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Introduction: This study aims to investigate the relationship between nutrition-

related biomarkers, body composition, and oxidative stress indicators in the 

human aging process, so as to provide new insights for understanding individual 

aging differences and developing targeted intervention strategies. 

Methods: A total of 100 healthy participants aged 26–85 years were enrolled. 

Plasma concentrations of 9 amino acids and 13 vitamins were quantitatively 

analyzed, along with urinary oxidative stress markers 8-oxoGuo and 8-oxodGuo. 

Body composition was assessed using bioelectrical impedance analysis (BIA). 

A nutrition-based aging clock model was constructed using the Light Gradient 

Boosting Machine algorithm, with model performance evaluated by mean 

absolute error (MAE) and coefficient of determination (R2 ). 

Results: The younger group showed significantly lower levels of oxidative stress 

markers compared to the older group. Multiple amino acids and vitamins 

exhibited age-dependent changes in plasma concentrations. The developed 

aging clock model demonstrated high predictive accuracy, with an MAE of 

2.5877 and R2 of 0.8807. Correlation analyses further indicated associations 

between model-predicted biological age and physiological changes reflected 

in biochemical and physical examination indicators. 

Discussion: This study establishes a significant link between nutrition-related 

biomarkers, oxidative stress, body composition, and aging. The proposed model 

serves as a reliable tool for predicting biological age and offers a scientific basis 

for future research on aging mechanisms and personalized interventions. 

KEYWORDS 

the nutrition-related aging clock, bioelectrical impedance analysis, aging biomarkers, 
oxidative stress markers, interindividual aging variation 
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1 Introduction 

In response to the challenges posed by an aging population, 
researchers have focused on developing aging biomarkers for health 
identification and assessment (1). In recent years, aging clocks 
constructed based on various biological markers have emerged, 
aiming to predict an individual’s biological age and monitor the rate 
of aging (2). Among the existing aging clocks, those based on DNA 
methylation (3) and plasma proteome (4) are particularly notable. 

Nutrition refers to the process by which the body meets its 
physiological needs through the intake and metabolism of food. 
This includes both essential macronutrients (such as proteins, 
fats, and carbohydrates) and micronutrients (such as vitamins 
and minerals) (5). Nutrition involves not only caloric intake but 
also the balance of many biomolecules essential for maintaining 
physiological function, enhancing health, and preventing diseases 
(6). Nutritional assessment is a comprehensive process that 
analyzes nutrition-related health issues by collecting data on 
food intake and metabolism, alongside biochemical indicators, 
physical examination results, and other relevant information 
(7–9). Nutritional science plays a crucial role in promoting healthy 
aging. Healthy aging not only refers to extending lifespan but 
also, more importantly, to increasing the number of years of 
healthy life expectancy (10). The adequacy of nutrition directly 
influences the health condition and quality of life of the elderly 
(11). Poor nutritional status in the elderly increases the risk 
of aging-related chronic diseases. Deficiencies in vitamin B6, 
B12, and folic acid, for instance, are associated with cognitive 
decline and Alzheimer’s disease (5, 7, 12). Therefore, nutritional 
status significantly impacts the aging process, and developing a 
nutrition-related aging assessment clock is essential for a deeper 
understanding of aging. 

Plasma levels of amino acids and vitamins are closely related 
to an individual’s nutritional and health status. Tappia et al.’s 
research indicates that specific vitamins, such as vitamin C and 
vitamin B6, may help prevent cardiovascular diseases in high-risk 
individuals (13). Bioelectrical impedance analysis (BIA), a non-
invasive technology, can help identify age-related nutritional and 
metabolic changes, including key indicators such as basal metabolic 
rate (BMR), muscle mass, total body water, and extracellular water 
(14, 15). Whether these indicators could contribute to the aging 
clock establishment remain unknown. 

Oxidative stress is closely linked to nutritional status. The 
free radical theory of aging is one of the most widely known 
aging theories, with oxidative stress being a key factor in 
cellular damage and aging (16, 17). Recent research indicates 
that 8-oxoguanosine (8-oxoGuo) and 8-oxodeoxyguanosine (8-
oxo-dGuo) are significant indicators of oxidative stress and aging 
(18–23). Canfield et al.’s research suggests that reducing oxidative 
stress may contribute to the positive correlation between free 
amino acid levels and lifespan (24). Good nutritional status helps 
neutralize oxidative stress, supports neuroplasticity, and positively 
impacts recovery outcomes after a stroke. Conversely, malnutrition 
or poor nutritional status can exacerbate oxidative stress, leading to 
inflammatory responses and damaging health (25). Therefore, we 
included the oxidative stress markers 8-oxoGuo and 8-oxo-dGuo 
in urine as part of the aging clock related to nutritional status. 

This study aims to develop an aging clock based on nutrition-
related biomarkers, including amino acids and vitamin levels 
in plasma, body composition, and oxidative stress markers in 
urine, to assess biological age in individuals. This model has the 
potential to reveal variations in aging rates between individuals. 
The construction of this model has significant implications for 
designing tailored aging intervention strategies and oers new 
perspectives on the biological basis of aging. 

2 Materials and methods 

2.1 Study design and study participants 

The Ethics Committee of Beijing Hospital approved the 
protocol for this study (Approval No. 2019BJYYEC-054-02), and 
the study was conducted in accordance with the Declaration of 
Helsinki. Each participant provided a signed informed consent 
form after receiving comprehensive information about the study’s 
objectives, methods, and potential risks. The PENG ZU cohort 
is a health aging cohort study covering populations from seven 
major regions of China (26). We randomly selected 100 healthy 
volunteers, aged 26–85 years, for this study. The participants were 
from various age groups. Individuals with serious chronic illnesses 
or other health issues that could aect the research results were 
excluded. To ensure that the sample accurately represented a broad 
range of age demographics and genders, we employed random 
sampling techniques. The study outline is shown in Figure 1. 

