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Background: Children with nephrotic syndrome (NS) represent a high-risk 
group for significant clinical and nutritional alterations. The scarcity of studies 
on rapid and practical methods for assessing hydration status and nutritional 
prognosis in this context highlights the need for this study.
Aim: To investigate the body composition profile through bioelectrical 
impedance vector analysis (BIVA) and to evaluate the phase angle (PhA) between 
groups of hospitalized children with nephrotic syndrome (NS).
Methods: In this study, we present nine cases of hospitalized children diagnosed 
with NS. The cases were divided into two groups: symptomatic NS (G1) and 
asymptomatic NS (G2). Upon hospital admission, socioeconomic, clinical, 
and biochemical data were collected, along with nutritional screening, 
anthropometric assessment (height-for-age), and body composition analysis 
using BIVA and PhA calculation.
Results: Most children were male (67%) with a median age of 42 months. Most 
of the cases received social benefits, and their mothers had completed high 
school. All patients presented some degree of risk of malnutrition, regardless 
of symptomatology. BIVA identified anasarca and low body cell mass in the G1 
group, whereas the G2 group showed a tendency toward leanness and cachexia. 
The PhA was significantly lower in group G1 (median = 2.49°, IQR = 1.04) 
compared to G2 (median = 3.68°, IQR = 0.60) (p = 0.036).
Conclusion: BIVA rapidly and early detected extracellular water accumulation 
and reduced body cell mass, highlighting that those individuals with symptomatic 
NS had a lower PhA, suggesting a less favorable prognosis.
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1 Introduction

Nephrotic syndrome (NS) is characterized by intense proteinuria, 
leading to hypoalbuminemia and edema formation. These symptoms 
reflect increased glomerular permeability and can lead to malnutrition, 
poor growth, complications, and longer hospital stays. Although 
idiopathic NS is the most common glomerular disease in children, its 
incidence is relatively low, ranging from 1.4 to 6.1 cases per 100,000 
children, depending on ethnicity (1).

Furthermore, healthcare professionals often use body weight as an 
indicator to assess the degree of edema, the disease state, and to guide 
therapeutic decisions, such as fluid management, dose adjustments, 
and medication changes. However, this practice is reliable only for 
short periods, particularly until weight variations attributable to other 
causes become significant (2).

Therefore, it is essential to identify and adopt more accurate methods 
that are easy to apply in daily practice, rapid, cost-effective, and 
non-invasive. Bioelectrical impedance analysis (BIA) fits into this 
context, as it measures the resistance of different tissues to a small 
electrical current (3). However, traditional BIA estimates fluid volume 
using regression equations that can be inaccurate in cases of significant 
hydration changes, and its body composition estimates require 
specialized knowledge for a clinical context, especially in non-ideal 
states. On the other hand, BIVA is superior because it directly assesses 
hydration status and soft tissue mass without relying on body weight or 
regression equations. This makes it more accurate in clinical conditions 
with fluid imbalance. BIVA is sensitive to subtle changes in hydration, 
which is crucial in diseases where precise fluid volume control is essential 
to avoid complications. Furthermore, its graphical representation 
(vectors in tolerance nomograms) allows for a visual and immediate 
assessment of hydration status and cell mass, facilitating interpretation 
and treatment monitoring in complex clinical scenarios (4–8).

The ability of BIVA to predict clinical outcomes in children with 
complex diagnoses has been described in the literature, and it has also 
been identified as an alternative technique to assess hydration status 
in various clinical situations (7–10).

Additionally, R and Xc can provide phase angle (PhA) values, a 
simultaneous marker of cell mass and health, recognized as a reliable 
prognostic marker, including those involving the pediatric population 
(11–14). PhA reflects changes in the body’s electrical conductivity, 
highlighting alterations in cell membrane integrity and intercellular 
space (15).

The use of precise parameters to monitor the clinical and 
nutritional status of children with NS has been widely discussed in the 

literature. Brantlov et  al. demonstrated that PhA and BIVA are 
effective in distinguishing children with NS from healthy controls and 
are reliable tools for monitoring disease status (8). These findings 
underscore the importance of further research into parameters that 
can inform nutritional prognosis and support clinical decision-
making (16). Currently, studies using BIVA to assess pediatric patients 
with NS remain limited (7, 8).

