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Background: Acquired renal cysts (ARC) are associated with kidney function 
decline, necessitating novel dietary pattern (DP) analyses in large cohorts.
Methods: This UK Biobank prospective cohort study (2006–2010) included 
participants with ≥2 dietary records, excluding those with severe kidney damage. 
The constructed comprehensive dietary pattern integration (CDPI) utilized 
reduced rank regression (RRR) and latent profile analysis (LPA). ARC cases (ICD-
10: N28.1) were assessed via Cox regression for risk and dose–response, with 
NMR metabolites examined as mediators.
Results: Among 119,709 participants (median follow-up: 10.57 years), 850 ARC 
cases were identified. Lipid-rich and hyperglycemic diets increased ARC risk 
[e.g., HRs for G1.DP1: 1.080 (1.024, 1.139); G1.DP2: 1.144 (1.048, 1.249)], while 
micronutrient-rich diets showed weak protective effects [G4.DP1: 0.943 (0.892, 
0.998)]. LPA confirmed RRR findings, and 7/251 NMR metabolites had significant 
mediating effects.
Conclusion: Diets high in fat (cheese, butter, pizza) and sugar (chocolate, 
sugary drinks) elevated ARC risk, whereas micronutrient- and fiber-rich diets 
(vegetables, fruit, lean poultry, nuts, eggs) were protective. Key mediators 
included branched-chain amino acids, IGF-1, and RBC distribution width.
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Introduction

Acquired renal cysts (ARC) are a prevalent renal condition, primarily characterized by 
benign cystic structures (1). Detection has markedly increased in routine physical 
examinations. Several cohort studies suggest that renal cysts may impair renal function and 
increase the risk of nephron loss (2–4). Additionally, ARC is associated with a higher risk of 
metabolic syndrome, particularly hypertension, which is an independent risk factor (3, 5, 6). 
Despite the high prevalence of ARC, research on its etiology and management is limited, with 
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minimal attention given to potential dietary influences (7–9). Both 
healthy individuals and patients with ARC express a strong desire for 
dietary guidance (10).

Most research on diet and renal cysts has concentrated on 
polycystic kidney disease (PKD), a genetic disorder due to its 
significant clinical features and genetic basis (11). For example, high 
sodium intake has been linked to accelerated cyst growth in PKD, 
likely due to increased vasopressin levels (12, 13). Animal studies have 
also shown that plant-based proteins reduce kidney weight and cyst 
size in PKD models (14), and calorie restriction may inhibit cyst 
growth. Furthermore, increased consumption of fruits, vegetables, and 
adherence to a Mediterranean diet has been associated with better 
renal health (15).

Reduced rank regression (RRR) is a data-driven method that 
utilizes prior knowledge to identify dietary patterns by exploring how 
specific nutrients associated with causal pathways relate to disease 
outcomes (16). Latent Profile Analysis (LPA) is able to classify 
individuals into dietary subgroups based on multiple dietary variables 
and revealing inherent patterns within the population (17). Using 
RRR and LPA, we  developed a comprehensive dietary pattern 
integration (CDPI) framework to capture dietary patterns 
comprehensively. Both RRR and LPA have been widely used in studies 
examining the impact of dietary patterns on disease outcomes (18, 19).

In this study, we used detailed dietary data from UK Biobank 
(UKB) participants to identify dietary patterns (DPs), assess their 
variability, and evaluate their association with the risk of ARC.

Methods

Study population

The UKB is a population-based cohort consisting of over 500,000 
participants aged 37 to 73 from 22 locations across England, Wales, 
and Scotland. Baseline data were collected between 2006 and 2010 and 
linked to hospital and mortality records. Detailed sociodemographic, 
health behavior, and medical history information was gathered 
through touchscreen questionnaires and interviews. Physical 
measurements and biological samples were collected by trained staff 
following standardized protocols. Written informed consent was 
obtained from all participants (20, 21).

Dietary intake measurement

The Oxford WebQ, a web-based dietary instrument, was used to 
capture extensive dietary data from participants (22). This tool, 
validated against an interviewer-administered 24-h recall 
questionnaire, recorded the consumption of up to 206 food items and 
32 beverage types from the previous day (22). Participants with valid 
email addresses completed the questionnaire at baseline and during 
four intervals between April 2009 and June 2012. Only participants 
with at least two completed assessments were included in the analysis, 
and their average dietary intake was calculated.

Following established procedures (23), dietary information was 
categorized into 50 primary food groups (Supplementary Table S1), 
aligned with the U.K. National Diet and Nutrition Survey. 
Nutritional and energy intake was calculated by multiplying each 

food portion by its nutrient composition using data from the UK 
Nutrient Databank (2012–2014) (23). Energy density (kJ/g) was 
calculated by dividing total energy by the total weight of food 
(excluding beverages) (24). The percentage of energy from 
saturated fatty acids (SFA) and free sugars was calculated by 
dividing energy from SFA/free sugars by total daily energy intake. 
Fiber density (g/MJ) was assessed by dividing daily fiber intake by 
total energy intake, multiplied by 1,000. Definitions for free sugars 
and fiber followed U.K. Scientific Advisory Committee on 
Nutrition guidelines, with fiber measured using the Englyst 
method (25).

To address dietary misreporting, the ratio of energy intake (EI) to 
estimated energy requirements (EER) was calculated using the 
Schofield equation (Supplementary Note 1), based on the 1985 FAO/
WHO/UNU Report on Human Energy Requirements (26, 27). 
Participants classified as dietary under-reporters (EI <95% CI) or 
over-reporters (EI >95% CI) were excluded (28).

Measurement of metabolic biomarkers

Between June 2019 and June 2022, metabolic biomarkers were 
measured using a high-throughput nuclear magnetic resonance 
(NMR) platform developed by Nightingale Health Ltd. A total of 251 
biomarkers, including lipoprotein lipids across 14 subclasses, fatty 
acids, and low-molecular-weight metabolites, were analyzed from 
EDTA plasma samples of approximately 280,000 participants. Detailed 
methods and biomarker data have been previously published (28).

