early-
stage malignancies, halting cancer progression in high-risk individuals
(189). For example, a DNA vaccine against the B cell epitope GRP18-
27, was reported to prevent hepatocarcinogenesis in the H22 murine
hepatocarcinoma model (190). In another study, a TM4SF5 epitope-
CpG-DNA-liposomal vaccine complex has been reported to induce
immune memory against the target antigen in a mouse HCC model,
suggesting its potential application in liver cancer prevention (191). A
provocative study by Cai et al. (192) has demonstrated the use of a
personalized neoantigen peptide vaccine could prevent postoperative
HCC recurrences in patients with tumor vascular invasion, opening
the door for further exploration of such an approach. Different from
the goals of preventive vaccination, therapeutic cancer vaccines aim
to stimulate a robust immune response against established
malignancies that results in tumor control or remission. Therapeutic
cancer vaccines encompassed a variety of designs and mechanisms of
action to induce a cancer-specific immune response. These approaches
involve the use of cancer-derived peptide and/or neoantigens, viral
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vectors, DNA, mRNA and APCs-based technologies (193). Given the
multiple effects of vitamin D on the immune system, it is worth
exploring how vitamin D, the VDR, and polymorphisms in vitamin D
pathway genes may influence the adaptive immune response to
vaccines. Emerging evidence identifies the gut microbiota as a critical
regulator of immunotherapy response, while vitamin D, an
immunomodulatory hormone, is gaining attention for its potential
role in modulating both gut microbiota and immunotherapy
outcomes. Vitamin D shows synergistic potential in cancer
immunotherapy, primarily via the VDR, which is widely expressed in
T cells, dendritic cells, and macrophages. VDR activation enhances
antitumor immunity by promoting Treg differentiation and function
while reducing immunosuppressive factors in the tumor
microenvironment. VD also increases MHC expression, improving
immune recognition, and interacts with signaling pathways such as
PPARy and PI3K/AKT/mTOR to modulate immune checkpoint
PD-L1,
combination therapies.

molecules  like offering  potential targets for

Peptide-based cancer vaccines

Peptide-based cancer vaccines have shown potential in HCC
treatment by inducing targeted immunity TSAs. Glypican-3 (GPC3)
is an HCC TAA that has been explored clinically as a therapeutic
target. Sawada and coworkers conducted a phase I study of a GPC3-
peptide vaccine in HCC patients and reported its association with
specific immune responses without meaningful adverse reactions
(194). In another phase I study, Greten et al. (195) investigated the
immune effects of a multi-peptide vaccine (GV1001) containing
several HCC-associated antigens [i.e., AFP, human telomerase reverse
transcriptase (WTERT) and melanoma-associated geneAl (MAGE-
Al)] and found a reduction in Treg activity, but no detectable
GV1001-specific immune response. Another phase I/II study by
Loffler et al. (196) used a multi-peptide vaccine, consisting of 18
HLA-restricted peptides plus a TLR7/8/RIG agonist, and reported
immune responses against at least 1 HLA-restricted antigen in 37% of
patients. Despite these preliminary results, antigen heterogeneity in
HCC represents a significant barrier and it has been suggested the
addition of ICI may improve responses to peptide antigen-based
cancer vaccines.

Viral vector-based cancer vaccines

Based on viruses’ innate ability to infiltrate cells, the use of viral
vector cancer vaccines represents a powerful method for delivering
TSAs and triggering a cancer-specific immune response (197). Viral
vector vaccines use modified viruses as delivery vehicles to transport
tumor antigens into cells and stimulate an immune response. These
vaccines can be engineered to express specific tumor antigens,
effectively training the immune system to recognize and attack cancer
cells. Adeno-associated virus (AAV) and adenoviral-based vectors are
particularly attractive due to their large “gene packing” capacity, low
pathogenicity, and high transduction efficiency. An AAV-based cancer
vaccine has been reported to induce significant robust anticancer
immunity in melanoma and colorectal cancer animal models, but no
clinical studies have been conducted in HCC (198). Adenoviral-based
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personalized vaccines have been evaluated in melanoma patients
demonstrating neoantigen specific and robust T cell responses (199).
Instead of delivering TSAs, talimogene laherparepvec (T-VEC)
vaccine consists of an oncolytic herpes virus-1 (HSV-1) engineered to
deliver the granulocyte monocyte colony-stimulating factor
(GM-CSF) gene to tumors, to elicit a strong immune response. Hecht
and colleagues have recently reported preliminary results in 10
patients with liver cancers (4 HCC, 5 colorectal and 1 breast cancer
and 6 non-HCC tumors) using intra-tumoral T-VEC injections. The
investigators found that HCC had a lower baseline CD4* CTLA4*
lymphocytes and Tregs, compared to non-HCC neoplasms.
Additionally, HCC tumors were found with fewer infiltrating
granzyme B* CD8" T cells after T-VEC treatment, compared to
non-HCC neoplasms. Based on these results it was concluded T-VEC
treatment was ineffective in HCC patients. An ongoing phase I study
is exploring the efficacy of combining T-VEC with pembrolizumab in
solid tumors, including HCC. Although viral vector-based vaccination
has shown some potential in cancer patient, more clinical trials are
needed to establish their role in the immunotherapy field.

