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Background: Enteral Nutrition-Associated Diarrhea (ENAD) is a common 
complication in critically ill patients, significantly impacting clinical outcomes. 
Accurately predicting the risk of ENAD is crucial for early intervention and 
improving patient care.

Objective: This study aims to develop and validate a machine learning (ML)-
based risk prediction model for Enteral Nutrition-Associated Diarrhea (ENAD) in 
ICU patients, and explore its application in nursing practice.

Method: This study was conducted from January 2023 to October 2024  in 
the Comprehensive Intensive Care Unit (ICU) of a tertiary hospital in China, 
retrospectively analyzing data from ICU patients receiving enteral nutrition. 
LASSO regression was used for feature selection, and 9 machine learning (ML) 
algorithms were evaluated. Model performance was assessed using metrics 
such as the area under the receiver operating characteristic curve (AUC). The 
SHapley Additive exPlanation (SHAP) method was employed to interpret feature 
importance and determine the final model.

Results: Among the 9 ML models, the random forest (RF) model demonstrated 
the highest discriminative ability, achieving an AUC (95% CI) of 0.777 (0.702–
0.830). After dimensionality reduction based on feature importance analysis, a 
simplified and interpretable RF model with 12 key predictors was established, 
yielding an AUC (95% CI) of 0.754 (0.685–0.823).

Conclusion: The RF-based predictive model developed in this study provides 
a reliable and interpretable tool for identifying the risk of ENAD in ICU patients, 
contributing to targeted nursing interventions and improved patient outcomes. 
The research highlights the potential of machine learning in enhancing clinical 
decision-making and personalized care.
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Introduction

Enteral nutrition (EN) is a vital supportive therapy for critically ill 
patients in intensive care units (ICUs), providing essential nutritional 
support and enhancing clinical outcomes (1, 2). However, enteral 
nutrition-associated diarrhea (ENAD) remains a significant clinical 
challenge, affecting approximately 20–30% of critically ill patients and 
contributing to increased morbidity, extended hospital stays, and 
substantial healthcare costs (3–5).

The pathogenesis of ENAD is multifactorial, involving complex 
interactions between nutritional formulations, patient physiological 
status, medications, and underlying medical conditions (6–8). Current 
evidence identifies several key categories of ENAD risk factors that 
require comprehensive assessment and monitoring. Patient-specific 
factors include advanced age, severity of illness (as measured by 
APACHE II or SOFA scores), pre-existing gastrointestinal disorders, 
hypoalbuminemia, electrolyte imbalances (particularly 
hyponatremia), and compromised immune status (9). Nutritional 
formulation-related factors encompass formula osmolality, fiber 
content, protein concentration, fat composition, and the use of 
specialized formulations such as elemental or semi-elemental 
products. Mixed feeding regimens, involving concurrent 
administration of different formula types, have been associated with 
increased gastrointestinal intolerance and diarrheal episodes (10). 
Feeding delivery methods significantly influence ENAD development, 
with continuous versus bolus feeding patterns, feeding rate 
progression, gastric residual volume management, and feeding tube 
positioning all contributing to risk stratification (11). Medication-
related factors include concurrent antibiotic therapy (particularly 
broad-spectrum agents), proton pump inhibitors, prokinetic agents, 
and medications affecting gastrointestinal motility (12). 
Environmental and care-related factors such as ICU temperature 
control, stress levels, and nursing care protocols also contribute to 
ENAD risk. Traditional risk assessment methods have been limited by 
single-dimensional evaluation approaches, making them insufficient 
for capturing the complex and dynamic nature of nutritional 
disorders. Emerging precision medicine strategies are increasingly 
developing comprehensive multidimensional assessment models (13). 
These include machine learning-based predictive algorithms, 
integrated assessments of clinical, biomarker, and genomic 
information, and intelligent systems for dynamic real-time nutritional 
risk monitoring. These innovative methodologies utilize advanced 
algorithmic models to integrate extensive clinical datasets, enabling 
rapid multidimensional information analysis, precise identification of 
high-risk populations, personalized risk stratification, and early 
warning interventions with enhanced accuracy in managing 
nutritional disorders (14).

Machine learning (ML) has emerged as a powerful approach in 
clinical prediction, offering superior capabilities in handling complex, 
non-linear relationships within medical data (15, 16, 44). Recent 
advances in ML algorithms have demonstrated remarkable potential 
in developing predictive models across various medical domains, 
including critical care, by leveraging advanced feature selection and 
interpretation techniques (17, 18).

Despite the promising potential of machine learning in clinical 
risk prediction, significant research gaps persist in developing 
comprehensive risk assessment models for ENAD. Current studies are 
predominantly constrained by limited sample sizes (typically <200 

cases), narrow feature selection (primarily focusing on basic 
demographic indicators), and insufficient model interpretability (19). 
These limitations critically impede the widespread clinical 
implementation of predictive models. Moreover, traditional machine 
learning approaches function as “black box” systems, lacking 
transparency in key risk-driving factors and consequently 
undermining clinicians’ confidence in model-derived decisions (20). 
Therefore, there is an urgent need to develop more comprehensive, 
interpretable, and high-precision ENAD risk prediction models. By 
integrating multidimensional clinical data, such models could 
ultimately enhance the accuracy and clinical utility of risk assessment 
strategies (21).