2.2 Biomarker assessment 

2.2.1 Plasma sample analysis 
The quantitative analysis of 9 amino acids and 13 vitamins 

was performed using liquid chromatography-tandem mass 
spectrometry (LC-MS/MS). The measured amino acids 
include ethanolamine, L-serine, L-proline, L-cystine, taurine, 
L-aspartic acid, L-arginine, L-histidine, and 1-methyl-L-
histidine. The vitamins include vitamin B1, B2, B3, B5, B6, 
B7, 5-methyltetrahydrofolate, vitamin A, D2, D3, E, K1, and MK4. 

2.2.2 Urine sample analysis 
The levels of 8-oxodGuo and 8-oxoGuo in the urine were 

measured using liquid chromatography-tandem mass spectrometry 
(LC-MS/MS). The urine creatinine concentration was determined 
using the Jae reaction method with a 7,600 series automatic 
biochemical analyzer (Hitachi, Japan), following the manufacturer’s 
instructions. To determine the levels of oxidative stress, we used 
the 8-oxodGuo/Cre and 8-oxoGuo/Cre ratios. Urine samples were 
promptly preserved at −80 ◦C after being collected midstream in 
the morning. Prior to analysis, the samples were thawed, warmed 
in a 37 ◦C water bath for 5 min, centrifuged at 7,500 g for 
5 min, and the supernatant was collected (27). To each 200 µL 
of supernatant, 200 µL of working solution (70% methanol, 30% 
water, 0.1% formic acid, 5 mmol/L ammonium acetate) was added, 
along with 10 µL of internal standard 8-oxo-[15N5]dGuo and 10 µL 
of internal standard 8-oxo-[15N2 

13C1]Guo (both at a concentration 
of 240 pg/µL). The mixture was incubated at 37 ◦C for 10 min and 
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FIGURE 1 

The study outline (Figure created with BioRender.com). 

then centrifuged at 12,000 g for 15 min. The samples were separated 

using an Agilent 1290 UPLC connected to an Agilent 6490 triple 

quadrupole mass spectrometer (MS/MS) for detection. 

2.2.3 Biochemical parameters 
In addition to the aforementioned biomarker analyses, we 

conducted routine biochemical parameter tests on plasma and 
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urine samples, quantitatively analyzing a range of metabolites to 
comprehensively assess participants’ health status. 

2.3 BIA 

Body composition was assessed using the BCA-2A bioelectrical 
impedance analyzer (BIA; Tsinghua Tongfang Co., Ltd., Beijing, 
China). The device operates at frequencies of 5, 50, 100, 250, and 
500 kHz, collecting comprehensive bioimpedance data. A set of 
eight-point contact electrodes was used for six-channel whole-
body testing, ensuring measurement accuracy and uniformity. The 
primary criteria measured included basal metabolic rate, muscle 
mass, total body water, extracellular water, intracellular water, 
fat mass, and visceral fat. Participants were instructed to stand 
barefoot on the electrode plate of the equipment, with their arms 
abducted at approximately 30 degrees in a standard posture. Intense 
exercise was prohibited before the assessment. Qualified personnel 
conducted all measurements following established procedures to 
ensure consistency and reliability. 

2.4 Developing an aging clock model 
using machine learning approaches 

This study employed a systematic approach to construct a 
nutrition-related aging clock model for predicting biological age. 
The dataset was randomly divided into a training set (70%) 
and a test set (30%) to evaluate the model’s generalization 
ability. Five machine learning algorithms were selected for model 
construction: gradient boosting, LASSO, Light Gradient Boosting 
Machine (LightGBM), random forest, and XGBoost. All models 
were implemented using machine learning packages such as caret 
and XGBoost in R software (version 4.4.1). 

To enhance the interpretability and predictive accuracy of the 
models, we performed feature selection to identify features that 
significantly contribute to predictions. Additionally, we optimized 
the models by adjusting parameters such as the number of trees, 
depth, and learning rate. Using cross- validation and grid search, 
we determined the optimal parameters to achieve the lowest root 
mean square error. The optimized models were then used to 
predict the training set, test set, and entire dataset using the predict 
function. Model performance was evaluated using the coeÿcient 
of determination (R2) and mean absolute error (MAE), where R2 

measures explanatory power and MAE reflects predictive accuracy. 
In this study, we defined the age dierence (AgeDi) as 

the dierence between predicted age and actual age. The locally 
weighted scatterplot smoothing (LOESS) method was applied 
to regress AgeDi against age, resulting in the corrected age 
dierence (cAgeDi): cAgeDi = AgeDi–LOESS (AgeDi∼Age) 
(28, 29). This method quantifies the predictive bias of the 
model and categorizes the study subjects into subgroups with 
dierent aging rates based on the quartiles of cAgeDi, providing 
a new perspective for understanding interindividual dierences 
in aging. Study participants were categorized into subgroups 
with dierent aging rates based on the quartiles of cAgeDi. 
Those with cAgeDi values in the bottom quartile (< Q1) 
were classified as the “decelerated aging” group; those in the 

middle two quartiles (Q1 ≤ cAgeDi ≤ Q3) as the “normal 
aging” group; and those in the top quartile (> Q3) as the 
“accelerated aging” group. 

