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African walnut (Plukenetia
conophora) oil improves glucose
uptake and metabolic activities in
erythrocytes
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Sciences, Central University of Technology, Bloemfontein, South Africa

Background: African walnut (Plukenetia conophora) oil (AWO) has been
employed in the management of glucose dysmetabolic-mediated ailments, with
emerging evidence suggesting thatits modulatory effects on erythrocyte glucose
dysmetabolism may mitigate dysfunctions implicated in the pathophysiology of
metabolic diseases.

Objective: The present study investigated the effect of AWO on glucose uptake
and its effect on glucose metabolism, purinergic and antioxidant activities and
surface morphology in isolated rats’ erythrocytes ex vivo.

Methods: Isolated erythrocytes were incubated with AWO (30-240 pg/mL) and
glucose (11.1 mM) for 2 h at 37°C. Negative control consisted of erythrocytes
incubated with glucose only, while normal control consisted of erythrocytes
not incubated with AWO and/or glucose. Metformin served as the standard
hypoglycemic drug.

Results and conclusion: Incubation with AWO led to significant increase in
erythrocyte glucose uptake, with concomitant suppression in superoxide
dismutase, adenosine triphosphatase, ecto-nucleoside triphosphate
diphosphohydrolase, glucose 6-phosphatse and fructose-1,6-bisphosphatase
activities and iron level, while concomitantly enhancing glutathione and
magnesium levels. Furthermore, the surface morphology of erythrocytes was
improved following incubation with AWO. Molecular docking analysis revealed
strong molecular interactions between AWO's phytoconstituents (linolenic
acid and linoleic acid) and hemoglobin. Molecular dynamics simulation further
revealed strong protein-ligand relationships between hemoglobin the oil's
constituents as revealed by root mean square deviation, root mean square
fluctuation, solvent accessible surface area, and radius of gyration values,
with hydrogen, hydrophobic, ionic bonds and water bridges contributing to
the stability of the protein-ligand complex. These results suggest the ability of
AWO to improve erythrocyte glucose metabolism and morphology, mitigate
oxidative stress, and may be of translational relevance in managing erythrocytes’
dysfunction in metabolic diseases.

KEYWORDS

African walnut, erythrocytes, glucose metabolism, oil, oxidative stress

01 frontiersin.org


https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1607386&domain=pdf&date_stamp=2025-07-09
https://www.frontiersin.org/articles/10.3389/fnut.2025.1607386/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1607386/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1607386/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1607386/full
mailto:loreks@yahoo.co.uk
https://doi.org/10.3389/fnut.2025.1607386
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1607386

Erukainure and Chukwuma

1 Introduction

Erythrocytes are also known as red blood cells, and are blood
components involved in the binding, transportation and release of
oxygen (O,) and carbon dioxide (CO,). These roles have been
attributed to their flexibility which allows them to move freely through
capillaries and the presence of the main oxygen-carrying protein,
hemoglobin (1, 2). The morphology of erythrocytes also plays a major
role in their survival and function, as alteration its normal
physiological biconcave discoid shape has been implicated in the
pathophysiology of several diseases including diabetes, and sickle cell
disease (1, 3, 4). Erythrocytes depend on glucose as their primary
source of energy, which is anaerobically metabolized via the glycolytic
pathway to generate ATP (5). Erythrocyte glucose uptake and
metabolism are important for their function and survival, and
disturbances have been implicated in alterations of their morphology,
O, transportation and half-life (3, 6). These alterations affect the
formation of clots, capillary functions and blood flow leading to an
elevated risk of thrombotic episodes or vascular problems (7, 8).
Oxidative stress arising from increased generation of reactive oxygen
species (ROS) and free radicals, and impaired antioxidant defense
system, is among the pathophysiology of altered erythrocyte glucose
metabolism (6, 9). Targeting erythrocyte glucose uptake and
metabolism may present a therapeutic strategy in managing
erythrocyte dysfunctions in diseases such as diabetes where it has
been implicated in its complications (3, 8).