Outcome ascertainment

The UKB dataset includes “first occurrence” fields that map 
clinical codes from primary care visits, inpatient admissions, death 
records, and self-reported medical conditions to ICD-9 and ICD-10 
codes. The outcome of interest in this study was “Cyst of kidney, 
acquired,” identified using ICD-10 code N28.1 and ICD-9 code 593.2. 
Data were censored at the earliest of three events: the first diagnosis 
of an ARC, participant death, or the data cutoff (October 31, 2022, for 
HES data; August 31, 2022, for SMR; and May 31, 2022, for 
PEDW) (29).

Covariates

Data on age, gender, ethnicity, educational level, household 
income, alcohol consumption, physical activity, smoking status, 
depression scores, health scores, baseline renal function, sleep 
duration, and medical history (focusing on cardiovascular diseases, 
diabetes, and kidney diseases) were collected through questionnaires 
administered via touchscreen computers, additional health records 
and other biochemical tests results. Sleep duration was assessed by 
asking, “How many hours do you  sleep per 24-h period?” and 
calculating the average across multiple surveys. Physical activity was 
evaluated using the short form of the International Physical Activity 
Questionnaire (IPAQ). Detailed information on the variables, along 
with a display of the directed acyclic graph illustrating the relationships 
between them, can be found in the Supplementary Figure S1.
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Genetic risk scores

We utilized summary-level GWAS data from the tenth data 
release of the FinnGen database (Cyst of kidney, XIV Diseases of the 
genitourinary system (N14), cases: 1,874, controls: 408,319) to 
compute PRS for ARC (30). PRS was calculated using PRSice-2, with 
p-value thresholds (e.g., p < 5 × 10−8, p < 1 × 10−5) to ensure 
robustness. Linkage disequilibrium (LD) clumping (R2 < 0.1, window 
size 250 kb) was used to reduce redundancy. Quality control included 
excluding SNPs with minor allele frequency (MAF) < 0.01 and 
genotype missingness >5%. PRS model performance was evaluated 
using the C-statistic and AUC, and the PRS was included in a Cox 
proportional hazards model to account for genetic predispositions 
(31, 32).

Comprehensive dietary pattern integration 
framework

Our CDPI framework combines data-driven DP identification 
with health-specific nutrient selection to examine the relationship 
between DPs and health outcomes, specifically ARC. The framework 
follows five key stages:

Stage 1: Data-driven dietary pattern construction using RRR

We initiated the CDPI framework by constructing DPs through 
RRR. RRR identifies linear combinations of food groups correlated 
with these pre-selected nutrient response variables, aiming to 
maximize the explained variance.

Stage 2: Health-focused nutrient selection

To further refine the DPs, we conducted a systematic review of 
existing literature on DPs and health outcomes, consulting nutritional 
experts to define nine health-specific focus areas: basic nutrition and 
energy balance, cardiovascular health, bone health, antioxidation, 
glycemic control, iron metabolism, blood pressure regulation, renal 
protection, and metabolic health. Each of these areas is crucial for 
understanding their multifaceted influences on renal cyst formation 
and overall kidney health (33–36). For each health focus, we selected 
relevant nutrients implicated in disease pathways and performed RRR 
on data derived from 50 food groups (nutrient combinations are 
detailed in Supplementary Table S2) (37). DPs were converted into 
Z-scores, reflecting each participant’s adherence to specific DPs. Food 
groups with higher factor loadings had a more significant influence 
on the identified patterns, and only DPs that explained more than 15% 
of the variance within each health focus were included in 
further analysis.

Stage 3: Synthesis and robustness enhancement

After the initial RRR-based analysis, we conducted secondary 
analyses to enhance the robustness of the results. We extracted the 
food groups with the highest factor loadings across the nine health-
focused DPs. We implemented a pre-specified, reproducible workflow. 
First, each DP was represented by its standardized 50-food-group 
loading vector; top-loading sets were defined by |loading| ≥0.20 with 

sign preserved. Second, pairwise DP similarity combined three 
metrics—Pearson correlation of full loading vectors, Jaccard overlap 
of signed top-loading sets, and cosine similarity—into a composite 
score S (mean of the three). Third, hierarchical agglomerative 
clustering (average linkage) on 1 − S determined the number of 
clusters by maximizing average silhouette width (target 4–6 clusters). 
Fourth, robustness was examined by 200 bootstrap resamples (refitting 
RRR and repeating the pipeline); stability was summarized by the 
adjusted Rand index (ARI). Finally, clusters were labeled by dominant 
signed loadings (food-group anchors and nutrient themes). Two 
independent nutrition epidemiologists applied a predefined rubric to 
confirm membership and assign labels; agreement was quantified by 
Cohen’s κ, with discrepancies adjudicated by a senior reviewer.

The final synthesized DPs identified through this process 
included: lipid-rich, calorically dense diets; hyperglycemic, fiber-
deficient diets; micronutrient-abundant, low-lipid diets; mineral-rich, 
moderate-fat diets; and fiber-enriched, lipid-conservative diets. 
Detailed variance explanations for each DP can be  found in 
Supplementary Tables S3–S11.

Stage 4: Prospective association of DPs with ARC

The prospective association between the synthesized DPs and 
ARC risk was examined using multivariable Cox proportional hazards 
models, adjusted for a comprehensive set of covariates that is listed 
above. Hazard ratios (HRs) and 95% confidence intervals (CIs) were 
calculated for each unit increase in DP Z-scores. DPs were included 
as both continuous variables (using Z-scores) and categorical variables 
(divided into quartiles, with the lowest quartile as the reference 
group). Restricted cubic spline models were used to examine 
non-linear associations between DP Z-scores and ARC incidence, 
adjusting for the same set of covariates.

