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Machine learning-based
predictive model for enteral
nutrition-associated diarrhea in
ICU patients and its nursing
applications

Xiaoying Liao?, Chunhua Li*, Qunyan Liu?!, Wang Xia®,
Zhenglin Liu?!, Jiamao Zhu?, Wei Hu?* and Qionghua Hong*

!Shangrao People's Hospital, Shangrao, China, ?School of Nursing, Jinzhou Medical University,
Jinzhou, China

Background: Enteral Nutrition-Associated Diarrhea (ENAD) is a common
complication in critically ill patients, significantly impacting clinical outcomes.
Accurately predicting the risk of ENAD is crucial for early intervention and
improving patient care.

Objective: This study aims to develop and validate a machine learning (ML)-
based risk prediction model for Enteral Nutrition-Associated Diarrhea (ENAD) in
ICU patients, and explore its application in nursing practice.

Method: This study was conducted from January 2023 to October 2024 in
the Comprehensive Intensive Care Unit (ICU) of a tertiary hospital in China,
retrospectively analyzing data from ICU patients receiving enteral nutrition.
LASSO regression was used for feature selection, and 9 machine learning (ML)
algorithms were evaluated. Model performance was assessed using metrics
such as the area under the receiver operating characteristic curve (AUC). The
SHapley Additive exPlanation (SHAP) method was employed to interpret feature
importance and determine the final model.

Results: Among the 9 ML models, the random forest (RF) model demonstrated
the highest discriminative ability, achieving an AUC (95% ClI) of 0.777 (0.702-
0.830). After dimensionality reduction based on feature importance analysis, a
simplified and interpretable RF model with 12 key predictors was established,
yielding an AUC (95% Cl) of 0.754 (0.685-0.823).

Conclusion: The RF-based predictive model developed in this study provides
a reliable and interpretable tool for identifying the risk of ENAD in ICU patients,
contributing to targeted nursing interventions and improved patient outcomes.
The research highlights the potential of machine learning in enhancing clinical
decision-making and personalized care.
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Introduction

Enteral nutrition (EN) is a vital supportive therapy for critically ill
patients in intensive care units (ICUs), providing essential nutritional
support and enhancing clinical outcomes (1, 2). However, enteral
nutrition-associated diarrhea (ENAD) remains a significant clinical
challenge, affecting approximately 20-30% of critically ill patients and
contributing to increased morbidity, extended hospital stays, and
substantial healthcare costs (3-5).

The pathogenesis of ENAD is multifactorial, involving complex
interactions between nutritional formulations, patient physiological
status, medications, and underlying medical conditions (6-8). Current
evidence identifies several key categories of ENAD risk factors that
require comprehensive assessment and monitoring. Patient-specific
factors include advanced age, severity of illness (as measured by
APACHE II or SOFA scores), pre-existing gastrointestinal disorders,
electrolyte
hyponatremia), and compromised immune status (9). Nutritional

hypoalbuminemia, imbalances (particularly
formulation-related factors encompass formula osmolality, fiber
content, protein concentration, fat composition, and the use of
specialized formulations such as elemental or semi-elemental
Mixed feeding

administration of different formula types, have been associated with

products. regimens, involving concurrent
increased gastrointestinal intolerance and diarrheal episodes (10).
Feeding delivery methods significantly influence ENAD development,
with continuous versus bolus feeding patterns, feeding rate
progression, gastric residual volume management, and feeding tube
positioning all contributing to risk stratification (11). Medication-
related factors include concurrent antibiotic therapy (particularly
broad-spectrum agents), proton pump inhibitors, prokinetic agents,
(12).

Environmental and care-related factors such as ICU temperature

and medications affecting gastrointestinal motility
control, stress levels, and nursing care protocols also contribute to
ENAD risk. Traditional risk assessment methods have been limited by
single-dimensional evaluation approaches, making them insufficient
for capturing the complex and dynamic nature of nutritional
disorders. Emerging precision medicine strategies are increasingly
developing comprehensive multidimensional assessment models (13).
These include machine learning-based predictive algorithms,
integrated assessments of clinical, biomarker, and genomic
information, and intelligent systems for dynamic real-time nutritional
risk monitoring. These innovative methodologies utilize advanced
algorithmic models to integrate extensive clinical datasets, enabling
rapid multidimensional information analysis, precise identification of
high-risk populations, personalized risk stratification, and early
warning interventions with enhanced accuracy in managing
nutritional disorders (14).

Machine learning (ML) has emerged as a powerful approach in
clinical prediction, offering superior capabilities in handling complex,
non-linear relationships within medical data (15, 16, 44). Recent
advances in ML algorithms have demonstrated remarkable potential
in developing predictive models across various medical domains,
including critical care, by leveraging advanced feature selection and
interpretation techniques (17, 18).

Despite the promising potential of machine learning in clinical
risk prediction, significant research gaps persist in developing
comprehensive risk assessment models for ENAD. Current studies are
predominantly constrained by limited sample sizes (typically <200
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cases), narrow feature selection (primarily focusing on basic
demographic indicators), and insufficient model interpretability (19).
These limitations critically impede the widespread clinical
implementation of predictive models. Moreover, traditional machine
learning approaches function as “black box” systems, lacking
transparency in key risk-driving factors and consequently
undermining clinicians’ confidence in model-derived decisions (20).
Therefore, there is an urgent need to develop more comprehensive,
interpretable, and high-precision ENAD risk prediction models. By
integrating multidimensional clinical data, such models could
ultimately enhance the accuracy and clinical utility of risk assessment
strategies (21).

