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Analysis of flavor characteristics 
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Introduction: This study aimed to investigate the differences in flavor compounds 
between aged and fresh peanuts and their effects on peanut porridge aroma, 
taste, and volatile fingerprint profiles.
Methods: Gas chromatography–ion mobility spectrometry (GC-IMS), combined 
with electronic sensory technologies such as electronic tongue and electronic 
nose, was applied to analyze peanut porridge processed under different 
treatments. Partial least squares-discriminant analysis (PLS-DA) and principal 
component analysis (PCA) were used to identify characteristic volatiles and 
discriminate treatments.
Results: Electronic tongue and electronic nose analyses effectively distinguished 
peanut porridges based on flavor characteristics. A total of 47 volatile compounds 
were detected, including 10 alcohols, 10 esters, 6 ketones, 5 acids, 2 alkenes, 6 
aldehydes, and 8 other compounds. PLS-DA identified 16 characteristic volatiles 
(VIP > 1), such as 2-pentanone, ethyl hexanoate, 2-acetylfuran, butanal, pentyl 
acetate, and heptanal. PCA showed that two principal components accounted for 
66.7% of the total variance, enabling clear discrimination among treatments.
Discussion: The study systematically explored key differences in volatile 
compounds between aged and fresh peanuts and analyzed their impact on 
sensory attributes, particularly aroma and flavor perception. These findings 
enhance understanding of flavor formation mechanisms in peanut-based 
products and provide scientific evidence for flavor modulation, formulation 
optimization, product innovation, and quality control.
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1 Introduction

Peanut, also known as groundnut, ranks second in production among leguminous crops 
worldwide (1) and is often referred to as the “longevity nut” (2). China is the world’s largest 
producer of peanuts, and peanuts serve as a significant economic crop in the country. They 
are a crucial raw material for producing peanut oil, which leads in total production among 
China’s oil crops and is considered a high-quality edible oil (3). Peanuts possess high nutritional 
value, containing various essential amino acids, unsaturated fatty acids, crude fiber, and 
carotenoids (4). They are rich in quality proteins (5), including eight essential amino acids for 
humans, which are precursors to peanut flavor compounds (6). The peanut meal produced 
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after oil extraction contains abundant proteins (7), qualifying as high-
quality plant protein. Peanuts are also rich in polyphenols and 
flavonoids (8), earning them the reputation of “green milk” and “plant 
meat” (9). Additionally, peanuts have been associated with anti-aging, 
cognitive enhancement, and tumor prevention properties (10). Due 
to their nutritional value and unique aroma, peanuts are favored 
by consumers.

Peanuts can be  categorized into aged and fresh types. Fresh 
peanuts have a sweet and crisp texture with a fresh and natural aroma, 
retaining more of the original flavor of the raw material. They are 
suitable for foods emphasizing a refreshing taste, such as cold dishes, 
salad ingredients, peanut milk beverages, ready-to-eat fresh peanuts, 
and lightly seasoned snacks. Aged peanuts possess a complex and rich 
aroma with roasted, caramel, and nutty flavors, making them suitable 
for processing methods requiring deep flavor presentation, such as 
peanut butter, baked pastries, braised peanuts, peanut brittle, and 
peanut porridge.

Peanut porridge is a renowned snack in Hanzhong City, highly 
favored by locals. Unlike other regions where peanut porridge 
typically involves cooking whole peanut kernels, Hanzhong’s version 
involves blending peanuts into a slurry to make the porridge, hence 
also known as peanut slurry porridge or peanut paste porridge. This 
distinctive preparation method has made it a celebrated local 
delicacy, praised by visitors. Given peanuts’ rich nutritional profile 
and their moniker as the “artery cleaner” (10), peanut porridge offers 
a slightly sweet taste with a strong peanut aroma and soft, palatable 
rice, making it suitable for all ages. While there have been numerous 
studies on roasted peanuts (11), peanut butter (12), and peanut oil 
(13), quantitative analysis of volatile flavor components in peanut 
porridge remains scarce. However, research on the flavor components 
of peanut porridge remains limited, particularly with respect to the 
quantitative analysis of volatile compounds, which has not yet been 
systematically addressed. Conducting a comprehensive analysis of 
these components will help clarify the mechanisms by which different 
processing methods influence the flavor profile of peanut porridge, 
thereby providing a theoretical foundation for product 
standardization, industrial-scale production, and flavor 
quality optimization.

Electronic sensory analysis technology uses advanced instruments 
to simulate human sensory organs, with common techniques 
including computer vision, electronic nose, and electronic tongue. 
These technologies can capture extensive information describing the 
flavor profiles and taste components of products. Compared with 
traditional sensory analysis methods that rely on trained panels, 
electronic nose and electronic tongue systems offer rapid, objective, 
and reproducible detection of volatile flavor compounds by mimicking 
human olfactory and gustatory mechanisms, thereby reducing human 
error and enabling standardized evaluation of food flavor 
characteristics. Specifically, the electronic nose employs a sensor array 
to rapidly respond to volatile compounds, completing odor profile 
analysis within minutes. For example, in tea aroma assessment, the 
electronic nose not only analyzes aroma characteristics but also maps 
semantic information associated with variety and grade (14). Similarly, 
the electronic tongue simulates human taste perception and quantifies 
basic taste attributes such as sourness, sweetness, bitterness, saltiness, 
and umami. For instance, in differentiating edible fungi species, the 
electronic tongue successfully analyzed and identified umami-related 

compounds in 12 mushroom varieties, enabling accurate species 
discrimination (15).

During peanut processing, chemical reactions such as the 
Maillard reaction (16), protein denaturation (17), and lipid oxidation 
(18) may occur, leading to the generation of a wide range of volatile 
flavor compounds. Although quantitative analysis cannot directly 
prevent protein denaturation or lipid oxidation, monitoring changes 
in aroma compounds provides a sensitive indicator of the extent of 
these thermal reactions. Therefore, dynamic variations in aroma 
profiles can serve as critical references for assessing the intensity of 
thermal reactions and quality deterioration during processing, 
facilitating optimization of process parameters and stability control, 
which ultimately exert significant influence on the flavor quality of 
the final product. Currently, techniques such as gas chromatography–
olfactometry (GC-O), gas chromatography–mass spectrometry (GC–
MS), and GC-IMS are widely employed for the identification and 
quantification of volatile flavor compounds in food (19). Compared 
with conventional GC–MS, GC-IMS offers advantages such as simple 
operation, high sensitivity, and the ability to retain the original aroma 
of samples. It has been widely applied in studies related to shelf-life 
evaluation, volatile component analysis, geographical origin 
authentication, and quality assessment of various foods (20). Deng 
et al. (21), in a study combining GC-IMS and GC–MS for the volatile 
characterization of walnut oil extracted by aqueous enzymatic and 
refined processes, reported that GC-IMS exhibits higher sensitivity 
than GC–MS, enabling detection of small-molecule and 
low-concentration volatile compounds and thus expanding the 
detectable range of volatiles in samples. Consequently, GC-IMS has 
emerged as an advanced technique for detecting volatile flavor 
compounds in foods (19). This technology integrates the advantages 
of electronic sensory and chromatographic analysis: electronic 
sensory systems provide an overall flavor profile, while GC-IMS 
enables detailed identification of specific volatile compounds, thus 
allowing a comprehensive characterization of flavor attributes (22). 
The adoption of multi-technique analytical strategies not only 
enhances detection efficiency and accuracy but also offers distinct 
benefits such as shorter analysis time, elimination of sensory fatigue, 
rich information output, and strong fault tolerance, making it highly 
promising for flavor research and quality control in the food 
industry (23).