Likelihood ratio tests were performed to assess heterogeneity in 
the relationship between DPs and the risk of ARC across different age 
groups (<50 years, 50–60 years, >60 years), genders (female, male), 
smoking statuses (never, previous, current), physical activity levels 
(low, moderate, high), and BMI categories (Q1–Q4).

Stage 5: Dietary profile analysis

We employed finite normal mixture modeling, using the R 
package “mclust,” to empirically identify subgroups with similar DPs 
based on data from 50 food groups. This approach assumes that the 
data are generated from a mixture of normal distributions, each 
representing a distinct subgroup. To select the best-fitting model, 
we evaluated multiple configurations using the Bayesian information 
criterion, integrated completed likelihood, and bootstrap likelihood 
ratio test (38, 39).

After identifying the optimal model, we  characterized each 
subgroup based on covariates and dietary intake patterns, revealing 
specific dietary profiles. These dietary profiles were then incorporated 
as categorical variables into subsequent statistical models. To examine 
the association between naturally occurring dietary subgroups and 
ARC, we used each dietary profile sequentially as a reference group in 
the Cox proportional hazards models. The models were adjusted for 
potential confounders, allowing us to assess the relative risk of ARC 
across different dietary subgroups while controlling for all 
relevant covariates.
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Mediation effect analysis of NMR 
metabolites

We utilized the mediation package in R to establish a standard 
three-variable path model to assess the mediation effects of NMR 
metabolites on the associations between DPs, represented by the 
Z-scores derived from participants’ corresponding RRR, and the risk 
of ARC (40). Linear regression models were employed to analyze the 
relationship between DPs and metabolites, while COX regression 
models were applied for the metabolite-ARC association. The same 
covariates used in the initial association analyses were included in this 
model. The significance of the mediation effects was determined 
through 2,000 bootstrap iterations, ensuring robust 
statistical inference.

Sensitivity and subgroup analysis

We conducted several sensitivity analyses, beginning with the 
exclusion of participants who developed ARC within 2 years following 
their most recent 24-h online dietary assessment. Baseline metabolic 
syndrome was defined according to the harmonized criteria established 
by the International Diabetes Federation and the American Heart 
Association/National Heart, Lung, and Blood Institute in 2009 and 
included as a covariate in our analyses. Additionally, we  excluded 
individuals with baseline renal dysfunction (eGFR <60 mL/
min/1.73 m2). Furthermore, we  performed stratified analyses 
considering various covariates, including gender, age, Townsend 
deprivation index, education level, BMI, smoking status, alcohol 
consumption, IPAQ, diabetes, cardiovascular disease, and hypertension.

All analyses were conducted using R version 4.3.1, and the 
epidemiological study adhered to the STROBE guidelines.

Results

Population characteristics

Out of the 502,186 participants recruited in the UKB study, 
we applied several exclusion criteria. These included individuals who 
did not complete any validated dietary assessments (n = 273,383) or 
who completed only one 24-h online dietary assessment (n = 79,693). 
Additionally, participants lacking genomic data necessary for 
calculating PRS for ARC (n = 32,351) were excluded. We also excluded 
participants with ARC diagnoses recorded prior to baseline (ICD-10 
code N28.1, n = 1,082), those missing specific nutrient data (n = 18), 
and those with extreme energy intake values based on the ratio of EI 
to EER (over-reporters: n = 28, under-reporters: n = 1,223). Further 
exclusions were made for individuals with baseline cancer (n = 6,217), 
end-stage renal disease (n = 9), those undergoing renal replacement 
therapy (n = 2), a history of kidney surgeries (n = 4), frequent urinary 
tract infections (n = 32), long-term use of nephrotoxic medications 
(n = 15), or PKD (n = 24).

Ultimately, 119,709 participants were included in the final analysis, 
having completed at least two 24-h online dietary assessments and 
provided genomic data for PRS calculations. The average follow-up 
period was 10.57 years, during which 850 ARC cases were documented. 
Figure 1 summarizes the overall analytical approach used in this study.

Table 1 presents the baseline demographic, socioeconomic, and 
clinical characteristics of the study participants, categorized by those 
who developed ARC and those who did not. Participants who 
developed ARC were more likely to be  older males, have lower 
socioeconomic status, lower education levels, and higher rates of 
smoking and alcohol consumption. These individuals also had 
higher prevalence rates of obesity, cardiovascular disease, 
hypertension, and diabetes compared to participants who did not 
develop ARC.

In terms of dietary intake, total energy consumption did not 
differ significantly between the two groups. However, participants 
who developed ARC had higher energy density in their diets, 
characterized by increased intake of free sugars, SFA, and sodium. 
Specific food groups contributing to this higher energy density 
included high-fat cheese, red meat, milk-based desserts, and butter 
or animal-fat spreads. Conversely, their intake of vegetables, whole 
grains, caffeinated beverages, and water was notably lower than that 
of participants without ARC.

Prospective associations between food 
groups, nutrients, biomarkers, and ARC

The exploratory analysis results, including each of the 50 food 
groups and 64 nutrients as single independent variables (adjusting for 
all covariates), are presented in Supplementary Tables S12, S13. 
We found that sugary drinks, high-fat cheese, and preserved sugars 
have a significant positive effect on the incidence of ARC, while fresh 
fruit and poultry have a negative effect. Among the nutrients, 
magnesium, pantothenic acid, vitamin B6, niacin equivalent, and 
biotin showed protective effects against the disease, with the effects of 
fats and sugars remaining significant in the nutrient analysis. The role 
of genes (interaction of PRS as a covariate) did not appear to 
be significant in any of the analyses.