2.5 Statistical analysis 

The statistical analysis for this study, including the 
establishment of the nutrition-related aging clock, was carried 
out as described in section “2.4 Developing an aging clock model 
using machine learning approaches.” Data were processed using 
SPSS 23.0 (SPSS Inc., Chicago, IL, United States) and GraphPad 
Prism 8 (GraphPad Inc., San Diego, CA, United States). First, the 
normality of the data was assessed using the Shapiro-Wilk test. If 
the data did not meet normality, the Kruskal-Wallis H test and 
Dunn’s post hoc comparison were employed. Homogeneity of 
variance was tested using Levene’s test to satisfy the assumptions of 
ANOVA; if not met, Welch’s ANOVA was used. After identifying 
significant dierences between groups, multiple comparisons 
were conducted using the least significant dierence or Tamhane’s 
T2 method. Additionally, the correlation between variables 
was analyzed using Pearson and Spearman rank correlation 
coeÿcients. The level of statistical significance was set at 
P < 0.05. 

3 Results 

3.1 Characteristics of the studied cohort 

This study included a healthy population across dierent 
age groups to construct a nutrition-related aging clock (Table 1 
and Supplementary Table 1). We stratified the participants into 
four age groups based on the median (range): the young group 
[31 years (26–33)], the young and middle-aged group [45 years 
(42–48)], the middle-aged group [59 years (56–63)], and the senior 
group [77.5 years (73–85)]. The sex ratio in each group was 
relatively equitable, with men constituting between 43.75% and 
50.00%. No notable variations in body mass index (BMI) were 
found across the groups (P = 0.551). Dierences in drinking 
and smoking behaviors among age groups were not statistically 
significant (P = 0.588 and P = 0.555). However, significant 
disparities in educational attainment and marital status were 
observed (P < 0.01 and P < 0.001), reflecting sociodemographic 
dierences across age cohorts. Psychological stress was more 
common in the young and middle-aged cohorts (P < 0.001), 
although drinking habits showed no significant variation across 
the groups (P = 0.206). Vegetable eating habits and exercise 
habits showed a statistically significant dierence across age groups 
(P < 0.001). Anthropometric measures and functional assessments 
revealed physiological changes associated with aging, including 
significant dierences in grip strength (P < 0.01) and the light 
response test (P < 0.001). Participants also underwent BIA, which 
measured key parameters such as total body water, muscle mass, 
extracellular water, intracellular water, fat mass, and visceral fat, 
among 35 others (Supplementary Table 2 and Supplementary 
Figure 1), which provided valuable information for assessing body 
composition and nutritional status. 
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TABLE 1 Characteristics of study participants. 

Baseline characteristics Young group Young and 
middle-aged 

group 

Middle-aged 
group 

Senior group P-value 

Number of cases 28 30 26 16 NA 

Age (year) 31 (26–33) 45 (42–48) 59 (56–63) 77.50 (73–85) NA 

Sex: male, n (%) 13 (46.43%) 15 (50.00%) 12 (46.15%) 7 (43.75%) NA 

Weight 65.85 (42.2–92.3) 70.20 (53.70–104.30) 66.10 (49.60–86.20) 57.85 (46.00–79.10) 0.064 

Height 1.686 ± 0.067 1.687 ± 0.077 1.653 ± 0.067 1.595 ± 0.086 < 0.01 

BMI (kg/m2) 23.32 (16.08–30.49) 23.89 (19.49–32.09) 24.56 (19.81–30.20) 22.67 (17.53–27.58) 0.551 

Highest education, n (%) < 0.01 

Primary or below 0 (0.00) 0 (0.00) 1 (4.00) 1 (6.25) NA 

Middle school or high school 0 (0.00) 0 (0.00) 5 (20.00) 5 (31.25) NA 

College degree or above 28 (100) 30 (100) 19 (76.00) 10 (62.50) NA 

Marital status, n (%) < 0.001 

Spinsterhood 10 (35.71) 1 (3.33) 1 (4.00) 0 (0.0) NA 

Married 18 (64.29) 29 (96.67) 24 (96.00) 16 (100.0) NA 

Psychological stress: yes, n (%) 19 (67.86) 21 (70.00) 8 (30.77) 2 (12.50) < 0.001 

Vegetable eating habits, n (%) < 0.001 

Occasionally 4 (14.29) 0 (0.0) 3 (11.54) 0 (0.0) NA 

Often 9 (32.14) 15 (50.00) 7 (26.92) 2 (12.50) NA 

Every day 15 (53.57) 15 (50.00) 16 (61.54) 14 (87.50) NA 

Physical exercise habits: yes, n (%) 10 (35.71) 18 (62.07) 23 (88.46) 14 (87.50) < 0.001 

Left hand grip strength 29.45 (18.70–57.30) 32.80 (20.70–58.90) 30.83 (21.70–47.60) 23.72 (12.30–39.10) < 0.01 

Right hand grip strength 33.90 (21.60–62.10) 36.45 (23.20–64.20) 30.60 (22.50–50.60) 22.05 (15.70–41.30) < 0.01 

Light reaction test (hand) 0.23 (0.19–0.37) 0.26 (0.20–0.49) 0.29 (0.20–0.82) 0.41 (0.21–1.02) < 0.001 

Light reaction test (foot) 0.30 (0.21–0.44) 0.29 (0.22–0.49) 0.32 (0.21–0.60) 0.47 (0.28–0.95) < 0.001 

Data are expressed as mean ± standard deviation for variables with normal distribution, as the median (minimum–maximum) for variables with non-normal distribution, and as n (%) for 
categorical variables. BMI, body mass index. 