Given the advantages of GC-IMS—such as the absence of sample 
pretreatment, high sensitivity, and capability to detect low-abundance 
compounds—this study employed GC-IMS to investigate the volatile 
fingerprint characteristics of peanut porridges prepared under 
different processing conditions. PLS-DA was applied to establish a 
robust and predictive model, and characteristic volatile flavor 
compounds were screened based on VIP values. Combined with PCA 
radar charts, heatmaps, and other visualization tools, was performed 
using data from electronic sensory analysis and volatile compound 
profiling to differentiate samples prepared from various treatments. 
Particular emphasis was placed on comparing the major aroma 
differences between porridges made from aged and fresh peanuts. By 
quantitatively analyzing key volatile compounds, this study aims to 
provide a scientific basis for flavor optimization, process parameter 
adjustment, product development, and flavor consistency control in 
peanut porridge, thereby promoting the standardization and 
industrialization of this traditional product.
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2 Materials and methods

2.1 Materials and reagents

Aged peanuts and fresh peanuts (variety: Xujiao No. 4), along with 
polished rice, were purchased from the agricultural market on Lianhu 
Road, Hanzhong City, Shaanxi Province, China. All samples were 
vacuum-packed and stored at 4 °C prior to use.

2.2 Instruments and equipment

The instruments used in this study included: SuperTongue 
electronic tongue (ISENSO Group, France), SuperNose electronic 
nose (ISENSO Group, France), DigiEye color measurement system 
(VeriVide Ltd., UK), MJ-BL10S11 high-speed blender (Midea Co., 
Shunde, China), ZB-3005A moisture analyzer (Zhengruitai Electronic 
Technology Co., Jiangsu, China), and FlavourSpec gas 
chromatography–ion mobility spectrometer (GC-IMS; Dortmund 
Co., Germany).

2.3 Experimental methods

2.3.1 Peanut processing
For the aged peanut samples, appropriate amounts were cleaned 

to remove surface dust and impurities, soaked in water for 4 h, and 
then ground using a high-speed blender. The resulting slurry was 
mixed with a suitable amount of rice and boiled to prepare peanut 
porridge, with foam skimmed off during boiling.

For the fresh peanuts, the shells were removed, and defective or 
damaged kernels were discarded. The kernels were washed, blended 
into a slurry, mixed with rice, and boiled similarly. The detailed 
treatment groups were as follows:

2.3.1.1 Aged peanut groups
LXF: 80 g aged peanut slurry + 16 g rice + 560 mL purified water; 

boiled on an induction cooker with continuous stirring. LYJZ: 80 g 
aged peanut slurry + 560 mL purified water; boiled with stirring. LT: 
40 g soaked aged peanuts (after 4 h soak) + 600 mL purified water; 
boiled and stirred. LYJ: Raw aged peanut slurry.

2.3.1.2 Fresh peanut groups
XXF: 80 g fresh peanut slurry + 16 g rice + 560 mL purified water; 

boiled with stirring. XYJZ: 80 g fresh peanut slurry + 560 mL purified 
water; boiled and stirred. XT: 40 g fresh peanuts + 600 mL purified 
water; boiled and stirred. XYJ: Raw fresh peanut slurry.

In this study, only fresh peanuts were subjected to peeling 
treatment, primarily because fresh peanuts have a higher moisture 
content and a thinner seed coat, making peeling easier. If not peeled, 
bitter compounds may be released during cooking, adversely affecting 
the final product’s flavor (24). In contrast, aged peanuts, after long-
term storage, develop a harder and more tightly adhered seed coat, 
resulting in low peeling efficiency. Moreover, studies have shown that 
peeling has little effect on the final aroma composition of aged peanuts 
(25). Therefore, to better reflect practical processing scenarios while 
preserving the natural flavor evolution, aged peanuts were not peeled 
in this work.

2.3.2 Electronic tongue and electronic nose 
analysis

The prepared peanut porridge samples and raw slurries of fresh 
and aged peanuts were diluted at a ratio of 1:10 (w/v) with purified 
water. The diluted samples were then centrifuged, and the supernatant 
was collected for analysis. For electronic tongue (E-tongue) testing, 
25 mL of supernatant was transferred into a dedicated E-tongue beaker. 
For electronic nose (E-nose) analysis, 10 mL of supernatant was added 
to a standard E-nose reagent vial. In total, eight groups of samples were 
analyzed, each in triplicate. The taste and odor profiles were evaluated 
using the electronic tongue and nose, respectively. The sensor array 
used in the E-nose is listed in Table 1. The electronic nose used in this 
study is equipped with 14 types of sensors, covering a range of volatile 
organic compounds (VOCs) including alcohols, aldehydes, esters, 
ketones, alkanes, sulfur-containing compounds, and nitrogen-
containing heterocycles. These compounds are generated during 
peanut porridge processing through lipid oxidation, Maillard reactions, 
protein degradation, and other processes. The use of this sensor array 
enables broad-spectrum detection of complex aroma components, 
enhancing both the comprehensiveness and sensitivity of the analysis.

2.3.3 GC-IMS analysis
Volatile compounds in the samples were analyzed using a 

FlavourSpec® gas chromatography–ion mobility spectrometry 
(GC-IMS) instrument (G. A. S. mbH, Dortmund, Germany) with an 
automated headspace sampling system. The headspace sampling 
conditions were as follows: incubation temperature, 40 °C; incubation 
time, 10 min; agitation speed, 500 rpm; injection volume, 1 mL; 
injection needle temperature, 85 °C; splitless mode.

The IMS conditions were: analysis time, 30 min; IMS temperature, 
45 °C; drift gas, high-purity nitrogen (≥99.999%). The GC column flow 
rate was programmed as follows: initial flow rate of 2 mL/min for 2 min; 
ramped from 2 to 15 mL/min during 2–10 min; ramped from 15 to 
100 mL/min during 10–25 min; held at 100 mL/min from 25 to 30 min.

The chromatographic separation was performed on an MXT-5 
capillary column (15 m × 0.53 mm, 1 μm film thickness) at a constant 
column temperature of 60 °C. High-purity nitrogen (≥99.999%) was 
used as the carrier gas. Compound identification was carried out using 
VOCal software (G. A. S.) with integrated NIST and IMS databases. 
2-Methyl-3-heptanone was used as an internal standard.