We conducted multivariate logistic regression using 50 food 
groups, 64 nutrients, and the 17 comprehensive DPs obtained from 
the CDPI Framework as independent variables against 310 biomarkers 
and biochemical indicators. The majority of dietary factors were found 
to be associated with changes in the metabolome, with the results 
presented in the Supplementary Table.

Comprehensive DP integration framework

Based on the RRR model, we derived 43 DPs across nine selected 
groups (G1–G9). We synthesized 17 RRR-derived patterns into five 
dietary habits using an objective clustering framework (overall 
silhouette 0.60; median bootstrap ARI 0.78), with excellent inter-rater 
agreement on labels (κ 0.86). Out of these, 17 DPs with an average 
explained variance exceeding 15% were included in the analysis. These 
patterns are specifically G1.DP1 (47.22%), G1.DP2 (15.69%), G2.DP1 
(44.66%), G2.DP2 (15.13%), G3.DP1 (46.01%), G3.DP2 (16.93%), 
G4.DP1 (37.12%), G4.DP2 (22.85%), G5.DP1 (51.33%), G5.DP2 
(23.61%), G6.DP1 (39.82%), G6.DP2 (19.49%), G7.DP1 (48.95%), 
G7.DP2 (22.80%), G8.DP1 (54.99%), G8.DP2 (22.03%), and G9.DP1 
(66.53%). These patterns collectively achieved cumulative explained 
variances of 60.9, 59.79, 62.94, 59.97, 74.49, 59.31, 71.75, 77.02, and 
66.53% for each nutrient group, respectively.
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In secondary analyses of these 17 DPs, we focused on the food 
groups with the highest and lowest factor loadings for each pattern, 
as detailed in Supplementary Tables S3–S11. Overall model factor 
loadings are depicted in Supplementary Tables S3–S7 
Supplementary Figures S3–S7. By merging and extracting prominent 
features from similar DPs, we identified five typical dietary habits: a 
lipid-rich, calorically dense diet encompassing G1.DP1, G2.DP1, 
G2.DP2, G3.DP2, G7.DP2, and G8.DP2; a hyperglycemic, fiber-
deficient diet including G1.DP2, G5.DP1, G5.DP2, and G6.DP2; a 
micronutrient-abundant, low-lipid diet comprising G4.DP1, G4.DP2, 
and G6.DP1; a mineral-rich, moderate-fat diet consisting of G3.DP1, 
G7.DP1, and G8.DP1; and a fiber-enriched, lipid-conservative diet 
represented by G9.DP1.

Relationships between DPs and ARC

As illustrated in Figure  2, our initial approach involved 
incorporating the Z-scores of 17 DPs as continuous variables into the 
model, with subsequent analyses adjusted for all covariates.

In the context of a lipid-rich, calorically dense diet, six DPs 
consistently demonstrated a positive association with the incidence of 
ARC, with HRs (95% CIs) as follows: G1.DP1 [1.080 (1.024, 1.139), 
p = 0.004], G2.DP1 [1.084 (1.018, 1.153), p = 0.011], G2.DP2 [1.132 
(1.051, 1.218), p < 0.001], G3.DP2 [1.146 (1.058, 1.242), p < 0.001], 
G7.DP2 [1.125 (1.051, 1.205), p < 0.001], and G8.DP2 [1.121 (1.047, 
1.200), p = 0.001]. Within the dietary habits characterized by a 
hyperglycemic, fiber-deficient diet, a strong positive correlation was 
observed in all but G5.DP1, with significant associations noted in 
G1.DP2 [1.144 (1.048, 1.249), p = 0.003], G5.DP2 [1.149 (1.074, 1.230), 
p < 0.001], and G6.DP2 [1.108 (1.008, 1.218), p = 0.033]. Conversely, in 
the context of a micronutrient-abundant, low-lipid diet, except for 
G4.DP2, the remaining sources of DPs demonstrated a weakly inverse 
relationship with ARC, notably G4.DP1 [0.943 (0.892, 0.998), p = 0.041] 
and G6.DP1 [0.938 (0.885, 0.994), p = 0.030]. For DPs described as 
mineral-rich, moderate-fat diets, no statistically significant correlations 
with the onset of ARC were found, although the effects were generally 
inversely related. Specifically, G9.DP1, representing a fiber-enriched, 
lipid-conservative diet, showed a strong negative correlation with ARC, 
G9.DP1 [0.911 (0.846, 0.980), p = 0.012].

FIGURE 1

Summary of the analyses conducted in this study. Using data from the UKB, we initially conducted an exploratory investigation into the prospective 
associations of 50 food groups and 64 nutrients with ARC events and levels of 215 metabolites measured by the NMR platform, adjusting for 
confounders. Additionally, we incorporated PRS data as covariates to examine the role of genetic factors and further explored the mediating effects of 
certain associated metabolites. We then developed a CDPI framework to synthesize five DPs and analyze their prospective associations with ARC, 
dose–response relationships, and the mediating effects of NMR metabolites, enhancing robustness through stratified analyses. Finally, the study also 
examined potential dietary profiles in the general population and their associations with ARC.
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TABLE 1  Baseline characteristics of participants by outcomes (N = 119,709).

