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Introduction: This study aims to investigate the relationship between nutrition-
related biomarkers, body composition, and oxidative stress indicators in the
human aging process, so as to provide new insights for understanding individual
aging differences and developing targeted intervention strategies.

Methods: A total of 100 healthy participants aged 26-85 years were enrolled.
Plasma concentrations of 9 amino acids and 13 vitamins were quantitatively
analyzed, along with urinary oxidative stress markers 8-oxoGuo and 8-oxodGuo.
Body composition was assessed using bioelectrical impedance analysis (BIA).
A nutrition-based aging clock model was constructed using the Light Gradient
Boosting Machine algorithm, with model performance evaluated by mean
absolute error (MAE) and coefficient of determination (R2).

Results: The younger group showed significantly lower levels of oxidative stress
markers compared to the older group. Multiple amino acids and vitamins
exhibited age-dependent changes in plasma concentrations. The developed
aging clock model demonstrated high predictive accuracy, with an MAE of
2.5877 and R? of 0.8807. Correlation analyses further indicated associations
between model-predicted biological age and physiological changes reflected
in biochemical and physical examination indicators.

Discussion: This study establishes a significant link between nutrition-related
biomarkers, oxidative stress, body composition, and aging. The proposed model
serves as a reliable tool for predicting biological age and offers a scientific basis
for future research on aging mechanisms and personalized interventions.

KEYWORDS

the nutrition-related aging clock, bioelectrical impedance analysis, aging biomarkers,
oxidative stress markers, interindividual aging variation
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In response to the challenges posed by an aging population,
researchers have focused on developing aging biomarkers for health
identification and assessment (1). In recent years, aging clocks
constructed based on various biological markers have emerged,
aiming to predict an individual’s biological age and monitor the rate
of aging (2). Among the existing aging clocks, those based on DNA
methylation (3) and plasma proteome (4) are particularly notable.

Nutrition refers to the process by which the body meets its
physiological needs through the intake and metabolism of food.
This includes both essential macronutrients (such as proteins,
fats, and carbohydrates) and micronutrients (such as vitamins
and minerals) (5). Nutrition involves not only caloric intake but
also the balance of many biomolecules essential for maintaining
physiological function, enhancing health, and preventing diseases
(6). Nutritional assessment is a comprehensive process that
analyzes nutrition-related health issues by collecting data on
food intake and metabolism, alongside biochemical indicators,
physical examination results, and other relevant information
(7-9). Nutritional science plays a crucial role in promoting healthy
aging. Healthy aging not only refers to extending lifespan but
also, more importantly, to increasing the number of years of
healthy life expectancy (10). The adequacy of nutrition directly
influences the health condition and quality of life of the elderly
(11). Poor nutritional status in the elderly increases the risk
of aging-related chronic diseases. Deficiencies in vitamin B6,
B12, and folic acid, for instance, are associated with cognitive
decline and Alzheimer’s disease (5, 7, 12). Therefore, nutritional
status significantly impacts the aging process, and developing a
nutrition-related aging assessment clock is essential for a deeper
understanding of aging.

Plasma levels of amino acids and vitamins are closely related
to an individual’s nutritional and health status. Tappia et al’s
research indicates that specific vitamins, such as vitamin C and
vitamin B6, may help prevent cardiovascular diseases in high-risk
individuals (13). Bioelectrical impedance analysis (BIA), a non-
invasive technology, can help identify age-related nutritional and
metabolic changes, including key indicators such as basal metabolic
rate (BMR), muscle mass, total body water, and extracellular water
(14, 15). Whether these indicators could contribute to the aging
clock establishment remain unknown.

Oxidative stress is closely linked to nutritional status. The
free radical theory of aging is one of the most widely known
aging theories, with oxidative stress being a key factor in
cellular damage and aging (16, 17). Recent research indicates
that 8-oxoguanosine (8-oxoGuo) and 8-oxodeoxyguanosine (8-
ox0-dGuo) are significant indicators of oxidative stress and aging
(18-

stress may contribute to the positive correlation between free

). Canfield et al.’s research suggests that reducing oxidative

amino acid levels and lifespan (24). Good nutritional status helps
neutralize oxidative stress, supports neuroplasticity, and positively
impacts recovery outcomes after a stroke. Conversely, malnutrition
or poor nutritional status can exacerbate oxidative stress, leading to
inflammatory responses and damaging health (25). Therefore, we
included the oxidative stress markers 8-oxoGuo and 8-oxo-dGuo
in urine as part of the aging clock related to nutritional status.
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This study aims to develop an aging clock based on nutrition-
related biomarkers, including amino acids and vitamin levels
in plasma, body composition, and oxidative stress markers in
urine, to assess biological age in individuals. This model has the
potential to reveal variations in aging rates between individuals.
The construction of this model has significant implications for
designing tailored aging intervention strategies and offers new
perspectives on the biological basis of aging.