2.4 Data processing

Topographic plots and gallery plots were generated using the 
instrument software LAV, Reporter, and Gallery Plot. Qualitative 
analysis of volatile compounds was performed based on the GC × IMS 
Library Search using the integrated NIST and IMS databases. The 
relative contents of volatile compounds were calculated based on 
normalized peak volumes.

Statistical analysis was conducted using SPSS 22.0, and significant 
differences were evaluated using Duncan’s multiple range test at a 
significance level of p < 0.05. Graphical visualization was performed 
using Origin 2021. Partial least squares-discriminant analysis (PLS-DA) 
was performed using the SIMCA 14.1 software and the online Metware 
Cloud platform. Volatile markers were screened based on variable 
importance in projection (VIP) values greater than 1, and differences 
in volatile profiles among different treatments were further analyzed.
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3 Results and analysis

3.1 Electronic tongue

PCA is a classical dimensionality reduction and pattern 
recognition method, particularly suitable for visualizing high-
dimensional, multivariate flavor data and conducting preliminary 
clustering analysis. PCA intuitively displays differences and 
distribution trends among samples, laying the foundation for 
subsequent discriminant analysis and flavor compound screening 
(26). In contrast, other methods such as hierarchical cluster analysis 
(HCA) or discriminant analysis (DA) are typically employed for later-
stage classification or supervised learning. Therefore, PCA is widely 
used in flavor profile identification (27).

The electronic tongue, which simulates human gustatory 
perception, was used to analyze the taste characteristics of the samples. 
This technique is fast and convenient and can serve as a substitute or 
supplement to traditional sensory evaluation. PCA was conducted on 
the data obtained by the electronic tongue. As shown in Figure 1, The 
contribution rates of the first and second principal components (PC1 
and PC2) were 50.7 and 31.5%, respectively, with a cumulative 
contribution rate of 82.2%. This indicates significant differences 
among the sample groups, with no overlap between them, 
demonstrating that the electronic tongue technology can effectively 
distinguish among the different samples.

3.2 Electronic nose

The odor profiles of the eight peanut samples were modeled using 
the edit function in the electronic nose software, which is typically 
used to edit or modify data, configurations, parameters, or settings for 
odor or gas sensor data analysis. PCA was then applied for further 
analysis, and the results are presented in Figure 2A. As shown in 

Figure  2A, the total variance explained by the first two principal 
components was 97.2%, with PC1 and PC2 contributing 87.1 and 
10.1%, respectively. PC1 exhibited strong discriminatory power, while 
PC2 contributed less to group separation. This suggests that electronic 
nose analysis combined with PCA can effectively differentiate peanuts 
processed in different ways based on their volatile compounds. 
Notably, the fresh peanut slurry sample (XYJ) was located far from the 
other groups, indicating that the electronic nose could clearly identify 
the differences in volatile compounds among samples.

As shown in Figure 2B, the taste profile of the fresh peanut slurry 
differed markedly from the other samples. According to the 
corresponding electronic nose sensor responses, the fresh peanut 
slurry contained lower levels of ozone-like compounds, suggesting a 
lower degree of oxidation. In contrast, the levels of alkanes, ketones, 
and alcohols were relatively higher. These variations in volatile organic 
compounds (VOCs) may be attributed to lipid degradation and the 
Maillard reaction, which are enhanced under moist heat conditions 
(28). This indicates that steaming has a pronounced effect on the flavor 
development of fresh peanuts.

3.3 Analysis of volatile flavor compounds in 
Peanut porridge by GC-IMS

3.3.1 3D topographic plots and comparative 
analysis of volatile compounds

To facilitate intuitive observation and comparison, a three-
dimensional (3D) topographic plot was employed to characterize the 
aroma compounds in peanut porridge. Figure 3A presents the 3D 
topographic plots of VOCs in eight differently treated groups. In the 
plot, the X-axis, Y-axis, and Z-axis represent the drift time of the 
identified ions, the retention time in gas chromatography, and the 
quantitative peak height, respectively. Each point in the plot represents 
a specific aroma compound, and the closer the color is to red, the 

TABLE 1  Electronic nose sensor table.

ID Sensor ID Target analytes

1 S1 Alkanes and smoke-related compounds, such as propane, natural gas, and smoke

2 S2 Alcohols, aldehydes, and short-chain alkanes, such as ethanol, smoke, isobutane, and formaldehyde

3 S3 Ozone (at low concentrations)

4 S4 Sulfides, such as hydrogen sulfide

5 S5 Nitrogen-containing compounds, such as nitrogen oxides

6 S6
Organic gases, ketones, alcohols, aldehydes, aromatic compounds, such as toluene, acetone, ethanol, hydrogen, and other organic 

vapors

7 S7 Ketones and alcohols, such as acetone, ethanol, propylene glycol, and organic solvents

8 S8 Short-chain alkanes, such as propane and liquefied petroleum gas

9 S9
Partial organic solvents, including alcohols, ethers, esters, ketones, aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic 

hydrocarbons, and halogenated hydrocarbons

10 S10 Hydrogen-containing gases, such as hydrogen

11 S11 Allyl sulfides, such as methyl allyl trisulfide

12 S12 Short-chain alkanes, such as liquefied gas and methane

13 S13 Short-chain alkanes, such as methane, natural gas, and biogas

14 S14 Flammable gases, such as combustible gases and smoke
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FIGURE 1

The PCA score plot of the electronic tongue.

FIGURE 2

(A) PCA score plot of electronic nose; (B) Radar plot of electronic nose.
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higher the signal intensity. As shown in the figure, with sample 
XYJZ-1 as the control, VOCs in peanut porridge could be effectively 
detected using GC-IMS. This analysis lays the foundation for 
qualitative identification, revealing notable differences in signal 
intensities among aroma compounds in different samples, thereby 
enabling GC-IMS to better differentiate compounds between samples.

To more clearly visualize the differences in volatile aroma 
compounds among samples, a difference spectrum of peanut porridge 
was constructed using GC-IMS. Based on the GC-IMS detection results, 
a differential model plot was generated. After normalizing the retention 
time and signal intensity of the aroma compounds, each point in the plot 
represents a compound. A white background indicates that the 
compound concentration is similar to that in the control peanut 
porridge, while blue regions indicate lower concentrations and red 
regions higher concentrations (29). As shown in Figure 3B, each distinct 
point represents a different VOC, which facilitates visual analysis. Using 
sample XYJZ-1 as the reference, the VOC compositions of other samples 
showed generally consistent differences, which agrees with the results of 
the 3D topographic plots.

This study demonstrates that the GC-IMS characteristic spectra of 
volatile compounds in peanut porridge varied under different treatments. 
These differences may result from Maillard reactions occurring in peanut 
kernels (30), which produce nitrogen- and oxygen-containing 
heterocyclic compounds such as pyrazines, pyrroles, pyridines, and 
furanones. These VOCs contribute significantly to the characteristic 
aroma of peanut porridge (31).

