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Background: Acquired renal cysts (ARC) are associated with kidney function
decline, necessitating novel dietary pattern (DP) analyses in large cohorts.
Methods: This UK Biobank prospective cohort study (2006-2010) included
participants with >2 dietary records, excluding those with severe kidney damage.
The constructed comprehensive dietary pattern integration (CDPI) utilized
reduced rank regression (RRR) and latent profile analysis (LPA). ARC cases (ICD-
10: N28.1) were assessed via Cox regression for risk and dose—response, with
NMR metabolites examined as mediators.

Results: Among 119,709 participants (median follow-up: 10.57 years), 850 ARC
cases were identified. Lipid-rich and hyperglycemic diets increased ARC risk
[e.g., HRs for G1.DP1: 1.080 (1.024, 1.139); G1.DP2: 1.144 (1.048, 1.249)], while
micronutrient-rich diets showed weak protective effects [G4.DP1: 0.943 (0.892,
0.998)]. LPA confirmed RRR findings, and 7/251 NMR metabolites had significant
mediating effects.

Conclusion: Diets high in fat (cheese, butter, pizza) and sugar (chocolate,
sugary drinks) elevated ARC risk, whereas micronutrient- and fiber-rich diets
(vegetables, fruit, lean poultry, nuts, eggs) were protective. Key mediators
included branched-chain amino acids, IGF-1, and RBC distribution width.

KEYWORDS
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Introduction

Acquired renal cysts (ARC) are a prevalent renal condition, primarily characterized by
benign cystic structures (1). Detection has markedly increased in routine physical
examinations. Several cohort studies suggest that renal cysts may impair renal function and
increase the risk of nephron loss (2-4). Additionally, ARC is associated with a higher risk of
metabolic syndrome, particularly hypertension, which is an independent risk factor (3, 5, 6).
Despite the high prevalence of ARC, research on its etiology and management is limited, with
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minimal attention given to potential dietary influences (7-9). Both
healthy individuals and patients with ARC express a strong desire for
dietary guidance (10).

Most research on diet and renal cysts has concentrated on
polycystic kidney disease (PKD), a genetic disorder due to its
significant clinical features and genetic basis (11). For example, high
sodium intake has been linked to accelerated cyst growth in PKD,
likely due to increased vasopressin levels (12, 13). Animal studies have
also shown that plant-based proteins reduce kidney weight and cyst
size in PKD models (14), and calorie restriction may inhibit cyst
growth. Furthermore, increased consumption of fruits, vegetables, and
adherence to a Mediterranean diet has been associated with better
renal health (15).

Reduced rank regression (RRR) is a data-driven method that
utilizes prior knowledge to identify dietary patterns by exploring how
specific nutrients associated with causal pathways relate to disease
outcomes (16). Latent Profile Analysis (LPA) is able to classify
individuals into dietary subgroups based on multiple dietary variables
and revealing inherent patterns within the population (17). Using
RRR and LPA, we developed a comprehensive dietary pattern
integration (CDPI) framework to capture dietary patterns
comprehensively. Both RRR and LPA have been widely used in studies
examining the impact of dietary patterns on disease outcomes (18, 19).

In this study, we used detailed dietary data from UK Biobank
(UKB) participants to identify dietary patterns (DPs), assess their
variability, and evaluate their association with the risk of ARC.

Methods
Study population

The UKB is a population-based cohort consisting of over 500,000
participants aged 37 to 73 from 22 locations across England, Wales,
and Scotland. Baseline data were collected between 2006 and 2010 and
linked to hospital and mortality records. Detailed sociodemographic,
health behavior, and medical history information was gathered
through touchscreen questionnaires and interviews. Physical
measurements and biological samples were collected by trained staff
following standardized protocols. Written informed consent was
obtained from all participants (20, 21).

Dietary intake measurement

The Oxford WebQ, a web-based dietary instrument, was used to
capture extensive dietary data from participants (22). This tool,
validated
questionnaire, recorded the consumption of up to 206 food items and

against an interviewer-administered 24-h recall
32 beverage types from the previous day (22). Participants with valid
email addresses completed the questionnaire at baseline and during
four intervals between April 2009 and June 2012. Only participants
with at least two completed assessments were included in the analysis,
and their average dietary intake was calculated.

Following established procedures (23), dietary information was
categorized into 50 primary food groups (Supplementary Table S1),
aligned with the UK. National Diet and Nutrition Survey.
Nutritional and energy intake was calculated by multiplying each

Frontiers in Nutrition

10.3389/fnut.2025.1611656

food portion by its nutrient composition using data from the UK
Nutrient Databank (2012-2014) (23). Energy density (kJ/g) was
calculated by dividing total energy by the total weight of food
(excluding beverages) (24). The percentage of energy from
saturated fatty acids (SFA) and free sugars was calculated by
dividing energy from SFA/free sugars by total daily energy intake.
Fiber density (g/M]) was assessed by dividing daily fiber intake by
total energy intake, multiplied by 1,000. Definitions for free sugars
and fiber followed UK. Scientific Advisory Committee on
Nutrition guidelines, with fiber measured using the Englyst
method (25).

To address dietary misreporting, the ratio of energy intake (EI) to
estimated energy requirements (EER) was calculated using the
Schofield equation (Supplementary Note 1), based on the 1985 FAO/
WHO/UNU Report on Human Energy Requirements (26, 27).
Participants classified as dietary under-reporters (EI <95% CI) or
over-reporters (EI >95% CI) were excluded (28).

Measurement of metabolic biomarkers

Between June 2019 and June 2022, metabolic biomarkers were
measured using a high-throughput nuclear magnetic resonance
(NMR) platform developed by Nightingale Health Ltd. A total of 251
biomarkers, including lipoprotein lipids across 14 subclasses, fatty
acids, and low-molecular-weight metabolites, were analyzed from
EDTA plasma samples of approximately 280,000 participants. Detailed
methods and biomarker data have been previously published (28).

Outcome ascertainment

The UKB dataset includes “first occurrence” fields that map
clinical codes from primary care visits, inpatient admissions, death
records, and self-reported medical conditions to ICD-9 and ICD-10
codes. The outcome of interest in this study was “Cyst of kidney,
acquired,” identified using ICD-10 code N28.1 and ICD-9 code 593.2.
Data were censored at the earliest of three events: the first diagnosis
of an ARC, participant death, or the data cutoff (October 31, 2022, for
HES data; August 31, 2022, for SMR; and May 31, 2022, for
PEDW) (29).