3.2 Differential analysis of plasma amino 
acids and vitamins in four age groups, as 
well as biomarkers in urine samples 

In this study, we compared the levels of 9 amino acids and 13 
vitamins in plasma across four age groups, as well as the levels of 
oxidative stress markers 8-oxoGuo and 8-oxo-dGuo in the urine, to 
explore the physiological dierences among the groups (Figure 2). 

A comparison of amino acid and vitamin markers that exhibit 
significant dierences across age groups is illustrated (Figure 2A). 
We evaluated the influence of age on the concentrations of 
these biomarkers. The results indicated that the concentrations 
of vitamins A, B1, B5, E, and L-cystine progressively increased 
with age, with the elderly showing the highest concentrations, 
particularly of L-cystine and vitamin B5. This indicated significant 
dierences between the younger and senior groups (P < 0.001). 
Conversely, the concentrations of 1-methyl-L-histidine, L-aspartic 
acid, MK4, and L-serine decreased with age, reaching their 
lowest values in the senior group. In addition, through Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis, we found several significantly enriched metabolic 
pathways, such as the pantothenate and CoA biosynthesis pathway, 
the vitamin B1 (thiamine) metabolism pathway, and the cysteine 

and methionine metabolism pathway (Supplementary Figure 2B). 
These results suggest that significant changes in nutrition-related 
biomarkers are closely associated with age-related physiological 
changes. The relevant metabolic processes may play a crucial 
role in the construction of nutrition-related aging clocks, further 
supporting the significance of energy metabolism and oxidative 
stress in the aging process. The Kruskal-Wallis test and Dunn’s 
post hoc test results (Figure 2B) showed that the ratios of 
8-oxoGuo/Cre and 8-oxodGuo/Cre in the young group were 
significantly lower than those in the middle-aged and elderly 
groups, especially the 8-oxoGuo/Cre ratio, which showed a 
markedly reduced level (P < 0.001). In addition, significant 
dierences were observed between the middle-aged and elderly 
cohorts, indicating that oxidative stress marker concentrations 
increase significantly with age, underscoring their importance in 
the aging processes. 

3.3 Constructing a nutritional aging 
clock based on machine learning models 
of blood amino acids and vitamins 

In this study, we constructed and validated a nutrition-related 
aging clock model based on amino acids and vitamins detected 
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FIGURE 2 

Analysis of biomarker differences in urine and blood samples across the four age groups. (A) This panel presents a comparative analysis of amino 
acid and vitamin biomarkers, with significant differences between age groups. (B) This box plot displays the change of urinary oxidative stress 
markers 8-oxodGuo/Cre and 8-oxoGuo/Cre ratios with age. Data are presented as median (interquartile range). For variables with normal 
distribution and homogeneity of variance, one-way analysis of variance (ANOVA) was performed, followed by Tukey’s HSD test for post hoc 
comparisons. For variables that did not meet the assumptions of normality or homogeneity of variance, the Kruskal-Wallis test was used, followed by 
Dunn’s test with Bonferroni correction for post hoc comparisons. A significance level of P < 0.05 was applied. All statistical analyses were conducted 
using SPSS version 23.0. Asterisks indicate statistical significance: ***P < 0.001, **P < 0.01, and *P < 0.05. 

in plasma, using five machine learning algorithms: gradient 
boosting, LASSO, LightGBM, random forest, and XGBoost, to 
predict biological age and evaluate their predictive performance 
(Figure 3A). Each subplot depicts the predicted results of each 
individual algorithm, with blue dots representing the scatter 
distribution of projected ages vs. actual ages and the red line 
indicating the ideal prediction reference line. The LightGBM model 
demonstrated exceptional performance, with an R2 of 0.8166 and 
MAE of 3.122 years, demonstrating high predictive accuracy and 
minimal error. 

The LightGBM model proficiently predicts biological age, 
surpassing other models. Using the corrected age dierence 
(cAgeDi), we classified the study participants into three 

subgroups: accelerated aging, normal aging, and decelerated 
aging (Figure 3B), oering a novel perspective on understanding 
interindividual variations in aging and potentially facilitating 
the identification of relevant biomarkers. We then performed a 
feature significance analysis of the LightGBM model to identify 
the amino acids and vitamins that most significantly influence 
the prediction of biological age. The feature significance plot 
(Figure 3C) showed that L-cystine was the most significant 
feature, with a gain value of 0.46, emphasizing its crucial 
role in predicting biological age. The gain values for vitamin 
B1 and vitamin E were 0.12 and 0.09, respectively, while 
vitamins B3, MK4, and ethanolamine also had predictive 
value. 
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FIGURE 3 

Establishment of an aging clock based on key vitamins and amino acids. (A) A nutritional aging clock model was developed using plasma amino 
acids and vitamins, along with five machine learning algorithms—gradient boosting, LASSO, LightGBM, random forest, and XGBoost—to forecast 
biological age and evaluate their predictive efficiency. Each subplot shows the algorithm’s predicted results, with blue dots indicating the scatter 
distribution of projected ages against actual ages, and red lines representing the optimal prediction reference line. (B) Based on cAgeDiff, the study 
participants were divided into three subgroups: accelerated aging, normal aging, and decelerated aging. (C) The LightGBM model identified amino 
acids and vitamins that substantially affect biological age prediction through feature importance analysis. 