Methods
Study population

This study retrospectively enrolled 756 critically ill patients who
received enteral nutrition (EN) support in the General Intensive Care
Unit (ICU) of Shangrao People’s Hospital between January 2023 and
October 2024. The sample size was calculated by integrating machine
learning model complexity with clinical requirements, following the
modified event-to-feature ratio (EPV) criterion proposed by Vabalas
et al. (45), which recommends EPV > 15 for nonlinear models (22).
To address potential overfitting risks associated with the observed
EPV of 8.2 (189 events/24 features), rigorous mitigation strategies—
including nested cross-validation (5 outer folds and 3 inner folds) and
regularization techniques—were implemented. Data were
systematically extracted from electronic medical records, ICU nursing
documentation, and laboratory databases, followed by feature
engineering to construct a structured dataset encompassing 24
predictive variables across five domains: demographics (age, sex),
disease severity (diagnosis category, APACHE II score, mechanical
ventilation duration), therapeutic interventions (vasopressor use,
sedation-analgesia protocols, antibiotic duration), biomarkers
(albumin, C-reactive protein, electrolytes), and EN parameters
(formula type, infusion rate, heater use). Inclusion criteria required:
(1) adults (>18 years) requiring mechanical ventilation for >24 h; (2)
standardized EN administration >48 h (compliant with ESPEN
guidelines); (3) APACHE II score >15 at ICU admission; and (4)
complete documentation of all 24 study variables, including time-
sensitive EN metrics. Exclusion criteria comprised: (1) chronic
gastrointestinal diseases or recent gastrointestinal surgery (<30 days);
(2) EN interruption <24 h or critical variable missingness >20%; (3)
end-stage conditions (life expectancy <72h); or (4) concurrent
participation in other nutritional intervention trials. Analysis of
comorbidities and diarrhea events did not show any statistically
significant association (y*> = 11.01; p = 0.357). Malignancies (38.1%)
were associated with the highest diarrhea incidence; next:
cardiovascular/cerebrovascular (34.6%) and patients without
comorbidities 32.8%; the lowest for respiratory and gastrointestinal
co-morbidities (21.4%) Adherence to multiple comorbidity groups
showed a high prevalence of diarrhea, even in the absence of
concomitant illness which implies that diarrhea development may not
be  related with
Supplementary Figure 1: the incidence of diarrhea based on

exclusively underlying  conditions.

comorbidity groups in the study population.
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Data collection and processing

This study developed predictive models utilizing multi-
dimensional data collected within 24h of ICU admission,
incorporating 24 initial variables across five domains: demographic
characteristics (gender, age), clinical features (disease categories,
APACHE 1I scores, mechanical ventilation days), therapeutic
interventions (renal replacement therapy, antibiotic days, prokinetics/
probiotics/ vasopressors/analgesics/sedatives administration), enteral
nutrition parameters (formula types, infusion rate, tube type, warmer
usage, initiation time), and laboratory indices (albumin, electrolytes,
inflammatory biomarkers). Using Rs caret package, 756 patients were
stratified by diarrhea outcomes and partitioned into a 70% training set
(n=529) and a 30% test set (n =227), with the latter stringently
isolated from the feature selection processes to prevent data leakage.
LASSO regression (10-fold cross-validation, A= “lambda.lse”
conducted exclusively in the training set identified 18 non-redundant
predictors (Figure 1), including age, APACHE II scores, antibiotic
duration, probiotics use, serum sodium levels, and enteral nutrition-
related procedural parameters. Continuous variables were expressed
as medians with interquartile ranges (IQR) and analyzed via Mann-
Whitney U tests, while categorical variables were presented as
frequencies (percentages) with y tests. Statistical significance was
defined as two-tailed p < 0.05, with precise p-values reported unless
below 0.001 (Table 1).

Definition of diarrhea

The diagnosis of enteral nutrition-associated diarrhea was
rigorously defined according to the ASPEN/ESPEN joint working
group criteria (23), requiring the concurrent presence of two criteria:

10.3389/fnut.2025.1584717

(1) abnormal stool consistency classified as Type >6 on the Bristol
Stool Form Scale (liquid or watery stool), and (2) altered defecation
frequency/volume, manifested as >3 bowel movements per day or
total stool output exceeding 500 g/24 h.

Operational definitions of nursing-related
variables

Mixed Feeding Formulas: Combination of two or more different
enteral nutrition products administered within a 24-h period,
including concurrent use of standard polymeric formulas with
specialized formulations (e.g., elemental, semi-elemental, or disease-
specific formulas). This nursing intervention was documented when
nurses administered different formula types during the same shift or
when feeding regimens were changed more than once daily based on
clinical assessment of tolerance or physician orders.

Probiotic use

Administration of live microorganisms (including single-strain or
multi-strain preparations) via enteral route as documented in nursing
medication administration records. This included both prophylactic
probiotics ordered for gastrointestinal protection and therapeutic
probiotics prescribed for existing digestive complications. Nursing
documentation captured the specific probiotic product, dosage,
frequency, and duration of administration.

Environmental temperature management

Nursing interventions to maintain and monitor ambient room
temperature in the ICU patient care environment. This included
documentation of room temperature measurements taken during
routine nursing assessments (typically every 4-8 h), adjustment of

o
o
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FIGURE 1

validation.

Feature coefficient trajectories along the lasso regularization path. This figure illustrates the feature coefficient trajectories of the LASSO regression
model fitted to predict enteral nutrition-associated diarrhea. The x-axis shows the log of the regularization parameter (log 4), while the y-axis
represents the standardized coefficients of the predictive features. The vertical red dashed line indicates the optimal A determined by 10-fold cross-
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Vertical dashed line indicates optimal lambda via 10-fold CV
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TABLE 1 Demographic and clinical characteristics of critical care patients nondiarrhea and diarrhea.