2.1 Study design and study participants

The Ethics Committee of Beijing Hospital approved the
protocol for this study (Approval No. 2019BJYYEC-054-02), and
the study was conducted in accordance with the Declaration of
Helsinki. Each participant provided a signed informed consent
form after receiving comprehensive information about the study’s
objectives, methods, and potential risks. The PENG ZU cohort
is a health aging cohort study covering populations from seven
major regions of China (26). We randomly selected 100 healthy
volunteers, aged 26-85 years, for this study. The participants were
from various age groups. Individuals with serious chronic illnesses
or other health issues that could affect the research results were
excluded. To ensure that the sample accurately represented a broad
range of age demographics and genders, we employed random
sampling techniques. The study outline is shown in

2.2 Biomarker assessment

2.2.1 Plasma sample analysis

The quantitative analysis of 9 amino acids and 13 vitamins
was performed using liquid chromatography-tandem mass
spectrometry  (LC-MS/MS). The
include ethanolamine, L-serine, L-proline, L-cystine, taurine,
L-aspartic acid, L-arginine, L-histidine, and 1-methyl-L-
histidine. The vitamins include vitamin B1l, B2, B3, B5, B6,
B7, 5-methyltetrahydrofolate, vitamin A, D2, D3, E, K1, and MK4.

measured amino acids

2.2.2 Urine sample analysis

The levels of 8-oxodGuo and 8-oxoGuo in the urine were
measured using liquid chromatography-tandem mass spectrometry
(LC-MS/MS). The urine creatinine concentration was determined
using the Jaffe reaction method with a 7,600 series automatic
biochemical analyzer (Hitachi, Japan), following the manufacturer’s
instructions. To determine the levels of oxidative stress, we used
the 8-oxodGuo/Cre and 8-oxoGuo/Cre ratios. Urine samples were
promptly preserved at —80 °C after being collected midstream in
the morning. Prior to analysis, the samples were thawed, warmed
in a 37 °C water bath for 5 min, centrifuged at 7,500 g for
). To each 200 wL
of supernatant, 200 wL of working solution (70% methanol, 30%

5 min, and the supernatant was collected (

water, 0.1% formic acid, 5 mmol/L ammonium acetate) was added,
along with 10 L of internal standard 8-oxo-['°N5]dGuo and 10 pL
of internal standard 8-oxo-[1*N,!3C;]Guo (both at a concentration
of 240 pg/iL). The mixture was incubated at 37 °C for 10 min and


https://doi.org/10.3389/fnut.2025.1563220
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/

Ma et al. 10.3389/fnut.2025.1563220

PENG ZU Cohort

" i |

100 healthy participants (female,n=53;male,n=47;26-85 years old)

Baselme data acquisition Biological sample and testing
Ej ﬂQuestlonnalre survey Blood I Urine
=0 -
cognitive \ 2 B |
function ' _J

sensory
perception

T |
9 kinds of 13 kinds of LC-MS
. . Vitamins 8-0x0-Guo and 8-oxo0-dGuo

Analysis of data

= 257 @ )

£ 5] : g (N,

£ éé@ L o)) & @

2 104 .—o.

~ N ©

A Ag]z Groﬁp D Chronological Age

Alterations in vitamins Vitamins and amino acids Indicator for health
and amino acids with aging aging clock influencing factor

FIGURE 1
The study outline (Figure created with BioRender.com).

then centrifuged at 12,000 g for 15 min. The samples were separated ~ 2.2.3 Biochemical parameters
using an Agilent 1290 UPLC connected to an Agilent 6490 triple In addition to the aforementioned biomarker analyses, we

quadrupole mass spectrometer (MS/MS) for detection. conducted routine biochemical parameter tests on plasma and
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urine samples, quantitatively analyzing a range of metabolites to
comprehensively assess participants’ health status.

2.3 BIA

Body composition was assessed using the BCA-2A bioelectrical
impedance analyzer (BIA; Tsinghua Tongfang Co., Ltd., Beijing,
China). The device operates at frequencies of 5, 50, 100, 250, and
500 kHz, collecting comprehensive bioimpedance data. A set of
eight-point contact electrodes was used for six-channel whole-
body testing, ensuring measurement accuracy and uniformity. The
primary criteria measured included basal metabolic rate, muscle
mass, total body water, extracellular water, intracellular water,
fat mass, and visceral fat. Participants were instructed to stand
barefoot on the electrode plate of the equipment, with their arms
abducted at approximately 30 degrees in a standard posture. Intense
exercise was prohibited before the assessment. Qualified personnel
conducted all measurements following established procedures to
ensure consistency and reliability.

2.4 Developing an aging clock model
using machine learning approaches

This study employed a systematic approach to construct a
nutrition-related aging clock model for predicting biological age.
The dataset was randomly divided into a training set (70%)
and a test set (30%) to evaluate the model’s generalization
ability. Five machine learning algorithms were selected for model
construction: gradient boosting, LASSO, Light Gradient Boosting
Machine (LightGBM), random forest, and XGBoost. All models
were implemented using machine learning packages such as caret
and XGBoost in R software (version 4.4.1).

To enhance the interpretability and predictive accuracy of the
models, we performed feature selection to identify features that
significantly contribute to predictions. Additionally, we optimized
the models by adjusting parameters such as the number of trees,
depth, and learning rate. Using cross- validation and grid search,
we determined the optimal parameters to achieve the lowest root
mean square error. The optimized models were then used to
predict the training set, test set, and entire dataset using the predict
function. Model performance was evaluated using the coefficient
of determination (R?) and mean absolute error (MAE), where R?
measures explanatory power and MAE reflects predictive accuracy.