Covariates

Data on age, gender, ethnicity, educational level, household
income, alcohol consumption, physical activity, smoking status,
depression scores, health scores, baseline renal function, sleep
duration, and medical history (focusing on cardiovascular diseases,
diabetes, and kidney diseases) were collected through questionnaires
administered via touchscreen computers, additional health records
and other biochemical tests results. Sleep duration was assessed by
asking, “How many hours do you sleep per 24-h period?” and
calculating the average across multiple surveys. Physical activity was
evaluated using the short form of the International Physical Activity
Questionnaire (IPAQ). Detailed information on the variables, along
with a display of the directed acyclic graph illustrating the relationships
between them, can be found in the Supplementary Figure S1.
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Genetic risk scores

We utilized summary-level GWAS data from the tenth data
release of the FinnGen database (Cyst of kidney, XIV Diseases of the
genitourinary system (N14), cases: 1,874, controls: 408,319) to
compute PRS for ARC (30). PRS was calculated using PRSice-2, with
p-value thresholds (e.g., p<5x107% p<1x107°) to ensure
robustness. Linkage disequilibrium (LD) clumping (R* < 0.1, window
size 250 kb) was used to reduce redundancy. Quality control included
excluding SNPs with minor allele frequency (MAF) < 0.01 and
genotype missingness >5%. PRS model performance was evaluated
using the C-statistic and AUC, and the PRS was included in a Cox
proportional hazards model to account for genetic predispositions
(31, 32).

Comprehensive dietary pattern integration
framework

Our CDPI framework combines data-driven DP identification
with health-specific nutrient selection to examine the relationship
between DPs and health outcomes, specifically ARC. The framework
follows five key stages:

Stage 1: Data-driven dietary pattern construction using RRR

We initiated the CDPI framework by constructing DPs through
RRR. RRR identifies linear combinations of food groups correlated
with these pre-selected nutrient response variables, aiming to
maximize the explained variance.

Stage 2: Health-focused nutrient selection

To further refine the DPs, we conducted a systematic review of
existing literature on DPs and health outcomes, consulting nutritional
experts to define nine health-specific focus areas: basic nutrition and
energy balance, cardiovascular health, bone health, antioxidation,
glycemic control, iron metabolism, blood pressure regulation, renal
protection, and metabolic health. Each of these areas is crucial for
understanding their multifaceted influences on renal cyst formation
and overall kidney health (33-36). For each health focus, we selected
relevant nutrients implicated in disease pathways and performed RRR
on data derived from 50 food groups (nutrient combinations are
detailed in Supplementary Table 52) (37). DPs were converted into
Z-scores, reflecting each participant’s adherence to specific DPs. Food
groups with higher factor loadings had a more significant influence
on the identified patterns, and only DPs that explained more than 15%
of the variance within each health focus were included in
further analysis.

Stage 3: Synthesis and robustness enhancement

After the initial RRR-based analysis, we conducted secondary
analyses to enhance the robustness of the results. We extracted the
food groups with the highest factor loadings across the nine health-
focused DPs. We implemented a pre-specified, reproducible workflow.
First, each DP was represented by its standardized 50-food-group
loading vector; top-loading sets were defined by |loading| >0.20 with
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sign preserved. Second, pairwise DP similarity combined three
metrics—Pearson correlation of full loading vectors, Jaccard overlap
of signed top-loading sets, and cosine similarity—into a composite
score S (mean of the three). Third, hierarchical agglomerative
clustering (average linkage) on 1 — S determined the number of
clusters by maximizing average silhouette width (target 4-6 clusters).
Fourth, robustness was examined by 200 bootstrap resamples (refitting
RRR and repeating the pipeline); stability was summarized by the
adjusted Rand index (ARI). Finally, clusters were labeled by dominant
signed loadings (food-group anchors and nutrient themes). Two
independent nutrition epidemiologists applied a predefined rubric to
confirm membership and assign labels; agreement was quantified by
Cohen’s k, with discrepancies adjudicated by a senior reviewer.

The final synthesized DPs identified through this process
included: lipid-rich, calorically dense diets; hyperglycemic, fiber-
deficient diets; micronutrient-abundant, low-lipid diets; mineral-rich,
moderate-fat diets; and fiber-enriched, lipid-conservative diets.
Detailed variance explanations for each DP can be found in
Supplementary Tables S3-S11.

Stage 4: Prospective association of DPs with ARC

The prospective association between the synthesized DPs and
ARC risk was examined using multivariable Cox proportional hazards
models, adjusted for a comprehensive set of covariates that is listed
above. Hazard ratios (HRs) and 95% confidence intervals (CIs) were
calculated for each unit increase in DP Z-scores. DPs were included
as both continuous variables (using Z-scores) and categorical variables
(divided into quartiles, with the lowest quartile as the reference
group). Restricted cubic spline models were used to examine
non-linear associations between DP Z-scores and ARC incidence,
adjusting for the same set of covariates.

Likelihood ratio tests were performed to assess heterogeneity in
the relationship between DPs and the risk of ARC across different age
groups (<50 years, 50-60 years, >60 years), genders (female, male),
smoking statuses (never, previous, current), physical activity levels
(low, moderate, high), and BMI categories (Q1-Q4).

Stage 5: Dietary profile analysis

We employed finite normal mixture modeling, using the R
package “mclust,” to empirically identify subgroups with similar DPs
based on data from 50 food groups. This approach assumes that the
data are generated from a mixture of normal distributions, each
representing a distinct subgroup. To select the best-fitting model,
we evaluated multiple configurations using the Bayesian information
criterion, integrated completed likelihood, and bootstrap likelihood
ratio test (38, 39).