DNA and mRNA-based cancer
vaccines

A phase I clinical trial assessed the safety and immunogenicity of
a DNA vaccine encoding the HCC-associated peptide GPC3,
demonstrating good tolerability and GPC3-specific immune responses
in a subset of patients (194). Naked plasmid vaccine containing the
AFP gene was examined in a mouse HCC model and it was reported
that DNA vaccination was associated with protective immunity
against Hepal-6 cells, resulting in decreased growth of pre-established
Hepal-6 tumors in C57L/] mice (200). This study demonstrated the
feasibility of delivering naked DNA plasmids encoding specific TSAs
as a potential cancer vaccine strategy. However, additional work and
novel designs are needed before this strategy could be successfully
explored in the clinic. Messenger RNA (mRNA)-based vaccines have
gained significant attention following their success during the
COVID-19 pandemic. This technology offers the advantage of being
easily customizable and works by delivering specific mRNA sequences
encoding desire tumor antigens and instruct cells to produce these
TAAs/TSAs in order to induce a robust anticancer immune response.
Preclinical studies have shown AFP-mRNA vaccines can elicit CTL
responses, providing protection against AFP-expressing HCC tumors,
while others have reported AFP vaccination may result in M2
macrophage polarization (201, 202). Although application of mRNA
vaccine technology is in its infancy, phase I studies are already being
conducted in China exploring its promise in patients with HBV-related
refractory HCC.

Dendritic cell-based cancer vaccines

Dendritic cells (DCs) are specialized APCs that initiate and
regulate immune responses by capturing tumor-specific antigens
(TSAs) and presenting them to T cells. DC-based cancer vaccines
involve isolating precursor monocytes, differentiating them into DCs
ex vivo, loading them with TSAs or whole tumor lysates, and
reinfusing them to elicit antigen-specific immune responses. Several
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clinical studies have evaluated DC vaccines in HCC for safety and
efficacy. Tada et al. (203) tested a TAA-pulsed DC vaccine (AFP,
GPC3, MAGE-1) in five advanced HCC patients, showing safety,
TAA-specific T cell responses in all patients, and a clinical response in
one patient. Another study administered similar DC vaccines to 12
HCC patients without residual tumors, reporting no recurrence in
nine patients at 24 weeks, measurable T cell responses, and a median
time to progression of 36.6 months versus 11.8 months in controls
(HR =0.41; p = 0.0031) (204). Lee et al. (205) conducted a randomized
phase II trial in 156 post-treatment HCC patients, comparing six DC
vaccinations to observation. No overall difference in recurrence-free
survival (RFS) was observed; however, patients not previously treated
with radiofrequency ablation (RFA) showed significant RFS
improvement (HR=0.49; p=0.03), and baseline IL-15 levels
correlated with prolonged RFS (HR = 0.16; p < 0.001). Palmer et al.
(206) reported intravenous DC vaccines pulsed with HepG2 lysate in
35 HCC patients, achieving 28% tumor control over 3 months, with
measurable T cell responses in several patients. A meta-analysis of 19
trials (1,276 patients) confirmed that DC vaccination enhanced CD4*/
CD8" T cell ratios, improved 1-year, 18-month, and 5-year PES and
OS (p < 0.05), with only mild adverse events (207). DC vaccines thus
represent a promising immunotherapy for HCC, enhancing anti-
tumor immunity and survival. Challenges remain, including selecting
optimal TAAs/TSAs, standardizing DC production, defining
responsive patient populations, and integrating DC vaccines into the
broader immunotherapy landscape.

Challenges in the development of
cancer vaccines

Widespread clinical use of cancer vaccines faces many challenges,
including selecting specific immunogenic TSAs, high costs, complex
and unstandardized manufacturing, regulatory barriers, identifying
ideal patient groups, and competition in immunotherapy. The biggest
challenge is finding effective, specific antigenic targets, crucial for
vaccine success. Cancer’s evolving mutations create neoantigens,
expanding the antigenic landscape and enabling personalized vaccines
tailored to individual tumors. Advances in digital medicine and Al are
helping to quickly identify these targets, and integrating data mining,
machine learning, and AI will be key to making cancer vaccines
widely available.

