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The 64Cu/67Cu pair is an ideal set of theranostic radionuclides for treating 

patients based on their genetic profiles. We propose a novel production route 

for this radionuclide pair using accelerator-generated neutrons. We report 

experimental measurements of the absolute activity and radionuclide purity 

of 64Cu and 67Cu, produced by irradiating 64Zn and 68Zn with these neutrons. 

The measured results were consistent with simulated values. 64Cu and 67Cu 

were separated from the irradiated natural Zn and 68Zn using sublimation and 

column separation techniques. The production methods for 64Cu and 67Cu 

developed in this study are expected to enhance their availability in an 

economically sustainable manner.
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1 Introduction

Recently, there has been increased interest in personalized nuclear medicine. 

Currently, a variety of radiopharmaceuticals are administered to cancer patients for 

therapeutic and diagnostic purposes (1–3). These radiopharmaceuticals contain 

radionuclides with similar chemical and biochemical properties that allow them to 

target specific diseases. The term “theranostic” refers to the combined use of 

diagnostic and therapeutic agents containing these radionuclides (4).

When radioisotopes are used to treat cancer patients, real-time imaging is performed 

using pharmaceutical compounds labeled with gamma-ray-emitting diagnostic 

radioisotopes. This allows the distribution of pharmaceutical compounds in the 

patient’s body to be assessed, and the appropriateness of the treatment and dosage of 

the therapeutic drug to be evaluated. The ability to monitor the distribution of 

therapeutic radioisotopes in real time enables the understanding of specific patient 
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conditions and characteristics, and the selection of the most 

effective treatment through theranostics, facilitating personalized 

medicine (1–3).

The concept of using therapeutic and diagnostic radioisotopes 

in cancer treatment was first proposed in 1946 with the use of β−- 

and γ-emitting 131I (T1/2 = 8.0 d) for the treatment of thyroid 

cancer. Currently, 3.7–5.55 GBq of 131I is used for thyroid 

cancer treatment (3, 5). Common radioisotope pairs used for 

therapeutic and diagnostic purposes include 131I (123I, 124I), 90Y 

(111In, 86Y), 177Lu (111In), 212Pb (68Ga, 86Y), 223Ra (99mTc, 18F), 
225Ac (68Ga, 86Y), 227Th (89Zr), 186Re (99mTc), and 67Cu (64Cu) 

(6). Diagnostic radioisotopes are indicated in parentheses.

Concurrently, the 64Cu/67Cu pair is an emerging set of 

radionuclides that are ideal for use in therapeutic diagnostics 

(theranostics) (7–11) due to their identical chemical and 

biological properties, the ability of copper to form diverse 

coordination complexes with small molecules, antibodies, and 

proteins, and the favorable physical properties of 64Cu and 

67Cu (4–6). Specifically, 64Cu has a half-life of 12.7 h and 

decays via positron emission (17.5%) with a maximum energy 

of 0.653 MeV, β−-rays emission (38.5%) with a maximum 

energy of 0.579 MeV, and electron capture (44.0%) (12, 13) as 

shown in Figure 1A, making it suitable for positron emission 

tomography (PET). 67Cu has a half-life of 61.8 h and emits 

β−-rays with maximum energies of 0.377 MeV (57%), 

0.468 MeV (22%), and 0.562 MeV (20%) (13, 14), as illustrated 

in Figure 1B. These β−-rays have a range of approximately 

3 mm in water (15). Furthermore, 67Cu emits 91, 93, and 

185 keV γ-rays, enabling its detection by gamma cameras. 

Consequently, 67Cu is well-suited for diagnostic imaging and 

internal radiotherapy. Therefore, increasing Cu availability is 

crucial for the development of radiopharmaceuticals that 

target various diseases (6–8).

Numerous studies have been on the production of 

67Cu using the 67Zn(n,p)67Cu reaction in reactors (16). 