3.4 Integration of blood amino acids and 
vitamins, body composition, and urinary 
oxidative stress biomarkers: 
Constructing a multidimensional 
nutrition-related aging clock 

To improve the predictive accuracy of the model and gain a 

deeper understanding of the aging process, we comprehensively 

integrated plasma amino acids and vitamins, body composition 

(measured by BIA), and urinary oxidative stress markers (Figure 4). 
The predictive performance of each model is shown (Figures 4A, 
B). The LightGBM model performed the best, with an R2 of 
0.8807 and an MAE of 2.5877. The random forest model also 
performed well, with an R2 of 0.8725 and an MAE of 4.3555. The 
gradient boosting model exhibited average predictive capability, 
with an R2 of 0.7881 and an MAE of 5.4129. The XGBoost model 
demonstrated significantly lower prediction error than Gradient 
Boosting (MAE reduced from 5.4129 to 3.0842 years), with a 
comparable R2 of 0.794. Although the LASSO model (Figure 4B) 
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demonstrated high accuracy (R2 = 0.9360, MAE = 3.14 years), its 
feature sparsity may impact generalizability to diverse populations. 
Consequently, we determined that LightGBM is the most 
appropriate method for developing the nutritional aging clock. 

A demographic categorization based on the comprehensive 
nutrition-related aging clock, revealing varying rates of aging, is 
presented (Figure 4C). This classification emphasizes the need to 
use multiple indicators in aging research and illustrates the diversity 
of aging among individuals. We then performed a thorough 
analysis of the importance of each characteristic in the LightGBM 
model to identify the parameters that most substantially aect the 
prediction of biological age. The gain values of various features 
are shown, with the basal metabolic rate at the top having a gain 
value of 0.52, indicating that it is the most important predictor in 
the model (Figure 4D). Next were vitamin B5, 8-oxoGuo/Cre, and 
L-cystine (with gain values of 0.13, 0.11, and 0.05, respectively), 
which also make significant contributions to the model’s predictive 
ability. Moreover, features such as vitamin E and extracellular 
fluid showed certain predictive value, with a gain value of 0.04 
each. In light of the substantial contributions of vitamin B5 and 
L-cystine to the model, yet their unclear biological underpinnings, 
we performed a systematic functional annotation and pathway-
enrichment analysis using the CTD and Metascape databases (see 
Supplementary Datasheets 1, 2, Supplementary Figures 4A–E 
and Supplementary Table 3 for full results). These results highlight 
key biomarkers strongly associated with aging phenotypes, whose 
predictive importance may reflect underlying biological pathways 
relevant to age-related decline. 

Furthermore, we compared the dierences in the model’s 
important predictive factors—BMR, vitamin B5, 8-oxoGuo/Cre, 
and L-cystine—among populations with dierent aging rates 
(Figure 4E). We found that the BMR in the accelerated aging group 
was significantly lower than that in the normal and decelerated 
aging groups (P < 0.01). The levels of L-cystine and 8-oxoGuo/Cre 
were significantly higher in the accelerated aging group than in the 
normal aging group (P < 0.001) and the decelerated aging group 
(P < 0.01). Additionally, the level of vitamin B5 in the accelerated 
aging group was also higher than that in the decelerated aging 
group (P < 0.05). 

3.5 Comparative analysis of biochemical 
indicators in populations with different 
aging rates 

We performed a comparison of important biochemical markers 
across the three subgroups—accelerated aging, normal aging, and 
decelerated aging—based on the findings of the nutrition-related 
aging clock (Figure 5). The levels of free fatty acids (FFA) were 
significantly higher in the accelerated aging group than in the 
normal aging group (P < 0.001). Similarly, the levels of cystatin 
C (CysC) were much higher in the accelerated aging group than 
in the decelerated aging group (P < 0.001; Figure 5A). High-
density lipoprotein cholesterol (HDL-C) levels were significantly 
elevated in the accelerated aging group compared with those in the 
normal aging group (P < 0.05). Furthermore, the levels of insulin-
like growth factor (IGF) were much lower in the accelerated aging 

group than in the normal and decelerated aging groups (P < 0.01; 
Figure 5A). 

The correlation strength between Age (cAgeDi) and various 
biochemical markers is depicted (Figure 5B). The correlation 
study used the Spearman correlation coeÿcient to evaluate the 
relationship between Age and each biochemical parameter. 
Research on the vitamin and amino acid aging clock revealed a 
notable association between FFA and Age (r = 0.39, P < 0.01), 
suggesting that FFA serves as a valuable biomarker for determining 
an individual’s age. Further analysis of the aging clock found that 
low-density lipoprotein (LDL-C), glycated hemoglobin (HbA1c), 
and insulin (INS) all had strong relationships with Age (r values 
of −0.34, −0.36, and −0.37, respectively; P < 0.05). LDL-C, 
HbA1c, and INS may therefore serve as valuable biomarkers for 
evaluating the aging process. Our findings reveal that FFA, LDL-C, 
HbA1c, and INS are biochemical markers most closely associated 
with Age, suggesting their substantial involvement in the aging 
process. 

To further explore the relationship between the comprehensive 
nutrition-related aging clock and the body’s biochemical indicators, 
a correlation analysis was performed. The results show the 
correlation patterns (Figure 5C and Supplementary Figure 5C). 
The nutrition-related aging clock characteristics, including weight, 
lower limb muscle mass, extracellular fluid, muscle mass, standard 
weight, and BMR, exhibited significant positive correlations with 
biochemical markers such as prealbumin (PALB), IGF, serum 
creatinine (SCr), white blood cells (WBC), total bilirubin (TBIL), 
and serum uric acid (SUA), as indicated by the clustering 
analysis results. Conversely, substantial negative associations were 
noted between many indicators of the nutrition-related aging 
clock and markers such as IGF, HDL-C, WBC, total cholesterol 
(TC), FFA, and serum folate. These results underscore the 
significance of biochemical markers such as HDL-C, PALB, 
IGF, and SCr in evaluating an individual’s nutritional status. 
The aging clock features did not exhibit significant correlations 
with other indicators, including cholinesterase (CHE) and TC. 
Overall, these findings highlight the complex interplay between 
the comprehensive nutrition-related aging clock and the body’s 
biochemical profile. 