After identifying the optimal model, we characterized each
subgroup based on covariates and dietary intake patterns, revealing
specific dietary profiles. These dietary profiles were then incorporated
as categorical variables into subsequent statistical models. To examine
the association between naturally occurring dietary subgroups and
ARC, we used each dietary profile sequentially as a reference group in
the Cox proportional hazards models. The models were adjusted for
potential confounders, allowing us to assess the relative risk of ARC
across different dietary subgroups while controlling for all
relevant covariates.
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Mediation effect analysis of NMR
metabolites

We utilized the mediation package in R to establish a standard
three-variable path model to assess the mediation effects of NMR
metabolites on the associations between DPs, represented by the
Z-scores derived from participants’ corresponding RRR, and the risk
of ARC (40). Linear regression models were employed to analyze the
relationship between DPs and metabolites, while COX regression
models were applied for the metabolite-ARC association. The same
covariates used in the initial association analyses were included in this
model. The significance of the mediation effects was determined
through 2,000
statistical inference.

bootstrap  iterations, ensuring  robust

Sensitivity and subgroup analysis

We conducted several sensitivity analyses, beginning with the
exclusion of participants who developed ARC within 2 years following
their most recent 24-h online dietary assessment. Baseline metabolic
syndrome was defined according to the harmonized criteria established
by the International Diabetes Federation and the American Heart
Association/National Heart, Lung, and Blood Institute in 2009 and
included as a covariate in our analyses. Additionally, we excluded
individuals with baseline renal dysfunction (eGFR <60 mL/
min/1.73 m*). Furthermore, we performed stratified analyses
considering various covariates, including gender, age, Townsend
deprivation index, education level, BMI, smoking status, alcohol
consumption, IPAQ, diabetes, cardiovascular disease, and hypertension.

All analyses were conducted using R version 4.3.1, and the
epidemiological study adhered to the STROBE guidelines.

Results
Population characteristics

Out of the 502,186 participants recruited in the UKB study,
we applied several exclusion criteria. These included individuals who
did not complete any validated dietary assessments (n = 273,383) or
who completed only one 24-h online dietary assessment (1 = 79,693).
Additionally, participants lacking genomic data necessary for
calculating PRS for ARC (n = 32,351) were excluded. We also excluded
participants with ARC diagnoses recorded prior to baseline (ICD-10
code N28.1, n = 1,082), those missing specific nutrient data (n = 18),
and those with extreme energy intake values based on the ratio of EI
to EER (over-reporters: n = 28, under-reporters: n = 1,223). Further
exclusions were made for individuals with baseline cancer (n = 6,217),
end-stage renal disease (n = 9), those undergoing renal replacement
therapy (n = 2), a history of kidney surgeries (n = 4), frequent urinary
tract infections (n = 32), long-term use of nephrotoxic medications
(n=15), or PKD (n = 24).

Ultimately, 119,709 participants were included in the final analysis,
having completed at least two 24-h online dietary assessments and
provided genomic data for PRS calculations. The average follow-up
period was 10.57 years, during which 850 ARC cases were documented.
Figure | summarizes the overall analytical approach used in this study.
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Table 1 presents the baseline demographic, socioeconomic, and
clinical characteristics of the study participants, categorized by those
who developed ARC and those who did not. Participants who
developed ARC were more likely to be older males, have lower
socioeconomic status, lower education levels, and higher rates of
smoking and alcohol consumption. These individuals also had
higher prevalence rates of obesity, cardiovascular disease,
hypertension, and diabetes compared to participants who did not
develop ARC.

In terms of dietary intake, total energy consumption did not
differ significantly between the two groups. However, participants
who developed ARC had higher energy density in their diets,
characterized by increased intake of free sugars, SFA, and sodium.
Specific food groups contributing to this higher energy density
included high-fat cheese, red meat, milk-based desserts, and butter
or animal-fat spreads. Conversely, their intake of vegetables, whole
grains, caffeinated beverages, and water was notably lower than that
of participants without ARC.

Prospective associations between food
groups, nutrients, biomarkers, and ARC

The exploratory analysis results, including each of the 50 food
groups and 64 nutrients as single independent variables (adjusting for
all covariates), are presented in Supplementary Tables S12, S13.
We found that sugary drinks, high-fat cheese, and preserved sugars
have a significant positive effect on the incidence of ARC, while fresh
fruit and poultry have a negative effect. Among the nutrients,
magnesium, pantothenic acid, vitamin B6, niacin equivalent, and
biotin showed protective effects against the disease, with the effects of
fats and sugars remaining significant in the nutrient analysis. The role
of genes (interaction of PRS as a covariate) did not appear to
be significant in any of the analyses.

We conducted multivariate logistic regression using 50 food
groups, 64 nutrients, and the 17 comprehensive DPs obtained from
the CDPI Framework as independent variables against 310 biomarkers
and biochemical indicators. The majority of dietary factors were found
to be associated with changes in the metabolome, with the results
presented in the Supplementary Table.

Comprehensive DP integration framework

Based on the RRR model, we derived 43 DPs across nine selected
groups (G1-G9). We synthesized 17 RRR-derived patterns into five
dietary habits using an objective clustering framework (overall
silhouette 0.60; median bootstrap ARI 0.78), with excellent inter-rater
agreement on labels (k 0.86). Out of these, 17 DPs with an average
explained variance exceeding 15% were included in the analysis. These
patterns are specifically G1.DP1 (47.22%), G1.DP2 (15.69%), G2.DP1
(44.66%), G2.DP2 (15.13%), G3.DP1 (46.01%), G3.DP2 (16.93%),
G4.DP1 (37.12%), G4.DP2 (22.85%), G5.DP1 (51.33%), G5.DP2
(23.61%), G6.DP1 (39.82%), G6.DP2 (19.49%), G7.DP1 (48.95%),
G7.DP2 (22.80%), G8.DP1 (54.99%), G8.DP2 (22.03%), and G9.DP1
(66.53%). These patterns collectively achieved cumulative explained
variances of 60.9, 59.79, 62.94, 59.97, 74.49, 59.31, 71.75, 77.02, and
66.53% for each nutrient group, respectively.
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B. Associations Between Food Groups, Nutrients, and
Large-Scale Metabolomics, Genetic Mechanism
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FIGURE 1

Summary of the analyses conducted in this study. Using data from the UKB, we initially conducted an exploratory investigation into the prospective
associations of 50 food groups and 64 nutrients with ARC events and levels of 215 metabolites measured by the NMR platform, adjusting for
confounders. Additionally, we incorporated PRS data as covariates to examine the role of genetic factors and further explored the mediating effects of
certain associated metabolites. We then developed a CDPI framework to synthesize five DPs and analyze their prospective associations with ARC,
dose-response relationships, and the mediating effects of NMR metabolites, enhancing robustness through stratified analyses. Finally, the study also
examined potential dietary profiles in the general population and their associations with ARC.