In this study, we defined the age difference (AgeDiff) as
the difference between predicted age and actual age. The locally
weighted scatterplot smoothing (LOESS) method was applied
to regress AgeDiff against age, resulting in the corrected age
difference (cAgeDiff): cAgeDiff = AgeDiff-LOESS (AgeDiff~Age)
(28, 29). This method quantifies the predictive bias of the
model and categorizes the study subjects into subgroups with
different aging rates based on the quartiles of cAgeDiff, providing
a new perspective for understanding interindividual differences
in aging. Study participants were categorized into subgroups
with different aging rates based on the quartiles of cAgeDiff.
Those with cAgeDiff values in the bottom quartile (< QI)
were classified as the “decelerated aging” group; those in the
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middle two quartiles (Ql < cAgeDiff < Q3) as the “normal
aging” group; and those in the top quartile (> Q3) as the
“accelerated aging” group.

2.5 Statistical analysis

The for this
establishment of the nutrition-related aging clock, was carried

statistical ~analysis study, including the
out as described in section “2.4 Developing an aging clock model
using machine learning approaches.” Data were processed using
SPSS 23.0 (SPSS Inc., Chicago, IL, United States) and GraphPad
Prism 8 (GraphPad Inc., San Diego, CA, United States). First, the
normality of the data was assessed using the Shapiro-Wilk test. If
the data did not meet normality, the Kruskal-Wallis H test and
Dunn’s post hoc comparison were employed. Homogeneity of
variance was tested using Levene’s test to satisfy the assumptions of
ANOVA; if not met, Welchs ANOVA was used. After identifying
significant differences between groups, multiple comparisons
were conducted using the least significant difference or Tamhane’s
T2 method. Additionally, the correlation between variables
was analyzed using Pearson and Spearman rank correlation
coefficients. The level of statistical significance was set at
P <0.05.

3.1 Characteristics of the studied cohort

This study included a healthy population across different
age groups to construct a nutrition-related aging clock (
and ). We stratified the participants into
four age groups based on the median (range): the young group
[31 years (26-33)], the young and middle-aged group [45 years
(42-48)], the middle-aged group [59 years (56-63)], and the senior
group [77.5 years (73-85)]. The sex ratio in each group was
relatively equitable, with men constituting between 43.75% and
50.00%. No notable variations in body mass index (BMI) were
found across the groups (P = 0.551). Differences in drinking
and smoking behaviors among age groups were not statistically
significant (P = 0.588 and P = 0.555). However, significant
disparities in educational attainment and marital status were
observed (P < 0.01 and P < 0.001), reflecting sociodemographic
differences across age cohorts. Psychological stress was more
common in the young and middle-aged cohorts (P < 0.001),
although drinking habits showed no significant variation across
the groups (P = 0.206). Vegetable eating habits and exercise
habits showed a statistically significant difference across age groups
(P < 0.001). Anthropometric measures and functional assessments
revealed physiological changes associated with aging, including
significant differences in grip strength (P < 0.01) and the light
response test (P < 0.001). Participants also underwent BIA, which
measured key parameters such as total body water, muscle mass,
extracellular water, intracellular water, fat mass, and visceral fat,
among 35 others ( and

), which provided valuable information for assessing body

composition and nutritional status.
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TABLE 1 Characteristics of study participants.

10.3389/fnut.2025.1563220

Baseline characteristics Young group Young and Middle-aged Senior group
middle-aged group
group
Number of cases 28 30 26 16 NA
Age (year) 31 (26-33) 45 (42-48) 59 (56-63) 77.50 (73-85) NA
Sex: male, 1 (%) 13 (46.43%) 15 (50.00%) 12 (46.15%) 7 (43.75%) NA
Weight 65.85 (42.2-92.3) 70.20 (53.70-104.30) 66.10 (49.60-86.20) 57.85 (46.00-79.10) 0.064
Height 1.686 £ 0.067 1.687 £+ 0.077 1.653 + 0.067 1.595 4 0.086 < 0.01
BMI (kg/mz) 23.32(16.08-30.49) 23.89 (19.49-32.09) 24.56 (19.81-30.20) 22.67 (17.53-27.58) 0.551
Highest education, 7 (%) <0.01
Primary or below 0 (0.00) 0 (0.00) 1 (4.00) 1(6.25) NA
Middle school or high school 0 (0.00) 0 (0.00) 5(20.00) 5(31.25) NA
College degree or above 28 (100) 30 (100) 19 (76.00) 10 (62.50) NA
Marital status, n (%) < 0.001
Spinsterhood 10 (35.71) 1(3.33) 1 (4.00) 0(0.0) NA
Married 18 (64.29) 29 (96.67) 24 (96.00) 16 (100.0) NA
Psychological stress: yes, 1 (%) 19 (67.86) 21 (70.00) 8(30.77) 2 (12.50) < 0.001
Vegetable eating habits, 1 (%) < 0.001
Occasionally 4(14.29) 0(0.0) 3(11.54) 0(0.0) NA
Often 9(32.14) 15 (50.00) 7 (26.92) 2 (12.50) NA
Every day 15 (53.57) 15 (50.00) 16 (61.54) 14 (87.50) NA
Physical exercise habits: yes, n (%) 10 (35.71) 18 (62.07) 23 (88.46) 14 (87.50) < 0.001
Left hand grip strength 29.45 (18.70-57.30) 32.80 (20.70-58.90) 30.83 (21.70-47.60) 23.72 (12.30-39.10) < 0.01
Right hand grip strength 33.90 (21.60-62.10) 36.45 (23.20-64.20) 30.60 (22.50-50.60) 22.05 (15.70-41.30) < 0.01
Light reaction test (hand) 0.23 (0.19-0.37) 0.26 (0.20-0.49) 0.29 (0.20-0.82) 0.41 (0.21-1.02) < 0.001
Light reaction test (foot) 0.30 (0.21-0.44) 0.29 (0.22-0.49) 0.32 (0.21-0.60) 0.47 (0.28-0.95) <0.001

Data are expressed as mean = standard deviation for variables with normal distribution, as the median (minimum-maximum) for variables with non-normal distribution, and as n (%) for

categorical variables. BMI, body mass index.