3.6 Comparative analysis of physical 
examination indicators among 
populations with different aging rates 

Physical examinations, which are crucial for assessing personal 
health as well as reflecting the aging process, have been included 
in our study. These measures objectively assess mobility decline, 
musculoskeletal integrity, and nutritional status, providing critical 
physiological context to complement molecular biomarker data. 

The results of the daily 6 m walk test showed that the number 
of steps taken by individuals in the accelerated aging group 
was significantly higher than that taken by those in the normal 
(P < 0.05) and decelerated (P < 0.01) aging groups (Figure 6A). 
The results of the fastest 6 m walking test were similar, with the 
accelerated aging group showing significantly more steps than the 
normal and decelerated aging groups (P < 0.05 and P < 0.01), 
which indicates that walking ability declines with increasing aging 
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FIGURE 4 

Construction of a comprehensive aging clock based on blood and urine biomarkers and bioelectrical impedance analysis results. (A,B) Considering 
body composition (assessed via BIA), plasma amino acids and vitamins, and urine oxidative stress indicators, five machine learning techniques were 
employed to develop an aging clock, with the prediction efficacy of each model shown. (C) The comprehensive nutritional aging clocks classify 
populations with different aging rates. (D) LightGBM feature-importance ranking (gain) for biological-age prediction. Basal metabolic rate, vitamin 
B5, 8-oxoGuo/Cre and L-cystine are the top contributors. (E) Comparative analysis of key feature factors across different aging groups. Asterisks 
indicate statistical significance: ***P < 0.001, **P < 0.01, and *P < 0.05. 
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FIGURE 5 

Prediction results of two aging clocks developed from the study population and differential analysis of populations stratified by cAgeDiff (Age). 
Based on the results from the aging clock grouping, we conducted a comparative analysis of key biochemical indicators in the accelerated, normal, 
and decelerated aging subgroups. (A) This panel presents CysC, FFA, and HDL-C in the accelerated, normal, and decelerated aging groups, 
respectively. (B) This panel illustrates the strength of the association between Age (cAgeDiff) and several biochemical markers. The correlation 
analysis uses the Spearman correlation coefficient to evaluate the relationship between Age and each biochemical parameter. The two Age 
values are derived from the vitamin and amino acid aging clock as well as the comprehensive aging clock. (C) The heatmap shows how biochemical 
indicators relate to the full nutritional aging clock markers. The vertical axis represents full nutritional aging clock markers, while the horizontal axis 
represents biochemical indicators. A color gradient indicates the strength of the correlation coefficient, with green representing a negative 
correlation and red representing a positive correlation. Asterisks indicate statistical significance: ***P < 0.001, **P < 0.01, and *P < 0.05. 
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rate (Figure 6B). The grip strength of the accelerated aging group 
was significantly lower than that of the normal and decelerated 
aging groups (P < 0.01 and P < 0.05), indicating a possible 
correlation with the deterioration of muscle mass and function, as 
illustrated in Figures 6C. The results of hand and foot reaction 
time tests showed that the reaction times of the accelerated aging 
group were significantly longer than those of the other two groups 
(P < 0.01 and P < 0.05; Figure 6D), possibly reflecting a decline 
in nervous system function with increasing aging rate. The height 
of the accelerated aging group was significantly lower than that of 
the other two groups (P < 0.01), possibly associated with spinal 
compression or other age-related physical changes (Figure 6E). The 
physiological subhealth score (PS) (ranging 0–100, higher values 
indicating better health status) results indicated that the PS score 
of the accelerated aging group was significantly lower than that of 
the decelerated aging group (P < 0.05; Figure 6F), suggesting a 
significant association between physiological subhealth status and 
aging rate. The ratio of 8-oxodGuo/Cre was significantly higher in 
the accelerated aging group than in the other two groups, indicating 
that oxidative stress levels increase with the aging rate (Figure 6G). 

4 Discussion 

This study reveals the trends in amino acid and vitamin 
levels, as well as oxidative stress markers, with age through 
a comprehensive analysis of plasma and urine samples from 
participants of dierent age groups. The results show that the 
levels of vitamins A, B1, B5, E, and L-cystine significantly increase 
with age; particularly, dierences in L-cystine and vitamin B5 
levels between the young and elderly groups are most pronounced, 
possibly reflecting a decline in metabolic and synthetic functions 
in the elderly, leading to the accumulation of these molecules in 
the body. In contrast, the levels of 1-methyl-L-histidine, L-aspartic 
acid, MK4, and L-serine decrease with age, reflecting a reduction 
in the activity of specific metabolic pathways (30, 31). These 
changes in biochemical indicators are closely related to the decline 
in physiological functions in the elderly population, such as 
reduced muscle mass and decreased immune function. In urine, 8-
oxoGuo/Cre and 8-oxodGuo/Cre levels were significantly lower in 
the young group than in the middle-aged and senior groups, with 
significant dierences also observed between the middle-aged and 
senior groups. This indicates that oxidative stress levels significantly 
increase with age, supporting the viewpoint that oxidative stress 
plays a key role in the process of aging and its related diseases (18, 
19, 32). 