Characteristics Subgroups All patients Nondiarrhea Diarrhea p value*
(n = 756) (n =539) (n = 217)
Gender Male 531 (70.2) 371 (68.8) 160 (73.7) 0.213
Female 225 (29.8) 168 (31.2) 57 (26.3)
DX Infectious diseases 241 (31.9) 167 (31.0) 74 (34.1) 0.750
Trauma 155 (20.5) 113 (21.0) 42 (19.4)
Acute organ failure 207 (27.4) 146 (27.1) 61 (28.1)
Metabolic/toxic/special 49 (6.5) 34 (6.3) 15 (6.9)
Tumor 104 (13.8) 79 (14.7) 25(11.5)
RRT No 543 (71.8) 401 (74.4) 142 (65.4) 0.017
Yes 213 (28.2) 138 (25.6) 75 (34.6)
Prokinetics No 499 (66.0) 379 (70.3) 120 (55.3) <0.001
Yes 257 (34.0) 160 (29.7) 97 (44.7)
Probiotics No 414 (54.8) 363 (67.3) 51 (23.5) <0.001
Yes 342 (45.2) 176 (32.7) 166 (76.5)
Vasopressors No 172 (22.8) 133 (24.7) 39 (18.0) 0.058
Yes 584 (77.2) 406 (75.3) 178 (82.0)
Analgesics No 100 (13.2) 78 (14.5) 22 (10.1) 0.141
Yes 656 (86.8) 461 (85.5) 195 (89.9)
Sedatives No 108 (14.3) 88 (16.3) 20 (9.2) 0.016
Yes 648 (85.7) 451 (83.7) 197 (90.8)
EN Type TPF 158 (20.9) 121 (22.4) 37 (17.1) <0.001
SP 224 (29.6) 176 (32.7) 48 (22.1)
Peptison 76 (10.1) 61 (11.3) 15 (6.9)
Fresubin 58 (7.7) 44 (8.2) 14 (6.5)
Mixed feeding 240 (31.7) 137 (25.4) 103 (47.5)
Admin method EN specific pump 29 (3.8) 21(3.9) 8(3.7) 0.893
Non-specific pump 714 (94.4) 508 (94.2) 206 (94.9)
Syringe push 13 (1.7) 10 (1.9) 3(1.4)
Tube type Gastric tube 656 (86.8) 482 (89.4) 174 (80.2) 0.001
Nasoenteral tube 100 (13.2) 57 (10.6) 43 (19.8)
Warmer N 415 (54.9) 314 (58.3) 101 (46.5) 0.004
Yes 341 (45.1) 225 (41.7) 116 (53.5)
Age (years), M (IQR) 68.0 (57.0-76.0) 67.0 (56.5-75.0) 71.0 (60.0-78.0) 0.003
APACHE II score, M (IQR) 25.0 (19.0-29.0) 25.0 (19.0-29.0) 25.0 (20.0-28.0) 0.406
MVDays (days), M (IQR) 5.0 (1.2-10.2) 4.0 (1.0-8.9) 7.0 (2.0-14.8) <0.001
Abx (days), M (IQR) 12.0 (7.0-19.0) 10.0 (6.0-16.0) 16.0 (11.0-26.0) <0.001
Alb (g/L), M (IQR) 32.2 (28.8-36.1) 32.1(28.8-36.2) 32.4 (28.8-35.9) 0.895
K (mmol/L), M (IQR) 3.9 (3.5-4.3) 3.9 (3.5-4.3) 4.0 (3.5-4.5) 0.065
Na (mmol/L), M (IQR) 139.0 (136.0-143.7) 139.0 (135.2-143.0) 140.0 (136.0-144.1) 0.048
CRP (mg/L), M (IQR) 62.4(26.6-119.2) 68.2 (27.0-123.0) 55.7 (26.0-105.9) 0.152
PCT (ng/mL), M (IQR) 0.8 (0.2-3.4) 0.8 (0.2-3.7) 0.8 (0.2-2.9) 0.842
Rate (mL/h), M (IQR) 50.0 (45.0-55.0) 50.0 (45.0-55.0) 50.0 (45.0-55.0) 0.05
Temp (°C), M (IQR) 21.0 (20.0-22.0) 21.0 (20.0-22.0) 20.0 (20.0-22.0) <0.001
ENStart (days), M (IQR) 3.0 (2.0-5.0) 3.0 (2.0-5.0) 2.0 (1.0-5.0) 0.336

Abbreviations used in this study included: APACHE II, Acute Physiology and Chronic Health Evaluation II, range 0-71; RRT, renal replacement therapy; EN, enteral nutrition; CRP, C-reactive
protein; PCT, procalcitonin. Disease categories were classified as infectious diseases, trauma/injury, acute organ failure, metabolic/toxicological/special conditions, and oncological diseases.
Binary variables (0 = no, 1 = yes) included RRT, prokinetics, probiotics, vasopressors, analgesics, sedatives, warmer use, and the primary outcome of diarrhea. Gender was coded as 1 (male) or
2 (female). EN-related variables included formula types (TPE, SP, whole protein formula, peptide formula, and mixed feeding), administration methods (dedicated EN pump, non-dedicated
pump, syringe push), and tube types (gastric or post-pyloric).

Laboratory parameters included CRP, PCT, albumin, potassium, and sodium, all measured within standard ranges. Other continuous variables included age (years), mechanical ventilation
days, antibiotic therapy duration (days), EN initiation time (days from ICU admission), body temperature (°C), and EN administration rate (mL/h).
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environmental controls (heating/cooling systems), and use of
additional warming or cooling devices as nursing interventions to
maintain patient comfort and physiological stability.

Enteral nutrition feeding rate

The milliliters per hour (mL/h) of enteral formula delivered as
documented in nursing feeding administration records. This included
both continuous feeding rates (when feeds were administered over
24 h) and calculated hourly rates for intermittent feeding schedules.
Nursing assessment of feeding tolerance and rate adjustments based
on patient were  documented

response according  to

institutional protocols.

Antibiotic duration

Total consecutive days of systemic antibiotic therapy as
documented in nursing medication administration records from ICU
admission to discharge. This included all routes of administration
(intravenous, oral, enteral) and was calculated based on actual nursing
documentation of medication administration, regardless of changes
in specific antibiotic agents during the treatment course.

Model development and comparison

This study constructed predictive models using 18 variables
selected through LASSO regression. Logistic regression was used as
the baseline model to evaluate predictive performance, with
comparisons made to eight additional machine learning algorithms:
support vector machine (SVM), random forest, XGBoost, LightGBM,
neural network, AdaBoost, decision tree, and naive Bayes. The dataset
was partitioned into a training set and an independent validation set,
with strict isolation of the validation cohort to prevent overfitting.
Hyperparameter optimization for all models, including logistic
regression, was performed via grid search with 5-fold
cross-validation.