3.2 Differential analysis of plasma amino
acids and vitamins in four age groups, as
well as biomarkers in urine samples

In this study, we compared the levels of 9 amino acids and 13
vitamins in plasma across four age groups, as well as the levels of
oxidative stress markers 8-oxoGuo and 8-oxo-dGuo in the urine, to
explore the physiological differences among the groups (Figure 2).

A comparison of amino acid and vitamin markers that exhibit
significant differences across age groups is illustrated (Figure 2A).
We evaluated the influence of age on the concentrations of
these biomarkers. The results indicated that the concentrations
of vitamins A, Bl, B5, E, and L-cystine progressively increased
with age, with the elderly showing the highest concentrations,
particularly of L-cystine and vitamin B5. This indicated significant
differences between the younger and senior groups (P < 0.001).
Conversely, the concentrations of 1-methyl-L-histidine, L-aspartic
acid, MK4, and L-serine decreased with age, reaching their
lowest values in the senior group. In addition, through Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis, we found several significantly enriched metabolic
pathways, such as the pantothenate and CoA biosynthesis pathway,
the vitamin B1 (thiamine) metabolism pathway, and the cysteine
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and methionine metabolism pathway (Supplementary Figure 2B).
These results suggest that significant changes in nutrition-related
biomarkers are closely associated with age-related physiological
changes. The relevant metabolic processes may play a crucial
role in the construction of nutrition-related aging clocks, further
supporting the significance of energy metabolism and oxidative
stress in the aging process. The Kruskal-Wallis test and Dunn’s
post hoc test results (Figure 2B) showed that the ratios of
8-oxoGuo/Cre and 8-oxodGuo/Cre in the young group were
significantly lower than those in the middle-aged and elderly
groups, especially the 8-oxoGuo/Cre ratio, which showed a
markedly reduced level (P < 0.001). In addition, significant
differences were observed between the middle-aged and elderly
cohorts, indicating that oxidative stress marker concentrations
increase significantly with age, underscoring their importance in
the aging processes.

3.3 Constructing a nutritional aging
clock based on machine learning models
of blood amino acids and vitamins

In this study, we constructed and validated a nutrition-related
aging clock model based on amino acids and vitamins detected

frontiersin.org
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FIGURE 2

Analysis of biomarker differences in urine and blood samples across the

four age groups. (A) This panel presents a comparative analysis of amino

acid and vitamin biomarkers, with significant differences between age groups. (B) This box plot displays the change of urinary oxidative stress
markers 8-oxodGuo/Cre and 8-oxoGuo/Cre ratios with age. Data are presented as median (interquartile range). For variables with normal

distribution and homogeneity of variance, one-way analysis of variance
comparisons. For variables that did not meet the assumptions of normal
Dunn'’s test with Bonferroni correction for post hoc comparisons. A sign
using SPSS version 23.0. Asterisks indicate statistical significance: ***P <

in plasma, using five machine learning algorithms: gradient
boosting, LASSO, LightGBM, random forest, and XGBoost, to
predict biological age and evaluate their predictive performance
(Figure 3A). Each subplot depicts the predicted results of each
individual algorithm, with blue dots representing the scatter
distribution of projected ages vs. actual ages and the red line
indicating the ideal prediction reference line. The LightGBM model
demonstrated exceptional performance, with an R? of 0.8166 and
MAE of 3.122 years, demonstrating high predictive accuracy and
minimal error.

The LightGBM model proficiently predicts biological age,
surpassing other models. Using the corrected age difference
(cAgeDift), we classified the study participants into three

Frontiers in Nutrition

(ANOVA) was performed, followed by Tukey's HSD test for post hoc

ity or homogeneity of variance, the Kruskal-Wallis test was used, followed by
ificance level of P < 0.05 was applied. All statistical analyses were conducted
0.001, **P < 0.01, and *P < 0.05.

subgroups: accelerated aging, normal aging, and decelerated
aging (Figure 3B), offering a novel perspective on understanding
interindividual variations in aging and potentially facilitating
the identification of relevant biomarkers. We then performed a
feature significance analysis of the LightGBM model to identify
the amino acids and vitamins that most significantly influence
the prediction of biological age. The feature significance plot
(Figure 3C) showed that L-cystine was the most significant
feature, with a gain value of 0.46, emphasizing its crucial
role in predicting biological age. The gain values for vitamin
Bl and vitamin E were 0.12 and 0.09, respectively, while
vitamins B3, MK4, and ethanolamine also had predictive
value.
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Feature Importance of LightGBM Model
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Establishment of an aging clock based on key vitamins and amino acids. (A) A nutritional aging clock model was developed using plasma amino

acids and vitamins, along with five machine learning algorithms—gradien

t boosting, LASSO, LightGBM, random forest, and XGBoost—to forecast

biological age and evaluate their predictive efficiency. Each subplot shows the algorithm'’s predicted results, with blue dots indicating the scatter
distribution of projected ages against actual ages, and red lines representing the optimal prediction reference line. (B) Based on cAgeDiff, the study
participants were divided into three subgroups: accelerated aging, normal aging, and decelerated aging. (C) The LightGBM model identified amino
acids and vitamins that substantially affect biological age prediction through feature importance analysis.