Methods

Study population

This study retrospectively enrolled 756 critically ill patients who 
received enteral nutrition (EN) support in the General Intensive Care 
Unit (ICU) of Shangrao People’s Hospital between January 2023 and 
October 2024. The sample size was calculated by integrating machine 
learning model complexity with clinical requirements, following the 
modified event-to-feature ratio (EPV) criterion proposed by Vabalas 
et al. (45), which recommends EPV ≥ 15 for nonlinear models (22). 
To address potential overfitting risks associated with the observed 
EPV of 8.2 (189 events/24 features), rigorous mitigation strategies—
including nested cross-validation (5 outer folds and 3 inner folds) and 
regularization techniques—were implemented. Data were 
systematically extracted from electronic medical records, ICU nursing 
documentation, and laboratory databases, followed by feature 
engineering to construct a structured dataset encompassing 24 
predictive variables across five domains: demographics (age, sex), 
disease severity (diagnosis category, APACHE II score, mechanical 
ventilation duration), therapeutic interventions (vasopressor use, 
sedation-analgesia protocols, antibiotic duration), biomarkers 
(albumin, C-reactive protein, electrolytes), and EN parameters 
(formula type, infusion rate, heater use). Inclusion criteria required: 
(1) adults (≥18 years) requiring mechanical ventilation for >24 h; (2) 
standardized EN administration ≥48 h (compliant with ESPEN 
guidelines); (3) APACHE II score ≥15 at ICU admission; and (4) 
complete documentation of all 24 study variables, including time-
sensitive EN metrics. Exclusion criteria comprised: (1) chronic 
gastrointestinal diseases or recent gastrointestinal surgery (≤30 days); 
(2) EN interruption <24 h or critical variable missingness >20%; (3) 
end-stage conditions (life expectancy <72 h); or (4) concurrent 
participation in other nutritional intervention trials. Analysis of 
comorbidities and diarrhea events did not show any statistically 
significant association (χ2 = 11.01; p = 0.357). Malignancies (38.1%) 
were associated with the highest diarrhea incidence; next: 
cardiovascular/cerebrovascular (34.6%) and patients without 
comorbidities 32.8%; the lowest for respiratory and gastrointestinal 
co-morbidities (21.4%) Adherence to multiple comorbidity groups 
showed a high prevalence of diarrhea, even in the absence of 
concomitant illness which implies that diarrhea development may not 
be  related exclusively with underlying conditions. 
Supplementary Figure  1: the incidence of diarrhea based on 
comorbidity groups in the study population.
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Data collection and processing

This study developed predictive models utilizing multi-
dimensional data collected within 24 h of ICU admission, 
incorporating 24 initial variables across five domains: demographic 
characteristics (gender, age), clinical features (disease categories, 
APACHE II scores, mechanical ventilation days), therapeutic 
interventions (renal replacement therapy, antibiotic days, prokinetics/
probiotics/ vasopressors/analgesics/sedatives administration), enteral 
nutrition parameters (formula types, infusion rate, tube type, warmer 
usage, initiation time), and laboratory indices (albumin, electrolytes, 
inflammatory biomarkers). Using R’s caret package, 756 patients were 
stratified by diarrhea outcomes and partitioned into a 70% training set 
(n = 529) and a 30% test set (n = 227), with the latter stringently 
isolated from the feature selection processes to prevent data leakage. 
LASSO regression (10-fold cross-validation, λ = “lambda.1se”) 
conducted exclusively in the training set identified 18 non-redundant 
predictors (Figure 1), including age, APACHE II scores, antibiotic 
duration, probiotics use, serum sodium levels, and enteral nutrition-
related procedural parameters. Continuous variables were expressed 
as medians with interquartile ranges (IQR) and analyzed via Mann–
Whitney U tests, while categorical variables were presented as 
frequencies (percentages) with χ2 tests. Statistical significance was 
defined as two-tailed p < 0.05, with precise p-values reported unless 
below 0.001 (Table 1).

Definition of diarrhea

The diagnosis of enteral nutrition-associated diarrhea was 
rigorously defined according to the ASPEN/ESPEN joint working 
group criteria (23), requiring the concurrent presence of two criteria: 

(1) abnormal stool consistency classified as Type ≥6 on the Bristol 
Stool Form Scale (liquid or watery stool), and (2) altered defecation 
frequency/volume, manifested as ≥3 bowel movements per day or 
total stool output exceeding 500 g/24 h.

Operational definitions of nursing-related 
variables

Mixed Feeding Formulas: Combination of two or more different 
enteral nutrition products administered within a 24-h period, 
including concurrent use of standard polymeric formulas with 
specialized formulations (e.g., elemental, semi-elemental, or disease-
specific formulas). This nursing intervention was documented when 
nurses administered different formula types during the same shift or 
when feeding regimens were changed more than once daily based on 
clinical assessment of tolerance or physician orders.

Probiotic use
Administration of live microorganisms (including single-strain or 

multi-strain preparations) via enteral route as documented in nursing 
medication administration records. This included both prophylactic 
probiotics ordered for gastrointestinal protection and therapeutic 
probiotics prescribed for existing digestive complications. Nursing 
documentation captured the specific probiotic product, dosage, 
frequency, and duration of administration.

Environmental temperature management
Nursing interventions to maintain and monitor ambient room 

temperature in the ICU patient care environment. This included 
documentation of room temperature measurements taken during 
routine nursing assessments (typically every 4–8 h), adjustment of 

FIGURE 1

Feature coefficient trajectories along the lasso regularization path. This figure illustrates the feature coefficient trajectories of the LASSO regression 
model fitted to predict enteral nutrition-associated diarrhea. The x-axis shows the log of the regularization parameter (log λ), while the y-axis 
represents the standardized coefficients of the predictive features. The vertical red dashed line indicates the optimal λ determined by 10-fold cross-
validation.
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TABLE 1  Demographic and clinical characteristics of critical care patients nondiarrhea and diarrhea.

Characteristics Subgroups All patients 
(n = 756)

Nondiarrhea 
(n = 539)

Diarrhea 
(n = 217)

p value*

Gender Male 531 (70.2) 371 (68.8) 160 (73.7) 0.213

Female 225 (29.8) 168 (31.2) 57 (26.3)

DX Infectious diseases 241 (31.9) 167 (31.0) 74 (34.1) 0.750

Trauma 155 (20.5) 113 (21.0) 42 (19.4)

Acute organ failure 207 (27.4) 146 (27.1) 61 (28.1)

Metabolic/toxic/special 49 (6.5) 34 (6.3) 15 (6.9)

Tumor 104 (13.8) 79 (14.7) 25 (11.5)

RRT No 543 (71.8) 401 (74.4) 142 (65.4) 0.017

Yes 213 (28.2) 138 (25.6) 75 (34.6)

Prokinetics No 499 (66.0) 379 (70.3) 120 (55.3) <0.001

Yes 257 (34.0) 160 (29.7) 97 (44.7)

Probiotics No 414 (54.8) 363 (67.3) 51 (23.5) <0.001

Yes 342 (45.2) 176 (32.7) 166 (76.5)

Vasopressors No 172 (22.8) 133 (24.7) 39 (18.0) 0.058

Yes 584 (77.2) 406 (75.3) 178 (82.0)