In secondary analyses of these 17 DPs, we focused on the food
groups with the highest and lowest factor loadings for each pattern,
as detailed in Supplementary Tables S3-511. Overall model factor
S3-87
Supplementary Figures S3-57. By merging and extracting prominent

loadings are depicted in Supplementary Tables
features from similar DPs, we identified five typical dietary habits: a
lipid-rich, calorically dense diet encompassing G1.DP1, G2.DP1,
G2.DP2, G3.DP2, G7.DP2, and G8.DP2; a hyperglycemic, fiber-
deficient diet including G1.DP2, G5.DP1, G5.DP2, and G6.DP2; a
micronutrient-abundant, low-lipid diet comprising G4.DP1, G4.DP2,
and G6.DP1; a mineral-rich, moderate-fat diet consisting of G3.DP1,
G7.DP1, and G8.DP1; and a fiber-enriched, lipid-conservative diet

represented by G9.DP1.

Relationships between DPs and ARC

As illustrated in Figure 2, our initial approach involved
incorporating the Z-scores of 17 DPs as continuous variables into the
model, with subsequent analyses adjusted for all covariates.
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In the context of a lipid-rich, calorically dense diet, six DPs
consistently demonstrated a positive association with the incidence of
ARC, with HRs (95% Cls) as follows: G1.DP1 [1.080 (1.024, 1.139),
p=0.004], G2.DP1 [1.084 (1.018, 1.153), p = 0.011], G2.DP2 [1.132
(1.051, 1.218), p < 0.001], G3.DP2 [1.146 (1.058, 1.242), p < 0.001],
G7.DP2 [1.125 (1.051, 1.205), p < 0.001], and G8.DP2 [1.121 (1.047,
1.200), p=0.001]. Within the dietary habits characterized by a
hyperglycemic, fiber-deficient diet, a strong positive correlation was
observed in all but G5.DP1, with significant associations noted in
G1.DP2 [1.144 (1.048, 1.249), p = 0.003], G5.DP2 [1.149 (1.074, 1.230),
P <0.001], and G6.DP2 [1.108 (1.008, 1.218), p = 0.033]. Conversely, in
the context of a micronutrient-abundant, low-lipid diet, except for
G4.DP2, the remaining sources of DPs demonstrated a weakly inverse
relationship with ARC, notably G4.DP1 [0.943 (0.892, 0.998), p = 0.041]
and G6.DP1 [0.938 (0.885, 0.994), p = 0.030]. For DPs described as
mineral-rich, moderate-fat diets, no statistically significant correlations
with the onset of ARC were found, although the effects were generally
inversely related. Specifically, G9.DP1, representing a fiber-enriched,
lipid-conservative diet, showed a strong negative correlation with ARC,
G9.DP1 [0.911 (0.846, 0.980), p = 0.012].
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TABLE 1 Baseline characteristics of participants by outcomes (N = 119,709).

Characteristics

Overall
N = 119,709

10.3389/fnut.2025.1611656

Acquired cystic kidney disease

No (N = 118,859)

Yes (N = 850)

Frontiers in Nutrition
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Male, n (%) 53,169 (44.4) 52,646 (44.3) 523 (61.5) <0.001
TDI® —1.64 (2.84) —1.64 (2.84) —1.29 (3.00) <0.001
Age (years) 56.12 (7.83) 56.09 (7.83) 60.36 (6.60) <0.001
Education score® 11.35(13.48) 11.34 (13.47) 12.95 (14.64) 0.001
Employment score” 0.78 (3.69) 0.78 (3.68) 0.76 (4.67) 0.88
Health score® 0.17 (3.98) 0.17 (3.96) 0.65 (5.66) <0.001
Sleep duration® 7.17 (0.96) 7.17 (0.96) 7.19 (1.18) 0.589
BMI® 26.71 (4.57) 26.70 (4.56) 28.32(5.18) <0.001
Ethnicity white, n (%) 115,657 (96.6) 114,838 (96.6) 819 (96.4) 0.742
BMR" 1537.32 (259.75) 1536.69 (259.49) 1625.69 (280.29) <0.001
Overall health rating, n (%) <0.001
Excellent 25,840 (21.6) 25,749 (21.7) 91 (10.7)
Fair 19,079 (15.9) 18,877 (15.9) 202 (23.8)
Good 71,414 (59.7) 70,911 (59.7) 503 (59.2)
Poor 3,145 (2.6) 3,093 (2.6) 52 (6.1)
Smoking status, n (%) <0.001
Never 42,886 (35.8) 42,500 (35.8) 386 (45.4)
Previous 68,472 (57.2) 68,084 (57.3) 388 (45.6)
Current 8,351 (7.0) 8,275 (7.0) 76 (8.9)
Alcohol drinker status, 7 (%) <0.001
Never 3,466 (2.9) 3,420 (2.9) 46 (5.4)
Previous 112,832 (94.3) 112,064 (94.3) 768 (90.4)
Current 3,411 (2.8) 3,375 (2.8) 36 (4.2)
Physical activity (IPAQ), n (%) 0.002
Low 50,453 (42.1) 50,096 (42.1) 357 (42.0)
Moderate 47,128 (39.4) 46,829 (39.4) 299 (35.2)
High 22,128 (18.5) 21,934 (18.5) 194 (22.8)
Cardiovascular disease, n (%) 34,753 (29.0) 34,191 (28.8) 562 (66.1) <0.001
Hypertension, n (%) 32,196 (26.9) 31,675 (26.6) 521 (61.3) <0.001
Diabetes, 1 (%) 7,715 (6.4) 7,551 (6.4) 164 (19.3) <0.001
Nutrients intake
Energy intake (M]/day)® 7342.42 (1950.33) 7342.13 (1949.49) 7381.99 (2066.42) 0.553
Energy density (k]/g)® 6.46 (1.47) 6.46 (1.47) 6.58 (1.53) 0.018
Englyst fiber (g/day)® 17.94 (5.94) 17.94 (5.94) 17.68 (5.96) 0.203
Free sugar (g/day)® 60.12 (31.78) 60.09 (31.75) 63.97 (35.88) <0.001
Protein (g/day)" 80.82 (21.03) 80.82 (21.03) 81.15 (21.53) 0.649
Saturated fatty acids (g/day)® 27.26 (10.69) 27.26 (10.69) 28.07 (11.59) 0.027
Sodium (g/day)® 1963.68 (675.46) 1963.32 (675.34) 2014.04 (689.46) 0.029
Main food groups (g/day)
High fat cheese® 14.74 (16.45) 14.73 (16.44) 15.92 (17.76) 0.036
Red meat® 39.43 (42.40) 39.40 (42.37) 43.73 (45.85) 0.003
Vegetables® 188.89 (135.08) 188.96 (135.11) 179.82 (131.31) 0.049
Fresh fruit® 195.48 (145.76) 195.52 (145.74) 188.99 (148.87) 0.193
(Continued)
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TABLE 1 (Continued)