In this study, the LightGBM model was the most accurate of the 
nutrition-related aging clock models created with dierent machine 
learning algorithms. Analysis of feature importance revealed that 
L-cystine, vitamin B1, and vitamin E are significant determinants 
in the prediction of biological age. These findings highlight the 
utility of integrating L-cystine, vitamins B1/B5/E, and oxidative 
stress markers as a novel multimodal panel for aging prediction, 
advancing our understanding of nutrient-metabolic interplay 
in aging. By adding BIA, plasma amino acids, vitamins, and 
urinary oxidative stress markers, the LightGBM model significantly 
improved its predictive capability (R2 = 0.8807, MAE = 2.5877). 
In this study, BMR, vitamin B5 levels, 8-oxo-Guo/Cre ratio, and 

L-cystine were identified as key indicators of nutrition-related 
aging, highlighting the importance of energy metabolism and 
oxidative stress in aging (21, 33). These indicators may play 
complex roles in the aging process, with elevated levels potentially 
serving as biomarkers for the risk of age-related diseases. Changes 
in their levels not only serve as biomarkers for physiological aging 
but also associate with adverse health outcomes through pathways 
requiring further mechanistic investigation. Future research should 
further explore the specific roles of these biomarkers in the 
mechanisms of aging and their potential application value in the 
prevention and treatment of age-related diseases. 

Our findings indicate that BMR was significantly lower in the 
accelerated aging group compared to the normal and decelerated 
aging groups, suggesting that the rate of decline in BMR may be 
related to an individual’s aging speed and could serve as a marker 
to distinguish between dierent aging rate groups. Furthermore, 
a research study of senior male populations in southern China 
showed that an increase in BMR is independently associated with 
a reduction in all-cause mortality, while BMR decreases non-
linearly with age, exhibiting an accelerated decline in older groups 
(34). BMR decreases with age and is closely related to the aging 
process. Kitazoe et al. found that mass-specific BMR (msBMR) 
and renormalized BMR (RmsBMR) can serve as new biomarkers 
for assessing aging, reflecting metabolic changes during the aging 
process (35). In summary, these results highlight the importance of 
basal metabolic rate (BMR) in the aging process. Changes in BMR 
not only reflect an individual’s aging speed but may also provide 
clues for identifying dierent aging types. This finding oers new 
directions for understanding aging mechanisms and improving 
health management for the elderly. 

Furthermore, our study found that vitamin B5 levels were 
higher in the accelerated aging group than in the decelerated aging 
group. Vitamin B5, also known as pantothenic acid, is an essential 
component for the synthesis of coenzyme A (CoA) and acyl carrier 
protein. CoA is not only a necessary cofactor for the synthesis 
of key biomolecules such as fatty acids, cholesterol, acetylcholine, 
and bile acids but also plays a central role in many metabolic 
pathways (36, 37). Since humans and animals cannot synthesize 
pantothenic acid, they must depend on food sources to meet 
their vitamin requirements. This external reliance emphasizes the 
importance of pantothenic acid in sustaining health and avoiding 
associated nutritional deficits (38). Additional studies have revealed 
that plasma vitamin B5 levels are associated with an increased risk 
of all-cause mortality, especially among hypertensive patients in 
China, with this connection being more prominent in the elderly 
and those with adequate folate levels (39). Regarding whether 
excessive intake of vitamin B5 can accelerate aging, current research 
findings are inconsistent. On the one hand, pantothenic acid, as a 
precursor to coenzyme A, is essential for cellular energy metabolism 
and antioxidant defense. In theory, having an appropriate quantity 
of pantothenic acid may help slow the aging process. On the 
other hand, excessive pantothenic acid consumption may disturb 
metabolic equilibrium inside cells, resulting in increased oxidative 
stress and potentially accelerating cellular aging. When examining 
the link between pantothenic acid consumption and aging, it is vital 
to compare the potential advantages in terms of health promotion 
and illness prevention with the potential adverse eects. Future 
studies should investigate the association between pantothenic 
acid consumption, metabolic state, and aging, as well as identify 
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FIGURE 6 

Comparative analysis of physical examination indicators in populations with different aging rates. (A) 6-meter walk steps, (B) Fastest 6-meter walk 
steps, (C) Grip strength, (D) Hand-foot reaction time, (E) Height, (F) Physiological subhealth score (PS), and (G) 8-oxodGuo/Cre (Oxidative stress 
marker). Physical exams, as a primary method for evaluating individual health status, may reveal physiological changes associated with aging. This 
study analyzed these physical examination metrics across rapid, normal, and slow aging subgroups. The accelerated aging group performed poorly 
on multiple physical examination indicators. Asterisks indicate statistical significance: **P < 0.01 and *P < 0.05. 

strategies to maximize pantothenic acid intake through dietary or 

supplemental approaches to promote healthy aging. 
We also found that the levels of L-cystine were significantly 

higher in the accelerated aging group than in the normal aging 

group. L-cystine is a specific amino acid formed by the linkage 

of two cysteine molecules through a disulfide bond. Lawrence 

C. Johnson and colleagues investigated the relationship between 

L-cystine and healthspan indicators related to aging using plasma 

metabolomics analysis, and discovered that the concentration 

of L-cystine in the elderly group was significantly higher than 

that in the young group, which is consistent with the findings 
of this study (40). Bramer et al. found that in the plasma of 
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patients with mild and severe COVID-19 infections, the levels of 
L-cystine were significantly elevated (41). Wang et al. by measuring 
the plasma levels of L-cystine in patients with Attention Deficit 
Hyperactivity Disorder (ADHD) and healthy control groups, found 
that the plasma levels of L-cystine in the ADHD group were 
significantly higher compared to the healthy control group (42). 
These studies collectively suggest that L-cystine may be related 
to the severity of the disease, and the increase in L-cystine may 
reflect the body’s metabolic adaptation in response to oxidative 
stress and inflammatory responses. In accelerated aging individuals, 
the increase in L-cystine may be related to the decline in cellular 
antioxidant capacity and chronic inflammatory states, both of 
which are closely associated with the increased risk of age-
related diseases. Future research should further explore the specific 
mechanisms of action of L-cystine under dierent physiological 
and pathological conditions, as well as its potential applications in 
aging and disease management. 