Characteristics Overall Acquired cystic kidney disease

N = 119,709 No (N = 118,859) Yes (N = 850) pa

Male, n (%) 53,169 (44.4) 52,646 (44.3) 523 (61.5) <0.001

TDIb −1.64 (2.84) −1.64 (2.84) −1.29 (3.00) <0.001

Age (years)b 56.12 (7.83) 56.09 (7.83) 60.36 (6.60) <0.001

Education scoreb 11.35 (13.48) 11.34 (13.47) 12.95 (14.64) 0.001

Employment scoreb 0.78 (3.69) 0.78 (3.68) 0.76 (4.67) 0.88

Health scoreb 0.17 (3.98) 0.17 (3.96) 0.65 (5.66) <0.001

Sleep durationb 7.17 (0.96) 7.17 (0.96) 7.19 (1.18) 0.589

BMIb 26.71 (4.57) 26.70 (4.56) 28.32 (5.18) <0.001

Ethnicity white, n (%) 115,657 (96.6) 114,838 (96.6) 819 (96.4) 0.742

BMRb 1537.32 (259.75) 1536.69 (259.49) 1625.69 (280.29) <0.001

Overall health rating, n (%) <0.001

 � Excellent 25,840 (21.6) 25,749 (21.7) 91 (10.7)

 � Fair 19,079 (15.9) 18,877 (15.9) 202 (23.8)

 � Good 71,414 (59.7) 70,911 (59.7) 503 (59.2)

 � Poor 3,145 (2.6) 3,093 (2.6) 52 (6.1)

Smoking status, n (%) <0.001

 � Never 42,886 (35.8) 42,500 (35.8) 386 (45.4)

 � Previous 68,472 (57.2) 68,084 (57.3) 388 (45.6)

 � Current 8,351 (7.0) 8,275 (7.0) 76 (8.9)

Alcohol drinker status, n (%) <0.001

 � Never 3,466 (2.9) 3,420 (2.9) 46 (5.4)

 � Previous 112,832 (94.3) 112,064 (94.3) 768 (90.4)

 � Current 3,411 (2.8) 3,375 (2.8) 36 (4.2)

Physical activity (IPAQ), n (%) 0.002

 � Low 50,453 (42.1) 50,096 (42.1) 357 (42.0)

 � Moderate 47,128 (39.4) 46,829 (39.4) 299 (35.2)

 � High 22,128 (18.5) 21,934 (18.5) 194 (22.8)

Cardiovascular disease, n (%) 34,753 (29.0) 34,191 (28.8) 562 (66.1) <0.001

Hypertension, n (%) 32,196 (26.9) 31,675 (26.6) 521 (61.3) <0.001

Diabetes, n (%) 7,715 (6.4) 7,551 (6.4) 164 (19.3) <0.001

Nutrients intake

 � Energy intake (MJ/day)b 7342.42 (1950.33) 7342.13 (1949.49) 7381.99 (2066.42) 0.553

 � Energy density (kJ/g)b 6.46 (1.47) 6.46 (1.47) 6.58 (1.53) 0.018

 � Englyst fiber (g/day)b 17.94 (5.94) 17.94 (5.94) 17.68 (5.96) 0.203

 � Free sugar (g/day)b 60.12 (31.78) 60.09 (31.75) 63.97 (35.88) <0.001

 � Protein (g/day)b 80.82 (21.03) 80.82 (21.03) 81.15 (21.53) 0.649

 � Saturated fatty acids (g/day)b 27.26 (10.69) 27.26 (10.69) 28.07 (11.59) 0.027

 � Sodium (g/day)b 1963.68 (675.46) 1963.32 (675.34) 2014.04 (689.46) 0.029

Main food groups (g/day)

 � High fat cheeseb 14.74 (16.45) 14.73 (16.44) 15.92 (17.76) 0.036

 � Red meatb 39.43 (42.40) 39.40 (42.37) 43.73 (45.85) 0.003

 � Vegetablesb 188.89 (135.08) 188.96 (135.11) 179.82 (131.31) 0.049

 � Fresh fruitb 195.48 (145.76) 195.52 (145.74) 188.99 (148.87) 0.193

(Continued)
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TABLE 1  (Continued)

Characteristics Overall Acquired cystic kidney disease

N = 119,709 No (N = 118,859) Yes (N = 850) pa

 � Whole grainsb 8.51 (27.01) 8.53 (27.04) 6.01 (21.90) 0.007

 � Coffee teab 800.01 (325.56) 800.21 (325.56) 773.30 (324.87) 0.016

 � Alcoholic drinksb 257.84 (375.43) 257.76 (375.20) 268.35 (407.07) 0.413

 � SSBs and other sugary drinksb 69.44 (176.87) 69.44 (176.79) 69.83 (187.81) 0.948

 � Waterb 510.40 (374.25) 510.66 (374.39) 474.15 (353.49) 0.005

 � High fat condimentsb 13.49 (15.54) 13.49 (15.54) 13.74 (16.38) 0.636

 � Milk based dessertsb 24.55 (38.70) 24.52 (38.67) 27.57 (42.05) 0.022

 � Chocolate confectioneryb 11.84 (19.47) 11.84 (19.46) 11.77 (20.98) 0.92

 � Butter and other animal-fat 

spreadsb

5.15 (8.27) 5.14 (8.26) 5.76 (9.11) 0.029

TDI, Townsend deprivation index; IPAQ, International Physical Activity Questionnaire; SSBs, sugar-sweetened beverages; BMR, basal metabolic rate.
aANOVA or χ2 test where appropriate.
bMean (SD).

FIGURE 2

HRs (95% CI) for ARC symptoms by DPs. All models adjusted for demographic and socio-economic covariates, including gender, age at recruitment, 
socio-economic status (Townsend deprivation index), employment status, educational attainment, health status, baseline renal function, and log-
transformed total caloric intake, lifestyle and health conditions, including average hours of sleep per night, current smoking status, BMI, current alcohol 
consumption status, IPAQ, PRS, heart disease, hypertension, and diabetes.
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We further categorized the 17 DPs into quartiles based on their 
Z-scores, using the first quartile as the reference group for model 
construction, with adjustments made for all covariates. The DPs that 
showed statistically significant differences include G1.DP1 Q4 [1.267 
(1.039, 1.546), p = 0.019, p for trend = 0.007], G1.DP2 Q4 [1.215 
(1.005, 1.470), p = 0.044, p for trend = 0.033], G2.DP2 Q4 [1.250 
(1.033, 1.512), p = 0.022, p for trend = 0.006], G3.DP2 Q4 [1.365 
(1.121, 1.663), p = 0.002, p for trend = 0.001], G4.DP1 Q4 [0.811 
(0.663, 0.991), p = 0.040, p for trend = 0.026], G4.DP2 Q4 [1.261 
(1.001, 1.588), p = 0.049, p for trend = 0.036], G5.DP2 Q4 [1.289 
(1.055, 1.576), p = 0.013, p for trend = 0.002], G6.DP1 Q3 [0.730 
(0.593, 0.899), p = 0.003, p for trend = 0.003], G7.DP2 Q4 [1.377 
(1.130, 1.677), p = 0.001, p for trend <0.001], and G8.DP2 Q4 [1.340 
(1.105, 1.625), p = 0.003, p for trend <0.001]. For more detailed 
information, see Supplementary Table S15.