3.3.2 Quantitative analysis of volatile flavor 
compounds by GC-IMS

Based on the retention index data from the NIST database integrated 
within the FlavourSpec® software and the drift time information from 
the G. A. S. IMS library, a total of 47 VOCs were identified across samples 
processed for different cooking durations (see Table 2). Among them, 10 
were alcohols, 10 esters, 6 ketones, 5 acids, 2 alkenes, 6 aldehydes, and 8 
other types of compounds Based on the identified volatile compounds, 
it can be inferred that alcohols, aldehydes, ketones, alkenes, acids, and 
esters are the major contributors to the aroma of peanut porridge. The 
47 volatile compounds listed in the table were generally consistent with 
those reported by Sumin Ma et al. (32) in their review of production 
techniques, flavor compounds, formation mechanisms, and influencing 
factors of roasted peanut oil. Among these, furan compounds are key 
aroma contributors formed during the thermal processing of nuts and 

oilseeds; aldehydes, as lipid degradation products, have a significant 
impact on flavor and impart umami notes (11); acids primarily originate 
from the hydrolysis of peanut fatty acids, and their content and types are 
influenced by storage duration and conditions (33); hydrocarbons are 
generated through the cleavage of lipid peroxides (34), providing 
aromatic and slightly pungent notes; in addition, Maillard reactions 
occurring in peanuts may produce ketones, which are characterized by 
strong volatility and a rich nutty or roasted aroma (35). Alcohols and 
esters, as natural constituents of peanuts, were detected across all 
treatments, contributing to the unique aroma profile of peanut porridge. 
The characteristic aroma of peanuts is not dominated by a single 
compound or a few compounds but rather reflects the synergistic effect 
of multiple components (6). Based on the GC-IMS fingerprints and 
Table 2, the raw slurry of both fresh and aged peanuts exhibited a more 
diverse composition of flavor compounds compared to other groups. 
After steaming, although the concentration of certain volatile compounds 
decreased, the levels of key aroma-contributing substances increased, 
resulting in a more pronounced aroma in the final peanut porridge. 
Future work could focus on targeted control of processing parameters 
(e.g., temperature and time) to optimize the generation and retention of 
flavor compounds, thereby providing a scientific basis for improving the 
quality of peanut-based products.

3.3.3 Gallery plot fingerprint of volatile 
compounds in Peanut porridge

To clearly illustrate the differences in volatile organic compounds 
(VOCs) among peanuts under different treatments, the peak volumes 
of various compounds in the GC-IMS fingerprints were normalized 
to obtain the relative contents of volatile components in peanut 
porridge. As shown in Figure 4, the volatile components were broadly 
classified into seven categories: aldehydes, alcohols, ketones, esters, 
alkenes, ethers, and others. Aldehydes accounted for approximately 
14–22%, alcohols 8–29%, ketones 11–34%, esters 7–19%, ethers 
15–20%, alkenes 1–30%, and others 16–21%. Additionally, the 
contents of these compounds varied with processing time. For 
example, in the LT group, alkenes and others reached 30 and 17%, 
respectively, whereas in other groups they remained between 1 and 
6% and about 1%. The variation trends of esters were similar to those 
of alkanes. Acid compounds exhibited relatively stable contents with 
minor fluctuations. Ketones decreased significantly to 11% in the LT 
group, whereas in other groups their levels fluctuated between 20 and 
34%. In the XYJ group, aldehydes were the lowest (14%), showing a 

FIGURE 3

(A) Three-dimensional GC-IMS topographic plot of volatile compounds among samples; (B) Difference plot.
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TABLE 2  Final volatile components identified in the porridge.

ID Category Compound name RI Rt [sec] Dt [a.u.] Relative abundance/%

XYJZ LXF LYJ LT XYJ XXF LYJZ XT

1

Alcohols

1-Heptanol 957 427.504 1.74837 0.89 ± 0.03 cd 0.94 ± 0.06 cd 0.49 ± 0.16de 0.19 ± 0.04e 1.16 ± 0.38bc 1.14 ± 0.26bc 1.69 ± 0.76b 3.02 ± 0.21a

2 Pentan-1-ol 774.4 234.151 1.25284 1.4 ± 0.07bc 1.67 ± 0.15b 0.11 ± 0.12e 4.4 ± 1.02a 1.06 ± 0.41bcd 1.5 ± 0.21bc 0.77 ± 0.25cde 0.35 ± 0.10de

3 Ethanol 500.3 96.176 1.13233 0.36 ± 0.11c 0.34 ± 0.08c 6.08 ± 0.39b 6.02 ± 0.15b 14.98 ± 2.51a 1.31 ± 1.52c 0.67 ± 0.52c 1.57 ± 0.76c

4 1-Octene-3-ol 1007.3 509.945 1.74469 0.08 ± 0.06c 0.12 ± 0.01c 0.8 ± 0.38b 2.11 ± 0.23a 1.13 ± 0.37b 0.21 ± 0.12c 0.07 ± 0.04c 0.03 ± 0.02c

5 n-Hexanol 893 336.177 1.99391 0.13 ± 0.03 cd 0.14 ± 0.02 cd 1.07 ± 0.17b 0.38 ± 0.08c 2.07 ± 0.3a 0.39 ± 0.23c 0.09 ± 0.02d 0.08 ± 0.02d

6 2-Methyl-1-propanol 626.3 149.064 1.37122 2.51 ± 0.12a 2.16 ± 0.24ab 1.42 ± 0.12ab 0.18 ± 0.04c 0.95 ± 0.58c 1.27 ± 0.69bc 1.36 ± 1.16abc 1.12 ± 1bc

7 3-Octen-1-ol, (Z)- 1041.8 592.986 1.74707 0.32 ± 0.04 cd 0.22 ± 0.04 cd 0.18 ± 0.02d 0.23 ± 0.04 cd 0.43 ± 0.12bc 0.45 ± 0.08bc 0.6 ± 0.33b 1.99 ± 0.07a

8 2-Ethyl-1-hexanol 1041.7 592.717 1.79216 0.4 ± 0.06c 0.27 ± 0.06c 0.25 ± 0.04c 0.21 ± 0.03c 0.47 ± 0.2c 0.67 ± 0.09bc 0.96 ± 0.56b 6.27 ± 0.41a

9 2-Methylbutan-1-ol 780 237.976 1.47799 1.32 ± 0.03c 1.29 ± 0.24c 2.31 ± 0.14b 1.52 ± 0.18bc 3.17 ± 1.12a 1.5 ± 0.27bc 1.53 ± 0.51bc 1.25 ± 0.17a

10 (E)-2-hexen-1-ol 851.9 299.913 1.51073 0.37 ± 0.04b 0.20 ± 0.03bc 2.7 ± 0.27a 0.27 ± 0.06bc 2.47 ± 0.26a 0.3 ± 0.06bc 0.13 ± 0.03bc 0.07 ± 0.00c

11

Aldehydes

Heptanal 919.6 374.144 1.32216 1.78 ± 0b 1.74 ± 0.16b 0.34 ± 0.13d 0.15 ± 0.07d 1.09 ± 0.07c 1.41 ± 0.56bc 3.16 ± 0.62a 2.66 ± 0.23a