Considering that fluid distribution is a characteristic of NS, edema 
typically becomes clinically detectable only when interstitial fluid 
increases by at least 30% above normal. Accordingly, BIVA emerges as 
a non-invasive, cost-effective strategy for monitoring nutritional status 
when actual body weight measurement is unreliable. There are no 
studies on the use of BIVA and PhA comparing symptomatic and 
asymptomatic patients during hospitalization. Thus, in this report, 
we present an exploratory case series of children hospitalized with NS, 
using BIVA to identify differences in body composition between 
symptomatic and asymptomatic patients, describing demographic, 
clinical, and nutritional factors, and conducting a discussion to gain a 
better understanding of the use of BIVA and PhA in children with NS.

2 Materials and methods

2.1 Population and study design

This exploratory case series included children and adolescents with 
NS who were hospitalized in the pediatric ward and diagnosed based on 
the Kidney Disease Outcomes Quality Initiative (KDOQI) criteria (17), 
between June and October 2021. The study included cases aged 
1–15 years (12–180 months). The exclusion criteria were diagnosis of 
liver disease, endocrine disorders, creatinine clearance <60 mL/
min/1.73 m2, and those in palliative care. This study was approved by the 
Research Ethics Committee of the Onofre Lopes University Hospital 
(number 4.623.568), with informed consent obtained from the guardians 
and assent from participants over 6 years of age.

2.2 Clinical data collection

Data collected from patients’ physical and electronic medical 
records included personal information (date of birth and sex), clinical 
data (age at diagnosis, hospitalization with symptomatic or 
asymptomatic NS, prior and current medication and supplement use), 
biochemical data (lipid profile, urea, albumin, sodium, potassium, and 
C-reactive protein—CRP-), and socioeconomic data (family income, 
receipt of benefits, and maternal education). Clinical findings of 
edema were assessed by a pediatric nephrologist based on physical 
examination, including signs such as periorbital swelling, lower limb 
edema, ascites, and pitting edema. Additionally, nutritional 
information was recorded, including nutritional screening, height 
measurement, and BIA assessment at hospital admission.

Abbreviations: PhA, Phase angle; BIA, Bioelectrical impedance analysis; BIVA, 

Bioelectrical impedance vector analysis; G1, Group 1; G2, Group 2; HUOL, Onofre 

Lopes University Hospital; HDL-C, High-density lipoprotein cholesterol; R, 

Resistance; NS, Nephrotic syndrome; LDL-C, Low-density lipoprotein cholesterol; 

UFRN, Federal University of Rio Grande do Norte; Xc, Reactance.
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2.3 Biochemical assessment

Blood collection was performed in the morning after a 12-h fast, 
using venipuncture with sterile, disposable plastic syringes and 
stainless-steel needles. The quantification of biochemical parameters 
was conducted using specific methods. Urea was measured by the 
kinetic UV method. Sodium and potassium levels were measured 
using the potentiometric method with ion-selective electrodes (ISEs), 
while C-reactive protein (CRP) was determined by 
immunoturbidimetry. Colorimetric enzymatic assays were used to 
analyze albumin, total cholesterol, and triglycerides. High-density 
lipoprotein cholesterol (HDL-c) was measured using a specific 
colorimetric method. Low-density lipoprotein cholesterol (LDL-c) 
was calculated using Friedewald’s formula: LDL-c = (total cholesterol – 
HDL-c) – (triglycerides/5), which is valid only when triglyceride levels 
are below 400 mg/dL. All analyses were conducted in the hospital’s 
clinical laboratory using the CMD 800i X1 chemical analyzer 
(Diamond Diagnostics®, Holliston, MA, USA) and reagent kits from 
Wiener Lab® (Wiener® Lab Group, Argentina).

2.4 Nutritional and body composition 
assessment

Upon admission, a nutritional risk screening was conducted using 
the Strong Kids tool. Additionally, height was measured, and BIA was 
performed, providing values for R and Xc. Trained registered dietitians 
performed these procedures. The nutritional risk level was determined 
based on the score from the Strong Kids tool. Children with a score of 
0 were classified as low risk, scores of 1–3 indicated moderate risk, 
while scores of 4–5 identified those at high risk for malnutrition (18).