African walnuts (Plukenetia conophora) are underutilized nuts
indigenous to tropical western and central Africa, and belong to the
Euphorbiaceae family (10). They have been reported for their
nutritional and health benefits with emphasis on their high oil
content (11). African walnut oil (AWO) has been reported for its
antioxidant properties which is demonstrated by its ability to
improve superoxide dismutase (SOD) and catalase activities, while
maintaining hepatic morphology in sodium arsenate induced
oxidative hepatic injury (12). The oil decreased serum levels of
LDL-cholesterol, triglyceride and cholesterol, while modulating the
hepatic biomarkers, alkaline phosphatase (ALP), aspartate
aminotransferase (AST) and alanine aminotransferase (ALT) in
normal male albino rats and individuals with type 2 diabetes (13,
14). The oil also suppressed fasting blood glucose level in individuals
with type 2 diabetes (14). Recently, we demonstrated the ability of
AWO to promote glucose uptake and improve carbohydrate and
energy metabolism as well as other biological activities linked to
male fertility in testicular tissues (15). These biological activities of
AWO have been attributed to its phytochemical constituents which
include linoleic acid (39.0%), linolenic acid (42.89%),
9-hexadecenoic acid (01.1%), oleic acid (0.27%), oleic anhydride
(3.75%), eicosanoic acid (4.1%), cis-5-dodecenoic acid (0.14%),
octadecanoic acid (11.63%) and 2-myristynoic acid (0.13%)
(11,15).

Although the ability of AWO to stimulate glucose uptake, and
modulate carbohydrate metabolism and antioxidant activity have been
demonstrated in testicular tissues (15), there is still a dearth on its
effect on erythrocyte glucose uptake and metabolism. Thus, the
present study was carried out to determine the effect of AWO on
erythrocyte glucose metabolism by investigating its ability to promote
glucose uptake, glucogenic, purinergic and antioxidant activities in
isolated rats’ erythrocytes ex vivo.
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2 Materials and methods
2.1 Plant material

Fresh African walnut fruits were bought from a local fruit seller
in Ore, Ondo State, Nigeria. The fruits were rinsed and their seeds,
dehulled. The seeds were airdried, blended and then extracted with
hexane. The AWO was obtained by concentrating the hexane extract
in a fume hood. The recovered oil was stored in amber glass vials at
ambient temperature until further analyses.

2.2 Fatty acid profile of African walnut oil

The fatty acid constituents of AWO have been previously reported
following GC-MS analysis (15). Linoleic acid and linolenic acid
(Figure 1) were identified as the predominant fatty acids as they
accounted for 39.03 and 42.89% of the total fatty acids, respectively (15).

2.3 Animals for ex vivo studies

Five male Wister albino rats, weighing between 180 and 250
grams, were procured and kept at the animal house facility located
within the Department of Biochemistry at the College of Medicine,
University of Lagos, Nigeria. The animals were humanely sacrificed by
euthanizing with halothane following an overnight period of fasting.
The research was conducted in accordance with the authorized
protocol, CMUL/REC/00314.

2.4 Extraction of erythrocytes

Blood (8-10 mL) was collected via cardiac puncture into EDTA
tubes and centrifuged 10,000 rpm for 10 min at 4°C. The supernatant
was discarded and phosphate-buffered saline (PBS) was added to the
tubes and centrifuged at 10,000 rpm for 10 min at 4°C to wash the
erythrocytes. This was repeated thrice. PBS was added to the
erythrocytes and used immediately for glucose uptake study.