Additionally, studies have been conducted on the production 

of 67Cu using the 68Zn(p,2p)67Cu (16, 17), 68Zn(γ,p)67Cu (18, 

19), 67Zn(n,p)67Cu (20), 70Zn(p,α)67Cu (16, 21), and 70Zn(d, 

αn)67Cu (22) reactions in accelerators. Recently, a significant 

improvement in the accessibility of 67Cu was achieved using 

the 68Zn(γ,p)67Cu reaction at the Argonne National 

Laboratory Low Energy Accelerator Facility (9). This resulted 

in a production yield of over 62.9 GBq after 53.5 h 

of irradiation.
64Cu has also been produced in reactors by the 63Cu(n,γ)64Cu 

reaction and in accelerators by the 64Ni(p,n)64Cu, 64Ni(d,2n)64Cu, 
64Zn(d,2p)64Cu, 66Zn(d,α)64Cu, 68Zn(p,αn)64Cu, and 64Zn(n, 

p)64Cu reactions. The most commonly adopted production 

route is 64Ni(p,n)64Cu (23). Indeed, the production of high- 

quality 64Cu with 8.7 GBq at EOI was achieved by bombarding 

a highly enriched 64Ni target (enrichment 99.53%) with a 20 μA 

proton beam for a period of 4 h (24).

Kin et al. previously proposed a novel route for producing 
67Cu and 64Cu using accelerator neutrons with energies 

ranging from a few MeV to approximately 40 MeV via the 
68Zn(n,n’p)67Cu and 68Zn(n,d)67Cu reactions, as well as the 
64Zn(n,p)64Cu reaction (15), based on the following results 

obtained by them: Kin et al. measured the activation cross- 

sections of 64Cu and 67Cu by bombarding natural zinc with 

14 MeV neutrons. The production yields of 64Cu and 67Cu by 

accelerator neutrons from natC(d,n) with 40 MeV 5 mA 

deuterons were estimated using the results and the evaluated 

cross-sections of the Zn isotopes. The estimated 64Cu yield 

was 1.8 TBq (175 g 64Zn) after 12 h of irradiation. At the end 

of the two-day irradiation period, the estimated yield of 67Cu 

from 67Zn(n,p)67Cu was 249 GBq (184 g 67Zn), and the 

FIGURE 1 

Decay schemes of 64Cu (A) and 67Cu (B), reproduced from references (12) and (14), respectively.
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estimated yield from 68Zn(n,n’p)67Cu and 68Zn(n,d)67Cu were 

287 GBq (186 g 68Zn).

Subsequently, production yield studies of 67Cu and 64Cu 

were conducted (25–28), and an apparatus for the separation 

and purification of these radionuclides from neutron- 

irradiated ZnO was constructed. Kawabata et al. initially 

established a fundamental separation and purification 

procedure, using only the column separation technique for 
64Cu and 67Cu from neutron-irradiated natZnO and 64ZnO 5 g 

with high separation efficiency and successful labelling, 

together with high recovery of Zn samples. The column 

separation technique was employed in the determination of 

the biodistribution of 67CuCl2 in colorectal tumor-bearing 

mice by Sugo, Hashimoto, Kawabata et al. (26). In the latest 

study, Kawabata et al. developed a combined thermal and 

column chromatography separation to separate 64Cu and 67Cu 

from 55.4 g of natural zinc that had been irradiated with 

accelerator neutrons. Sublimation removed 99% of the zinc, 

with 97% physically recovered for reuse. Following the 

removal of most of the zinc by thermal separation, the 

residual zinc containing 67Cu was in the order of milligrams. 

The residual zinc was further purified using chromatographic 

resins (28, 29). The experiments yielded a total separation 

efficiency of 73% for 67Cu.

In this study, we measured the absolute activity and 

radionuclidic purity of 64Cu and 67Cu produced by neutron 

irradiation of 64ZnO and 68ZnO. The measured values of 64Cu 

and 67Cu were compared with the simulation results. In 

addition, new sublimation and column separation apparatuses 

were installed at the Research Center for Accelerator and 

Radioisotope Science (RARiS) facility at Tohoku University.