In the dose–response analysis using restricted cubic splines 
(Figure 3), apart from G2.DP2, G8.DP2, and G5.DP2, which showed 
a nonlinear association (non-linear p < 0.05), the nonlinear 
relationships for other DPs were not significant.

In summary, poor DPs high in sugar, fat, and low in fiber are 
significantly associated with increased risk of ARC. Conversely, 
micronutrient-rich and high-fiber diets are linked to a reduced risk of 
ARC, primarily in a linear manner.

In the subgroup analysis (conducted on 11 variables, with results 
detailed in Supplementary Tables S16–S26), several insightful results 
were identified. For instance, lipid-rich, calorically dense diets and 
hyperglycemic, fiber-deficient diets showed consistently strong 
associations in men but not in women. These diets also had a strong 
positive effect in the lowest (Q1) and highest (Q4) BMI quartiles but not 
in the Q2 and Q3 quartiles. Although mineral-rich, moderate-fat diets 
were not statistically significant in the overall analysis, they showed a 
consistent protective effect in individuals aged 50–60. Additionally, the 
positive promoting effects of the two aforementioned unhealthy DPs 
were more pronounced in individuals with a history of smoking and 
those who currently consume alcohol. Compared to individuals with 
high or low levels of physical activity, those with moderate physical 
activity did not seem to be affected by unhealthy DPs. In the sensitivity 
analysis, excluding participants who developed renal cysts within 
2 years resulted in stronger associations. Adjusting for MetS led to a 
weakened association between all DPs and ARC risk. After excluding 
individuals with abnormal eGFR, the correlations for lipid-rich, 
calorically dense and hyper glycemic, fiber-deficient diets with ARC risk 
were attenuated, while the previously non-significant association for the 
mineral-rich, moderate-fat diet became slightly evident.

We adopted a mediation analysis on 12 out of the 17 DPs that 
showed independent effects (a mineral-rich, moderate-fat diet DP was 
not included as it was not statistically significant). The potential 
mediators were biomarkers that had independent effects on ARC 
(Figure 4), totaling 10 biomarkers. Among these, seven biomarkers 
exhibited partial but significant mediation effects across different DPs, 
independent of covariates.

Dietary profiles and association with ARC

An integration of three methods indicates that the optimal model 
is composed of eight latent profiles. Figure 5 illustrates the preferences 
of participants within each profile across the 50 food groups. Detailed 

baseline characteristics and the intake of key food groups for each 
profile are provided in Supplementary Table S27.

The analysis identified distinct DPs within the population. The 
gender ratio differences among the eight identified profiles were 
minimal (Figure 5A). Figure 5C displays the top and bottom five food 
groups with the highest and lowest factor loadings for each profile, 
respectively, while Figure 5D presents a heatmap showing the loadings 
of 50 food groups across the eight profiles.

Profile X1 is characterized by a high intake of high-fat dairy 
products and animal protein, including high-fat cream, red meat, and 
processed meat, indicating elevated consumption of saturated fats and 
protein. Profile X2 emphasizes healthy fats, with substantial 
consumption of olive oil, nuts, seeds, and low-fat dairy, highlighting a 
focus on healthy fat intake. Profile X3 is indicative of a diet rich in 
whole plant foods such as vegetables, legumes, and pulses, marked by 
low-fat and high-fiber content. Profile X4 consists predominantly of 
plant-based foods and substitutes, including meat substitutes, 
vegetable sides, and dips, suggesting a plant-based diet supplemented 
with processed substitutes. Profile X5 is characterized by high sugar 
intake, featuring sugary drinks, high-sugar desserts, and low-fat dairy. 
Profile X6 includes both alcohol and sugar, with high consumption of 
alcoholic beverages, low-sugar sugar-sweetened beverages (SSBs), 
dairy, and meat substitutes, resulting in elevated sugar and alcohol 
intake. Profile X7 is defined by high-fat condiments and vegetables, 
incorporating high-fat condiments, dairy products, vegetable sides, 
and dips, indicating high fat consumption with an emphasis on 
vegetables. Finally, Profile X8 represents a balanced and diverse diet, 
encompassing whole grains, fish, olive oil, and fresh fruit, emphasizing 
the intake of healthy fats and high-fiber foods.

The incidence of ARC varied across the different profiles (X1, 
0.62%; X2, 0.78%; X3, 0.66%; X4, 0.48%; X5, 0.75%; X6, 0.85%; X7, 
0.82%; X8, 0.59%; χ2 p = 0.001). We included the eight profiles as a 
categorical variable in the model, using each of the eight profiles 
sequentially as reference groups to conduct Cox regression analysis 
controlling for all confounders (Figure  5B). The results indicated 
significant associations for Profile X5 [1.604 (1.013, 2.540), p = 0.044], 
Profile X6 [1.342 (1.012, 1.781), p = 0.041], and Profile X7 [1.555 
(1.071, 2.258), p = 0.020] when compared to Profile X4, which is 
representative of a plant-based diet. In summary, compared to Profile 
X4, Profiles X5, X6, and X7, which have higher intakes of sugar and 
high-fat foods, were associated with an increased risk of ARC.