2.5 Glucose uptake in isolated erythrocytes

A previously described method with slight modifications was used
in determining glucose uptake (16). Briefly, 0.5 mL of the freshly

/\/\/R/R/\/\/\)J\OH

Linoleic acid

OH

Linolenic acid

FIGURE 1
GC-MS identified linoleic acid and linolenic acid in African walnut oil.
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harvested erythrocytes was mixed with 7.5 mL with Krebs buffer
containing 11.1 mM glucose and different concentrations of AWO
(30-240 pg/mL) and incubated for 2 h under the conditions: 95%
oxygen and 5% CO,, at 37°C. Normal control consisted of reaction
mixture incubated without AWO, while metformin served as the
standard drug. Glucose concentrations of aliquots (2 mL) collected
from the reaction mixtures before and after the incubation were
measured with a glucose (GO) Assay Kit (Merck, Johannesburg,
South Africa) according to the manufacturer’s manual. Glucose uptake
was calculated using the formula:

Glucose uptake per volume of
GC1-GC2

Volume of erythrocytes (mL)

erythrocytes =

where GC1 and GC2 represent glucose concentrations (mg/dL)
before and after incubation, respectively. The glucose concentration in
mg/dL was converted to mM by dividing with 18. Glucose uptake was
recorded as change in glucose concentration (mM) per mL
of erythrocytes.

After glucose uptake assay, the reaction mixture was centrifuged at
10,000 rpm for 10 min at 4°C. The supernatant was discarded and the
erythrocytes was resuspended in equal volumes in Eppendorf tubes.
About 100 pL of the erythrocytes were freeze-dried and used for
electron microscopy analysis (17). About 300 pL of the erythrocytes was
mixed with 3,000 mL of PBS (containing 0.5% Triton X-100) and
subjected lysis. The lysed cells were centrifuged at 10,000 rpm for
10 min at 4°C. The supernatants were collected into 2 mL Eppendorf
tubes and stored at —20°C for further biochemical analyses.

2.6 Glucogenic enzymes activities

The erythrocytes were assayed for glucogenic enzymes activities
which covers fructose-1,6-bisphosphatase and glucose 6-phosphatase
activities using previously described methods (18, 19).

2.6.1 Fructose-1,6-bisphosphatase activity

Briefly, 100 pL of the supernatant was incubated with 100 pL of
0.05 M fructose, 1,200 pL of 0.1 M Tris-HCl buffer (pH 7.0), 250 pL
0.1 M MgCl,, 100 pL 0.1 M KCl, and 250 pL 1 mM EDTA at 37°C for
15 min. The reaction was stopped by adding 10% TCA to the reaction
mixture and further centrifuged at 3,000 rpm for 10 min (4°C). One
hundred microliters of the supernatant was transferred into a 96-well
plate. About 50 pL of freshly prepared 9% ascorbic acid and 1.25%
ammonium molybdate were then added to the reaction mixture and
allowed to stand for 20 min at ambient temperature. Absorbance was
read at 680 nm using a microplate reader (SpectraMax M2 microplate
reader, Molecular Devices, San Jose, CA, United States). The enzyme
activity was extrapolated from an inorganic phosphate (Pi) standard
graph generated from sodium phosphate salt (Sigma-Aldrich,
Johannesburg, South Africa).

2.6.2 Glucose 6-phosphatase activity

Briefly, 200 pL of the supernatant was incubated with 100 pL of
0.25 M glucose 6-phosphatase, 200 pL of 5 mM KCl, 1,300 pL of 0.1 M
Tris—HCI buffer at 37°C in a shaker for 30 min. The reaction was
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stopped by adding 1 mL of distilled water and 1.25% ammonium
molybdate to the reaction mixture. One milliliter of freshly prepared
9% ascorbate was added to the reaction mixture and allowed to stand
for 30 min. Absorbance was read at 660 nm using a microplate reader
(SpectraMax M2 microplate reader, Molecular Devices, San Jose, CA,
United States). The enzyme activity was extrapolated from an inorganic
phosphate (Pi) standard graph generated from sodium phosphate salt.

2.7 Determination of oxidative stress
biomarkers

The erythrocytes were assayed for oxidative stress levels by
determining the reduced glutathione (GSH) level and superoxide
dismutase (SOD) activities using previously described methods (20, 21).