Characteristics Overall Acquired cystic kidney disease

No (N = 118,859) Yes (N = 850)
Whole grains® 8.51 (27.01) 8.53 (27.04) 6.01 (21.90) 0.007
Coffee tea” 800.01 (325.56) 800.21 (325.56) 773.30 (324.87) 0.016
Alcoholic drinks® 257.84 (375.43) 257.76 (375.20) 268.35 (407.07) 0.413
SSBs and other sugary drinks® 69.44 (176.87) 69.44 (176.79) 69.83 (187.81) 0.948
Water® 510.40 (374.25) 510.66 (374.39) 474.15 (353.49) 0.005
High fat condiments® 13.49 (15.54) 13.49 (15.54) 13.74 (16.38) 0.636
Milk based desserts® 24.55 (38.70) 24.52 (38.67) 27.57 (42.05) 0.022
Chocolate confectionery® 11.84 (19.47) 11.84 (19.46) 11.77 (20.98) 0.92
Butter and other animal-fat 5.15 (8.27) 5.14 (8.26) 5.76 (9.11) 0.029
spreads®

TDI, Townsend deprivation index; IPAQ, International Physical Activity Questionnaire; SSBs, sugar-sweetened beverages; BMR, basal metabolic rate.
*ANOVA or y* test where appropriate.
"Mean (SD).

Average
Key Characteristics 9 P Hazard Ratio (95% CI) Primary Food Groups Secondary Food Groups
Lipid-Rich, Calorically Dense Diet
Butter, High Fat Cheese, .
ot 219 i 4 i A
G1DP1 47.21% 0.004 1.080 [1.024, 1.139] Red Meat, Grain Based Desserts Vegetables, Fresh Fruit
Egg Dishes, Butter, Red Meat, .
ot 879 ; ¥ i A
G2 DP1 44.67% 0.011 1.084 [1.018, 1.153] High Fat Cheese, Grain Based Desserts Fresh Fruit
High Fat Cheese, Chocolate Confectionery, Egg Dishes, Vegetables,
—— 0
G2 DRz 1543% <0001 1432[1.051,1:218] Butter, High Fiber Cereals Oily Fish
Low Fat Milk, Oily Fish, " " .
—— .93Y i . i £
G3DP2 16.93% <0.001 1.146 [1.058, 1.242] High Fat Cheese, Pizza Olive Oil, Sugars, Vegetable Sides
Processed Meat, Pizza, Fresh Fruit, Vegetables,
—— .80 i 5 i 5
GrbR2 22:80% <0001 4.1251.051; 4.205] High Fat Cheese, Butter Spreads Potatoes, Dried Fruit
Butter Spreads, Processed Meat, Fresh Fruit, Vegetables,
—o—t 9
G8DP2 22.03% <0.001  1.1211.047, 1.200] Pizza, High Fat Cheese Potatoes, Low Fat Milk
Hyperglycemic, Fibre-Deficient Diet
G1DP2 15.69% 0.003 1,144 [1.048, 1.249] Choco_late Confectionery, Vegetables, PQtatoes,
Sugary Drinks, Sugars, Preserves Pasta, Rice
Fresh Fruit, Fruit Juice, Red Meat, High Fat Cheese,
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—— .49 i . 5 :
GGDP2 19:49% 0035 1.1081.008, 1.218] Sugars, Olive Oil, Savoury Snacks Juice, Soups, Potatoes
Micronutrient-Abundant, Low-Lipid Diet
Vegetables, Fresh Fruit, Alcoholic Drinks, Chocolate,
- 129 i B i B
G4 DP1 37.12% 0.041 0.943 [0.892, 0.998] Juice, Fish High Fat Cheese
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Nuts, Seeds
Vegetables, Fresh Fruit,
ot .829 i B R E
G6 DP1 39.82% 0.03 0.938 [0.885, 0.994] Juice, Low Fat Milk Chocolate, Sugars
Mineral-Rich, Moderate-Fat Diet
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- .01 i 8 i f
G3DRY B 46.01% 0.358  0.967[0.900, 1.039] High Fat Cheese, Pizza Vegetable Sides
Low Fat Milk, Pizza, Vegetables, Olive Oil, Sugars,
—0— 0
Gr.DP1 I 48.950% 0445 0.946[0.877,1.019] Fresh Fruit, Alcoholic Drinks Low Sugar Soft Drinks
G8 DP1 e 54.99% 0.212 0.955 [0.888, 1.027] Red Meat, Paultry, Low Fat Milk, Olive Oil, Sugars
Processed Meat, Pizza
Fiber-Enriched, Lipid-Conservative Diet
Poultry, Low Fat Milk, Olive Oll,
o .539 i E B K
GODP1 06:55% 0.012 0.911[0.846, 0.980] Red Meat, Nuts, Seeds, Egg Dishes Low Sugar Soft Drinks
| e p |
08 09 1 11 12 13
FIGURE 2
HRs (95% CI) for ARC symptoms by DPs. All models adjusted for demographic and socio-economic covariates, including gender, age at recruitment,
socio-economic status (Townsend deprivation index), employment status, educational attainment, health status, baseline renal function, and log-
transformed total caloric intake, lifestyle and health conditions, including average hours of sleep per night, current smoking status, BMI, current alcohol
consumption status, IPAQ, PRS, heart disease, hypertension, and diabetes.
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We further categorized the 17 DPs into quartiles based on their
Z-scores, using the first quartile as the reference group for model
construction, with adjustments made for all covariates. The DPs that
showed statistically significant differences include G1.DP1 Q4 [1.267
(1.039, 1.546), p = 0.019, p for trend = 0.007], G1.DP2 Q4 [1.215

(1.005, 1.470), p = 0.044, p for trend = 0.033], G2.DP2 Q4 [1.250
(1.033, 1.512), p = 0.022, p for trend = 0.006], G3.DP2 Q4 [1.365
(1.121, 1.663), p = 0.002, p for trend = 0.001], G4.DP1 Q4 [0.811
(0.663, 0.991), p = 0.040, p for trend = 0.026], G4.DP2 Q4 [1.261
(1.001, 1.588), p = 0.049, p for trend = 0.036], G5.DP2 Q4 [1.289
(1.055, 1.576), p = 0.013, p for trend = 0.002], G6.DP1 Q3 [0.730

(0.593, 0.899), p = 0.003, p for trend = 0.003], G7.DP2 Q4 [1.377
(1.130, 1.677), p = 0.001, p for trend <0.001], and G8.DP2 Q4 [1.340
(1.105, 1.625), p =0.003, p for trend <0.001]. For more detailed
information, see Supplementary Table S15.