Height was measured using a stadiometer (Professional Sanny, 
American Medical do Brazil, São Paulo, SP, Brazil) following the 
protocol established by Warrier et al. (19). The height-for-age z-scores 
were calculated using the Anthro and Anthro Plus software and 
classified according to the World Health Organization (WHO) growth 
curves for healthy children and adolescents (20, 21).

For the bioelectrical assessment, the Quantum II® impedance 
analyzer (RJL Systems, Clinton Township, MI, USA) was used to 
obtain the values for R (Ω) and Xc (Ω) measured at 50 kHz. The 
measurement was performed with the participant lying in a supine 
position, with four electrodes placed—two on the dorsal surface of the 
right hand and two on the dorsal surface of the right foot, as described 
by Lukaski et al. (22). Each participant was instructed to fast before 
the measurement, which was conducted around 7 a.m., and to empty 
their bladder. The nursing staff reinforced these instructions and 
verbally confirmed adherence with the guardian or patient before 
the assessment.

The R and Xc values were used for BIVA and PhA calculation. 
For BIVA, a graphical method of R and Xc was corrected by the 
individual’s height in meters. Bivariate vectors were plotted on the 
RXc graph using the BIVA 2002 software. Individual measurements 
were compared to tolerance ellipses derived from a healthy 
population and calculated using BIVA software (23). These ellipses 
represent the 50, 75, and 95% tolerance intervals of reference values 
previously established in an Italian population by De Palo, 
indicating on the graph the individual’s nutritional status regarding 
cellularity and body hydration. An individual considered ideally 

healthy, that is, with a complete balance in the number of cells and 
body water and cellular integrity, has their vector positioned at the 
center of the 50% ellipse. Any deviation outside the 50 and 75% 
ellipses, in any direction on the graph (above, below, left, or right), 
where the vectors are positioned within the 95% and above 95% 
ellipses, demonstrates an imbalance in cellular homeostasis, 
whether due to diseases that lead to cachexia, dehydration, or 
overhydration, or due to obesity or significant muscle mass gain 
(24). PhA, calculated using the formula arctangent (Xc/R) × (180/π), 
is an indicator of cell membrane integrity and the proportion of 
intact cells. Higher PhA values generally indicate better cell mass 
and function and are associated with a better prognosis in various 
clinical conditions (25).

Participants were grouped by age and sex and further categorized 
into Group  1 (G1) and Group  2 (G2) based on disease status at 
admission. G1 included children with symptomatic NS, defined by the 
presence of generalized edema (anasarca) assessed by a pediatric 
nephrologist, hypoalbuminemia (serum albumin <2.5 g/dL), and 
elevated urinary protein levels. G2 included those with asymptomatic 
disease, without edema, and elevated urinary protein levels.

2.5 Statistical analysis

For the statistical analysis, the data distribution was assessed by 
calculating the median for non-normally distributed data. Data 
normality was checked using the Shapiro–Wilk test, while other 
variables were analyzed based on relative frequencies. The dataset was 
checked for missing and outlier values. No missing data were 
identified for the variables assessed. Outliers were assessed using 
boxplots and clinical plausibility; as none were deemed erroneous or 
biologically implausible, all values were retained for analysis.

The independent samples t-test (Mann–Whitney U test) was used 
to analyze the statistical difference between continuous variables in 
groups G1 and G2. Fisher’s exact test was used when comparing 
proportions between two nominal variables, each with two categories. 
Statistical analyses were performed using JASP software (JASP Team, 
2024), JASP (Version 0.19.3 software), and BIVA 2002® software 
(Microsoft, Padova, Italy). The BIVA evaluation of participants relied 
on the reference population described by De Palo et al. (26).

3 Results

Of the nine cases, 67% were male, and the main cause of 
hospitalization was symptomatic disease (55.6%).

Regardless of the presence of symptoms, most children 
received social benefits, and their mothers had completed high 
school, and all patients presented some degree of risk of 
malnutrition. Furthermore, patients with symptomatic disease 
spend more days in the hospital (p = 0.011, Cramer’s V = 1.000) 
(Table 1).

Figure  1 presents the descriptive biochemical profile of the 
patients at admission. We observed that, regardless of symptomatic 
disease stage, all patients exhibited elevated total cholesterol and LDL 
levels, while most participants showed increased sodium and 
triglyceride levels. We  found that the majority of patients with 
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symptomatic disease had elevated urea, CRP, and potassium. For 
albumin, the values were adequate only in a small proportion of 
asymptomatic patients.