2 Materials and methods

The schematic diagram for the production and separation of 
64Cu and 67Cu from neutron-irradiated 64Zn and 68Zn is shown 

in Figure 2.

2.1 Production of 67Cu and 64Cu

Copper−64 and Copper-67 were produced by irradiating 

enriched samples of 64Zn and 68Zn with accelerator neutrons 

through the reactions 64Zn(n,p)64Cu, 68Zn(n,n’p)67Cu, and 68Zn 

(n,d)67Cu. Accelerator neutrons were generated via the natC(d,n) 

reaction. The natural carbon target (natC), with a thickness of 

10 mm and a diameter of 27 mm, was placed within a deuteron 

beam duct (vacuum). The samples, consisting of 0.295 g 64ZnO 

and 0.363 g 68ZnO, each with a diameter of 10 mm, were placed 

in air at 0° with respect to the deuteron beam direction. Prior to 

irradiation, the samples were pressed into pellets and sintered at 

150°C for 40 min. The isotopic composition of the 64Zn sample 

was 99.935% and that of the 68Zn sample was: 64Zn (0.03 at%), 
66Zn (0.16 at%), 67Zn (0.62 at%), 68Zn (99.16 at%), and 70Zn 

(0.03 at%). Niobium foils, 10 mm in diameter and 0.1 mm thick, 

were positioned on either side of the 64ZnO and 68ZnO pellets 

to monitor the neutron yield. A typical description of the 

experimental setup for irradiation of Zn samples is given in (28).

Copper-64 was produced by irradiating 64ZnO with neutrons 

for three hours. Neutrons were generated using 41 MeV 

deuterons with an average beam current of 0.11 μA, provided by 

the AVF cyclotron at the Takasaki Ion Accelerator Advanced 

Radiation Applications Facility (TIARA), National Institutes for 

FIGURE 2 

Schematic diagram of 67Cu and 64Cu production using accelerator neutrons generated by deuterons, and their subsequent separation from 68Zn and 
64Zn. The accelerator neutrons were produced via the natC(d,n) reaction in a vacuum. The natC target was placed in a vacuum chamber and equipped 

with a rotating cooling system to manage the thermal load associated with high-intensity deuteron beams.
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Quantum and Radiological Science and Technology (30). Copper- 

67 was produced by irradiating 68ZnO with neutrons for three 

minutes. Neutrons were generated using 52 MeV deuterons with 

an average beam current of 0.379 μA, provided by the AVF 

cyclotron at RARiS, Tohoku University (31). The 52 MeV 

deuteron beam is the highest energy currently achievable with 

these AVF cyclotrons.

The absolute activity and radionuclide purity of 64Cu and 67Cu 

were, respectively, determined by measuring the 1,346 keV γ-ray 

intensity from the decay of 64Cu and the 185 keV γ-ray intensity 

from the decay of 67Cu. The absolute activity of 64Cu and 67Cu 

depends on the excitation function for the reaction of 64Zn(n,p) 

64Cu and 68Zn(n,n’p)67Cu and the 68Zn(n,d)67Cu. The excitation 

functions evaluated for reactions such as 64Zn(n,p)64Cu, 64Zn(n, 

n’p)63Cu, and 64Zn(n,d)63Cu are shown in Figure 3A, and those 

evaluated for reactions such as 68Zn(n,n’p)67Cu, 68Zn(n,d)67Cu, 

and 68Zn(n,4n)65Zn are shown in Figure 3B. These figures 

highlight the importance of measuring the yields and 

radionuclide purities of 64Cu and 67Cu over a range of neutron 

(or deuteron) energies.

The accelerator neutrons used to produce 64Cu and 67Cu 

exhibited the following characteristics. First, a neutron energy 

spectrum can be obtained from the C(d,n) reaction, which is 

suitable for the efficient production of these radionuclides, by 

appropriately selecting the deuteron energy (Ein) (27, 28). Second, 

neutrons are predominantly emitted in the forward direction 

relative to the deuteron beam axis (34–36), resulting in nearly 

complete irradiation of the enriched 64Cu or 68Zn placed 

immediately behind the natC target (36). Notably, SPIRAL2 at 

GANIL in France will produce 1015 neutrons per second (n/s) 

through the natC(d,n) reaction using 40 MeV, 5 mA deuterons (33).