Analgesics No 100 (13.2) 78 (14.5) 22 (10.1) 0.141

Yes 656 (86.8) 461 (85.5) 195 (89.9)

Sedatives No 108 (14.3) 88 (16.3) 20 (9.2) 0.016

Yes 648 (85.7) 451 (83.7) 197 (90.8)

EN Type TPF 158 (20.9) 121 (22.4) 37 (17.1) <0.001

SP 224 (29.6) 176 (32.7) 48 (22.1)

Peptison 76 (10.1) 61 (11.3) 15 (6.9)

Fresubin 58 (7.7) 44 (8.2) 14 (6.5)

Mixed feeding 240 (31.7) 137 (25.4) 103 (47.5)

Admin method EN specific pump 29 (3.8) 21 (3.9) 8 (3.7) 0.893

Non-specific pump 714 (94.4) 508 (94.2) 206 (94.9)

Syringe push 13 (1.7) 10 (1.9) 3 (1.4)

Tube type Gastric tube 656 (86.8) 482 (89.4) 174 (80.2) 0.001

Nasoenteral tube 100 (13.2) 57 (10.6) 43 (19.8)

Warmer N 415 (54.9) 314 (58.3) 101 (46.5) 0.004

Yes 341 (45.1) 225 (41.7) 116 (53.5)

Age (years), M (IQR) 68.0 (57.0–76.0) 67.0 (56.5–75.0) 71.0 (60.0–78.0) 0.003

APACHE II score, M (IQR) 25.0 (19.0–29.0) 25.0 (19.0–29.0) 25.0 (20.0–28.0) 0.406

MVDays (days), M (IQR) 5.0 (1.2–10.2) 4.0 (1.0–8.9) 7.0 (2.0–14.8) <0.001

Abx (days), M (IQR) 12.0 (7.0–19.0) 10.0 (6.0–16.0) 16.0 (11.0–26.0) <0.001

Alb (g/L), M (IQR) 32.2 (28.8–36.1) 32.1 (28.8–36.2) 32.4 (28.8–35.9) 0.895

K (mmol/L), M (IQR) 3.9 (3.5–4.3) 3.9 (3.5–4.3) 4.0 (3.5–4.5) 0.065

Na (mmol/L), M (IQR) 139.0 (136.0–143.7) 139.0 (135.2–143.0) 140.0 (136.0–144.1) 0.048

CRP (mg/L), M (IQR) 62.4 (26.6–119.2) 68.2 (27.0–123.0) 55.7 (26.0–105.9) 0.152

PCT (ng/mL), M (IQR) 0.8 (0.2–3.4) 0.8 (0.2–3.7) 0.8 (0.2–2.9) 0.842

Rate (mL/h), M (IQR) 50.0 (45.0–55.0) 50.0 (45.0–55.0) 50.0 (45.0–55.0) 0.05

Temp (°C), M (IQR) 21.0 (20.0–22.0) 21.0 (20.0–22.0) 20.0 (20.0–22.0) <0.001

ENStart (days), M (IQR) 3.0 (2.0–5.0) 3.0 (2.0–5.0) 2.0 (1.0–5.0) 0.336

Abbreviations used in this study included: APACHE II, Acute Physiology and Chronic Health Evaluation II, range 0–71; RRT, renal replacement therapy; EN, enteral nutrition; CRP, C-reactive 
protein; PCT, procalcitonin. Disease categories were classified as infectious diseases, trauma/injury, acute organ failure, metabolic/toxicological/special conditions, and oncological diseases.
Binary variables (0 = no, 1 = yes) included RRT, prokinetics, probiotics, vasopressors, analgesics, sedatives, warmer use, and the primary outcome of diarrhea. Gender was coded as 1 (male) or 
2 (female). EN-related variables included formula types (TPF, SP, whole protein formula, peptide formula, and mixed feeding), administration methods (dedicated EN pump, non-dedicated 
pump, syringe push), and tube types (gastric or post-pyloric).
Laboratory parameters included CRP, PCT, albumin, potassium, and sodium, all measured within standard ranges. Other continuous variables included age (years), mechanical ventilation 
days, antibiotic therapy duration (days), EN initiation time (days from ICU admission), body temperature (°C), and EN administration rate (mL/h).
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environmental controls (heating/cooling systems), and use of 
additional warming or cooling devices as nursing interventions to 
maintain patient comfort and physiological stability.

Enteral nutrition feeding rate
The milliliters per hour (mL/h) of enteral formula delivered as 

documented in nursing feeding administration records. This included 
both continuous feeding rates (when feeds were administered over 
24 h) and calculated hourly rates for intermittent feeding schedules. 
Nursing assessment of feeding tolerance and rate adjustments based 
on patient response were documented according to 
institutional protocols.

Antibiotic duration
Total consecutive days of systemic antibiotic therapy as 

documented in nursing medication administration records from ICU 
admission to discharge. This included all routes of administration 
(intravenous, oral, enteral) and was calculated based on actual nursing 
documentation of medication administration, regardless of changes 
in specific antibiotic agents during the treatment course.

Model development and comparison

This study constructed predictive models using 18 variables 
selected through LASSO regression. Logistic regression was used as 
the baseline model to evaluate predictive performance, with 
comparisons made to eight additional machine learning algorithms: 
support vector machine (SVM), random forest, XGBoost, LightGBM, 
neural network, AdaBoost, decision tree, and naïve Bayes. The dataset 
was partitioned into a training set and an independent validation set, 
with strict isolation of the validation cohort to prevent overfitting. 
Hyperparameter optimization for all models, including logistic 
regression, was performed via grid search with 5-fold 
cross-validation.

Model performance was evaluated comprehensively using area 
under the ROC curve (AUC), recall, accuracy, F1-score, precision, 
negative predictive values (NPV), and calibration metrics, with 
logistic regression serving as the reference model. The validation 
framework incorporated 5-fold and 10-fold cross-validation iterations 
within the training cohort, followed by final evaluation on the 
independent test set. Robust confidence intervals for all metrics were 
derived through Bootstrap resampling (1,000 replicates). Logistic 
regression provided a transparent baseline for comparison, facilitating 
the interpretation of feature importance and benchmarking 
performance gains achieved by additional machine learning 
algorithms. Feature selection and model explanation.