Model performance was evaluated comprehensively using area
under the ROC curve (AUC), recall, accuracy, F1-score, precision,
negative predictive values (NPV), and calibration metrics, with
logistic regression serving as the reference model. The validation
framework incorporated 5-fold and 10-fold cross-validation iterations
within the training cohort, followed by final evaluation on the
independent test set. Robust confidence intervals for all metrics were
derived through Bootstrap resampling (1,000 replicates). Logistic
regression provided a transparent baseline for comparison, facilitating
the interpretation of feature importance and benchmarking
performance gains achieved by additional machine learning
algorithms. Feature selection and model explanation.

The SHAP (SHapley Additive exPlanations) (24) framework was
integrated into the feature selection pipeline to objectively quantify
variable importance and address model interpretability. Following
LASSO-based preliminary screening, SHAP values were systematically
calculated across all candidate models to rank features by their
predictive contribution. A sequential backward elimination strategy
was implemented: features were iteratively pruned in descending
order of SHAP importance, while monitoring model performance via
AUC stability. The elimination process terminated when a statistically
significant decline in AUC (>5% relative reduction, p < 0.05 by

Delong’s test) (25) indicated critical feature loss. This approach
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ensured retention of the optimal feature subset that maximized
predictive capacity while minimizing redundancy.

Statistical analysis

This study implemented the entire analytical workflow using R
language (version 4.4.2). Methodological reliability was ensured
through strict data isolation protocols. Prior to feature selection,
stratified random sampling with 10 repeated splits was performed
using the createDataPartition() function from the caret package,
pre-partitioning the dataset into training (70%) and validation (30%)
sets. This rigorous partitioning guaranteed the validation set remained
completely isolated during the LASSO regression feature selection
process, effectively eliminating data leakage risks. Continuous
variables with skewed distributions were summarized using median
and interquartile range (IQR). Between-group comparisons employed
non-parametric tests: Mann-Whitney U test for two-group
comparisons and Kruskal-Wallis H test for multi-group comparisons.
Categorical variables were expressed as percentages (%) and analyzed
using Pearson’s y* test or Fisher’s exact test, as appropriate for expected
cell frequencies.

Results

A total of 756 patients were included in this study, with 217
(28.7%) developing ENAD. The median age was 68.0 years (IQR:
57.0-76.0), and the male-to-female ratio was approximately 7:3.
APACHE II scores were comparable between groups (median: 25.0
[IQR: 19.0-29.0], p = 0.406), indicating similar illness severity.

Significant differences were observed in treatment characteristics.
Patients with ENAD more frequently received renal replacement
therapy (34.6% vs. 25.6%, p = 0.017), prokinetics (55.3% vs. 29.7%,
p <0.001), probiotics (44.7% vs. 23.5%, p < 0.001), and sedatives
(90.8% vs. 83.7%, p = 0.016). Nasoenteric feeding tubes were more
common in the ENAD group (19.8% vs. 10.6%, p = 0.001), as was
mixed feeding (47.5% vs. 25.4%, p < 0.001). Clinical course parameters
differed significantly between groups. The ENAD group had longer
mechanical ventilation duration (7.0 vs. 4.0 days, p < 0.001) and
antibiotic therapy duration (16.0 vs. 10.0 days, p < 0.001). Serum
sodium levels were slightly higher in the ENAD group (140.0 vs.
139.0 mmol/L, p = 0.048), while other laboratory parameters showed
no significant differences. Notably, room temperature was lower in the
ENAD group (20.0°C vs. 21.0°C, p < 0.001) (Table 1). Details of the
study design are displayed in Figure 2.

Model development and performance
comparison

This study evaluated the predictive performance of nine
machine learning models for diarrhea risk prediction associated
with enteral nutrition (EN). Table 2 presents the performance
metrics for all nine models, while Figure 3 summarizes the
performance of the top four models based on the area under the
ROC curve (AUC). Feature contributions from the 18 variables are

visualized in the SHAP summary plot (Supplementary Figure 2).

frontiersin.org


https://doi.org/10.3389/fnut.2025.1584717
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Liao et al.

Random forest outperformed other models in most metrics and
emerged as the best predictive model. It achieved the highest AUC
(0.777 [95% CI: 0.702-0.830]), recall (0.936 [95% CI: 0.897-0.987]),

10.3389/fnut.2025.1584717

accuracy (0.787 [95% CI: 0.743-0.873]), and F1-score (0.835 [95%
CI: 0.787-0.874]). The logistic regression model, used as the
baseline approach, showed solid but comparatively lower

Data Preparation

780critically ill patients in General ICU
Shangrao People’s Hospital
January 2023 - October 2024

Patients excluded:
1. Chronic Gl diseases/recent Gl surgery (=30 days)|
2. EN interruption <24h or missing data >20%
3. End-stage conditions (life expectancy <72h)

756 patients eligible 1

4. Concurrent nutritional intervention trials

Data Collection
Electronic medical records + ICU
nursing documentation +
Laboratory databases

A 4

Development and comparison

lasso
1. Feature engineering
< 2. Quality control and validation

3. Missing data handling

70% 30%

4 v
Training Set Test Set (Isolated)
n =529 n=227
(Strict isolation from feature
selection)
Model development
v

of nine ML models

A 4

A

Top four best-performing ML models
based on AUC metrics

Random Forest model
with best predictive ability

A 4

Feature reducing
according to SHAP importance
Sequential backward elimination

DelLong’s method

Final RF model with 12 features

FIGURE 2

operator; ML, machine learning; RF, random forest.