In the dose-response analysis using restricted cubic splines
(Figure 3), apart from G2.DP2, G8.DP2, and G5.DP2, which showed
a nonlinear association (non-linear p <0.05), the nonlinear
relationships for other DPs were not significant.

In summary, poor DPs high in sugar, fat, and low in fiber are
significantly associated with increased risk of ARC. Conversely,
micronutrient-rich and high-fiber diets are linked to a reduced risk of
ARG, primarily in a linear manner.

In the subgroup analysis (conducted on 11 variables, with results
detailed in Supplementary Tables S16-526), several insightful results
were identified. For instance, lipid-rich, calorically dense diets and
hyperglycemic, fiber-deficient diets showed consistently strong
associations in men but not in women. These diets also had a strong
positive effect in the lowest (Q1) and highest (Q4) BMI quartiles but not
in the Q2 and Q3 quartiles. Although mineral-rich, moderate-fat diets
were not statistically significant in the overall analysis, they showed a
consistent protective effect in individuals aged 50-60. Additionally, the
positive promoting effects of the two aforementioned unhealthy DPs
were more pronounced in individuals with a history of smoking and
those who currently consume alcohol. Compared to individuals with
high or low levels of physical activity, those with moderate physical
activity did not seem to be affected by unhealthy DPs. In the sensitivity
analysis, excluding participants who developed renal cysts within
2 years resulted in stronger associations. Adjusting for MetS led to a
weakened association between all DPs and ARC risk. After excluding
individuals with abnormal eGFR, the correlations for lipid-rich,
calorically dense and hyper glycemic, fiber-deficient diets with ARC risk
were attenuated, while the previously non-significant association for the
mineral-rich, moderate-fat diet became slightly evident.

We adopted a mediation analysis on 12 out of the 17 DPs that
showed independent effects (a mineral-rich, moderate-fat diet DP was
not included as it was not statistically significant). The potential
mediators were biomarkers that had independent effects on ARC
(Figure 4), totaling 10 biomarkers. Among these, seven biomarkers
exhibited partial but significant mediation effects across different DPs,
independent of covariates.

Dietary profiles and association with ARC
An integration of three methods indicates that the optimal model

is composed of eight latent profiles. Figure 5 illustrates the preferences
of participants within each profile across the 50 food groups. Detailed
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baseline characteristics and the intake of key food groups for each
profile are provided in Supplementary Table S27.

The analysis identified distinct DPs within the population. The
gender ratio differences among the eight identified profiles were
minimal (Figure 5A). Figure 5C displays the top and bottom five food
groups with the highest and lowest factor loadings for each profile,
respectively, while Figure 5D presents a heatmap showing the loadings
of 50 food groups across the eight profiles.

Profile X1 is characterized by a high intake of high-fat dairy
products and animal protein, including high-fat cream, red meat, and
processed meat, indicating elevated consumption of saturated fats and
protein. Profile X2 emphasizes healthy fats, with substantial
consumption of olive oil, nuts, seeds, and low-fat dairy, highlighting a
focus on healthy fat intake. Profile X3 is indicative of a diet rich in
whole plant foods such as vegetables, legumes, and pulses, marked by
low-fat and high-fiber content. Profile X4 consists predominantly of
plant-based foods and substitutes, including meat substitutes,
vegetable sides, and dips, suggesting a plant-based diet supplemented
with processed substitutes. Profile X5 is characterized by high sugar
intake, featuring sugary drinks, high-sugar desserts, and low-fat dairy.
Profile X6 includes both alcohol and sugar, with high consumption of
alcoholic beverages, low-sugar sugar-sweetened beverages (SSBs),
dairy, and meat substitutes, resulting in elevated sugar and alcohol
intake. Profile X7 is defined by high-fat condiments and vegetables,
incorporating high-fat condiments, dairy products, vegetable sides,
and dips, indicating high fat consumption with an emphasis on
vegetables. Finally, Profile X8 represents a balanced and diverse diet,
encompassing whole grains, fish, olive oil, and fresh fruit, emphasizing
the intake of healthy fats and high-fiber foods.

The incidence of ARC varied across the different profiles (X1,
0.62%; X2, 0.78%; X3, 0.66%; X4, 0.48%; X5, 0.75%; X6, 0.85%; X7,
0.82%; X8, 0.59%; x> p = 0.001). We included the eight profiles as a
categorical variable in the model, using each of the eight profiles
sequentially as reference groups to conduct Cox regression analysis
controlling for all confounders (Figure 5B). The results indicated
significant associations for Profile X5 [1.604 (1.013, 2.540), p = 0.044],
Profile X6 [1.342 (1.012, 1.781), p = 0.041], and Profile X7 [1.555
(1.071, 2.258), p = 0.020] when compared to Profile X4, which is
representative of a plant-based diet. In summary, compared to Profile
X4, Profiles X5, X6, and X7, which have higher intakes of sugar and
high-fat foods, were associated with an increased risk of ARC.

Discussion

In this large British cohort, we first examined the relationship
between individual food groups, nutrients, metabolites, and genetic
factors with ARC. We then developed a CDPI framework using RRR
and LPA. While RRR allowed us to analyze DPs by linking key
nutrients with disease pathways, LPA helped identify natural dietary
subgroups in the population, shedding light on their associations with
ARC risk.