2.7.1 Reduced glutathione level

Briefly, 200 pL of the supernatant was deproteinized with 10%
TCA and centrifuged at 3,500 rpm for 5 min at ambient temperature.
One hundred microliters of the resulting supernatant was mixed with
25 pL of Ellman’s reagent in 96 well plate and allowed to stand for
5 min. Absorbance was read at 415 nm with a microplate reader
(SpectraMax M2 microplate reader, Molecular Devices, San Jose, CA,
United States), and GSH level was extrapolated from a GSH
standard curve.

2.7.2 Superoxide dismutase enzyme activity

Fifteen microliters of the supernatant was mixed with 170 pL of
0.1 mM diethylenetriaminepentaacetic acid (DETAPAC) in a 96-well
plate. Fifteen microliters of 1.6 mM 6-hydroxydopamine (6-HD) was
then added to the mixture. Absorbance was read at 492 nm
wavelength for 3 min at 1 min interval with a microplate reader as
mentioned previously.

2.8 Determination of nucleotide
metabolism

The erythrocytes were assayed for nucleotide metabolism by
determining the adenosine triphosphatase (ATPase) and ecto-
nucleoside triphosphate diphosphohydrolase (E-NTPDase) activities
according to previously described methods (22, 23).

2.8.1 ATPase activity

Briefly, 200 pL of the supernatant was incubated with 200 pL of
5 mM KCl, 1,300 pL of 0.1 M Tris-HCI buffer, and 40 pL of 50 mM
ATP for 30 min at 37°C in a shaker. One milliliter of distilled water
and ammonium molybdate were added to the reaction mixture to
stop the reaction. 10% TCA was added to the mixture and allowed to
stand on ice for 10 min. Absorbance was read at 660 nm using a
microplate reader as mentioned previously. The enzyme activity was
extrapolated from an inorganic phosphate (Pi) standard graph
generated from sodium phosphate salt.

2.8.2 E-NTPDase activity

Briefly, 20 pL of supernatant was incubated with 200 pL of the
reaction buffer (1.5 mM CaCl,, 5 mM KCI, 0.1 mM EDTA, 10 mM
glucose, 225 mM sucrose and 45 mM Tris-HCI) at 37°C for 10 min.
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Fifteen microliters of 50 mM ATP was added to the reaction mixture
and further incubated in a shaker for 20 min at 37°C. The reaction was
stopped by with 200 pL of 10% TCA. Two hundred microliters of
1.25% ammonium molybdate and freshly prepared 9% ascorbic acid
was then added to the reaction mixture. The reaction mixture was
allowed to stand on ice for 10 min and absorbance was measured at
600 nm with a microplate reader as mentioned previously. The enzyme
activity was extrapolated from an inorganic phosphate (Pi) standard
graph generated from sodium phosphate salt.

2.9 Electron microscopic analysis

2.9.1 Surface morphology

The surface morphology of the erythrocytes was determined by
scanning electron microscopy (SEM) analyses. Briefly, about 0.1 g of
the freeze-dried samples were placed on the adhesive side of a tape on
a stub and gold coated. Images were observed and taken at an
accelerating voltage of 20-25 kV with a SEM (Zeiss Ultra Plus) (24).

2.9.2 Energy dispersive X-ray microanalysis

The erythrocytes levels of iron (Fe) and magnesium (Mg) were
determined via energy dispersive X-ray (EDX) microanalysis using a
SEM (Zeiss Ultra Plus) equipped with an Oxford Instruments X-Max
80 mm?2 Solid State EDX detector (24).

2.10 Computational studies

To understand the molecular interactions and the ligand-protein
relationship of AWO and erythrocytes, its main constituents were
subjected to molecular docking and molecular dynamics simulation
with hemoglobin.

2.10.1 Protein target selection and preparation

The one-dimensional structures of the protein receptors for
hemoglobin was retrieved from the Protein Data Bank (PDB)' using
the PDB ID 4HHB. Discovery Studio 2021 was utilized in preparing
and refining the protein for docking.> The protein was further
converted into nascent receptors by removing the co-crystallized
ligand and excess water molecules, which was then followed by the
addition of hydrogen and charges.