Study flowchart showing patient recruitment, data preparation, feature selection using LASSO regression, machine learning model development and
validation for predicting enteral nutrition-associated diarrhea in ICU patients. ICU, intensive care unit; LASSO, least absolute shrinkage and selection
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performance with an AUC of 0.762 (95% CI: 0.695-0.828) and an
Fl-score of 0.817 (95% CI: 0.769-0.859). The second-best model
was XGBoost, which had a slightly lower AUC (0.737 [95% CI:
0.668-0.803]) but demonstrated excellent recall (0.841 [95% CI:
0.781-0.898]) and comparable accuracy (0.730 [95% CI: 0.673-
0.788]) to random forest. The support vector machine (SVM) and
LightGBM were ranked third and fourth, respectively, with
balanced AUCs (SVM: 0.766 [95% CI: 0.701-0.842]; LightGBM:
0.735 [95% CI: 0.667-0.735]) and high recall values (SVM: 0.780
[95% CI: 0.711-0.842]; LightGBM: 0.778 [95% CI: 0.714-0.842]).
Figure 4 illustrates the calibration curves and decision-analytic
curves (DACs) comparing the best model, random forest, with the
baseline logistic regression model. Both models demonstrated good
calibration, with predicted probabilities aligning closely with
observed risks. However, the calibration curve for the random
forest model (right panel) showed better agreement with the ideal
diagonal line, particularly at higher predicted probabilities,
suggesting stronger reliability. The DACs confirmed that the
random forest model offers higher net benefits across all threshold
probabilities when compared to logistic regression. This result
highlights its superior utility in identifying clinical thresholds for
decision-making and reducing unnecessary interventions.

Identification of the final model

The random forest model was identified as the optimal predictive
model for this study. To evaluate feature importance and refine the
model, SHAP values were applied iteratively to reduce three features
at a time. The full 18-feature model achieved an AUC of 0.777 (95%
CI: 0.702-0.830), whereas a simplified 3-feature model showed a
significantly reduced AUC of 0.699 (95% CI: 0.626-0.772), with a
statistically significant difference compared to the 18-feature model
(AAUC = 0.078, p = 0.031).

No significant differences in AUC were observed between models
using 18, 15, and 12 features (AAUC=0.012, p=0.623 and
AAUC=0.023, p=0.332,
performance differences were noted when comparing models with 6

respectively). However, significant
features, 9 features, and 12 features, with all p values < 0.05.

Based on these findings, the random forest model using 12
features emerged as the optimal balance between predictive

performance and feature parsimony. The final 12-feature random

10.3389/fnut.2025.1584717

forest model achieved an AUC of 0.754 (95% CI: 0.685-0.823).
These results suggest that the 12-feature model retains strong
predictive capability while reducing the overall feature count,
enhancing interpretability

and potential applicability in

clinical settings.

Model explanation

SHAP analysis was employed to interpret the random forest
model, highlighting feature contributions to ENAD predictions. The
SHAP summary plot (Figure 5) shows ranked contributions based on
average SHAP values. Probiotics had the highest contribution (mean
SHAP value: 0.116), followed by antibiotic use duration and enteral
nutrition type. Specialized or mixed EN formulas contributed more to
risk than standard formulas.

Key predictive patterns emerged across multiple domains.
Environmental factors showed that lower ambient temperatures
(<20°C) increased diarrhea risk. Laboratory parameters demonstrated
that high sodium levels (>145 mmol/L) significantly increased risk,
while higher potassium levels (>5.5 mmol/L) were protective. Age
showed positive correlation, with patients >60 years contributing
more to predictions. CRP exhibited complex patterns where lower
levels (<100 mg/L) increased risk while higher values appeared
protective. Additional factors including PCT, infusion rate, warming
devices, and early EN initiation (<6 days) showed smaller but
relevant contributions.

Dependency plots (Figures 6A-C) illustrated the relationships
between feature values and predictive outputs, providing insights
into how individual features influenced model predictions.
Individual patient analysis using SHAP force plots (Figure 7)
further visualized feature contributions for each patient, where
positive values (blue bars) enhanced predicted risk and negative
values (red bars) reduced risk. This approach provided intuitive
understanding of the model’s decision-making process at the
individual level.

Discussion

This study explored the predictive factors and model
development for assessing diarrhea risk in ICU patients receiving

TABLE 2 Performance metrics (95% CI) of machine learning models for predicting enteral nutrition-associated diarrhea risk in critically ill ICU patients.

Model AUC (95% CI) Recall Accuracy F1Score Precision NPV (95% ClI)
(95% Cl) (95% CI) (95% Cl) (95% Cl)

Logistic 0.762 (0.695-0.828) | 0.784 (0.718-0.841) 0.735 (0.677-0.787) 0.817 (0.769-0.859) 0.853 (0.796-0.904) 0.784 (0.718-0.842)

SVM 0.766 (0.701-0.766) | 0.780 (0.717-0.842) 0.748 (0.690-0.805) 0.830 (0.786-0.874) 0.885 (0.834-0.934) 0.754 (0.687-0.813)

Random Forest

0.777 (0.702-0.830)

0.936 (0.897-0.968)

0.743 (0.673-0.787)

0.835 (0.787-0.873)

0.754 (0.687-0.807)

0.677 (0.515-0.833)

0.812 (0.763-0.855)

0.786 (0.720-0.845)

0.569 (0.444-0.692)

0.781 (0.730-0.830)

0.783 (0.719-0.846)

0.778 (0.713-0.844)

0.800 (0.773-0.826)

0.814 (0.770-0.860)

0.814 (0.770-0.860)

0.806 (0.756-0.861)

0.787 (0.718-0.846)

0.558 (0.433-0.683)

XGBoost 0.737 (0.668-0.803) | 0.841 (0.781-0.898) 0.730 (0.673-0.788)
LightGBM 0.735 (0.667-0.735) | 0.778 (0.714-0.842) 0.695 (0.637-0.752)
Neural Network | 0.757 (0.709-0.800) = 0.793 (0.725-0.865) 0.715 (0.692-0.742)
AdaBoost 0.730 (0.656-0.800) | 0.830 (0.765-0.886) 0.725 (0.659-0.779)
DT 0.732 (0.660-0.797) | 0.905 (0.859-0.946) 0.726 (0.668-0.782)

0.821 (0.776-0.864)

0.752 (0.692-0.814)

0.596 (0.438-0.755)

Naive Bayes

0.742 (0.664-0.812)

0.246 (0.158-0.350)