3.4 Integration of blood amino acids and
vitamins, body composition, and urinary
oxidative stress biomarkers:
Constructing a multidimensional
nutrition-related aging clock

To improve the predictive accuracy of the model and gain a

deeper understanding of the aging process, we comprehensively

integrated plasma amino acids and vitamins, body composition
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(measured by BIA), and urinary oxidative stress markers (Figure 4).
The predictive performance of each model is shown (Figures 4A,
B). The LightGBM model performed the best, with an R? of
0.8807 and an MAE of 2.5877. The random forest model also
performed well, with an R? of 0.8725 and an MAE of 4.3555. The
gradient boosting model exhibited average predictive capability,
with an R? of 0.7881 and an MAE of 5.4129. The XGBoost model
demonstrated significantly lower prediction error than Gradient
Boosting (MAE reduced from 5.4129 to 3.0842 years), with a
comparable R? of 0.794. Although the LASSO model (Figure 4B)
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demonstrated high accuracy (R? = 0.9360, MAE = 3.14 years), its
feature sparsity may impact generalizability to diverse populations.
Consequently, we determined that LightGBM is the most
appropriate method for developing the nutritional aging clock.

A demographic categorization based on the comprehensive
nutrition-related aging clock, revealing varying rates of aging, is
presented ( ). This classification emphasizes the need to
use multiple indicators in aging research and illustrates the diversity
of aging among individuals. We then performed a thorough
analysis of the importance of each characteristic in the LightGBM
model to identify the parameters that most substantially affect the
prediction of biological age. The gain values of various features
are shown, with the basal metabolic rate at the top having a gain
value of 0.52, indicating that it is the most important predictor in
the model (
L-cystine (with gain values of 0.13, 0.11, and 0.05, respectively),

). Next were vitamin B5, 8-oxoGuo/Cre, and

which also make significant contributions to the model’s predictive
ability. Moreover, features such as vitamin E and extracellular
fluid showed certain predictive value, with a gain value of 0.04
each. In light of the substantial contributions of vitamin B5 and
L-cystine to the model, yet their unclear biological underpinnings,
we performed a systematic functional annotation and pathway-
enrichment analysis using the CTD and Metascape databases (see
and for full results). These results highlight
key biomarkers strongly associated with aging phenotypes, whose
predictive importance may reflect underlying biological pathways
relevant to age-related decline.

Furthermore, we compared the differences in the model’s
important predictive factors—BMR, vitamin B5, 8-oxoGuo/Cre,
and L-cystine—among populations with different aging rates
( ). We found that the BMR in the accelerated aging group
was significantly lower than that in the normal and decelerated
aging groups (P < 0.01). The levels of L-cystine and 8-oxoGuo/Cre
were significantly higher in the accelerated aging group than in the
normal aging group (P < 0.001) and the decelerated aging group
(P < 0.01). Additionally, the level of vitamin B5 in the accelerated
aging group was also higher than that in the decelerated aging
group (P < 0.05).

3.5 Comparative analysis of biochemical
indicators in populations with different
aging rates

We performed a comparison of important biochemical markers
across the three subgroups—accelerated aging, normal aging, and
decelerated aging—based on the findings of the nutrition-related
). The levels of free fatty acids (FFA) were
significantly higher in the accelerated aging group than in the

aging clock (

normal aging group (P < 0.001). Similarly, the levels of cystatin
C (CysC) were much higher in the accelerated aging group than
). High-
density lipoprotein cholesterol (HDL-C) levels were significantly

in the decelerated aging group (P < 0.001;
elevated in the accelerated aging group compared with those in the

normal aging group (P < 0.05). Furthermore, the levels of insulin-
like growth factor (IGF) were much lower in the accelerated aging

Frontiers in

10.3389/fnut.2025.1563220

group than in the normal and decelerated aging groups (P < 0.01;
)

The correlation strength between A Age (cAgeDiff) and various
biochemical markers is depicted ( ). The correlation
study used the Spearman correlation coefficient to evaluate the
relationship between AAge and each biochemical parameter.
Research on the vitamin and amino acid aging clock revealed a
notable association between FFA and AAge (r = 0.39, P < 0.01),
suggesting that FFA serves as a valuable biomarker for determining
an individual’s age. Further analysis of the aging clock found that
low-density lipoprotein (LDL-C), glycated hemoglobin (HbAlc),
and insulin (INS) all had strong relationships with AAge (r values
of —0.34, —0.36, and —0.37, respectively; P < 0.05). LDL-C,
HbAlc, and INS may therefore serve as valuable biomarkers for
evaluating the aging process. Our findings reveal that FFA, LDL-C,
HbAlc, and INS are biochemical markers most closely associated
with AAge, suggesting their substantial involvement in the aging
process.