The SHAP (SHapley Additive exPlanations) (24) framework was 
integrated into the feature selection pipeline to objectively quantify 
variable importance and address model interpretability. Following 
LASSO-based preliminary screening, SHAP values were systematically 
calculated across all candidate models to rank features by their 
predictive contribution. A sequential backward elimination strategy 
was implemented: features were iteratively pruned in descending 
order of SHAP importance, while monitoring model performance via 
AUC stability. The elimination process terminated when a statistically 
significant decline in AUC (>5% relative reduction, p < 0.05 by 
Delong’s test) (25) indicated critical feature loss. This approach 

ensured retention of the optimal feature subset that maximized 
predictive capacity while minimizing redundancy.

Statistical analysis

This study implemented the entire analytical workflow using R 
language (version 4.4.2). Methodological reliability was ensured 
through strict data isolation protocols. Prior to feature selection, 
stratified random sampling with 10 repeated splits was performed 
using the createDataPartition() function from the caret package, 
pre-partitioning the dataset into training (70%) and validation (30%) 
sets. This rigorous partitioning guaranteed the validation set remained 
completely isolated during the LASSO regression feature selection 
process, effectively eliminating data leakage risks. Continuous 
variables with skewed distributions were summarized using median 
and interquartile range (IQR). Between-group comparisons employed 
non-parametric tests: Mann–Whitney U test for two-group 
comparisons and Kruskal-Wallis H test for multi-group comparisons. 
Categorical variables were expressed as percentages (%) and analyzed 
using Pearson’s χ2 test or Fisher’s exact test, as appropriate for expected 
cell frequencies.

Results

A total of 756 patients were included in this study, with 217 
(28.7%) developing ENAD. The median age was 68.0 years (IQR: 
57.0–76.0), and the male-to-female ratio was approximately 7:3. 
APACHE II scores were comparable between groups (median: 25.0 
[IQR: 19.0–29.0], p = 0.406), indicating similar illness severity.

Significant differences were observed in treatment characteristics. 
Patients with ENAD more frequently received renal replacement 
therapy (34.6% vs. 25.6%, p = 0.017), prokinetics (55.3% vs. 29.7%, 
p < 0.001), probiotics (44.7% vs. 23.5%, p < 0.001), and sedatives 
(90.8% vs. 83.7%, p = 0.016). Nasoenteric feeding tubes were more 
common in the ENAD group (19.8% vs. 10.6%, p = 0.001), as was 
mixed feeding (47.5% vs. 25.4%, p < 0.001). Clinical course parameters 
differed significantly between groups. The ENAD group had longer 
mechanical ventilation duration (7.0 vs. 4.0 days, p < 0.001) and 
antibiotic therapy duration (16.0 vs. 10.0 days, p < 0.001). Serum 
sodium levels were slightly higher in the ENAD group (140.0 vs. 
139.0 mmol/L, p = 0.048), while other laboratory parameters showed 
no significant differences. Notably, room temperature was lower in the 
ENAD group (20.0°C vs. 21.0°C, p < 0.001) (Table 1). Details of the 
study design are displayed in Figure 2.

Model development and performance 
comparison

This study evaluated the predictive performance of nine 
machine learning models for diarrhea risk prediction associated 
with enteral nutrition (EN). Table  2 presents the performance 
metrics for all nine models, while Figure  3 summarizes the 
performance of the top four models based on the area under the 
ROC curve (AUC). Feature contributions from the 18 variables are 
visualized in the SHAP summary plot (Supplementary Figure 2). 
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Random forest outperformed other models in most metrics and 
emerged as the best predictive model. It achieved the highest AUC 
(0.777 [95% CI: 0.702–0.830]), recall (0.936 [95% CI: 0.897–0.987]), 

accuracy (0.787 [95% CI: 0.743–0.873]), and F1-score (0.835 [95% 
CI: 0.787–0.874]). The logistic regression model, used as the 
baseline approach, showed solid but comparatively lower 

FIGURE 2

Study flowchart showing patient recruitment, data preparation, feature selection using LASSO regression, machine learning model development and 
validation for predicting enteral nutrition-associated diarrhea in ICU patients. ICU, intensive care unit; LASSO, least absolute shrinkage and selection 
operator; ML, machine learning; RF, random forest.
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performance with an AUC of 0.762 (95% CI: 0.695–0.828) and an 
F1-score of 0.817 (95% CI: 0.769–0.859). The second-best model 
was XGBoost, which had a slightly lower AUC (0.737 [95% CI: 
0.668–0.803]) but demonstrated excellent recall (0.841 [95% CI: 
0.781–0.898]) and comparable accuracy (0.730 [95% CI: 0.673–
0.788]) to random forest. The support vector machine (SVM) and 
LightGBM were ranked third and fourth, respectively, with 
balanced AUCs (SVM: 0.766 [95% CI: 0.701–0.842]; LightGBM: 
0.735 [95% CI: 0.667–0.735]) and high recall values (SVM: 0.780 
[95% CI: 0.711–0.842]; LightGBM: 0.778 [95% CI: 0.714–0.842]). 
Figure  4 illustrates the calibration curves and decision-analytic 
curves (DACs) comparing the best model, random forest, with the 
baseline logistic regression model. Both models demonstrated good 
calibration, with predicted probabilities aligning closely with 
observed risks. However, the calibration curve for the random 
forest model (right panel) showed better agreement with the ideal 
diagonal line, particularly at higher predicted probabilities, 
suggesting stronger reliability. The DACs confirmed that the 
random forest model offers higher net benefits across all threshold 
probabilities when compared to logistic regression. This result 
highlights its superior utility in identifying clinical thresholds for 
decision-making and reducing unnecessary interventions.

Identification of the final model

The random forest model was identified as the optimal predictive 
model for this study. To evaluate feature importance and refine the 
model, SHAP values were applied iteratively to reduce three features 
at a time. The full 18-feature model achieved an AUC of 0.777 (95% 
CI: 0.702–0.830), whereas a simplified 3-feature model showed a 
significantly reduced AUC of 0.699 (95% CI: 0.626–0.772), with a 
statistically significant difference compared to the 18-feature model 
(∆AUC = 0.078, p = 0.031).