The BIVA results at admission for children with NS are presented 
in Figures 2, 3. Due to the lack of an appropriate reference population 
for this age group, the 1-year-old infant was excluded from the 
evaluation. Among the 8 individuals evaluated, 62.5% had vectors 
outside the tolerance ellipses, indicating anasarca. These patients 
belong to G1 and are identified by red dots in the figure. On the other 
hand, participants in G2, represented by green dots, showed vectors 
within the 75 and 95% ellipses, indicating a tendency toward low cell 
mass and cachexia.

The PhA was significantly lower in group G1 (median = 2.49°, 
IQR = 1.04) compared to G2 (median = 3.68°, IQR = 0.60) (p = 0.036) 
(Figure 4).

4 Discussion

This exploratory case series, conducted in Brazil, is pioneering in 
its analysis of body composition parameters using BIVA and in 
describing demographic, clinical, and nutritional characteristics of 
hospitalized children with NS. Our results reveal that all children 
exhibited some degree of nutritional risk, with a high prevalence of 
mixed dyslipidemia and proteinuria, common in children with 
NS. The BIVA assessment revealed distinct patterns between the 
patient groups. Most participants showed vectors outside the tolerance 
ellipses, indicating complexities in both hydration status and body 
composition. These findings are noteworthy and underscore the 
importance of an integrated and personalized approach to disease 
management, one that considers the multiple dimensions of health 
and wellbeing.

TABLE 1  Socioeconomic, clinical, and nutritional characteristics of hospitalized children with NS according to symptom presence.

Variables Group 1 (Symptomatic)
(n = 6)

Group 2 (Asymptomatic)
(n = 3)

p value

Age at diagnosis, median (IQR*) in months1 21.0 (48.0) 38.0 (4.3) = 0.070

Current age, median (IQR*) in months1 42.0 (46.0) 54.0 (43.0) = 0.300

Family income2, % = 0.276

 � Up to 1 Minimum Wage** 83.3% 33.3%

 � 1–2 Minimum Wages** 16.7% 66.7%

Receipt of social benefits2, % = 0.343

 � Yes 33.3% 33.3%

 � No 66.7% 66.7%

Maternal education2, % = 0.453

 � Incomplete Elementary Education 16.7% 33.3%

 � Complete Elementary Education 16.7% –

 � Complete High School 50% 66.7%

 � Complete Higher Education 16.7% –

Nutritional risk2, % = 0.453

 � Medium 83.3% 100%

 � High 16.7% –

Height-for-age z score classification2, % = 0.453

 � Low 16.7% –

 � Adequate 83.3% 100%

Hospitalization length2, % = 0.011

 � ≤5 days – 100%

 � Between 6 and 10 days 50% –

 � ≥10 days 50% –

Routine medication2, %

 � Corticosteroid 66.7% 100% = 0.257

 � Immunosuppressant 33.3% 33.3% = 1.000

 � Antihypertensive 100% 66.7% = 0.134

 � Vitamin D supplementation 50% – = 0.134

*IQR: Interquartile range; **Minimum wage (value in 2020: R$ 1,100.00).
1Mann–Whitney U test; 2Fisher’s Exact Test. Statistical significance values are given in bold.
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Furthermore, our findings support the association between low 
income and increased risk of chronic conditions such as NS (27, 28). 
Additionally, limited maternal education (44.4% completed high 
school) may affect access to health information and disease 
management, contributing to greater vulnerability to complications 
(29–31).

Previous studies show a higher prevalence of NS in males, a 
pattern also observed in our sample (32, 33). The median age at 
diagnosis was 24 months (IQR 11), with those hospitalized for 
symptomatic disease at younger ages, consistent with León et al. 
and Lage, who reported 24–48 months as the most common 
diagnostic age (34, 35). These findings highlight the importance of 

FIGURE 1

Descriptive biochemical profile of study participants. (A) Group of asymptomatic NS, and (B) Group of symptomatic NS. Values expressed in %. TC, total 
cholesterol, LDL, low-density lipoprotein, HDL, high-density lipoprotein, TAG, triglycerides, CRP, C-reactive protein.
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early diagnosis and close monitoring in young children to ensure 
timely treatment. Although growth deficiency is common in NS, 
only a minority of our patients exhibited short stature, possibly 
because some were recently diagnosed. Bellot et al. found similar 
results, with 18.2% of hospitalized children showing short 
stature (36).