12 Hexanal 826.6 277.792 1.26268 0.06 ± 0.02c 0.06 ± 0.03c 1.2 ± 0.02a 0.11 ± 0.05c 0.36 ± 0.23b 0.21 ± 0.23bc 0.08 ± 0.04c 0.19 ± 0.1bc

13 Pentanal 700.8 183.577 1.19529 4.39 ± 0.1b 4.61 ± 0.19b 0.01 ± 0.03d 11.9 ± 1.29a 0.01 ± 0.02d 3.68 ± 0.39bc 2.91 ± 0.91c 0.86 ± 0.11d

14 Butanal 582 130.451 1.13205 13.04 ± 0.68a 13.23 ± 0.25a 11.94 ± 0.72ab 0.21 ± 0.07d 3.55 ± 0.39c 12.14 ± 2.16ab 13.42 ± 1.71a 10.67 ± 1.24b

15 3-Methylbutanal 650.1 159.031 1.19826 0.45 ± 0.07d 0.66 ± 0.06d 7.52 ± 0.44a 1.4 ± 0.04 cd 5.68 ± 1.26b 1.14 ± 0.7 cd 0.88 ± 0.49d 2.34 ± 1.04c

16 (E)-2-pentenal 763.3 226.468 1.09155 0.25 ± 0.04b 0.18 ± 0.04b 0.48 ± 0.05b 0.64 ± 0.14b 2.81 ± 0.33a 0.36 ± 0.17b 0.48 ± 0.58b 0.17 ± 0.06b

17
Alkenes

?alpha?-Phellandrene 991.1 476.167 1.69309 1.08 ± 0.85c 0.39 ± 0.52c 0.19 ± 0.06c 28.38 ± 1.91a 0.4 ± 0.65c 0.25 ± 0.1c 0.38 ± 0.18c 4.77 ± 1.28b

18 Limonene 1,042 593.543 1.291 1.89 ± 0.16c 1.84 ± 0.07c 1.02 ± 0.07e 0.22 ± 0.06f 1.46 ± 0.26d 2.47 ± 0.17b 2.83 ± 0.19a 0.86 ± 0.35e

19

Esters

Acetic acid butyl ester 808.5 262.059 1.61277 0.44 ± 0.09ab 0.25 ± 0.05ab 0.01 ± 0.02b 0.13 ± 0.02ab 0.01 ± 0.01b 0.15 ± 0.07ab 1.02 ± 1.2a 0.52 ± 0.57ab

20 Acetic acid ethyl ester 608 141.356 1.07786 4.18 ± 0.28a 4.01 ± 0.85a 3.97 ± 0.62a 0.66 ± 0.02b 3.42 ± 0.43a 3.1 ± 1.27a 3.84 ± 2.39a 3.12 ± 1.51a

21 Amyl acetate 915.3 367.996 1.79546 1.17 ± 0.07 cd 1.06 ± 0.12 cd 0.47 ± 0.02d 0.24 ± 0.04d 0.94 ± 0.62 cd 1.77 ± 0.41bc 2.65 ± 1.21b 7.19 ± 0.36a

22 Butanoic acid methyl ester 737.9 209.034 1.1499 0.78 ± 0.05ab 0.58 ± 0.07bc 1.03 ± 0.07a 0.14 ± 0.01d 0.52 ± 0.44bc 0.4 ± 0.19 cd 0.55 ± 0.09bc 0.53 ± 0.03bc

23 Ethyl hexanoate 1001.8 496.573 1.33982 0.46 ± 0.01de 0.53 ± 0.02 cd 0.27 ± 0.01e 0.44 ± 0.11de 0.55 ± 0.21 cd 0.72 ± 0.09c 0.98 ± 0.28b 1.5 ± 0.08a

24 Ethyl propanoate 667.7 166.395 1.15137 1.15 ± 0.02ab 1.13 ± 0.15ab 0.73 ± 0.12bc 1.23 ± 0.07a 0.69 ± 0.1c 0.69 ± 0.2c 1.43 ± 0.58a 0.55 ± 0.11c

25 Methyl 2-methylbutanoate 786 242.386 1.18283 0.73 ± 0.03c 0.89 ± 0.05c 0.09 ± 0.01d 0.83 ± 0.16c 0.15 ± 0.04d 0.71 ± 0.14c 1.63 ± 0.27b 2.07 ± 0.21a

26 ethyl heptanoate 1088.5 705.42 1.40694 0.16 ± 0.04b 0.14 ± 0.01b 0.15 ± 0.03b 0.29 ± 0.09b 0.15 ± 0.01b 0.2 ± 0.02b 0.17 ± 0.04b 1.43 ± 0.57a

27 Acetic acid, 2-methylpropyl 

ester

773.2 233.288 1.60385 0.07 ± 0.02a 0.09 ± 0.01a 0.4 ± 0.03a 0.25 ± 0.08a 0.19 ± 0.02a 0.07 ± 0.02a 0.57 ± 0.91a 0.07 ± 0.01a

28 Butyl butanoate 1003.4 500.549 1.82189 0.13 ± 0.04c 0.11 ± 0.04c 0.12 ± 0.03c 0.57 ± 0.02b 0.15 ± 0.02c 0.18 ± 0.01c 0.23 ± 0.09c 2.2 ± 0.53a

(Continued)
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TABLE 2  (Continued)

ID Category Compound name RI Rt [sec] Dt [a.u.] Relative abundance/%

XYJZ LXF LYJ LT XYJ XXF LYJZ XT

29 Ketones 2-Hexanone 800.5 255.085 1.504 0.09 ± 0.04b 0.08 ± 0b 0.3 ± 0.16a 0.17 ± 0.04ab 0.03 ± 0.03b 0.06 ± 0.04b 0.2 ± 0.25ab 0.05 ± 0.02b

30 pentan-2-one 699.4 182.559 1.38172 2.24 ± 0.09a 2.22 ± 0.25a 1.17 ± 0.1b 0.62 ± 0.05c 0.5 ± 0.14 cd 0.79 ± 0.39c 0.8 ± 0.15c 0.2 ± 0.11d

31 2-Heptanone 884.1 327.924 1.63525 0.67 ± 0.05e 1.45 ± 0.3 cde 3.45 ± 0.15ab 4.25 ± 0.5a 2.2 ± 0.36 cd 2.49 ± 1.42bc 0.58 ± 0.47e 1.27 ± 0.15de

32 Furaneol 1107.6 751.387 1.19641 0.13 ± 0.01b 0.11 ± 0.01b 0.15 ± 0.02b 0.17 ± 0.02b 0.15 ± 0.05b 0.16 ± 0.03b 0.15 ± 0.07b 1.93 ± 0.69a

33 5-Methyl-3-heptanone 944.8 410.046 1.68568 21.38 ± 0.85abc 23.62 ± 1.19ab 24.17 ± 0.74a 3.75 ± 5.35e 19.7 ± 0.46bc 19.01 ± 1.12c 21.12 ± 1.66abc 12.11 ± 1.85e