No significant differences in AUC were observed between models 
using 18, 15, and 12 features (∆AUC = 0.012, p = 0.623 and 
∆AUC = 0.023, p = 0.332, respectively). However, significant 
performance differences were noted when comparing models with 6 
features, 9 features, and 12 features, with all p values < 0.05.

Based on these findings, the random forest model using 12 
features emerged as the optimal balance between predictive 
performance and feature parsimony. The final 12-feature random 

forest model achieved an AUC of 0.754 (95% CI: 0.685–0.823). 
These results suggest that the 12-feature model retains strong 
predictive capability while reducing the overall feature count, 
enhancing interpretability and potential applicability in 
clinical settings.

Model explanation

SHAP analysis was employed to interpret the random forest 
model, highlighting feature contributions to ENAD predictions. The 
SHAP summary plot (Figure 5) shows ranked contributions based on 
average SHAP values. Probiotics had the highest contribution (mean 
SHAP value: 0.116), followed by antibiotic use duration and enteral 
nutrition type. Specialized or mixed EN formulas contributed more to 
risk than standard formulas.

Key predictive patterns emerged across multiple domains. 
Environmental factors showed that lower ambient temperatures 
(<20°C) increased diarrhea risk. Laboratory parameters demonstrated 
that high sodium levels (>145 mmol/L) significantly increased risk, 
while higher potassium levels (>5.5 mmol/L) were protective. Age 
showed positive correlation, with patients >60 years contributing 
more to predictions. CRP exhibited complex patterns where lower 
levels (<100 mg/L) increased risk while higher values appeared 
protective. Additional factors including PCT, infusion rate, warming 
devices, and early EN initiation (<6 days) showed smaller but 
relevant contributions.

Dependency plots (Figures 6A–C) illustrated the relationships 
between feature values and predictive outputs, providing insights 
into how individual features influenced model predictions. 
Individual patient analysis using SHAP force plots (Figure  7) 
further visualized feature contributions for each patient, where 
positive values (blue bars) enhanced predicted risk and negative 
values (red bars) reduced risk. This approach provided intuitive 
understanding of the model’s decision-making process at the 
individual level.

Discussion

This study explored the predictive factors and model 
development for assessing diarrhea risk in ICU patients receiving 

TABLE 2  Performance metrics (95% CI) of machine learning models for predicting enteral nutrition-associated diarrhea risk in critically ill ICU patients.

Model AUC (95% CI) Recall 
(95% CI)

Accuracy 
(95% CI)

F1Score 
(95% CI)

Precision 
(95% CI)

NPV (95% CI)

Logistic 0.762 (0.695–0.828) 0.784 (0.718–0.841) 0.735 (0.677–0.787) 0.817 (0.769–0.859) 0.853 (0.796–0.904) 0.784 (0.718–0.842)

SVM 0.766 (0.701–0.766) 0.780 (0.717–0.842) 0.748 (0.690–0.805) 0.830 (0.786–0.874) 0.885 (0.834–0.934) 0.754 (0.687–0.813)

Random Forest 0.777 (0.702–0.830) 0.936 (0.897–0.968) 0.743 (0.673–0.787) 0.835 (0.787–0.873) 0.754 (0.687–0.807) 0.677 (0.515–0.833)

XGBoost 0.737 (0.668–0.803) 0.841 (0.781–0.898) 0.730 (0.673–0.788) 0.812 (0.763–0.855) 0.786 (0.720–0.845) 0.569 (0.444–0.692)

LightGBM 0.735 (0.667–0.735) 0.778 (0.714–0.842) 0.695 (0.637–0.752) 0.781 (0.730–0.830) 0.783 (0.719–0.846) 0.778 (0.713–0.844)

Neural Network 0.757 (0.709–0.800) 0.793 (0.725–0.865) 0.715 (0.692–0.742) 0.800 (0.773–0.826) 0.814 (0.770–0.860) 0.814 (0.770–0.860)

AdaBoost 0.730 (0.656–0.800) 0.830 (0.765–0.886) 0.725 (0.659–0.779) 0.806 (0.756–0.861) 0.787 (0.718–0.846) 0.558 (0.433–0.683)

DT 0.732 (0.660–0.797) 0.905 (0.859–0.946) 0.726 (0.668–0.782) 0.821 (0.776–0.864) 0.752 (0.692–0.814) 0.596 (0.438–0.755)

Naive Bayes 0.742 (0.664–0.812) 0.246 (0.158–0.350) 0.752 (0.690–0.805) 0.378 (0.257–0.350) 0.810 (0.637–0.955) 0.746 (0.682–0.802)
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FIGURE 3

ROC curves of the 4 best-performing machine learning models. The figure illustrates the Receiver Operating Characteristic (ROC) curves of the four 
top-performing machine learning models—XGBoost, SVM, Random Forest, and LightGBM—that were applied to predict enteral nutrition-associated 
diarrhea in critical care patients. The true positive rate (sensitivity) is plotted against the false positive rate (1-specificity) for the test datasets of each 
model.

FIGURE 4

Comparison of calibration and decision impact curves between logistic regression and random forest models. This figure compares the calibration 
performance and clinical decision impact between the Logistic Regression and Random Forest models for predicting diarrhea risk in ICU patients 
receiving enteral nutrition. The calibration curves (top row) evaluate the alignment between predicted and actual probabilities, while the decision 
impact curves (bottom row) assess the clinical utility of these models across different decision thresholds.
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enteral nutrition (EN), ultimately identifying a random forest model 
as the optimal choice with superior predictive performance and 
clinical applicability. A total of 756 ICU patients were analyzed, 
among whom 217 (28.7%) experienced diarrhea as defined by 
standard criteria. The analysis revealed significant differences in 
clinical and therapeutic variables between the diarrhea and 
non-diarrhea groups. Probiotics, duration of antibiotic therapy, and 
the use of mixed feeding formulas emerged as the strongest 
predictors of diarrhea, as identified by SHAP analysis, highlighting 
their critical role in influencing patient outcomes. Probiotics had the 
highest mean SHAP contribution (0.116), indicating that they 
significantly increased predicted diarrhea risk, especially in cases of 
high usage (26, 27). Similarly, prolonged antibiotic therapy (>16 days 
in the diarrhea group vs. 10 days in the non-diarrhea group, 
p < 0.001) showed a clear positive association with increased risk, 
emphasizing the need for cautious antibiotic stewardship in ICU 
settings. Mixed feeding formulas were also more frequent in the 
diarrhea group (47.5% vs. 25.4%, p < 0.001), further contributing to 
diarrhea prediction in patients receiving EN (28). Beyond treatment-
related factors, specific environmental and laboratory parameters 
showed significant associations with diarrhea risk. Lower room 
temperatures (<20°C) were found to increase diarrhea predictions 
significantly, underlining the role of environmental interventions in 
managing risk for ICU patients (29). Serum sodium levels in the 
diarrhea group were slightly higher (140 mmol/L vs. 139 mmol/L, 
p = 0.048) and were associated with positive SHAP values, indicating 