2.10.2 Molecular docking

The GC-MS identified major compounds (linoleic acid and
linolenic acid) (Figure 1) were subjected to molecular docking with
4HHB. The compounds were prepared with MarvinSketch 6.2.1, 2014.

Molegro Molecular Viewer (MMV) and Chem-Axon® were
utilized in verifying the accurate representation of the hybridization
state and proper angles display of the compounds (25). OPLS4 force
field was utilized in the docking using the Schrodinger suite (version
2023-2). The ligand-protein complex was then analyzed and
virtualized with BIOVIA Discovery Studio Visualizer and UCSE.

1 www.pdb.org/pdb
2 https://discover.3ds.com/discovery-studio-visualizer-download

3 http://www.chemaxon.com
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2.10.3 Molecular dynamic simulation

The Desmond module of Schrodinger 2023-2 was used to
conduct molecular dynamics simulation (MDS) analysis. The
purpose of the MDS was to assess the stability and estimate the
dynamic behavior of each complex of 4HHB and the two ligands
(linoleic acid and linolenic acid). Briefly, top-scoring docked poses
of 4HHB and ligands were prepared for MDS by placing them in a
single-point charge (SPC) explicit orthorhombic box with a buffer
distance of 10 A. The system was solvated with a transferable
intermolecular potential 3P (TIP3P) water model and neutralized
by adding 0.15M NaCl and Na*/ CI~ ions. The long-range
electrostatic interactions were calculated with the particle-mesh
Ewald method. Short-range van der Waals and Coulomb
interactions were cut off at a 9.0 A radius. OPLS-2005 forcefield
(2023) parameters was utilized in minimizing the solvated system
and this was followed by relaxation (71). The system was stimulated
with the Berendsen NVT ensemble by maintaining pressure
(p = 1.01325 bar) and temperature (T = 300 K) using Nosé-Hoover
chain thermostat and Martyna-Tobias-Klein barostat methods,
respectively (72). Following the simulation process, the NPT
ensemble was initiated with a production run lasting 100 ns. The
Centre for High Performance (CHPC, Cape Town) was used in
performing MDS workflow remotely.

2.10.4 Post-molecular dynamics simulation
analysis

As the trajectories progressed step by step, measurements were
taken every 50 ps. The resulting trajectories which cover for protein-
stability (RMSD), flexibility (RMSF), radius of gyration (RoG), and
solvent-accessible surface area (SASA), were analyzed with an AMBER
20 integrated CPPTRA]J module (26).

2.10.5 Binding free energy analysis

Molecular mechanics in conjunction with the generalized Born
surface area (MM-GBSA) approach were used in determining the
binding free energies of the complexes. The binding free energy
(AGying) of MM-GBSA (kcal/mol) was calculated by summing the
energy components, columbic, hydrogen bond, van der Waals, self-
contact, lipophilic, and solvation of ligand and protein
(Equation 1).

AGpind =Gmm + Gsolv —Gsa (1)

where AGy;,q = binding free energy, AGyy, = difference between
the free energies of ligand-protein complexes and the total energies of
protein and ligand in isolated form, AGg,, = difference in the Gs,
solvation energies of the ligand-receptor complex and the sum of the
solvation energies of the receptor and the ligand in the unbound state,
AGg, = difference in the surface area energies for the protein and
the ligand.

2.11 Statistical analysis

All biological analyses were carried out in triplicates. Data were
analyzed by one-way ANOVA and presented as mean + SD, with
significant difference set at p < 0.05 using SPSS version 27 (IBM Corp.,
Armonk, NY, United States).
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3 Results and discussion

Glucose plays an important role in the function and survival of
erythrocytes and disturbances in its metabolism has been implicated
in alteration of its morphology, function and shelf-life (5). These
alterations have been linked to several complications including
stroke, cardiomyopathy, hypertension and atherosclerosis in diabetes
and other metabolic diseases (2, 27, 28). African walnut has been
employed in the management of metabolic dysfunctions (14). In the
present study, AWO was investigated for its effect on glucose uptake
activities  linked to

and metabolism, and biological

erythrocytes dysfunction.