Discussion

In this large British cohort, we first examined the relationship 
between individual food groups, nutrients, metabolites, and genetic 
factors with ARC. We then developed a CDPI framework using RRR 
and LPA. While RRR allowed us to analyze DPs by linking key 
nutrients with disease pathways, LPA helped identify natural dietary 
subgroups in the population, shedding light on their associations with 
ARC risk.

The high-fat, calorie-dense diet and the hyperglycemic, fiber-
deficient diet were constructed through RRR from six DPs across five 
nutrient combinations and four DPs from three nutrient combinations, 
respectively. These patterns consistently demonstrated significant 
impacts on ARC risk across different causal pathways. The high-fat, 
calorie-dense diet involved frequent consumption of high-fat cheese, 
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FIGURE 3

HRs (95% CIs) of continuous DP Z-scores for the risk of ARC. All models adjusted for demographic and socio-economic covariates, including gender, 
age at recruitment, socio-economic status (Townsend deprivation index), employment status, educational attainment, health status, base line renal 
function, and log-transformed total caloric intake, lifestyle and health conditions, including average hours of sleep per night, current smoking status, 
body mass index (BMI), current alcohol consumption status, physical activity level (IPAQ), PRS (PRS), heart disease, hypertension, and diabetes.
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red meat, and butter, alongside reduced intake of vegetables and fruits. 
Similarly, the hyperglycemic, fiber-deficient pattern was marked by a 
high intake of sugary foods, chocolate, and desserts, with a notable 
deficiency in fiber-rich foods. LPA results further supported these 
findings, showing that individuals adhering to these DPs had a 1.3 to 
1.6 times greater risk of ARC compared to those following healthier, 
plant-based diets.

It is noteworthy that within the hyperglycemic dietary habit, the 
DP from G5.DP1 did not exhibit any association with ARC, despite 
having an explanatory power of 51.33% for the response variables and 
explaining more than 80% of total sugar intake. However, it only 
accounted for approximately 7% of energy density. This DP is 
characterized by a preference for fresh fruits, fruit juices, and other 
fructose-rich foods with fiber content, and relatively low intake of 
high-fat cheese. This may suggest that energy density remains a crucial 
factor in determining the dietary promotion of ARC. Nevertheless, 
this DP also showed no protective effect against ARC.

Mediation analysis identified several key metabolites, including 
urea, cystatin C, leucine, isoleucine, IGF-1, as significant mediators 
linking DPs to ARC risk. Elevated levels of urea and cystatin C, 
markers of early renal dysfunction, highlight that impaired kidney 
function can serve as an early indicator of cyst formation, particularly 
in response to unhealthy DPs (41, 42). Branched-chain amino acids, 
leucine and isoleucine, are potent activators of the mTORC1 pathway. 
These amino acids interact with cytosolic and lysosomal sensors, 
recruiting the mTOR complex to the lysosome, which subsequently 
activates downstream effectors such as p70S6K and 4E-BP1, 
promoting protein synthesis and cellular growth (43). This pathway 
plays a critical role in both normal growth and in pathological 

conditions like ARC, where aberrant activation of mTORC1 can lead 
to excessive cellular proliferation and impaired apoptosis, contributing 
to cyst expansion (44). Similarly, IGF-1, a potent growth factor that 
regulates cell proliferation and survival, activates mTORC1 via the 
PI3K/Akt signaling pathway (45). Chronic activation of mTORC1, 
particularly driven by elevated BCAAs or IGF-1 levels in response to 
high-fat, high-sugar diets, is a well-established mechanism underlying 
abnormal cell growth and organ hypertrophy (45–47). This 
dysregulation may represent a key driver in the progression of renal 
cysts. Kipp et al. (15) and Warner et al. (48) have demonstrated that 
caloric restriction can significantly inhibit cyst growth and slow 
disease progression by suppressing mTOR signaling, highlighting the 
therapeutic potential of dietary interventions to modulate this 
pathway. Their findings suggest that excessive mTORC1 activation—
whether via nutrient overload, elevated BCAAs, or IGF-1 can 
exacerbate metabolic stress, promoting cyst growth and 
kidney dysfunction.

In the analysis of the relationship between three relatively healthy 
dietary habits derived from 17 DPs and ARC, the results did not show 
complete consistency. Among the micronutrient-rich and fiber-rich 
dietary habits, G4.DP1 and G4.DP2 were derived from the same set 
of nutrient response variables (vitamin C, vitamin E, beta-carotene, 
selenium). However, G4.DP1 showed a weak negative correlation with 
ARC, while G4.DP2 displayed no significant correlation but had a 
positive effect direction. G4.DP1 had good explanatory power for all 
four response variables, whereas G4.DP2 lacked explanatory power 
for vitamin C and beta-carotene, which was reflected in a poorer 
preference for vegetables and fruits in its food group. Another pattern, 
G6.DP1, originated from response variables related to iron metabolism 

FIGURE 4

Mediation effects of NMR platform biomarkers on the impact of 12 DPs on ARC. (A) Cox regression analysis was performed on biomarkers and ARC, 
adjusting for all covariates, to identify 10 biomarkers with independent effects. (B) Line plot showing the magnitude of mediation effects of 10 
biomarkers on the 12 DPs. (C) Proportion of each mediation effect, with significance levels indicated by asterisks: mediation effect p < 0.005 as  
“***,” 0.005 < p < 0.01 as “**,” and 0.01 < p < 0.05 as “*”.

https://doi.org/10.3389/fnut.2025.1611656
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Xu et al.� 10.3389/fnut.2025.1611656

Frontiers in Nutrition 11 frontiersin.org

and ultimately reflected high intake of vitamin C and vegetables/fruits. 
The G9.DP1 pattern, characterized by lean proteins and high fiber, 
demonstrated a strong protective effect against ARC, which is a novel 

finding. These results were further supported by regression analyses 
of individual food groups. Unfortunately, the mineral-rich diet did not 
show a significant correlation with ARC in the overall population. 