its contribution to higher risk when sodium exceeded 
145 mmol/L. Potassium exhibited a non-linear pattern, with 
moderate levels (4–5 mmol/L) contributing positively to diarrhea 
risk, while higher levels (>5.5 mmol/L) had a protective effect (30). 
Interestingly, the age of the patients was another significant factor, 
with older age (≥60 years) correlating with higher risk, suggesting 
that this patient subgroup requires closer monitoring.

Clinical interpretation of key predictive factors reveals important 
insights for ENAD prevention. Analysis of dependency relationships 
identified critical determinants requiring targeted nursing 
interventions. Probiotics showed the strongest association with 
diarrhea risk, challenging conventional assumptions about their 
protective effects in critically ill patients. This counterintuitive finding 
likely reflects selection bias, where probiotics are preferentially 
administered to patients already at high gastrointestinal risk, or 
indicates inappropriate strain selection for ICU populations (31, 32). 
Prolonged antibiotic use demonstrated a clear dose–response 
relationship, with durations exceeding 30 days substantially 
increasing risk, emphasizing the critical importance of antibiotic 
stewardship to minimize gut dysbiosis (33). Mixed feeding 
formulations carried significantly higher risk than standard 
approaches, reflecting their complex gastrointestinal impact in 
vulnerable patients.

Environmental and physiological factors provided actionable 
clinical insights. Ambient temperature emerged as a modifiable risk 
factor, with temperatures below 20°C significantly increasing 

FIGURE 5

SHAP summary plot for nutritional risk-induced diarrhea in ICU patients. This figure shows the SHAP summary plot for the Random Forest model, 
highlighting the feature importance and individual contributions of the 12 most influential features in predicting diarrhea risk for ICU patients. Each row 
corresponds to a specific feature, and each dot represents a single patient. The x-axis shows the SHAP values, which measure the magnitude and 
direction of the feature’s effect on the prediction. The color of each dot indicates the actual feature value for the corresponding patient, with red 
representing higher values and blue representing lower values.
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diarrhea risk, while maintaining temperatures above 22°C proved 
protective. Electrolyte imbalances, particularly elevated sodium levels 
(>145 mmol/L), strongly predicted diarrhea development through 
hypernatremia-induced gut permeability and osmotic disruption 

(34). Potassium displayed complex patterns where moderate levels 
(4–5 mmol/L) increased risk, while higher concentrations 
(>5.5 mmol/L) were protective (35), suggesting optimal electrolyte 
balance is crucial for gastrointestinal stability.

FIGURE 6 (Continued)
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Inflammatory markers revealed nuanced relationships requiring 
careful clinical interpretation. Moderate CRP levels (~100 mg/L) 
posed greatest risk, while both low (<50 mg/L) and very high levels 
(>150 mg/L) were associated with reduced predictions (36), suggesting 
that mild-to-moderate inflammation disrupts gut integrity more than 
severe inflammatory states. Similarly, elevated PCT levels (>10 ng/
mL) increased risk due to systemic inflammation or sepsis, while 
lower levels had minimal impact (37). Age-related vulnerability was 
evident, with patients over 60 years showing markedly increased risk 
due to reduced gut motility, immune dysfunction, and comorbidity 
burden (38, 39).

Feeding-related factors highlighted opportunities for targeted 
interventions. Rapid feeding rates exceeding 50 mL/h correlated with 
increased risk due to gastrointestinal intolerance, while moderate 
rates (30–40 mL/h) had negligible effects (40). Delayed EN initiation 
beyond 8 days significantly increased risk through gut disuse effects, 
while early initiation (≤4 days) proved protective by maintaining gut 
integrity and reducing bacterial overgrowth. Warmer usage 
introduced slightly elevated risks, potentially through indirect 
metabolic or fluid balance effects, though this association requires 
further investigation. These findings emphasize evidence-based 
preventive strategies: maintaining optimal room temperatures 
(21–23°C), implementing enhanced electrolyte monitoring for 
sodium levels >142 mmol/L, questioning probiotic use in high-risk 
patients, advocating for antibiotic de-escalation when appropriate, 

using standard formulations when feasible, maintaining feeding rates 
below 50 mL/h for vulnerable patients, and prioritizing early EN 
initiation. These data-driven approaches highlight the multifactorial 
nature of diarrhea risk and support individualized patient 
management in ICU settings.

This prediction model of random forest developed in the present 
study could be implemented into clinical practise based on step-by-
step strategy to reduce and prevent enteral nutrition-associated 
diarrhea with higher clinical efficacy. A 12-feature model (AUC 
0.754; 95% CI 0.685–0.823) preserved predictive prowess while 
reducing to make the model feasible in clinical practice and 
incorporated into the intensive care information systems as an early 
warning score for temperature. Steps for the Implementation 
pathway: First hospitals may adopt Electronic Health Records derived 
decision support tools to extract the major predictive variables (e.g., 
duration of antibiotic use, probiotic use, enteral nutrition type 
ambient temperature and electrolyte levels) automatically; Second, 
the prediction results are divided (high, medium and low risk) for 
each patient with customized risk-stratified intervention 
recommendations (Figure 3) looking at SHAP value analysis; Third, 
real-time risk assessment to generate alerts could be built into mobile 
phone applications to allow healthcare providers to modulate their 
treatment plans in real-time; Last, preventive response protocols 
ought to be established in place to initiate chances measures for those 
who are at very high risk with high-risk strategies like 2-times 