We found that the ratio of the oxidative stress marker 8-
oxoGuo/Cre was abnormally increased in the accelerated aging 
group. 8-oxo-Guo, indicative of RNA oxidative damage, correlates 
with elevated oxidative stress levels in several age-related disorders 
and serves as a crucial biomarker for evaluating oxidative stress 
status and disease risk (21). Moreover, our findings are consistent 
with Vatner et al.’s view that oxidative stress is a important 
mechanism limiting longevity and healthy aging (43). 

Additionally, our study demonstrated a markedly increased 
amount of CysC in the accelerated aging group compared with 
that in the normal aging group, suggesting that CysC serves as a 
biomarker for declining renal function associated with accelerated 
aging. Recent investigations have demonstrated that heightened 
levels of CysC in individuals with metabolic syndrome correlate 
with a greater risk of all-cause mortality, including cardiovascular 
and cancer-related fatalities (44). This highlights the importance 
of CysC in assessing age-related physiological changes. The 
accelerated aging group showed markedly increased levels of FFA 
compared with both the normal and decelerated aging groups. This 
rise may indicate a disturbance in lipid metabolism, often seen in 
the elderly, with possible ramifications for the pathophysiology of 
age-related illnesses, such as type 2 diabetes and cardiovascular 
disorders (45). The concentration of IGF was much lower in the 
accelerated aging group than in the normal aging group, which 
may signify a disruption in growth signaling pathways crucial 
for maintaining tissue homeostasis and regeneration in older 
individuals (46, 47). Furthermore, HDL-C levels were markedly 
elevated in the accelerated aging group compared with those in 
the normal aging group, suggesting a correlation between HDL-
C and accelerated aging. This discovery contradicts previous 
research, which indicated that elevated levels of HDL-C correlate 
with lifespan (48). Nevertheless, several studies have revealed that 
the inverse relationship between HDL-C and ASCVD stabilizes 
when HDL-C levels approach 40 mg/dL, and excessively elevated 
HDL-C levels may correlate with heightened risk, demonstrating 
a U-shaped curve (49, 50). Another study pointed out that 
higher levels of HDL-C are associated with an increased risk 
of fractures in healthy elderly individuals (51). Additionally, 
the SWAN HDL study found that women with midlife HDL-
C > 80 mg/dL had 2.3-fold higher risk of cognitive decline over 
20 years (52). Our data extend these findings to accelerated aging, 
where dysfunctional HDL likely promotes multisystem decline 

(e.g., bone loss, neuroinflammation). Future work should prioritize 
HDL functional assays over concentration alone. 

Ultimately, by analyzing the physical examination metrics 
of various aging rate subgroups, we elucidated the relationship 
between aging rate and alterations in physiological function. 
The findings of the 6-m walking test demonstrated that walking 
ability diminishes with an increase in the rate of aging. The grip 
strength test findings indicated that the accelerated aging group had 
considerably reduced grip strength compared with both the normal 
and decelerated aging groups, indicating a reduction in muscle 
mass and function (53). Height measurements indicated that the 
accelerated aging group had a markedly reduced height compared 
with the other two groups, may reflect age-related physiological 
alterations such as spinal compression, rarefaction of bone (54, 
55). The results of the response time test further confirmed 
that brain function declines with advancing age. PS scores were 
significantly increased in the accelerated aging cohort, and the ratio 
of oxidative stress markers 8-oxodGuo/Cre to 8-oxoGuo/Cre was 
disproportionately increased, indicating a decline in the individual’s 
physiological subhealth status and elevated oxidative stress levels 
during the aging process (43, 56). The accelerated aging group 
had worse performance in many physical examination parameters, 
possibly associated with increased oxidative stress and reduced 
physiological function. 

Physical examination indicators and biochemical markers are 
important tools for determining individual aging rates, and their 
patterns may suggest prospective targets for anti-aging therapies. 
Specific exercise programs may be created to enhance muscle 
strength and improve physical function in response to decreasing 
grip strength and walking ability; in response to increased oxidative 
stress, antioxidant treatment may be explored to slow the aging 
process (57, 58). Future research should delve deeper into the 
associations between these biomarkers and aging rates, evaluating 
corresponding intervention measures with the aim of developing 
more eective prevention and treatment strategies. 

This study has limitations including its modest sample size 
(n = 100), limited elderly subgroup (n = 16), and restricted 
generalizability to chronic disease populations due to strict health 
screening. Findings are expressly applicable to demographically 
similar, strictly defined healthy populations and cannot be directly 
extrapolated to individuals with chronic diseases. while our 
feature selection approach identified biomarkers highly predictive 
of biological age, the cross-sectional design precludes causal 
inference. Despite this, our findings provide valuable baseline data 
on nutrition-related aging biomarkers in healthy adults. Future 
research should first validate these findings in larger cohorts with 
adequate elderly representation and chronic disease populations, 
before advancing to: mechanistic exploration of these biomarkers, 
personalized interventions, aging risk modeling, and novel anti-
aging therapies. And longitudinal studies should validate whether 
these biomarkers modulate aging trajectories or primarily reflect 
age-related physiological changes. This progression will enable 
targeted strategies to improve healthy aging outcomes. 
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