To further explore the relationship between the comprehensive
nutrition-related aging clock and the body’s biochemical indicators,
a correlation analysis was performed. The results show the
correlation patterns ( and ).
The nutrition-related aging clock characteristics, including weight,
lower limb muscle mass, extracellular fluid, muscle mass, standard
weight, and BMR, exhibited significant positive correlations with
biochemical markers such as prealbumin (PALB), IGE serum
creatinine (SCr), white blood cells (WBC), total bilirubin (TBIL),
and serum uric acid (SUA), as indicated by the clustering
analysis results. Conversely, substantial negative associations were
noted between many indicators of the nutrition-related aging
clock and markers such as IGE HDL-C, WBC, total cholesterol
(TC), FFA, and serum folate. These results underscore the
significance of biochemical markers such as HDL-C, PALB,
IGE, and SCr in evaluating an individual’s nutritional status.
The aging clock features did not exhibit significant correlations
with other indicators, including cholinesterase (CHE) and TC.
Overall, these findings highlight the complex interplay between
the comprehensive nutrition-related aging clock and the body’s
biochemical profile.

3.6 Comparative analysis of physical
examination indicators among
populations with different aging rates

Physical examinations, which are crucial for assessing personal
health as well as reflecting the aging process, have been included
in our study. These measures objectively assess mobility decline,
musculoskeletal integrity, and nutritional status, providing critical
physiological context to complement molecular biomarker data.

The results of the daily 6 m walk test showed that the number
of steps taken by individuals in the accelerated aging group
was significantly higher than that taken by those in the normal
(P < 0.05) and decelerated (P < 0.01) aging groups ( ).
The results of the fastest 6 m walking test were similar, with the
accelerated aging group showing significantly more steps than the
normal and decelerated aging groups (P < 0.05 and P < 0.01),
which indicates that walking ability declines with increasing aging
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FIGURE 4

Construction of a comprehensive aging clock based on blood and urine biomarkers and bioelectrical impedance analysis results. (A,B) Considering
body composition (assessed via BIA), plasma amino acids and vitamins, and urine oxidative stress indicators, five machine learning techniques were
employed to develop an aging clock, with the prediction efficacy of each model shown. (C) The comprehensive nutritional aging clocks classify
populations with different aging rates. (D) LightGBM feature-importance ranking (gain) for biological-age prediction. Basal metabolic rate, vitamin
B5, 8-oxoGuo/Cre and L-cystine are the top contributors. (E) Comparative analysis of key feature factors across different aging groups. Asterisks
indicate statistical significance: ***P < 0.001, **P < 0.01, and *P < 0.05.
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Prediction results of two aging clocks developed from the study population and differential analysis of populations stratified by cAgeDiff (AAge).
Based on the results from the aging clock grouping, we conducted a comparative analysis of key biochemical indicators in the accelerated, normal,
and decelerated aging subgroups. (A) This panel presents CysC, FFA, and HDL-C in the accelerated, normal, and decelerated aging groups,
respectively. (B) This panel illustrates the strength of the association between AAge (cAgeDiff) and several biochemical markers. The correlation
analysis uses the Spearman correlation coefficient to evaluate the relationship between AAge and each biochemical parameter. The two AAge
values are derived from the vitamin and amino acid aging clock as well as the comprehensive aging clock. (C) The heatmap shows how biochemical
indicators relate to the full nutritional aging clock markers. The vertical axis represents full nutritional aging clock markers, while the horizontal axis
represents biochemical indicators. A color gradient indicates the strength of the correlation coefficient, with green representing a negative
correlation and red representing a positive correlation. Asterisks indicate statistical significance: ***P < 0.001, **P < 0.01, and *P < 0.05
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rate ( ). The grip strength of the accelerated aging group
was significantly lower than that of the normal and decelerated
aging groups (P < 0.01 and P < 0.05), indicating a possible
correlation with the deterioration of muscle mass and function, as
illustrated in . The results of hand and foot reaction
time tests showed that the reaction times of the accelerated aging
group were significantly longer than those of the other two groups
(P < 0.01 and P < 0.05;

in nervous system function with increasing aging rate. The height

), possibly reflecting a decline

of the accelerated aging group was significantly lower than that of
the other two groups (P < 0.01), possibly associated with spinal
). The
physiological subhealth score (PS) (ranging 0-100, higher values

compression or other age-related physical changes (

indicating better health status) results indicated that the PS score
of the accelerated aging group was significantly lower than that of
the decelerated aging group (P < 0.05; ), suggesting a
significant association between physiological subhealth status and
aging rate. The ratio of 8-oxodGuo/Cre was significantly higher in
the accelerated aging group than in the other two groups, indicating

that oxidative stress levels increase with the aging rate ( )

This study reveals the trends in amino acid and vitamin
levels, as well as oxidative stress markers, with age through
a comprehensive analysis of plasma and urine samples from
participants of different age groups. The results show that the
levels of vitamins A, B1, B5, E, and L-cystine significantly increase
with age; particularly, differences in L-cystine and vitamin B5
levels between the young and elderly groups are most pronounced,
possibly reflecting a decline in metabolic and synthetic functions
in the elderly, leading to the accumulation of these molecules in
the body. In contrast, the levels of 1-methyl-L-histidine, L-aspartic
acid, MK4, and L-serine decrease with age, reflecting a reduction
). These
changes in biochemical indicators are closely related to the decline

in the activity of specific metabolic pathways (30,

in physiological functions in the elderly population, such as
reduced muscle mass and decreased immune function. In urine, 8-
oxoGuo/Cre and 8-oxodGuo/Cre levels were significantly lower in
the young group than in the middle-aged and senior groups, with
significant differences also observed between the middle-aged and
senior groups. This indicates that oxidative stress levels significantly
increase with age, supporting the viewpoint that oxidative stress
plays a key role in the process of aging and its related diseases (18,
»32).