The high-fat, calorie-dense diet and the hyperglycemic, fiber-
deficient diet were constructed through RRR from six DPs across five
nutrient combinations and four DPs from three nutrient combinations,
respectively. These patterns consistently demonstrated significant
impacts on ARC risk across different causal pathways. The high-fat,
calorie-dense diet involved frequent consumption of high-fat cheese,
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Lipid-Rich, Calorically Dense Diet
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HRs (95% Cls) of continuous DP Z-scores for the risk of ARC. All models adjusted for demographic and socio-economic covariates, including gender,
age at recruitment, socio-economic status (Townsend deprivation index), employment status, educational attainment, health status, base line renal
function, and log-transformed total caloric intake, lifestyle and health conditions, including average hours of sleep per night, current smoking status,
body mass index (BMI), current alcohol consumption status, physical activity level (IPAQ), PRS (PRS), heart disease, hypertension, and diabetes.

Frontiers in Nutrition

09

frontiersin.org



https://doi.org/10.3389/fnut.2025.1611656
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Xu et al.

10.3389/fnut.2025.1611656

Biomarkers
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Red blood cell distribution width
Urea
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Mean corpuscular haemoglobin concentration

Lipid-Rich, Calorically Dense Diet

Total Concentration of Branched Chain Amino Acids 0.031 X N N d A\ A 2 e o™ S
: T e e e
Isoleucine | 0.009 o o\‘a‘g@ 5@1\”“ W’(\“\oo
c i ﬁ%zar‘éﬂRat%(SaSé/IozCI) R - "
GiDP1 G2DP1 Gz2DP2 G3DP2 GyDP2 G8DP2 GiDP2 G5DP2 G6DP2 G4DP1 G6DP1 GgDP1
Alanine  2,07% * 2.66% * -0.11% -0.18% 0.25% 0.04% 2.66% * -0.16% 1.42% 0.11% 0.67% -2.46% *
Cystatin C  2.56% *** 1.90% ***  3.64% * 1.60% * -0.11% 0.17% 1.90% ***  1.48% * -1.60% 3.78% * 1.46% 6.36% **
IGF1 3.88%* 0.31% 2.03% * 0.97% -0.04% 0.30% 0.31% 1.74% * -1.94% 1.16% 0.61% 6.55% *
Isoleucine -1.36% -5.71% **  3.98% * 2.43% * 0.95% 1.38% -5.71% **  2.92% * -117% 3.79% * 2.50% 8.53% *
Leucine -1.93% -3.64% * 4.00% *** 4.12% *** 3.70% *** 3.67% *** -3.64%* 4.30% *** 2.25% *** 4.49% *** 4.65% *** 5.61% ***
Corpuscular hemoglobin 1.05% 0.94% 4.16% * 3.82% * 3.30% * 3.82% * 0.94% 3.46% * 1.78% * 5.79% * 5.47% * 6.50% *
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Urea 4.90% *** 6.55% *** 2.94% *** 3.10% *** 2.90% *** 2.72% *** 6.55% *** 3.05% * 2.51% ** 3.20% *** 3.58% *** 2.24% **
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FIGURE 4
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Hyperglycemic, Fiber-Deficient Diet

Mediation effects of NMR platform biomarkers on the impact of 12 DPs on ARC. (A) Cox regression analysis was performed on biomarkers and ARC,
adjusting for all covariates, to identify 10 biomarkers with independent effects. (B) Line plot showing the magnitude of mediation effects of 10
biomarkers on the 12 DPs. (C) Proportion of each mediation effect, with significance levels indicated by asterisks: mediation effect p < 0.005 as

Fiber-Enriched, Lipid-Conservative Diet

red meat, and butter, alongside reduced intake of vegetables and fruits.
Similarly, the hyperglycemic, fiber-deficient pattern was marked by a
high intake of sugary foods, chocolate, and desserts, with a notable
deficiency in fiber-rich foods. LPA results further supported these
findings, showing that individuals adhering to these DPs had a 1.3 to
1.6 times greater risk of ARC compared to those following healthier,
plant-based diets.

It is noteworthy that within the hyperglycemic dietary habit, the
DP from G5.DP1 did not exhibit any association with ARC, despite
having an explanatory power of 51.33% for the response variables and
explaining more than 80% of total sugar intake. However, it only
accounted for approximately 7% of energy density. This DP is
characterized by a preference for fresh fruits, fruit juices, and other
fructose-rich foods with fiber content, and relatively low intake of
high-fat cheese. This may suggest that energy density remains a crucial
factor in determining the dietary promotion of ARC. Nevertheless,
this DP also showed no protective effect against ARC.

Mediation analysis identified several key metabolites, including
urea, cystatin C, leucine, isoleucine, IGF-1, as significant mediators
linking DPs to ARC risk. Elevated levels of urea and cystatin C,
markers of early renal dysfunction, highlight that impaired kidney
function can serve as an early indicator of cyst formation, particularly
in response to unhealthy DPs (41, 42). Branched-chain amino acids,
leucine and isoleucine, are potent activators of the mTORCI1 pathway.
These amino acids interact with cytosolic and lysosomal sensors,
recruiting the mTOR complex to the lysosome, which subsequently
activates downstream effectors such as p70S6K and 4E-BP1,
promoting protein synthesis and cellular growth (43). This pathway
plays a critical role in both normal growth and in pathological
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conditions like ARC, where aberrant activation of mMTORCI can lead
to excessive cellular proliferation and impaired apoptosis, contributing
to cyst expansion (44). Similarly, IGF-1, a potent growth factor that
regulates cell proliferation and survival, activates mTORCI via the
PI3K/Akt signaling pathway (45). Chronic activation of mTORC1,
particularly driven by elevated BCAAs or IGF-1 levels in response to
high-fat, high-sugar diets, is a well-established mechanism underlying
abnormal cell growth and organ hypertrophy (45-47). This
dysregulation may represent a key driver in the progression of renal
cysts. Kipp et al. (15) and Warner et al. (48) have demonstrated that
caloric restriction can significantly inhibit cyst growth and slow
disease progression by suppressing mTOR signaling, highlighting the
therapeutic potential of dietary interventions to modulate this
pathway. Their findings suggest that excessive mTORCI activation—
whether via nutrient overload, elevated BCAAs, or IGF-1 can
exacerbate metabolic stress, promoting cyst growth and
kidney dysfunction.