3.1 Erythrocyte glucose uptake

The sole dependence of erythrocytes on glucose for energy needed
for its function and survival has been well documented (5, 29, 30).
Glucose uptake in erythrocytes is essential for its physiology and it is
facilitated by glucose transporter 1 (GLUT1) (1, 2). Its impairment has
been reported in individuals with diabetes (2, 31, 32). Improving
erythrocyte glucose uptake may be a therapeutic target in managing
complications linked to erythrocytes dysfunctions in diabetes and
other diseases. As shown in Figure 2, AWO significantly (p < 0.05)
stimulated erythrocytes glucose uptake dose-dependently, and
compared favorably with metformin at the highest dose (240 pg/mL).
This indicates the ability of AWO to improve erythrocyte glucose
uptake and correlates with our previous study on improved glucose
uptake by AWO in testicular glucose uptake (15).

3.2 Glucogenic enzyme activities

Following uptake into erythrocytes, glucose is anaerobically
metabolized to generate ATP for energy via the glycolytic pathway (5, 6).
However, alteration of this pathway characterized by glucose-metabolic
enzyme abnormalities has been reported in impaired erythrocyte

10.3389/fnut.2025.1607386

glucose uptake and transportation as seen in type 2 diabetes (T2D) (5,
30). This is depicted in the present study by the elevated activities of
fructose-1,6-bisphosphatase and glucose 6-phosphatase activities in
erythrocytes incubated in glucose only (Figure 3). These are key enzymes
in the glucogenesis and their elevation may indicate a compensatory
switch from glycolysis to glucogenesis to generate glucose for the
erythrocyte utilization for ATP generation (33). However, the present
study is ex vivo and thus, this hypothesis needs to be further investigated
as glucogenesis is yet to be reported in erythrocytes. The activities of
these enzymes were significantly suppressed following incubation with
AWO, indicating restoration of glycolysis in the erythrocytes.

3.3 Oxidative stress

Oxidative stress arising from ROS and free radicals have been
implicated in erythrocyte dysfunctions (8). Chronic exposure of
erythrocytes to high glucose coupled with poor glucose uptake and/
or utilization has been implicated in glucotoxicity of the erythrocytes
as seen in diabetes (34, 35). Glucotoxicity is characterized by a cascade
of biochemical events including generation of ROS, free radicals and
suppression of the erythrocytes” antioxidant defense system (35). In
the present study, exposure of erythrocytes to glucose only, led to
significant (p < 0.05) elevated SOD activity and suppressed GSH level
as shown in Figures 4A,B. These alterations depict a compromise in
the erythrocytes” antioxidant defense system and has been reported
in diabetics (36-38). The elevated SOD activity indicates high cellular
levels of hydrogen peroxide (H,0,) generated from the enzyme-
catalyzed dismutation of superoxide radicals (O,~) which might have
been generated from the enolization of glucose. The presence of H,O,
sets up a Fenton reaction where H,O, react with hemoglobin to form
ferryl hemoglobin (ferrylHb) and oxoferrylhemoglobin (oxoferrylHb)
(39). These transient radicals, ferrylHb and oxoferrylHb, have been
implicated in the pathogenesis and progression of oxidative stress,
leading to cellular damage (40, 41). The low GSH level may
be attributed to impaired glucose availability for the GSH generation
via the pentose phosphate pathway (PPP) (9). The SOD activity and
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GSH levels were significantly (p < 0.05) reversed in erythrocytes
incubated with AWO. These reversions indicate an improvement in
the erythrocyte antioxidant defense system and corroborates with
previous studies on the ability of the oil to improve antioxidant
biomarkers (15). These antioxidant activities may be attributed to the
high contents of linolenic and linoleic acids of AWO, which have been
reported for their potent antioxidant activities (42, 43).