All children and adolescents in the study exhibited some degree 
of nutritional risk, predominantly moderate, consistent with literature 
highlighting malnutrition in NS resulting from protein loss and 
metabolic alterations (37). This variability likely reflects disease 

severity and treatment response, as longer hospital stays are often 
linked to more severe or complicated cases (38). Bellot et al. supported 
this view (36), revealing a 100% nutritional risk in their sample of 
children with NS, using the same screening tool. Nutritional screening, 
as recommended by the Brazilian Association of Nutrition, is essential 
for the early identification of at-risk patients, enabling timely and 
appropriate nutritional interventions. These findings emphasize the 
importance of a systematic approach in nutritional care, aiming to 
improve both the management and prognosis of these patients 
(39, 40).

The biochemical profile of the patients revealed mixed 
dyslipidemia, hypoalbuminemia, and hypernatremia. These findings 
are characteristic of NS and align with previous studies that have 
documented these biochemical imbalances as typical manifestations 
of the disease (41, 42). The elevation of CRP in half of the patients, 
especially in G1, indicates active inflammation, which may 
be associated with an exacerbated inflammatory response in NS (43).

We also observed changes in urea and potassium in a minority of 
patients, with these changes associated with the presence of infection. 
In line with our findings, Rheault et al. identified that 6% of a sample 

FIGURE 2

Mean impedance vectors with tolerance ellipses of 50%, 75% and 
95% of boys asymptomatic and symptomatic at the hospital 
admission, according to age. Xc/H: Reactance/height, R/H: 
Resistance/height.

FIGURE 3

Mean impedance vectors with tolerance ellipses of 50%, 75% and 
95% of girls asymptomatic and symptomatic at the hospital 
admission, according to age. Xc/H: Reactance/height, R/H: 
Resistance/height. * A 1-year-old girl was excluded from this 
evaluation due to the lack of a reference population for comparison 
purposes in this age group.
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of 336 children hospitalized for NS showed evidence of acute kidney 
injury, with concomitant infection, the use of nephrotoxic 
medications, and steroid-resistant NS being risk factors (44).

Additionally, Noone et al. emphasize that steroid-resistant NS is 
associated with a high risk of progression to end-stage renal disease 
(45). Although all patients were diagnosed with mixed dyslipidemia, 
the use of lipid-lowering medications was observed in only a minority. 
This pattern can be  explained by the recommendation that lipid-
lowering agents should not be used in NS unless there is persistent 
proteinuria with extremely elevated triglyceride levels (46).

In hospital management of edema, various medications are 
employed, including loop diuretics, thiazide diuretics, and thiazide-
like agents, with furosemide being the most commonly used (47). 
Edema is widely recognized as one of the primary symptoms of NS 
and remains one of the leading reasons for hospitalization in these 
patients (48). However, accurate assessment of intravascular volume 
is challenged by the lack of an established gold standard for this 
measurement (8). In this context, BIVA has emerged as a practical tool 
for analyzing body fluids, offering advantages such as ease of 
application, being noninvasive, and good reproducibility (10).

BIVA patterns are based solely on the electrical properties of 
tissues, without considering body weight. BIVA can detect changes in 
hydration and tissue structure, as both R and Xc are considered 
simultaneously. Research has demonstrated that BIVA is an excellent 
tool for identifying individual vectors, detecting changes in tissue 
hydration and body composition, and serving as a powerful method 
for evaluation and monitoring (49–52).

Our results showed that 62.5% of patients had vectors outside 
the tolerance ellipses, indicating anasarca and fluid overload in 
symptomatic NS. These findings align with the pathophysiology of 
NS, where hypoalbuminemia decreases oncotic pressure, leading to 
extravascular fluid accumulation (51). In contrast, G2 patients had 
vectors within the 75 and 95% ellipses, suggesting lower body cell 
mass and possible muscle wasting. This pattern highlights the 
importance of tailored nutritional and fluid management. 
Integrating BIVA and PhA into hospital care can enhance early 
detection of hydration and nutritional imbalances often overlooked 
by routine assessments, thereby guiding timely interventions—such 
as diuretic therapy and nutritional support—to improve 
patient outcomes.