In the analysis of the relationship between three relatively healthy
dietary habits derived from 17 DPs and ARG, the results did not show
complete consistency. Among the micronutrient-rich and fiber-rich
dietary habits, G4.DP1 and G4.DP2 were derived from the same set
of nutrient response variables (vitamin C, vitamin E, beta-carotene,
selenium). However, G4.DP1 showed a weak negative correlation with
ARC, while G4.DP2 displayed no significant correlation but had a
positive effect direction. G4.DP1 had good explanatory power for all
four response variables, whereas G4.DP2 lacked explanatory power
for vitamin C and beta-carotene, which was reflected in a poorer
preference for vegetables and fruits in its food group. Another pattern,

G6.DP1, originated from response variables related to iron metabolism
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Latent profile analysis of naturally occurring dietary preferences in the population and the differential impact on ARC across profiles. (A) Proportion of
different genders within each dietary profile, represented by a stacked bar chart, along with the number of individuals who developed ARC (x100) and
the total number of individuals in each profile. (B) Each dietary profile was used as the reference group, with the remaining profiles treated as muilti-
categorical variables. Cox regression analysis was performed, adjusting for all previously mentioned confounding factors, to assess the association
between dietary profiles and ARC. The horizontal axis represents the reference group. Significance levels were denoted as p < 0.1 by “*" and p < 0.05 by
"**% " (C) Bidirectional bar charts depicting the top five and bottom five food groups for each dietary profile, highlighting the distinctive characteristics
of each profile. Detailed descriptions can be found in the Supplementary material. (D) Loadings of the 50 food groups across each dietary profile.

and ultimately reflected high intake of vitamin C and vegetables/fruits.
The G9.DP1 pattern, characterized by lean proteins and high fiber,
demonstrated a strong protective effect against ARC, which is a novel
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finding. These results were further supported by regression analyses
of individual food groups. Unfortunately, the mineral-rich diet did not
show a significant correlation with ARC in the overall population.
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However, it is important to note that categorizing this type of diet
broadly might be oversimplifying. Interestingly, in subgroup analyses
by age, specifically among individuals aged 50-60, the three DPs
under this dietary habit consistently showed a strong protective effect.

Existing studies have found that acidic urine is associated with
impaired renal function and a higher prevalence of kidney cysts. In
patients with a urine pH <5.0, the incidence of kidney cysts
significantly increases (49, 50). Diets rich in vegetables and fruits,
which are alkaline, can effectively reduce the renal acid load,
potentially explaining their protective effect against ARC (51). This
aligns with evidence-based nutritional care for patients with chronic
kidney disease.

Our findings suggest that high-fiber and nutrient-rich diets have
a protective effect against ARC, with hemoglobin concentration and
red blood cell distribution width (RDW) potentially playing mediating
roles. This relationship can be explained through the interaction of
inflammation and oxidative stress, both of which are well-established
contributors to cyst formation and progression. Chronic inflammation
and oxidative stress induce damage to renal tubular epithelial cells,
promoting cyst growth and fibrosis (52). DPs rich in fiber and
minerals, known to reduce systemic inflammation, may mitigate these
harmful processes by regulating gut microbiota and reducing
pro-inflammatory cytokine production (52). Moreover, hemoglobin
and RDW are markers of systemic health. Lower hemoglobin levels
and elevated RDW have been associated with increased oxidative
stress and chronic inflammation, which are risk factors for both
kidney dysfunction and cyst development. Studies show that reducing
RDW through dietary intervention could reduce the risk of kidney
function decline, suggesting that modulating these blood markers
through diet might explain part of the protective mechanism of high-
fiber diets (53).

The strength of this study lies in the large UKB cohort.
Additionally, controlling for the PRS of ARC allows us to
minimize the confounding influence of genetic factors. The
mediation analysis using metabolomics data was particularly
beneficial in exploring the potential mechanisms by which DPs
influence ARC risk. Lastly, the CDPI framework, constructed
through a combination of RRR and LPA, provides a more
comprehensive and systematic reflection of participants’ DPs,
further enhancing the robustness of the analysis.

This study has several limitations. Firstly, identifying and
validating DPs from at least two 24-h online self-reported dietary
assessments may be subject to recall bias or misreporting. For
instance, individuals with poorer overall health may report their
dietary intake differently. Additionally, the identification of DPs relies
on data from participants who are more willing to report their dietary
intake, potentially introducing selection bias. We attempted to
mitigate the randomness and partial bias of DPs by analyzing dietary
habits derived from DPs across multiple nutrient combinations.
However, not all foods are captured by the questionnaire, which
introduces unknown biases. Secondly, there is a potential delay in
identifying ARC cases (i.e., kidney cysts may not be immediately
recognized upon occurrence). Furthermore, due to the nature of
UKB data, we could not distinguish between simple and complex
kidney cysts, nor could we account for cysts associated with end-stage
renal disease. Selection related to repeated dietary assessments. The
requirement of >2 valid WebQ assessments likely enriched the
analytic cohort for individuals with greater digital access, health
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consciousness, and socio-economic advantage. Despite multivariable
adjustment (education, deprivation, lifestyle), residual selection bias
may remain. Because such individuals tend to report healthier diets
and behaviors, between-person exposure contrast is reduced, which
could bias harmful-diet associations toward the null (i.e.,
underestimation). Thirdly, DPs cannot explain all the variability of
nutrient response variables included in the RRR model, and any
residual variability might be attributable to other nutrients potentially
involved in disease pathways. Fourthly, while LPA can uncover
naturally occurring DPs within the population, the complexity of
human diets and the limited data resulted in up to eight profiles in
the best-fitting model. This complexity poses challenges in identifying
the unique dietary characteristics of each profile and complicates the
interpretation of differences in ARC risk among profiles. Lastly, it is
important to note that the UKB is a non-probability sample (i.e.,
participants must respond to invitations to be included, and the
sample is not entirely random). Most participants are White British
and have a lower socioeconomic deprivation level than the UK
average. Therefore, our findings may be conservative and not
fully generalizable.

Our study found that lipid-rich, calorically dense diets (high-
fat cheese, butter, pizza) and high-sugar, fiber-deficient diets
(chocolate confectionery, sugary drinks) significantly increased
ARC risk, while micronutrient-rich, low-lipid diets (vegetables,
fresh fruit) and fiber-enriched diets (lean poultry, nuts, eggs)
it.
association. Branched-chain amino acids, IGF-1, and RBC

reduced Mineral-rich, moderate-fat diets showed no
distribution width played significant mediating roles in these

dietary patterns’ associations with ARC risk.
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