0.752 (0.690-0.805)

0.378 (0.257-0.350)

0.810 (0.637-0.955)

0.746 (0.682-0.802)
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Comparison of calibration and decision impact curves between logistic regression and random forest models. This figure compares the calibration
performance and clinical decision impact between the Logistic Regression and Random Forest models for predicting diarrhea risk in ICU patients
receiving enteral nutrition. The calibration curves (top row) evaluate the alignment between predicted and actual probabilities, while the decision
impact curves (bottom row) assess the clinical utility of these models across different decision thresholds.
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enteral nutrition (EN), ultimately identifying a random forest model
as the optimal choice with superior predictive performance and
clinical applicability. A total of 756 ICU patients were analyzed,
among whom 217 (28.7%) experienced diarrhea as defined by
standard criteria. The analysis revealed significant differences in
clinical and therapeutic variables between the diarrhea and
non-diarrhea groups. Probiotics, duration of antibiotic therapy, and
the use of mixed feeding formulas emerged as the strongest
predictors of diarrhea, as identified by SHAP analysis, highlighting
their critical role in influencing patient outcomes. Probiotics had the
highest mean SHAP contribution (0.116), indicating that they
significantly increased predicted diarrhea risk, especially in cases of
high usage (26, 27). Similarly, prolonged antibiotic therapy (>16 days
in the diarrhea group vs. 10 days in the non-diarrhea group,
P <0.001) showed a clear positive association with increased risk,
emphasizing the need for cautious antibiotic stewardship in ICU
settings. Mixed feeding formulas were also more frequent in the
diarrhea group (47.5% vs. 25.4%, p < 0.001), further contributing to
diarrhea prediction in patients receiving EN (28). Beyond treatment-
related factors, specific environmental and laboratory parameters
showed significant associations with diarrhea risk. Lower room
temperatures (<20°C) were found to increase diarrhea predictions
significantly, underlining the role of environmental interventions in
managing risk for ICU patients (29). Serum sodium levels in the
diarrhea group were slightly higher (140 mmol/L vs. 139 mmol/L,
p = 0.048) and were associated with positive SHAP values, indicating

10.3389/fnut.2025.1584717

its contribution to higher risk when sodium exceeded
145 mmol/L. Potassium exhibited a non-linear pattern, with
moderate levels (4-5 mmol/L) contributing positively to diarrhea
risk, while higher levels (>5.5 mmol/L) had a protective effect (30).
Interestingly, the age of the patients was another significant factor,
with older age (>60 years) correlating with higher risk, suggesting
that this patient subgroup requires closer monitoring.

Clinical interpretation of key predictive factors reveals important
insights for ENAD prevention. Analysis of dependency relationships
identified critical determinants requiring targeted nursing
interventions. Probiotics showed the strongest association with
diarrhea risk, challenging conventional assumptions about their
protective effects in critically ill patients. This counterintuitive finding
likely reflects selection bias, where probiotics are preferentially
administered to patients already at high gastrointestinal risk, or
indicates inappropriate strain selection for ICU populations (31, 32).
Prolonged antibiotic use demonstrated a clear dose-response
relationship, with durations exceeding 30 days substantially
increasing risk, emphasizing the critical importance of antibiotic
stewardship to minimize gut dysbiosis (33). Mixed feeding
formulations carried significantly higher risk than standard
approaches, reflecting their complex gastrointestinal impact in
vulnerable patients.

Environmental and physiological factors provided actionable
clinical insights. Ambient temperature emerged as a modifiable risk

factor, with temperatures below 20°C significantly increasing
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SHAP summary plot for nutritional risk-induced diarrhea in ICU patients. This figure shows the SHAP summary plot for the Random Forest model,
highlighting the feature importance and individual contributions of the 12 most influential features in predicting diarrhea risk for ICU patients. Each row
corresponds to a specific feature, and each dot represents a single patient. The x-axis shows the SHAP values, which measure the magnitude and
direction of the feature’s effect on the prediction. The color of each dot indicates the actual feature value for the corresponding patient, with red
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diarrhea risk, while maintaining temperatures above 22°C proved
protective. Electrolyte imbalances, particularly elevated sodium levels
(>145 mmol/L), strongly predicted diarrhea development through
hypernatremia-induced gut permeability and osmotic disruption
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(34). Potassium displayed complex patterns where moderate levels
(4-5 mmol/L) risk, while higher concentrations
(>5.5 mmol/L) were protective (35), suggesting optimal electrolyte
balance is crucial for gastrointestinal stability.

increased
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(A—C) SHAP dependency plots for key features in predicting diarrhea risk. These figures present the SHAP dependency plots for several critical features
in the Random Forest model, demonstrating how changes in feature values affect model predictions. Each plot reflects the relationship between a
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Inflammatory markers revealed nuanced relationships requiring
careful clinical interpretation. Moderate CRP levels (~100 mg/L)
posed greatest risk, while both low (<50 mg/L) and very high levels
(>150 mg/L) were associated with reduced predictions (36), suggesting
that mild-to-moderate inflammation disrupts gut integrity more than
severe inflammatory states. Similarly, elevated PCT levels (>10 ng/
mL) increased risk due to systemic inflammation or sepsis, while
lower levels had minimal impact (37). Age-related vulnerability was
evident, with patients over 60 years showing markedly increased risk
due to reduced gut motility, immune dysfunction, and comorbidity
burden (38, 39).

Feeding-related factors highlighted opportunities for targeted
interventions. Rapid feeding rates exceeding 50 mL/h correlated with
increased risk due to gastrointestinal intolerance, while moderate
rates (30-40 mL/h) had negligible effects (40). Delayed EN initiation
beyond 8 days significantly increased risk through gut disuse effects,
while early initiation (<4 days) proved protective by maintaining gut
integrity and reducing bacterial overgrowth. Warmer usage
introduced slightly elevated risks, potentially through indirect
metabolic or fluid balance effects, though this association requires
further investigation. These findings emphasize evidence-based
preventive strategies: maintaining optimal room temperatures
(21-23°C), implementing enhanced electrolyte monitoring for
sodium levels >142 mmol/L, questioning probiotic use in high-risk
patients, advocating for antibiotic de-escalation when appropriate,
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using standard formulations when feasible, maintaining feeding rates
below 50 mL/h for vulnerable patients, and prioritizing early EN
initiation. These data-driven approaches highlight the multifactorial
nature of diarrhea risk and support individualized patient
management in ICU settings.