Adoptive cell therapy in HCC

Adoptive cell therapy (ACT) infuses immune cells, such as LAK,
CIK, NK cells, TILs, or engineered T cells, expanded or modified
ex vivo to target cancer cells, often following lymphodepleting
chemotherapy. In HCC, autologous T cells expanded with CD3 and
IL-2 reduced recurrence by 18% over 4.4 years (208). CIK-based ACT
improved progression-free survival in a phase III trial (44 vs.
30 months) (209). TILs were feasible and safe in phase I studies (210),
while NK cells kill tumor cells via cytokines, cytotoxic granules, and
Fas-mediated apoptosis (211, 212). Ongoing trials are evaluating
allogeneic NK-cell ACT in high-risk HCC patients (NCT02008929,
NCT02854839). AFP is frequently expressed intracellularly and
secreted by HCC cells, making it a rational target for TCR-based
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ACT. Four HLA-A2-restricted AFP epitopes have been identified in
HCC patients (213), and objective remissions have been reported in a
clinical trial using AFP-specific TCR T cells (NCT03132792). An early
study evaluated HBV-specific TCR-expressing autologous T cells in
advanced HBV-related HCC patients
transplantation. Treatment was well tolerated, with only 2 of 8 patients

ineligible for liver
experiencing side effects. One patient achieved a partial response
lasting 27.7 months, while others showed decreasing or stable HBV
markers (214), demonstrating the feasibility of this ACT approach in
HBV-related HCC. Advances in genetic engineering now allow
modification of immune cells with synthetic receptors to enhance
tumor antigen recognition. Most engineered ACT targets in HCC fall
into three categories: tumor-associated or tumor-specific antigens
(AFP, GPC-3), viral-derived antigens (HBV, HCV), and cancer-testis
antigens (NY-ESO-1, MAGE). Transduced TCR (T-TCR) engineered
T cells specifically recognize targeted tumor cells via MHC-restricted
peptides. Intracellular TAAs/TSAs provide maximal cancer specificity
and are accessible to TCR-based therapies, unlike other
immunotherapeutic approaches. T-TCR cells can target intracellular
antigens presented on HLA, but therapy is limited to patients with
common HLA types (31, 215). T-TCR-based ACT has focused
primarily on viral-associated peptides and AFP. Integration of HBV
DNA into HCC cells allows production of HBV antigens recognizable
by T cells, providing high-affinity TCRs for ACT development. Tan
et al. (216) reported favorable safety and long-term benefit using
short-lived mRNA HBV-T-TCR therapy in non-operable
HBV-HCC. Similarly, initial data on autologous AFPc332 T-TCR T
cells show promising results. Unlike conventional therapies,
TCR-based ACT can offer durable protection, as engineered T cells
may persist long-term and prevent cancer recurrence. Ongoing trials
are investigating HBV, AFP, and MAGEAl T-TCR cells
(NCT03132792, NCT04368182, NCT03971747, NCT03441100).
CAR-T cell therapy, another engineered ACT, has shown remarkable
success in hematologic malignancies. CAR-T cells express synthetic
constructs with an extracellular single-chain variable fragment, a
transmembrane domain, a hinge region, intracellular signaling, and
co-stimulatory domains, enabling potent, targeted antitumor activity
(217, 218). Tumor-specific CAR-T cell therapy is an ACT not limited
by MHC and can overcome immune escape (219, 220). CAR-T cells
targeting HCC antigens include AFP, GPC3, CD133, HBV surface
protein, EpCAM, and MUCI (28, 29). GPC3, overexpressed in HCC
but minimally in normal tissue, is the most common target (30, 221-
224). Shi et al. (225) reported safety and antitumor activity of GPC3
CAR-T cells in GPC3* HCC patients, and 11 phase I/II trials are
ongoing, including one targeting GPC3/TGFf (NCT03198546).
CD133 CAR-T therapy in advanced HCC showed partial response in
1 of 21 patients and stable disease in 14, with median OS and PFS of
12 and 6.8 months, respectively (29). NKG2DL and EpCAM are also
overexpressed in HCC, prompting their use as a CAR-T cell therapy
targets (226, 227). NKG2DL and EpCAM are also being explored as
CAR-T targets in ongoing trials (NCT05131763, NCT03013712).
Vitamin D modulates both T cell activation and immune
suppression, potentially influencing the efficacy of adoptive cell
therapy. While maintaining adequate vitamin D levels may benefit
patients undergoing immunotherapy, the underlying mechanisms and
optimal levels are still under investigation. Recently, Nath et al. (228)
analyzed serum vitamin D levels in relapsed/refractory large B-cell
lymphoma patients prior to anti-CD19 CAR-T administration and
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found that pre-CAR-T vitamin D insufficiency was independently
associated with lower day-100 complete remission (CR) and overall
survival (OS) rates. This study represents the first report linking
vitamin D insufficiency to poorer clinical outcomes in CAR-T
recipients. Further research is warranted to elucidate the mechanistic
basis of this association and to explore the potential role of vitamin D
supplementation in optimizing CAR-T therapy outcomes.