The significant difference in PhA between groups G1 and G2 
reflects greater fluid overload and cellular impairment in patients 
with symptomatic NS (G1) compared to those with asymptomatic 
NS (G2). PhA, a recognized indicator of cell membrane integrity 
and body cell mass, decreases in response to cellular damage and 
malnutrition (52). This parameter can detect subclinical changes in 
cellular health before they manifest as anthropometric deficits, thus 
serving as an early and sensitive marker of nutritional risk (53). 
Incorporating PhA monitoring into clinical practice allows for 
earlier identification of patients at higher risk of complications, 
enabling timely nutritional and fluid management interventions 
that can improve clinical outcomes and individualize care in 
pediatric NS.

For healthy individuals, the PhA value typically ranges between 5 
and 19 (24). According to a study conducted by De Palo et al. with 
2,044 healthy children aged 10–15 years, the variation of PhA was 
between 5.7° and 6.2° (26). Our results, regardless of the presence of 
decompensation, showed PhA values below these reference standards. 
These findings suggest a potential alteration in cellular membrane 
integrity and the intercellular space, indicating compromised cellular 
health and function.

To our knowledge, this exploratory case series is the first to investigate 
BIVA and PhA in hospitalized children to detect body composition 
changes as early as the first day of admission. Although the small sample 
size limits broader generalizability, the internal consistency of the results 
underscores the exploratory significance of the study. These findings 
highlight the need for future studies with larger, longitudinal cohorts to 
validate and extend these observations. Still, our results align with prior 
research on BIVA in pediatric NS (7, 8).

Comparisons between BIVA and other hydration assessment 
methods in this population are also warranted. Despite these 
limitations, our study underscores the potential of body 
composition analysis to enhance clinical and nutritional 
management in hospitalized pediatric patients with NS. BIVA 
provides a detailed, noninvasive tool to assess fluid status, while 
PhA reflects cell membrane integrity and nutritional condition, 
supporting its use as a potential biomarker in this context. Given 
the characteristic edema and fluid distribution alterations in NS, 
BIVA may help differentiate fluid overload from true changes in 
body composition, contributing to more precise clinical decision-
making. Future research should involve larger cohorts and 
longitudinal designs to track PhA dynamics throughout treatment 
and recovery.

Despite the small sample size, our findings suggest that integrating 
BIVA and PhA yields clinically consistent data. Key contributions of 
this case series include: (1) while all patients were at moderate-to-high 
nutritional risk by conventional tools, only BIVA and PhA clearly 
distinguished the two groups in terms of nutritional status and fluid 
overload; (2) both methods proved to be  practical, rapid, and 
noninvasive, supporting ongoing assessment in challenging clinical 
scenarios such as anasarca; (3) the associations observed among 
hydration, body composition, and PhA have direct clinical relevance 
for managing pediatric NS; and (4) in symptomatic children, 
bioelectrical vector analysis indicated excess extracellular fluid and 
reduced cell mass, findings often masked by edema in standard 
assessments. The adoption of these methods in hospital routines can 
favor more individualized, early, and targeted therapeutic decision-
making before the clinical condition visibly worsens, in addition to 

FIGURE 4

Comparison of the PhA values between G1 and G2. PhA: phase 
angle, G1 - patients with symptomatic NS (95% CI: 1.541, 3.167); G2 
- patients with asymptomatic NS (95% CI: 2.358, 5.629).
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enabling more precise monitoring of the response to nutritional and 
pharmacological treatment.

5 Conclusion

In conclusion, according to this case series, BIVA revealed, upon 
admission, an accumulation of extracellular water and a reduction in 
cell mass, which were more pronounced in patients with symptomatic 
NS and lower lean body mass, while PhA indicated a poorer 
prognosis. The study demonstrates that BIVA and PhA are useful 
tools to complement clinical and biochemical assessment, offering a 
more integrated and dynamic view of the patient’s condition. These 
methods have proven useful for routine interventions, as they allow 
for the rapid, practical, and early detection of relevant alterations that 
influence the prognosis of NS.

Finally, further studies with larger sample sizes are essential to 
validate and build upon these findings. Specifically, we suggest that 
BIVA be used as an adjunctive assessment, used in conjunction with 
a comprehensive multidisciplinary approach.
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