This prediction model of random forest developed in the present
study could be implemented into clinical practise based on step-by-
step strategy to reduce and prevent enteral nutrition-associated
diarrhea with higher clinical efficacy. A 12-feature model (AUC
0.754; 95% CI 0.685-0.823) preserved predictive prowess while
reducing to make the model feasible in clinical practice and
incorporated into the intensive care information systems as an early
warning score for temperature. Steps for the Implementation
pathway: First hospitals may adopt Electronic Health Records derived
decision support tools to extract the major predictive variables (e.g.,
duration of antibiotic use, probiotic use, enteral nutrition type
ambient temperature and electrolyte levels) automatically; Second,
the prediction results are divided (high, medium and low risk) for
with risk-stratified
recommendations (Figure 3) looking at SHAP value analysis; Third,

each patient customized intervention
real-time risk assessment to generate alerts could be built into mobile
phone applications to allow healthcare providers to modulate their
treatment plans in real-time; Last, preventive response protocols
ought to be established in place to initiate chances measures for those

who are at very high risk with high-risk strategies like 2-times
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SHAP force plot for internal validation. This figure visualizes the SHAP values for each patient in the internal validation set, showcasing the contributions
of features to the Random Forest model's predictions. The SHAP value (y-axis) represents the contribution magnitude of all features to the predictive
score for each patient (x-axis). The positive contributions (blue) push the prediction toward a higher risk, whereas the negative contributions (red)

reduce the predicted risk.

probiotic dosage, regulation of room temperature variation,
monitoring electrolytes and rationalisation of antibiotics. Prospective
validation of the model during implementation should refine
algorithm performance, and training healthcare staff to understand
and appropriately use model output should be ensured. This should
be noted, however this model is not meant to replace clinical
experience but rather something that we use as a companion in
making the final decision on what is best for our patient (41). By
incorporating this predictive model into the daily medical routine,
clinical teams would allow to detect shortly at risk patients and
intervene at time by providing specific preventive measures, slims
down diarrhea prevalence significantly to reduce mechanical
ventilation time, enhance enteral nutrition support and lastly
prognosis with high-quality living among critically ill patients (42).

The developed RF prediction model provides significant
opportunities for integration into daily ICU nursing practice through
comprehensive workflow enhancement and clinical decision support
systems. Early Risk Identification and Proactive Interventions: The
12-variable model enables ICU nurses to identify patients at high risk
for ENAD within the first 24-48 h of ICU admission, facilitating
timely implementation of evidence-based preventive interventions.
ICU nurses can utilize the model’s output to stratify patients into
different ENAD risk categories (high, medium, low), which facilitates
more proactive care approaches and prioritizes patients requiring
intensive monitoring. For high-risk patients identified by the model,
nurses can implement enhanced assessment protocols including
hourly stool monitoring, detailed documentation of feeding
tolerance, and early consultation with nutrition specialists
when appropriate.
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Enhanced nursing decision support for
targeted interventions

The model’s SHAP-based feature importance provides nurses
with actionable clinical insights to guide specific interventions.
Based on the model’s predictions, nurses can make informed
decisions regarding feeding regimen adjustments, such as reducing
feeding rates below 50 mL/h for vulnerable patients or advocating
for standard formulations over mixed feeding approaches when
clinically appropriate. The model’s identification of critical
electrolyte thresholds enables nurses to implement targeted
monitoring protocols,
particularly focused on sodium levels exceeding 142 mmol/L and

with closer electrolyte monitoring

potassium levels in the 4-5mmol/L range. Environmental
interventions, particularly maintaining optimal room temperatures
(21-23°C), can be directly implemented by nursing staff based on
the model’s environmental risk factors, representing a simple yet
effective nursing intervention.

Electronic health record integration and
clinical decision support

The model’s risk scoring can be integrated with electronic health
record (EHR) systems to calculate risk scores during data entry,
providing automated alerts on nursing dashboards and bedside
monitors. This integration reduces cognitive burden while enhancing
patient safety through real-time risk assessment capabilities that
enable nurses to receive instant notifications when patient parameters
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change, allowing for immediate intervention adjustments. The system
can generate evidence-based care protocols and nursing care plans
tailored to individual risk profiles, supporting standardized yet
personalized care approaches. Mobile application integration allows
bedside nurses to access risk assessments and intervention
recommendations in real-time, facilitating immediate clinical

decision-making during patient care activities.

Professional role enhancement in
interdisciplinary care

This predictive tool significantly empowers ICU nurses during
interprofessional rounds by providing objective, data-driven insights
that strengthen their clinical voice and decision-making authority. The
model assists in clinical decision-making by providing nurses with
additional risk assessment information during interprofessional
rounds, which can inform discussions about probiotic use, antibiotic
duration, and early consultation with dietitians when appropriate.
Nurses can present concrete risk assessments and evidence-based
intervention recommendations, reinforcing their critical role in risk
prevention and patient advocacy. The model supports nursing
documentation through structured risk assessment frameworks,
improving the quality and completeness of nursing records while
demonstrating the impact of nursing interventions on
patient outcomes.

Implementation of this predictive tool contributes to nursing
practice by providing additional data to support interventions,
improving documentation through structured risk assessment, and
helping identify patients who may benefit from closer monitoring
(43). The model can be included in nursing education programs to
help ICU nurses understand the various factors contributing to
ENAD risk and develop competency in using predictive analytics for
clinical decision-making. Additionally, the tool supports quality
improvement efforts by enabling nurses to monitor prevention
strategies, identify care patterns, and evaluate intervention
effectiveness across patient populations. The comprehensive
integration approach transforms the predictive model from a passive
tool into an active component of nursing practice, enhancing both
the quality of patient care and the professional development of ICU
nursing staff. However, it should be emphasized that this model
serves as a clinical decision support tool to augment, not replace,
nursing clinical judgment and expertise, with further validation and
real-world testing needed to fully understand its practical utility and

limitations in diverse ICU settings.