Challenges for TCR and CART-based
ACT

TCR-based therapies are limited to recognizing “matched” and
relatively common, HLA alleles (such as HLA-A*02:01) to mount an
appropriate anticancer response (15, 181). Other challenges include
the potential for graft-versus-host disease (GVHD) and cost and
complexity of generating large numbers of effector T cells consistently.
CAR-T cell-based ACT also has its own challenges, including target
antigen selection, manufacturing cost, degree of T cell transduction
and in vivo expansion, need for lymphodepleting chemotherapy, and
its association with a variety of potentially lethal side effects, including
cytokine release syndrome, neurological dysfunction and prolonged
bone marrow suppression, requiring hospital-bound monitoring
during and after treatments. Thus, much work is needed to generalize
the use of these novel and very promising ACT strategies in this
cancer patient population.

Immunotherapy and artificial
intelligence

The intersection of cancer immunotherapy and artificial
intelligence (AI) holds significant promise for advancing these rapidly
evolving fields. Al technologies can accelerate the development of
immunotherapy by predicting the immunogenicity of antigenic
candidates, assessing their efficacy, and optimizing their composition
to induce robust, cancer-specific immune responses. Current
algorithms can analyze vast genomic, proteomic, and immunological
datasets, enabling the identification of therapeutic targets with greater
efficiency and supporting the development of personalized treatments,
including antibody therapy, vaccines, and adoptive cell transfer (ACT)
(229). Machine learning methods based on histopathology provide
novel strategies for predicting immunotherapy response. Applications
include immunohistochemical  profiling, tumor-infiltrating
lymphocytes (TILs), tumor-stroma ratio (TSR), and microsatellite
instability (230). The advent of liquid biopsy further facilitates
diagnosis and monitoring by detecting circulating tumor DNA, which
Al algorithms can process to predict ICI efficacy (231). Biomarkers,
such as circulating cytokines and tumor DNA sequences, may also help
distinguish true progression from pseudo-progression (232). Advances
in medical imaging now generate large-scale, high-resolution datasets
beyond human interpretation. Al-based imaging analysis can reveal
molecular and cellular features of tumors, allowing non-invasive
evaluation of biomarkers to guide immunotherapy response (233-235).
By integrating imaging, circulating biomarkers, and clinical parameters,

Al enables monitoring of vaccine and ICI effectiveness and supports
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treatment adjustments. Beyond clinical use, AI can optimize research
by analyzing experimental and real-world data to refine trial design
and execution. Biopharmaceutical companies increasingly leverage Al
to enhance vaccine and ACT development. Integrating multi-omics,
radiomics, and clinical datasets into Al-based models offers a powerful
approach for identifying patients most likely to benefit from specific
interventions (236). Ultimately, AI-driven strategies are expected to
improve the personalization, monitoring, and outcomes of
cancer immunotherapies.

Conclusion and future perspectives

HCC remains a major global health challenge with limited benefit
from conventional therapies. Immunotherapy, particularly ICIs, has
improved outcomes but is not curative. Combining ICIs with targeted
agents shows promise in enhancing response rates and reducing
relapse, yet patient outcomes remain highly variable. Resistance,
driven by tumor heterogeneity, immunosuppressive cell recruitment,
and onco-fetal niches, remains poorly understood (237-239).
Identifying predictive biomarkers and functional assays is essential to
stratify patients and personalize treatment. Combination therapies are
under investigation, including ICIs with kinase inhibitors, anti-
angiogenic agents, or local ablative methods, but the optimal timing,
sequence, and pairing are unclear (240, 241). Careful optimization is
needed to maximize benefit while limiting toxicity, particularly
hepatotoxicity. Vitamin D is emerging as a potential modulator of the
HCC immune microenvironment. While it demonstrates anti-tumor
and immunoregulatory effects, its precise mechanisms, especially in
synergy with ICIs, require clarification. Its influence on the gut
microbiome, such as promoting Bacteroides fragilis, suggests possible
systemic benefits, though clinical risks and advantages remain
uncertain. Al offers new opportunities to refine therapy by integrating
multi-omics, single-cell sequencing, patient-derived models, clinical
data, and imaging (242, 243). Despite challenges in standardization
and data integration, AI could guide personalized therapies and
optimize clinical trial design, ultimately advancing HCC management.
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