FIGURE 6

(A–C) SHAP dependency plots for key features in predicting diarrhea risk. These figures present the SHAP dependency plots for several critical features 
in the Random Forest model, demonstrating how changes in feature values affect model predictions. Each plot reflects the relationship between a 
feature’s value (x-axis) and its SHAP value (y-axis) for individual patients. Points are color-coded to represent feature values across patients, with red 
indicating higher values and blue indicating lower values. Points are vertically stacked to show density and to reveal patient-specific SHAP value 
distributions.
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probiotic dosage, regulation of room temperature variation, 
monitoring electrolytes and rationalisation of antibiotics. Prospective 
validation of the model during implementation should refine 
algorithm performance, and training healthcare staff to understand 
and appropriately use model output should be ensured. This should 
be  noted, however this model is not meant to replace clinical 
experience but rather something that we  use as a companion in 
making the final decision on what is best for our patient (41). By 
incorporating this predictive model into the daily medical routine, 
clinical teams would allow to detect shortly at risk patients and 
intervene at time by providing specific preventive measures, slims 
down diarrhea prevalence significantly to reduce mechanical 
ventilation time, enhance enteral nutrition support and lastly 
prognosis with high-quality living among critically ill patients (42).

The developed RF prediction model provides significant 
opportunities for integration into daily ICU nursing practice through 
comprehensive workflow enhancement and clinical decision support 
systems. Early Risk Identification and Proactive Interventions: The 
12-variable model enables ICU nurses to identify patients at high risk 
for ENAD within the first 24–48 h of ICU admission, facilitating 
timely implementation of evidence-based preventive interventions. 
ICU nurses can utilize the model’s output to stratify patients into 
different ENAD risk categories (high, medium, low), which facilitates 
more proactive care approaches and prioritizes patients requiring 
intensive monitoring. For high-risk patients identified by the model, 
nurses can implement enhanced assessment protocols including 
hourly stool monitoring, detailed documentation of feeding 
tolerance, and early consultation with nutrition specialists 
when appropriate.

Enhanced nursing decision support for 
targeted interventions

The model’s SHAP-based feature importance provides nurses 
with actionable clinical insights to guide specific interventions. 
Based on the model’s predictions, nurses can make informed 
decisions regarding feeding regimen adjustments, such as reducing 
feeding rates below 50 mL/h for vulnerable patients or advocating 
for standard formulations over mixed feeding approaches when 
clinically appropriate. The model’s identification of critical 
electrolyte thresholds enables nurses to implement targeted 
monitoring protocols, with closer electrolyte monitoring 
particularly focused on sodium levels exceeding 142 mmol/L and 
potassium levels in the 4–5 mmol/L range. Environmental 
interventions, particularly maintaining optimal room temperatures 
(21–23°C), can be directly implemented by nursing staff based on 
the model’s environmental risk factors, representing a simple yet 
effective nursing intervention.

Electronic health record integration and 
clinical decision support

The model’s risk scoring can be integrated with electronic health 
record (EHR) systems to calculate risk scores during data entry, 
providing automated alerts on nursing dashboards and bedside 
monitors. This integration reduces cognitive burden while enhancing 
patient safety through real-time risk assessment capabilities that 
enable nurses to receive instant notifications when patient parameters 

FIGURE 7

SHAP force plot for internal validation. This figure visualizes the SHAP values for each patient in the internal validation set, showcasing the contributions 
of features to the Random Forest model’s predictions. The SHAP value (y-axis) represents the contribution magnitude of all features to the predictive 
score for each patient (x-axis). The positive contributions (blue) push the prediction toward a higher risk, whereas the negative contributions (red) 
reduce the predicted risk.
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change, allowing for immediate intervention adjustments. The system 
can generate evidence-based care protocols and nursing care plans 
tailored to individual risk profiles, supporting standardized yet 
personalized care approaches. Mobile application integration allows 
bedside nurses to access risk assessments and intervention 
recommendations in real-time, facilitating immediate clinical 
decision-making during patient care activities.

Professional role enhancement in 
interdisciplinary care

This predictive tool significantly empowers ICU nurses during 
interprofessional rounds by providing objective, data-driven insights 
that strengthen their clinical voice and decision-making authority. The 
model assists in clinical decision-making by providing nurses with 
additional risk assessment information during interprofessional 
rounds, which can inform discussions about probiotic use, antibiotic 
duration, and early consultation with dietitians when appropriate. 
Nurses can present concrete risk assessments and evidence-based 
intervention recommendations, reinforcing their critical role in risk 
prevention and patient advocacy. The model supports nursing 
documentation through structured risk assessment frameworks, 
improving the quality and completeness of nursing records while 
demonstrating the impact of nursing interventions on 
patient outcomes.

Implementation of this predictive tool contributes to nursing 
practice by providing additional data to support interventions, 
improving documentation through structured risk assessment, and 
helping identify patients who may benefit from closer monitoring 
(43). The model can be included in nursing education programs to 
help ICU nurses understand the various factors contributing to 
ENAD risk and develop competency in using predictive analytics for 
clinical decision-making. Additionally, the tool supports quality 
improvement efforts by enabling nurses to monitor prevention 
strategies, identify care patterns, and evaluate intervention 
effectiveness across patient populations. The comprehensive 
integration approach transforms the predictive model from a passive 
tool into an active component of nursing practice, enhancing both 
the quality of patient care and the professional development of ICU 
nursing staff. However, it should be  emphasized that this model 
serves as a clinical decision support tool to augment, not replace, 
nursing clinical judgment and expertise, with further validation and 
real-world testing needed to fully understand its practical utility and 
limitations in diverse ICU settings.

Limitations

Our study attempts to contribute to the understanding of risk 
factors potentially associated with diarrhea in ICU patients receiving 
enteral nutrition, though several limitations should be  carefully 
considered when interpreting these findings.

First, the retrospective design of the analysis may introduce 
selection bias, limiting our ability to draw conclusions about causal 
relationships concerning diarrheal risk and other identified factors. 
Additionally, the retrospective nature introduces potential 
documentation bias, as the completeness and accuracy of medical 

records may vary across different healthcare providers and time 
periods. Missing or inconsistently recorded data could systematically 
impact our model’s performance and generalizability.