34 1-Octen-3-one 996.3 483.57 1.27925 4.62 ± 0.16ab 4.54 ± 0.11ab 2.41 ± 0.06c 0.34 ± 0.28d 2.33 ± 0.51c 4.03 ± 0.59b 4.75 ± 0.37ab 5.09 ± 0.69a

35 Acids 2-Methylbutanoic acid 822.4 274.204 1.46881 0.08 ± 0.03a 0.06 ± 0.02a 0.08 ± 0.04a 0.52 ± 0.39a 0.09 ± 0.08a 0.09 ± 0.04a 0.47 ± 0.65a 0.29 ± 0.19a

36 Acetic acid 635.9 153.052 1.05458 0.7 ± 0.14a 0.58 ± 0.29ab 0.08 ± 0.08b 0.25 ± 0.11ab 0.38 ± 0.54ab 0.48 ± 0.24ab 0.29 ± 0.04ab 0.59 ± 0.46ab

37 Butanoic acid 795.1 250.359 1.40176 1.44 ± 0.09b 1.57 ± 0.03b 1.02 ± 0.08c 1.99 ± 0.22a 0.68 ± 0.19d 1.16 ± 0.04c 1.13 ± 0.13c 0.12 ± 0.02e

38 Formic acid 525.8 106.883 1.0423 5.47 ± 0.35ab 2.82 ± 0.37bc 1.00 ± 0.22c 3.06 ± 1.24bc 2.08 ± 1.57bc 8.55 ± 4.53a 2.25 ± 0.57bc 2.8 ± 0.67bc

39 Propanoic acid 681.6 172.232 1.08962 1.03 ± 0.05ab 1.2 ± 0.3a 0.33 ± 0.08d 0.41 ± 0.08d 0.39 ± 0.12d 0.45 ± 0.28 cd 0.78 ± 0.18bc 0.49 ± 0.23 cd

40 Others 2-Acetylfuran 916.2 369.283 1.45211 0.65 ± 0.12b 0.77 ± 0.08a 0.35 ± 0.04c 0.18 ± 0.03d 0.34 ± 0.03c 0.37 ± 0.05c 0.51 ± 0.06c 0.28 ± 0.02 cd

41 Heptane, 

2,2,4,6,6-pentamethyl-

1007.5 510.374 1.40348 0.37 ± 0.07c 0.56 ± 0.06c 0.68 ± 0.13bc 2.82 ± 0.72a 0.37 ± 0.1c 1.15 ± 0.2b 0.5 ± 0.04c 0.49 ± 0.03c

42 Hexamethylcyclotrisiloxane 802.4 256.757 1.45092 0.05 ± 0.01b 0.07 ± 0.02b 0.06 ± 0.01b 13.47 ± 1.63a 0.55 ± 0.19b 0.07 ± 0.04b 0.24 ± 0.28b 0.77 ± 0.46b

43 Octamethyltrisiloxane 852.2 300.14 1.55551 0.03 ± 0.01b 0.05 ± 0.01b 0.07 ± 0.02b 0.17 ± 0.04b 0.34 ± 0.26a 0.08 ± 0.06b 0.07 ± 0.01b 0.07 ± 0.02b

44 2-pentyl furan 997.7 486.738 1.25215 0.94 ± 0.22 cd 1 ± 0.23 cd 0.93 ± 0.3 cd 2.47 ± 0.16b 1.04 ± 0.27 cd 4.82 ± 1.66a 1.92 ± 0.81bc 0.17 ± 0.04d

45 Tert-butylmethylether 574 127.121 1.35573 19.12 ± 0.34ab 19.59 ± 0.62a 15.67 ± 0.35 cd 0.29 ± 0.07e 17.4 ± 0.77abc 16.64 ± 1.21bcd 18.37 ± 2.95ab 14.87 ± 1.80d

46 Hexanenitrile 891.3 334.235 1.56958 0.21 ± 0.01d 0.3 ± 0.06d 1.02 ± 0.05a 0.56 ± 0.05b 0.34 ± 0.15 cd 0.47 ± 0.18bc 0.23 ± 0.1d 0.29 ± 0.02d

47 Acetoin 746.9 215.226 1.03891 0.81 ± 0.09bcd 0.58 ± 0.04d 1.69 ± 0.10a 1.22 ± 0.49b 1.07 ± 0.41bc 0.73 ± 0.13 cd 0.58 ± 0.06d 0.66 ± 0.19 cd
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decrease followed by an increase across treatments, while acids reached 
the highest level (29%) with an opposite trend. Other compounds 
remained relatively stable without major fluctuations.

As shown in Figure 5, the clustered heatmap, with a color gradient 
from blue to red, accurately reflects the variation of each volatile 
compound from low to high levels, providing a clear visualization of 
differences among groups. Specifically, 1-pentanol, pentanal, 
hexamethylcyclotrisiloxane, p-mentha-1,5-diene, 
2,2,4,6,6-pentamethylheptane, butanoic acid, and 1-octen-3-ol exhibited 
the highest intensities in the LT group, indicating significantly higher 
contents compared with other treatments. In contrast, 1-heptanol, ethyl 
hexanoate, amyl acetate, cis-3-octen-1-ol, 2-ethylhexan-1-ol, furfuryl 
alcohol, ethyl heptanoate, butyl butanoate, and methyl 2-methylbutanoate 
were dominant in the XT group. In the LYJ group, acetoin, hexanenitrile, 
hexanal, 2-hexen-1-ol, 3-methylbutanal, and methyl butanoate were most 
abundant, whereas the XYJ group showed higher levels of ethanol, 
1-hexanol, trans-2-pentenal, and octamethyltrisiloxane. The LYJZ group 
exhibited high concentrations of heptanal, methyl 2-methylbutanoate, 
2-hexanone, isobutyl acetate, ethyl propanoate, butyl acetate, and 
2-methylbutanoic acid. These results indicate that clustered heatmaps 
effectively visualize VOC differences, and the distinct VOC profiles of 
porridge from different raw materials contribute to unique flavor 
signatures, providing valuable insights into the flavor formation 
mechanisms of peanut porridge.

Overall, Figures 4–6 reveal that sample XT was characterized by 
compounds such as 1-heptanol, ethyl heptanoate, furaneol, butyl 
butanoate, 2-ethyl-n-hexanol, 3-octen-1-ol, amyl acetate, and 1-octen-
3-ol, with flavor dominated by the synergistic effects of esters (fruity, 
sweet) and alcohols (grassy, mushroom-like), likely derived from lipid 
oxidation or thermal degradation of ester precursors in peanuts. Samples 
LYJ and XYJ shared eight key compounds, including isobutyl acetate 
(fruity), 3-methylbutanal (malty), octamethyltrisiloxane (siloxane), and 
2-heptanone (cheesy). Among them, LYJ exhibited higher intensities of 

butyl acetate (fruity) and 3-methylbutanal, resulting in stronger flavor 
intensity, while XYJ was distinguished by ethanol (alcoholic) and 
n-hexanol (grassy), conferring a fresher aroma profile. Sample LT was 
mainly characterized by acetoin (buttery) and aldehydes (pentanal, 
heptanal), combined with hexanenitrile (nutty bitterness) and 
2,2,4,6,6-pentamethylheptane (alkane), forming a flavor dominated by 
buttery, grassy, and fatty notes, with acetoin likely originating from 
Maillard reactions. In XYJZ and LXF samples, esters such as ethyl 
propanoate (pineapple-like), 2,3-pentanedione (creamy), and methyl 
butanoate (apple-like) predominated, likely produced through 
esterification, contributing to intense fruity and dairy aromas.