Limitations

Our study attempts to contribute to the understanding of risk
factors potentially associated with diarrhea in ICU patients receiving
enteral nutrition, though several limitations should be carefully
considered when interpreting these findings.

First, the retrospective design of the analysis may introduce
selection bias, limiting our ability to draw conclusions about causal
relationships concerning diarrheal risk and other identified factors.
Additionally, the
documentation bias, as the completeness and accuracy of medical

retrospective nature introduces potential
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records may vary across different healthcare providers and time
periods. Missing or inconsistently recorded data could systematically
impact our model’s performance and generalizability.

Second, several key clinical variables that may significantly
influence ENAD development were underrepresented or unavailable
in our dataset. These include detailed information on enteral nutrition
delivery methods (continuous vs. bolus feeding), specific feeding tube
positioning and functionality, concurrent medication effects
(particularly prokinetic agents, antibiotics, and proton pump
inhibitors), detailed fluid balance records, and patient-specific factors
such as pre-existing gastrointestinal conditions and fluctuations in
illness severity during ICU stay. The absence of these variables may
limit the model’s predictive accuracy and clinical applicability.

Third, even though the predictability provided by SHAP analysis
is intuitive, it will likely not account for all the complex relationships
and interactions among variables that may lead to misunderstandings
about the genesis of these behaviors. Moreover, SHAP explanations,
their
contextualization to be translated into actionable nursing

despite mathematical rigor, require careful clinical
interventions. The current analysis may oversimplify the multifactorial
nature of ENAD development and could potentially mislead clinical
decision-making if applied without appropriate clinical judgment
and validation.

Fourth, the which the

generalizability of our findings to other ICU cohorts or patient types.

study is single-center, limits
Multi-center studies are needed to validate the model in different
contexts. Our findings may not apply to ICUs with different patient
populations, feeding protocols, staffing patterns, or technological
infrastructures. The institution-specific practices and patient
demographics at our center may constrain the external validity of the
predictive model.

Fifth, the practical implementation of real-time model
deployment presents significant challenges that were not fully
addressed in this study. These include integration with existing
electronic health record systems, computational requirements for
continuous prediction updates, staff training needs for model
interpretation, and the development of standardized protocols for
responding to model predictions. The feasibility and cost-effectiveness
of implementing such a system in routine clinical practice require
further investigation.

Sixth, the model was developed and validated exclusively within
a Chinese ICU setting, which may significantly limit its applicability
to international healthcare environments with different patient
populations, clinical practices, and healthcare delivery systems.
Cultural dietary patterns, genetic variations in drug metabolism, and
population-specific comorbidity profiles could substantially influence
ENAD development patterns and may not be adequately represented
in our model. Furthermore, variations in ICU management protocols,
nursing-to-patient ratios, enteral nutrition formulation standards,
and antibiotic prescribing practices across different countries and
healthcare systems could impact the model’s predictive performance
when applied outside the Chinese context. International validation
studies are essential to assess the model’s transferability across diverse
populations and healthcare settings. Multi-center international trials
involving ICUs from different continents would be particularly
valuable to evaluate whether the identified risk factors maintain their
predictive value across varied clinical contexts, patient ethnicities,
and institutional practices. Such studies should specifically examine
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whether the relative importance of predictive variables (particularly
environmental factors like room temperature, feeding protocols, and
probiotic usage patterns) remains consistent across different
healthcare infrastructures and clinical cultures. Additionally, the
development of region-specific model adaptations or recalibration
strategies may be necessary to ensure optimal performance in
ICU
international research networks and standardized data collection

non-Chinese environments, requiring collaborative
protocols to facilitate meaningful cross-cultural validation
and implementation.

Finally, there are factors of interest that were not included in our
analysis, which may impact the outcomes (e.g., form and composition
of EN formulations, fluid management strategies, and/or other
co-morbidities). The temporal dynamics of patient conditions and
treatment responses, which may significantly influence ENAD
development, were not adequately captured in our static modeling
approach. Even if our results are robust, prospective studies and
clinical trials are required to support these results, as well as to
implement them through more concrete interventions and guidelines
that can be applied in daily clinical practice for improved patient
outcomes. Future research should focus on external validation across
multiple centers, prospective model testing, and the development of
implementation frameworks that address the technological,
educational, and workflow integration challenges identified in
this study.

Conclusion

This study explored factors influencing diarrhea risk in ICU
patients receiving enteral nutrition (EN) and developed a predictive
model based on machine learning techniques. A total of 756 patients,
including 217 who developed diarrhea, were analyzed, revealing key
clinical and therapeutic factors such as probiotics, prolonged
antibiotic use, mixed feeding formulas, and environmental and
laboratory parameters (e.g., serum sodium, potassium, CRP, and
room temperature) contributing to diarrhea risk. Nine machine
learning algorithms were compared, using logistic regression as the
baseline model. Random forest was identified as the most suitable
model due to its balance between predictive performance and
clinical applicability, achieving an AUC of 0.777 with acceptable
recall, accuracy, and F1-score. The model was further refined using
SHAP-based feature selection, retaining 12 essential features to
optimize predictive power while enhancing interpretability. The
SHAP analysis clarified the individual contributions and nonlinear
relationships of predictive features, offering insights into risk
dynamics under different clinical conditions. While the random
forest model showed good performance in identifying diarrhea risk,
further validation and prospective studies are needed to confirm
these findings and enhance their applicability in varied
clinical settings.
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SUPPLEMENTARY FIGURE 1

This figure displays the occurrence of diarrhea among patients with different
comorbidity types. Chi-square test results (y* = 11.01, p = 0.357) indicate no
statistically significant correlation between comorbidity type and diarrhea
occurrence. The data shows that patients with tumor-related diseases had
the highest proportion of diarrhea (38.1%), followed by those with
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