Second, several key clinical variables that may significantly 
influence ENAD development were underrepresented or unavailable 
in our dataset. These include detailed information on enteral nutrition 
delivery methods (continuous vs. bolus feeding), specific feeding tube 
positioning and functionality, concurrent medication effects 
(particularly prokinetic agents, antibiotics, and proton pump 
inhibitors), detailed fluid balance records, and patient-specific factors 
such as pre-existing gastrointestinal conditions and fluctuations in 
illness severity during ICU stay. The absence of these variables may 
limit the model’s predictive accuracy and clinical applicability.

Third, even though the predictability provided by SHAP analysis 
is intuitive, it will likely not account for all the complex relationships 
and interactions among variables that may lead to misunderstandings 
about the genesis of these behaviors. Moreover, SHAP explanations, 
despite their mathematical rigor, require careful clinical 
contextualization to be  translated into actionable nursing 
interventions. The current analysis may oversimplify the multifactorial 
nature of ENAD development and could potentially mislead clinical 
decision-making if applied without appropriate clinical judgment 
and validation.

Fourth, the study is single-center, which limits the 
generalizability of our findings to other ICU cohorts or patient types. 
Multi-center studies are needed to validate the model in different 
contexts. Our findings may not apply to ICUs with different patient 
populations, feeding protocols, staffing patterns, or technological 
infrastructures. The institution-specific practices and patient 
demographics at our center may constrain the external validity of the 
predictive model.

Fifth, the practical implementation of real-time model 
deployment presents significant challenges that were not fully 
addressed in this study. These include integration with existing 
electronic health record systems, computational requirements for 
continuous prediction updates, staff training needs for model 
interpretation, and the development of standardized protocols for 
responding to model predictions. The feasibility and cost-effectiveness 
of implementing such a system in routine clinical practice require 
further investigation.

Sixth, the model was developed and validated exclusively within 
a Chinese ICU setting, which may significantly limit its applicability 
to international healthcare environments with different patient 
populations, clinical practices, and healthcare delivery systems. 
Cultural dietary patterns, genetic variations in drug metabolism, and 
population-specific comorbidity profiles could substantially influence 
ENAD development patterns and may not be adequately represented 
in our model. Furthermore, variations in ICU management protocols, 
nursing-to-patient ratios, enteral nutrition formulation standards, 
and antibiotic prescribing practices across different countries and 
healthcare systems could impact the model’s predictive performance 
when applied outside the Chinese context. International validation 
studies are essential to assess the model’s transferability across diverse 
populations and healthcare settings. Multi-center international trials 
involving ICUs from different continents would be  particularly 
valuable to evaluate whether the identified risk factors maintain their 
predictive value across varied clinical contexts, patient ethnicities, 
and institutional practices. Such studies should specifically examine 
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whether the relative importance of predictive variables (particularly 
environmental factors like room temperature, feeding protocols, and 
probiotic usage patterns) remains consistent across different 
healthcare infrastructures and clinical cultures. Additionally, the 
development of region-specific model adaptations or recalibration 
strategies may be  necessary to ensure optimal performance in 
non-Chinese ICU environments, requiring collaborative 
international research networks and standardized data collection 
protocols to facilitate meaningful cross-cultural validation 
and implementation.

Finally, there are factors of interest that were not included in our 
analysis, which may impact the outcomes (e.g., form and composition 
of EN formulations, fluid management strategies, and/or other 
co-morbidities). The temporal dynamics of patient conditions and 
treatment responses, which may significantly influence ENAD 
development, were not adequately captured in our static modeling 
approach. Even if our results are robust, prospective studies and 
clinical trials are required to support these results, as well as to 
implement them through more concrete interventions and guidelines 
that can be applied in daily clinical practice for improved patient 
outcomes. Future research should focus on external validation across 
multiple centers, prospective model testing, and the development of 
implementation frameworks that address the technological, 
educational, and workflow integration challenges identified in 
this study.

Conclusion

This study explored factors influencing diarrhea risk in ICU 
patients receiving enteral nutrition (EN) and developed a predictive 
model based on machine learning techniques. A total of 756 patients, 
including 217 who developed diarrhea, were analyzed, revealing key 
clinical and therapeutic factors such as probiotics, prolonged 
antibiotic use, mixed feeding formulas, and environmental and 
laboratory parameters (e.g., serum sodium, potassium, CRP, and 
room temperature) contributing to diarrhea risk. Nine machine 
learning algorithms were compared, using logistic regression as the 
baseline model. Random forest was identified as the most suitable 
model due to its balance between predictive performance and 
clinical applicability, achieving an AUC of 0.777 with acceptable 
recall, accuracy, and F1-score. The model was further refined using 
SHAP-based feature selection, retaining 12 essential features to 
optimize predictive power while enhancing interpretability. The 
SHAP analysis clarified the individual contributions and nonlinear 
relationships of predictive features, offering insights into risk 
dynamics under different clinical conditions. While the random 
forest model showed good performance in identifying diarrhea risk, 
further validation and prospective studies are needed to confirm 
these findings and enhance their applicability in varied 
clinical settings.
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SUPPLEMENTARY FIGURE 1

This figure displays the occurrence of diarrhea among patients with different 
comorbidity types. Chi-square test results (χ² = 11.01, p = 0.357) indicate no 
statistically significant correlation between comorbidity type and diarrhea 
occurrence. The data shows that patients with tumor-related diseases had 
the highest proportion of diarrhea (38.1%), followed by those with 

cardiovascular and cerebrovascular diseases (34.6%) and patients without 
complications (33.3%), while patients with respiratory and digestive system 
diseases had the lowest incidence of diarrhea (21.4%).

SUPPLEMENTARY FIGURE 2

SHAP summary plot for 18 key features identified by LASSO. This figure 
summarizes the SHAP analysis for the 18 features identified by LASSO 
regression as critical predictors of nutritional risk-induced diarrhea in ICU 
patients. Each dot represents a single patient, and the x-axis displays the 
SHAP value, indicating the magnitude and direction of each feature's 
contribution to the model's prediction. Features are ranked by their 
importance, with those having the highest mean absolute SHAP values 
appearing at the top. The color gradient represents the actual feature 
values for patients, where red denotes higher feature values and blue 
denotes lower feature values.
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