In general, fresh peanuts were dominated by hexanal, hydrocarbons, 
and low-molecular-weight alcohols, presenting a relatively simple aroma 
profile. Previous studies by Brown (30) and Koji (36) also identified 
hexanal as a major aroma compound in fresh peanuts. Fresh peanut 
porridge mainly contained aldehydes, hydrocarbons, and alcohols, with 
hexanal as a key aroma contributor. In contrast, aged peanuts exhibited 
reduced ester levels but significantly higher aldehydes (e.g., hexanal) and 
alcohols (e.g., pentan-1-ol), resulting in stronger yet more diffusive flavor, 
likely associated with lipid oxidation and enzymatic reactions during 
long-term storage. Aged peanut porridge was dominated by ketones, 
possibly formed through Maillard reactions and accumulation of lipid 
oxidation products, imparting roasted and nutty aromas. Mechanical 
grinding of aged peanuts enhanced the release of esters and alcohols, 
although the overall content of volatile compounds decreased, possibly 
due to thermal degradation or volatilization of heat-sensitive 
substances (37).

3.4 PLS-DA and model validation

PLS-DA score scatter plots were used to classify the VOCs in 
peanut porridge samples under different treatment conditions. By 

FIGURE 4

Relative content of volatile components.
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reducing the dimensionality of the data, it becomes possible to identify 
and predict complex patterns. A corresponding model was constructed 
by randomly changing the order of the classification variables.

As shown in Figure 7, the PLS-DA model yielded R2X = 0.83, 
R2Y = 0.948, and Q2 = 0.863. When both R2 and Q2 values fall 
within the range of 0.5 to 1.0, it indicates that the model has good 
generalization ability and explanatory power. The cumulative Q2 
(Q2 cum = 0.863) further suggests that the model exhibits strong 
predictive capability. Samples (n = 200) were rearranged 
sequentially, and statistical test values were recalculated to create 
an empirical distribution. Based on this, the model was 
constructed. Q2 represents cumulative cross-validation, with its 
value being directly proportional to the model’s predictive power. 
R2 indicates the cumulative variance, reflecting the amount of 
original data used to build the PLS-DA discriminant model, with 
higher values representing greater explanatory power. When fitting 
the PLS-DA model, R2Y = 0.948 and Q2 = 0.863, indicating a good 
model fit.

To further validate whether the model was overfitting, the 
categories of some samples were subject to 200 permutation tests. 
As shown in the right panel of Figure 8, the slopes of the R2 and 
Q2 regression lines are relatively steep. The R2 and Q2 values of 
the randomized experimental data (on the left) are lower than 
those of the original data (on the far right). Additionally, since 
the intercept of the Q2 regression line is negative, it can 
be  concluded that there is no overfitting in the PLS-DA 

FIGURE 6

Gallery fingerprint map of the volatile components of peanut 
porridge.

FIGURE 5

Heat map of volatile component clustering.

https://doi.org/10.3389/fnut.2025.1609333
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yuan et al.� 10.3389/fnut.2025.1609333

Frontiers in Nutrition 11 frontiersin.org

discriminant model. Therefore, the model is reliable for 
classifying and identifying the volatile components in peanut 
porridge under different treatments.

In Figure 9, PCA shows that PC1 accounts for 70.92%, and PC2 
accounts for 14.45%, with a total contribution of 85.37%, exceeding 
50%, which indicates a good separation effect. This suggests that the 

FIGURE 7

PLS-DA score plots.

FIGURE 8

Displacement retention.
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fresh peanut slurry significantly differs from the other seven treatment 
groups, while the fresh peanut soup and cooked old peanut slurry 
share similar chemical compositions. This result aligns with the 
electronic nose data.

In the PLS-DA model, the contribution of each variable to 
classification was quantified based on the VIP (Variable Importance 
in Projection) values. VOCs with VIP values greater than 1 were 
selected as potential characteristic flavor compounds (38). As shown 
in Figure 10, 16 differential VOCs with VIP > 1 were identified:2-
pentanone,ethyl hexanoate,2-acetylfuran,butanal, Amyl 
acetate,heptanal,1-heptanol,1-octen-3-one,1-octen-3-ol,2-methyl-1-
propanol, propionic acid, methyl isovalerate, ethanol, 2-ethyl-1-
hexanol, methyl butyrate, and(Z)-3-octen-1-ol.

These compounds were likely produced through Maillard 
reactions, lipid oxidation, and other processes (39), contributing to the 
unique flavor profile of peanut porridge. The method combining 
PLS-DA with VIP > 1 has also been successfully used to identify 
differential VOCs in various processed products, such as different 
citrus cultivars (40).

4 Discussion

This study systematically analyzed the effects of different 
processing methods on the composition and content of 47 VOCs in 
peanut porridge. The results revealed that processing methods 
significantly regulated the relative abundance of key flavor 
compounds such as alcohols, ketones, aldehydes, and esters, thereby 
imparting distinct aroma characteristics to the samples. Specifically, 
the XT (fresh peanut porridge) sample exhibited the highest content 
of alcohols, particularly 1-heptanol and 1-octen-3-ol, which 
contributed grassy and mushroom-like fresh notes. In contrast, the 

XYJ (fresh peanut slurry) sample showed a significant increase in 
ethanol content, serving as the primary source of alcoholic flavor. 
Aged peanut samples (LYJ, LYJZ) displayed higher levels of ketones, 
such as 2-pentanone and 1-octen-3-one, presenting rich nutty, 
caramel, and roasted aromas. Meanwhile, LXF and XYJZ samples 
were enriched with esters (e.g., butyl acetate and ethyl propionate), 
contributing pronounced fruity notes. Additionally, LT and LYJ 
samples contained higher levels of alkanes and siloxanes (e.g., 
pentamethylheptane and octamethyltrisiloxane), further enhancing 
their aroma complexity. These differences indicate that raw material 
sources and thermal processing conditions can reshape VOC 
profiles by modulating lipid oxidation, Maillard reactions, and 
esterification processes, ultimately influencing the sensory 
attributes of the product.