FIGURE 5

Latent profile analysis of naturally occurring dietary preferences in the population and the differential impact on ARC across profiles. (A) Proportion of 
different genders within each dietary profile, represented by a stacked bar chart, along with the number of individuals who developed ARC (x100) and 
the total number of individuals in each profile. (B) Each dietary profile was used as the reference group, with the remaining profiles treated as multi-
categorical variables. Cox regression analysis was performed, adjusting for all previously mentioned confounding factors, to assess the association 
between dietary profiles and ARC. The horizontal axis represents the reference group. Significance levels were denoted as p < 0.1 by “*” and p < 0.05 by 
“***.” (C) Bidirectional bar charts depicting the top five and bottom five food groups for each dietary profile, highlighting the distinctive characteristics 
of each profile. Detailed descriptions can be found in the Supplementary material. (D) Loadings of the 50 food groups across each dietary profile.
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However, it is important to note that categorizing this type of diet 
broadly might be oversimplifying. Interestingly, in subgroup analyses 
by age, specifically among individuals aged 50–60, the three DPs 
under this dietary habit consistently showed a strong protective effect.

Existing studies have found that acidic urine is associated with 
impaired renal function and a higher prevalence of kidney cysts. In 
patients with a urine pH ≤5.0, the incidence of kidney cysts 
significantly increases (49, 50). Diets rich in vegetables and fruits, 
which are alkaline, can effectively reduce the renal acid load, 
potentially explaining their protective effect against ARC (51). This 
aligns with evidence-based nutritional care for patients with chronic 
kidney disease.

Our findings suggest that high-fiber and nutrient-rich diets have 
a protective effect against ARC, with hemoglobin concentration and 
red blood cell distribution width (RDW) potentially playing mediating 
roles. This relationship can be explained through the interaction of 
inflammation and oxidative stress, both of which are well-established 
contributors to cyst formation and progression. Chronic inflammation 
and oxidative stress induce damage to renal tubular epithelial cells, 
promoting cyst growth and fibrosis (52). DPs rich in fiber and 
minerals, known to reduce systemic inflammation, may mitigate these 
harmful processes by regulating gut microbiota and reducing 
pro-inflammatory cytokine production (52). Moreover, hemoglobin 
and RDW are markers of systemic health. Lower hemoglobin levels 
and elevated RDW have been associated with increased oxidative 
stress and chronic inflammation, which are risk factors for both 
kidney dysfunction and cyst development. Studies show that reducing 
RDW through dietary intervention could reduce the risk of kidney 
function decline, suggesting that modulating these blood markers 
through diet might explain part of the protective mechanism of high-
fiber diets (53).

The strength of this study lies in the large UKB cohort. 
Additionally, controlling for the PRS of ARC allows us to 
minimize the confounding influence of genetic factors. The 
mediation analysis using metabolomics data was particularly 
beneficial in exploring the potential mechanisms by which DPs 
influence ARC risk. Lastly, the CDPI framework, constructed 
through a combination of RRR and LPA, provides a more 
comprehensive and systematic reflection of participants’ DPs, 
further enhancing the robustness of the analysis.

This study has several limitations. Firstly, identifying and 
validating DPs from at least two 24-h online self-reported dietary 
assessments may be  subject to recall bias or misreporting. For 
instance, individuals with poorer overall health may report their 
dietary intake differently. Additionally, the identification of DPs relies 
on data from participants who are more willing to report their dietary 
intake, potentially introducing selection bias. We  attempted to 
mitigate the randomness and partial bias of DPs by analyzing dietary 
habits derived from DPs across multiple nutrient combinations. 
However, not all foods are captured by the questionnaire, which 
introduces unknown biases. Secondly, there is a potential delay in 
identifying ARC cases (i.e., kidney cysts may not be immediately 
recognized upon occurrence). Furthermore, due to the nature of 
UKB data, we could not distinguish between simple and complex 
kidney cysts, nor could we account for cysts associated with end-stage 
renal disease. Selection related to repeated dietary assessments. The 
requirement of ≥2 valid WebQ assessments likely enriched the 
analytic cohort for individuals with greater digital access, health 

consciousness, and socio-economic advantage. Despite multivariable 
adjustment (education, deprivation, lifestyle), residual selection bias 
may remain. Because such individuals tend to report healthier diets 
and behaviors, between-person exposure contrast is reduced, which 
could bias harmful-diet associations toward the null (i.e., 
underestimation). Thirdly, DPs cannot explain all the variability of 
nutrient response variables included in the RRR model, and any 
residual variability might be attributable to other nutrients potentially 
involved in disease pathways. Fourthly, while LPA can uncover 
naturally occurring DPs within the population, the complexity of 
human diets and the limited data resulted in up to eight profiles in 
the best-fitting model. This complexity poses challenges in identifying 
the unique dietary characteristics of each profile and complicates the 
interpretation of differences in ARC risk among profiles. Lastly, it is 
important to note that the UKB is a non-probability sample (i.e., 
participants must respond to invitations to be  included, and the 
sample is not entirely random). Most participants are White British 
and have a lower socioeconomic deprivation level than the UK 
average. Therefore, our findings may be  conservative and not 
fully generalizable.

Our study found that lipid-rich, calorically dense diets (high-
fat cheese, butter, pizza) and high-sugar, fiber-deficient diets 
(chocolate confectionery, sugary drinks) significantly increased 
ARC risk, while micronutrient-rich, low-lipid diets (vegetables, 
fresh fruit) and fiber-enriched diets (lean poultry, nuts, eggs) 
reduced it. Mineral-rich, moderate-fat diets showed no 
association. Branched-chain amino acids, IGF-1, and RBC 
distribution width played significant mediating roles in these 
dietary patterns’ associations with ARC risk.
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