3.4 Purinergic enzyme activities

Purinergic enzyme catalyzes nucleotide metabolism leading to the
hydrolysis of ATP to adenosine, which have been implicated in
inflammation and immunomodulation (44). Adenosine is maintained at
low levels under normal physiology. However, its high cellular levels have
been reported in hypoxia and energy depletion as well as diseases such
as sickle cell anemia, where they contribute to disease progression (45).
As shown in Figures 5A,B, incubation of erythrocytes with glucose only,
significantly (p < 0.05) elevated the activities of ATPase and ENTPDase.
Elevation of these enzymes have been reported in glucotoxicity (15, 17,
46). These elevated activities indicate increased cellular adenosine level
and reduced ATP levels, which may be a compensatory mechanism for
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depleted energy. Incubation with AWO, led to significant depletion in
erythrocytes levels of ATPase and ENTPDase, thus, suggesting improved
ATP levels and decreased adenosine levels.

3.5 Surface morphology

Alterations in erythrocytes’ morphology have been implicated
in their dysfunction and survival. These morphological alterations
have been reported in erythrocytes with impaired glucose uptake
and metabolism as seen in diseases such as diabetes and sickle cell
disease (1, 3, 4), where the normal physiological biconcave discoid
shape is altered. As shown in Figure 6B, incubation of erythrocytes
in glucose only, led to a distortion in its biconcave morphology as
compared to the normal control (Figure 6A). In diabetes, this
change has been attributed to hyperglycemia, oxidative stress, and
reduced membrane integrity (47, 48) and has been implicated in
increased blood viscosity, microvascular complications, thrombotic
risks and endothelial dysfunctions (49, 50). Following incubation
with AWO, the erythrocyte morphology was improved to almost
near normal as shown in Figure 6C. Metformin gave the best
improvement (Figure 6D). The improved morphology indicates that
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erythrocyte glucose uptake by AWO involves restoration of the
cell's morphology.

3.6 Elemental mapping

The role of Mg and Fe in the physiology of erythrocytes have been
well documented. The role of Mg in erythrocytes’ function include
hemoglobin production, membrane integrity and energy production
(51, 52). Its deficiency has been linked to suppressed erythrocyte
energy metabolism, and has been implicated in the pathogenesis of
anemia (53). Iron is an important component of hemoglobin and thus,
is important in the physiology of erythrocytes (54). Its deficiency has
been implicated in anemia. However, elevated Fe levels has been
implicated in the pathogenesis of oxidative stress and cellular toxicity
via Fenton reaction (55). As shown in Figures 7A,B, incubation with
glucose only, led to significant (p < 0.05) depletion in erythrocyte level
of magnesium and exacerbated Fe level. The depleted Mg level
indicates reduced energy production and impairment of glucose
metabolism, which corroborates the impaired erythrocyte glucose
uptake. The elevated Fe level may indicate distortion of hemoglobin
leading to release of the element, which increases the cells
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susceptibility to oxidative stress via Fenton reaction. Incubation with
AWO significantly reversed the erythrocyte levels of Mg and Fe
(Figures 7C,D). Thus, indicating an improved energy production,
glucose metabolism and antioxidative activity.

3.7 Molecular docking

Molecular docking analysis revealed strong molecular interactions
of linoleic acid and linolenic acid with hemoglobin as shown in
Figures 8A,B. This is further depicted by their binding energies, with
linolenic acid having the lowest value (Table 1). In molecular docking,
the lower the binding energy value, the stronger the interaction, thus,
indicating that linolenic acid had a stronger molecular interaction and
contributed more to the interaction of AWO with hemoglobin.