From a sensory perspective, VOCs are the core substances that 
construct the overall flavor perception of food, and their types and 
concentrations directly affect consumers’ perception of odor and 
taste quality. The study found that aldehydes such as hexanal and 
heptanal, with their grassy and nutty characteristics, are key 
contributors to “freshness” and “richness.” Alcohols like 1-octen-
3-ol and 2-ethylhexanol impart mushroom and grassy notes, 
enhancing the natural flavor expression of the product. Esters (e.g., 
amyl acetate and ethyl propionate) exhibit distinct fruity and 
creamy aromas, improving the smoothness and pleasantness of the 
taste. Ketones such as 2-pentanone and furanone present roasted 
and caramel notes, serving as major sources of flavor intensity in 
aged peanut porridge. Acids like butyric acid exhibit milky or 
yogurt-like characteristics, enhancing sensory richness and flavor 
balance. Given the high sensitivity of the human olfactory system 
to specific VOCs, even low-concentration compounds can 
significantly influence the overall aroma profile. Therefore, the 
differential VOCs among samples not only determine their flavor 

FIGURE 9

PCA score plots for all VOCs.
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expression but also largely affect sensory acceptability and perceived 
product quality. These results provide important insights into the 
mechanisms by which processing methods shape the flavor of 
peanut porridge, offering theoretical support for subsequent flavor 
optimization and standardization.

Furthermore, to ensure the validity and sensory 
representativeness of the flavor data obtained from electronic 
nose and GC-IMS techniques in this study, it is necessary to 
reference relevant research verifying their accuracy. Multiple 
studies have reported strong consistency between electronic 
nose/GC-IMS quantitative detection results and human sensory 
evaluations in terms of aroma characterization and sample 
classification. For example, Wang et al. (41) combined electronic 
nose and GC-IMS to analyze the aroma profiles of tea, 
demonstrating high agreement between principal component 
analysis results and sensory evaluations, confirming their 
synergistic effectiveness in aroma differentiation. Yang et al. (22) 
conducted a triple validation of GC-IMS, electronic tongue/nose 
data, and manual sensory assessments for various bean pastes, 
revealing strong correspondence between aroma principal 
components and sensory descriptors, further supporting the 
applicability of this combined approach in complex flavor 
systems. Additionally, Li et al. (42) compared electronic nose, 
HS-SPME-GC–MS, and sensory panel scores during shrimp 

paste fermentation, finding high consistency in the trends of key 
volatiles, confirming the accuracy and stability of electronic 
sensory techniques in studying dynamic flavor changes. In 
summary, these findings validate the reliability of electronic 
nose and GC-IMS in flavor identification and sample 
classification, further corroborating the scientific rigor of this 
study’s analytical results. The integration of electronic sensory 
devices and GC-IMS technology not only overcomes the 
subjective bias and poor repeatability of traditional sensory 
evaluations but also offers advantages such as high sensitivity, 
quantifiable data, and analytical efficiency, making it a crucial 
supplementary tool for food flavor research and quality control.

From a practical perspective, the findings of this study provide 
important guidance for quality control and product development of 
peanut-based foods. On one hand, the identified differential VOCs 
can serve as key flavor markers for raw material selection, process 
optimization, flavor monitoring, and product grading, enabling 
standardized and traceable management. On the other hand, a 
deeper understanding of how different processing methods 
influence flavor formation mechanisms can guide enterprises in 
optimizing formulations and innovating flavors for new products 
such as instant peanut porridge, peanut beverages, and plant-based 
functional foods, enhancing market competitiveness and 
consumer acceptance.

FIGURE 10

For VIP values.
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Moreover, while instrumental analysis provides high-
throughput, objective, and quantifiable data, it cannot fully replace 
human perception of aroma and flavor. To further confirm the 
contribution of identified VOCs to actual flavor perception, sensory 
validation methods are essential. For instance, GC-O can directly 
link specific compounds to their corresponding odor perceptions, 
identifying truly olfactorily active key substances. Sensory 
evaluation panels can provide human-centered feedback on flavor 
intensity, balance, and preference. Future research should integrate 
sensory validation with existing chemical analysis to bridge the gap 
between “chemical composition—sensory attributes—consumer 
preference,” thereby enhancing the explanatory power and 
application value of flavor research and supporting the high-quality, 
differentiated development of peanut-based foods.

Finally, it should be noted that this study focused on two key 
stages of peanut porridge processing—the raw slurry state before 
processing and the cooked final state after processing—without 
continuous sampling at intermediate time points during heating. 
Although we successfully revealed the effects of raw material types 
and thermal processing on volatile flavor composition, key flavor 
drivers that may transiently form or accumulate during dynamic 
heating or cooling processes could have been overlooked. This 
design limitation means the results are more suitable for evaluating 
flavor differences between pre- and post-processing endpoint 
samples rather than comprehensively reflecting the temporal 
evolution and mechanistic pathways of flavor formation. Future 
studies should adopt time-resolved sampling strategies, combining 
dynamic tracking and multi-time-point detection to systematically 
elucidate the evolution patterns and transformation pathways of 
flavor compounds during the entire heating process, thereby 
enriching the scientific understanding of flavor 
formation mechanisms.

5 Conclusion

In this study, GC-IMS technology, along with electronic tongue and 
electronic nose techniques, was employed in combination with 
chemometric methods such as PCA and PLS-DA to analyze the 
differences and variations in flavor compounds among differently 
processed peanut porridge samples. Aged peanut porridge exhibited a 
complex and intense aroma with roasted, caramel, and nutty 
characteristics, while fresh peanut porridge retained a fresher, more 
natural aroma, preserving the original flavor of the raw materials and 
offering a light and refreshing taste. Electronic tongue and electronic 
nose techniques effectively distinguished peanut porridge samples 
subjected to different treatments. Using GC-IMS, 47 VOCs were 
identified, and 16 differential volatile flavor compounds were screened 
based on VIP > 1, primarily consisting of ketones, aldehydes, and 
alcohols. The combined application of electronic tongue, electronic 
nose, and GC-IMS offers rapid, sensitive, and comprehensive 
advantages, making it highly valuable for flavor analysis, process 
optimization, and quality control in food science. The case study of 
peanut porridge demonstrates that this integrated approach can 
precisely reveal the influence of raw materials and processing on flavor, 
providing scientific support for the modern production of traditional 
foods. The relative content of various volatile compounds exhibited 
dynamic changes depending on the processing method, likely due to 

factors such as Maillard reactions, lipid oxidation, or thermal 
degradation. Based on PLS-DA analysis, VIP values were used to 
identify the differential volatile compounds in peanut porridge. PCA 
results showed that the cumulative contribution rate of the first two 
principal components reached 66.7%, indicating that these characteristic 
volatile components effectively differentiated the peanut porridge 
samples. Comprehensively characterizing the differences in volatile 
compounds among peanut porridge samples processed under different 
conditions helps clarify the impact of various treatments on the final 
flavor profile, providing data support for quality control and process 
optimization. This study offers a theoretical basis for the targeted flavor 
improvement and standardized processing of peanut-based products. 
However, further validation through GC-O or sensory omics is needed 
to assess compound thresholds and their synergistic effects.
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