In this study, the LightGBM model was the most accurate of the
nutrition-related aging clock models created with different machine
learning algorithms. Analysis of feature importance revealed that
L-cystine, vitamin B1, and vitamin E are significant determinants
in the prediction of biological age. These findings highlight the
utility of integrating L-cystine, vitamins B1/B5/E, and oxidative
stress markers as a novel multimodal panel for aging prediction,
advancing our understanding of nutrient-metabolic interplay
in aging. By adding BIA, plasma amino acids, vitamins, and
urinary oxidative stress markers, the LightGBM model significantly
improved its predictive capability (R? = 0.8807, MAE = 2.5877).
In this study, BMR, vitamin B5 levels, 8-oxo-Guo/Cre ratio, and
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L-cystine were identified as key indicators of nutrition-related
aging, highlighting the importance of energy metabolism and
oxidative stress in aging (21, 33). These indicators may play
complex roles in the aging process, with elevated levels potentially
serving as biomarkers for the risk of age-related diseases. Changes
in their levels not only serve as biomarkers for physiological aging
but also associate with adverse health outcomes through pathways
requiring further mechanistic investigation. Future research should
further explore the specific roles of these biomarkers in the
mechanisms of aging and their potential application value in the
prevention and treatment of age-related diseases.

Our findings indicate that BMR was significantly lower in the
accelerated aging group compared to the normal and decelerated
aging groups, suggesting that the rate of decline in BMR may be
related to an individual’s aging speed and could serve as a marker
to distinguish between different aging rate groups. Furthermore,
a research study of senior male populations in southern China
showed that an increase in BMR is independently associated with
a reduction in all-cause mortality, while BMR decreases non-
linearly with age, exhibiting an accelerated decline in older groups
(34). BMR decreases with age and is closely related to the aging
process. Kitazoe et al. found that mass-specific BMR (msBMR)
and renormalized BMR (RmsBMR) can serve as new biomarkers
for assessing aging, reflecting metabolic changes during the aging
process (35). In summary, these results highlight the importance of
basal metabolic rate (BMR) in the aging process. Changes in BMR
not only reflect an individual’s aging speed but may also provide
clues for identifying different aging types. This finding offers new
directions for understanding aging mechanisms and improving
health management for the elderly.

Furthermore, our study found that vitamin B5 levels were
higher in the accelerated aging group than in the decelerated aging
group. Vitamin B5, also known as pantothenic acid, is an essential
component for the synthesis of coenzyme A (CoA) and acyl carrier
protein. CoA is not only a necessary cofactor for the synthesis
of key biomolecules such as fatty acids, cholesterol, acetylcholine,
and bile acids but also plays a central role in many metabolic
pathways (36, 37). Since humans and animals cannot synthesize
pantothenic acid, they must depend on food sources to meet
their vitamin requirements. This external reliance emphasizes the
importance of pantothenic acid in sustaining health and avoiding
associated nutritional deficits (38). Additional studies have revealed
that plasma vitamin B5 levels are associated with an increased risk
of all-cause mortality, especially among hypertensive patients in
China, with this connection being more prominent in the elderly
and those with adequate folate levels (39). Regarding whether
excessive intake of vitamin B5 can accelerate aging, current research
findings are inconsistent. On the one hand, pantothenic acid, as a
precursor to coenzyme A, is essential for cellular energy metabolism
and antioxidant defense. In theory, having an appropriate quantity
of pantothenic acid may help slow the aging process. On the
other hand, excessive pantothenic acid consumption may disturb
metabolic equilibrium inside cells, resulting in increased oxidative
stress and potentially accelerating cellular aging. When examining
the link between pantothenic acid consumption and aging, it is vital
to compare the potential advantages in terms of health promotion
and illness prevention with the potential adverse effects. Future
studies should investigate the association between pantothenic
acid consumption, metabolic state, and aging, as well as identify
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Comparative analysis of physical examination indicators in populations with different aging rates. (A) 6-meter walk steps, (B) Fastest 6-meter walk
steps, (C) Grip strength, (D) Hand-foot reaction time, (E) Height, (F) Physiological subhealth score (PS), and (G) 8-oxodGuo/Cre (Oxidative stress
marker). Physical exams, as a primary method for evaluating individual health status, may reveal physiological changes associated with aging. This
study analyzed these physical examination metrics across rapid, normal, and slow aging subgroups. The accelerated aging group performed poorly

on multiple physical examination indicators. Asterisks indicate statistical significance: **P < 0.01 and *P < 0.05.

strategies to maximize pantothenic acid intake through dietary or
supplemental approaches to promote healthy aging.

We also found that the levels of L-cystine were significantly
higher in the accelerated aging group than in the normal aging
group. L-cystine is a specific amino acid formed by the linkage

of two cysteine molecules through a disulfide bond. Lawrence
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C. Johnson and colleagues investigated the relationship between
L-cystine and healthspan indicators related to aging using plasma
metabolomics analysis, and discovered that the concentration
of L-cystine in the elderly group was significantly higher than
that in the young group, which is consistent with the findings
of this study (40). Bramer et al. found that in the plasma of
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patients with mild and severe COVID-19 infections, the levels of
L-cystine were significantly elevated (41). Wang et al. by measuring
the plasma levels of L-cystine in patients with Attention Deficit
Hyperactivity Disorder (ADHD) and healthy control groups, found
that the plasma levels of L-cystine in the ADHD group were
significantly higher compared to the healthy control group (42).
These studies collectively suggest that L-cystine may be related
to the severity of the disease, and the increase in L-cystine may
reflect the body’s metabolic adaptation in response to oxidative
stress and inflammatory responses. In accelerated aging individuals,
the increase in L-cystine may be related to the decline in cellular
antioxidant capacity and chronic inflammatory states, both of
which are closely associated with the increased risk of age-
related diseases. Future research should further explore the specific
mechanisms of action of L-cystine under different physiological
and pathological conditions, as well as its potential applications in
aging and disease management.