3.8 Dynamic conformational stability and
fluctuations

To further demystify the observed molecular interactions, the
stability and flexibility of the ligand-protein complex were subjected
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Effect of African walnut oil on tissue surface morphology in erythrocyte glucose uptake. Magnification: A = 22,810%; B = 34,290x%; C = 24,080x; and
D = 27,850x. (A) Control; (B) glucose only; (C) African walnut oil; and (D) metformin.
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to root mean square deviation (RMSD) and root mean square
fluctuation (RMSF) measurements via MD simulation. RMSD
quantifies the disparity between a protein’s original backbone
conformation from its initial position (56). The low RMSD value of
linolenic acid (Table 2 and Figure 9A) indicates a potent alignment
and structural stability between the omega-3 fatty acid and
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hemoglobin, with less deviation and conformational change.
Furthermore, the low RMSF value of linolenic acid (Table 2 and
Figure 9B) indicates relatively stable and less fluctuation between the
omega-3 fatty acid and hemoglobin (26, 57). RMSF quantifies the
deviation of atomic locations from the initiation positions with time,
which defines a compound’s flexibility and dynamics (58).
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TABLE 1 MM/GBSA-based binding free energy profile of linolenic acid and linoleic acid bound to hemoglobin (PDB code: 4HHB).

Energy components (kcal/mol)

AG'bindCoulomb AC"'bindeond AG'bindLipo AG‘bindSolvGB
Linolenic acid —56.91 £5.28 —8.32+£6.70 —-1.13 £0.59 —25.12£2.88 19.79 £5.73 —44.42 + 3.56
Linoleic acid —17.68 £ 15.78 1.16 +9.49 —0.53 £0.76 —6.57 £ 6.06 291 +9.41 —15.16 £ 13.52

The compactness of linolenic with hemoglobin was further
portrayed by its low Solvent Accessible Surface Area (SASA) values
(Table 2 and Figure 9C). SASA quantifies how a molecule’s surface
area interacts with solvents, thereby giving insights into protein
folding, stability, and molecular interactions (58, 59).

However, linoleic acid had a lower radius of gyration (rGyr) value
(Table 2 and Figure 9D), which indicates a rigid and compact interaction
with hemoglobin. The radius of gyration quantifies the compactness
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and flexibility of ligand-protein complex, giving insights into the spatial
conformation and protein’s diffusivity of a protein (60).
3.9 Protein-ligand relationship

The protein-ligand relationship between hemoglobin and AWO
constituents (linolenic acid and linoleic acid) were investigated via
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TABLE 2 RMSD, RMSF, SASA, and rGyr profile of linolenic acid and linoleic
acid bound to hemoglobin (PDB code: 4HHB).

Systems Estimated average (A)

RMSD RMSF SASA rGyr
Linolenic acid 1.69 0.99 86.34 517
Linoleic acid 2.10 L10 325.34 489 ‘

MD simulation. As shown in Figures 10A,B, the molecular
interactions of linolenic acid and linoleic acid with hemoglobin were
facilitated by hydrogen (H), hydrophobic and ionic bonds as well as
water bridges. The main contributors in the fatty acids to these bond
interactions are their carboxyl groups (-COOH) and double bonds.
Hydrogen bonding has been reported for their influence on chemical
and biological reactions (61), as it allows the accurate fitting of a
compound to a receptor via precise arrangement between the H-bond
donor and acceptor groups (62, 63). Hydrophobic bonding between
the fatty acids and hemoglobin indicates the potency and specificity
of the ligand-protein complex, as the bond stimulates interactions
between hydrophobic cavities within the binding sites (64, 65). The
presence of ionic bonds indicates electrostatic interactions between
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the fatty acids and hemoglobin, and defines the former’s binding
affinity and specificity (66, 67). It also portrays the orientation and
conformation of the ligands within the protein binding pockets (66,
67). Water bridges are intermediaries made of water molecules which
facilitate hydrogen bonding between non-interacting groups in
protein binding pockets, thereby enhancing the stability of the
protein-ligand complex (68-70).

4 Conclusion

The study provides evidence for the first time that AWO promotes
glucose uptake in erythrocytes, with concomitant improvement in
glucose metabolism, purinergic enzyme activities and cell morphology.
AWO also demonstrated antioxidative effect by mitigating oxidative
stress via suppressing SOD activity and elevating GSH level. Molecular
docking and MD simulation further portrayed strong protein-ligand
interactions between hemoglobin and AWO’s constituents (linolenic
acid and linoleic acid). However, further pre-clinical and clinical
studies are required to decipher these results and determine the
translational relevance of AWO in managing diseases involving
erythrocytes’” dysfunction such as diabetes.
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