We found that the ratio of the oxidative stress marker 8-
oxoGuo/Cre was abnormally increased in the accelerated aging
group. 8-oxo-Guo, indicative of RNA oxidative damage, correlates
with elevated oxidative stress levels in several age-related disorders
and serves as a crucial biomarker for evaluating oxidative stress
status and disease risk (21). Moreover, our findings are consistent
with Vatner et al’s view that oxidative stress is a important
mechanism limiting longevity and healthy aging (43).

Additionally, our study demonstrated a markedly increased
amount of CysC in the accelerated aging group compared with
that in the normal aging group, suggesting that CysC serves as a
biomarker for declining renal function associated with accelerated
aging. Recent investigations have demonstrated that heightened
levels of CysC in individuals with metabolic syndrome correlate
with a greater risk of all-cause mortality, including cardiovascular
and cancer-related fatalities (44). This highlights the importance
of CysC in assessing age-related physiological changes. The
accelerated aging group showed markedly increased levels of FFA
compared with both the normal and decelerated aging groups. This
rise may indicate a disturbance in lipid metabolism, often seen in
the elderly, with possible ramifications for the pathophysiology of
age-related illnesses, such as type 2 diabetes and cardiovascular
disorders (45). The concentration of IGF was much lower in the
accelerated aging group than in the normal aging group, which
may signify a disruption in growth signaling pathways crucial
for maintaining tissue homeostasis and regeneration in older
individuals (46, 47). Furthermore, HDL-C levels were markedly
elevated in the accelerated aging group compared with those in
the normal aging group, suggesting a correlation between HDL-
C and accelerated aging. This discovery contradicts previous
research, which indicated that elevated levels of HDL-C correlate
with lifespan (48). Nevertheless, several studies have revealed that
the inverse relationship between HDL-C and ASCVD stabilizes
when HDL-C levels approach 40 mg/dL, and excessively elevated
HDL-C levels may correlate with heightened risk, demonstrating
a U-shaped curve (49, 50). Another study pointed out that
higher levels of HDL-C are associated with an increased risk
of fractures in healthy elderly individuals (51). Additionally,
the SWAN HDL study found that women with midlife HDL-
C > 80 mg/dL had 2.3-fold higher risk of cognitive decline over
20 years (52). Our data extend these findings to accelerated aging,
where dysfunctional HDL likely promotes multisystem decline

Frontiers in

13

10.3389/fnut.2025.1563220

(e.g., bone loss, neuroinflammation). Future work should prioritize
HDL functional assays over concentration alone.

Ultimately, by analyzing the physical examination metrics
of various aging rate subgroups, we elucidated the relationship
between aging rate and alterations in physiological function.
The findings of the 6-m walking test demonstrated that walking
ability diminishes with an increase in the rate of aging. The grip
strength test findings indicated that the accelerated aging group had
considerably reduced grip strength compared with both the normal
and decelerated aging groups, indicating a reduction in muscle
mass and function (53). Height measurements indicated that the
accelerated aging group had a markedly reduced height compared
with the other two groups, may reflect age-related physiological
alterations such as spinal compression, rarefaction of bone (54,

). The results of the response time test further confirmed
that brain function declines with advancing age. PS scores were
significantly increased in the accelerated aging cohort, and the ratio
of oxidative stress markers 8-oxodGuo/Cre to 8-oxoGuo/Cre was
disproportionately increased, indicating a decline in the individual’s
physiological subhealth status and elevated oxidative stress levels
during the aging process (43, 56). The accelerated aging group
had worse performance in many physical examination parameters,
possibly associated with increased oxidative stress and reduced
physiological function.

Physical examination indicators and biochemical markers are
important tools for determining individual aging rates, and their
patterns may suggest prospective targets for anti-aging therapies.
Specific exercise programs may be created to enhance muscle
strength and improve physical function in response to decreasing
grip strength and walking ability; in response to increased oxidative
stress, antioxidant treatment may be explored to slow the aging
process (57, 58). Future research should delve deeper into the
associations between these biomarkers and aging rates, evaluating
corresponding intervention measures with the aim of developing
more effective prevention and treatment strategies.

This study has limitations including its modest sample size
(n 16), and restricted
generalizability to chronic disease populations due to strict health
screening. Findings are expressly applicable to demographically

= 100), limited elderly subgroup (n =

similar, strictly defined healthy populations and cannot be directly
extrapolated to individuals with chronic diseases. while our
feature selection approach identified biomarkers highly predictive
of biological age, the cross-sectional design precludes causal
inference. Despite this, our findings provide valuable baseline data
on nutrition-related aging biomarkers in healthy adults. Future
research should first validate these findings in larger cohorts with
adequate elderly representation and chronic disease populations,
before advancing to: mechanistic exploration of these biomarkers,
personalized interventions, aging risk modeling, and novel anti-
aging therapies. And longitudinal studies should validate whether
these biomarkers modulate aging trajectories or primarily reflect
age-related physiological changes. This progression will enable
targeted strategies to improve healthy aging outcomes.
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