2.1.1 Absolute activity and radionuclide purity of 
64Cu and 67Cu

The measured absolute activities and radionuclide purities of 
64Cu and 67Cu were compared with the evaluated values, as 

follows:

First, we note that a single radionuclide, B, is produced via a 

neutron-induced reaction on the Zn isotope A in the enriched 
64Zn or 68Zn samples. This is represented by the A(n,x)B 

reaction. Next, the yield rate Ya of radionuclide B produced 

from isotope A via a reaction channel, α ≡ α(A, B), of the A(n,x) 

B reaction was derived as:

Ya ¼
ÐEmax

Emin

sa(En)fn(En)dEn, (1) 

where σα(En) is the excitation function at neutron energy En for the 

channel α, and fn(En) is the neutron Ruence in the sample. In 

Equation 1, the limits Emin and Emax correspond to the energy 

range of the neutrons produced by the natC(d,n) reaction in a 

10-mm-thick carbon target. Note that Emin should be set to the 

threshold energy Eth�a for channel α if Emin is lower than this 

threshold. Excitation functions σα(En) were obtained from the 

production cross sections provided in the fifth version of the 

Japanese Evaluated Nuclear Data Library (JENDL-5) (37). The 

neutron Ruence fn(En) was derived from a particle transport 

FIGURE 3 

(A) evaluated excitation functions for reactions such as 64Zn(n,p)64Cu, 64Zn(n,n’p)63Cu, and 64Zn(n,d)63Cu during neutron irradiation of enriched 64Zn 

(32). (B) Evaluated excitation functions for reactions including 68Zn(n,n′p)67Cu, 68Zn(n,d)67Cu, and 68Zn(n,4n)65Zn during neutron irradiation of 

enriched 68Zn (32). 65Ni (T1/2 = 2.5 h) and 65Zn (T1/2 = 244 d) decay to 65Cu (a stable nuclide), while 69mZn (T1/2 = 14 h) decays to 69Ga (also 

stable). The excitation functions for the 68Zn(n,n′p)67Cu, 68Zn(n,d)67Cu, and 64Zn(n,p)64Cu reactions indicate very low production of Zn-based 

impurity radionuclides. The most probable 14 MeV neutron energy generated by the natC(d,n) reaction using 40 MeV deuterons is indicated by 

the thin solid line (33).
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simulation using the Particle and Heavy Ion Transport code System 

(PHITS) (38), which accounted for neutron propagation from the 

carbon target—where neutrons are produced with energy E0

n and 

angle V0

n via the natC(d,n) reaction—to the Zn sample. The Ruence 

of the produced neutrons at position r in the target is given by:

�f n(E0

n, V0

n, r) ¼ NC
ÐEin

0
s(d,n)(Ed, E0

n, V0

n)fd(Ed, r)dEd, (2) 

where NC is the number of carbon nuclei in the target, Ein ¼ 41 and 

52 MeV are the incident deuteron energies, s(d,n) are the neutron 

production cross sections obtained from JENDL-5, and fd is the 

deuteron Ruence at position r, normalized per incident deuteron. 

The PHITS simulation accounted for the attenuation of deuteron 

Ruence in the target, including the corresponding decrease in 

deuteron energy. The neutron Ruence fn in the Zn sample was 

calculated as the component of �f n directed toward the sample. By 

setting the number of deuterons Nd irradiating the sample, isotopic 

abundance RA of isotope A in the Zn sample, and particle density 

ρ of Zn, the total yield Y(B) of radionuclide B in the sample can 

be expressed as:

Y(B) ¼ Nd

P

A

RAr
P

a[B

Ya, (3) 

where a [ B indicates that the summation includes all reaction 

channels α through which isotope A can produce radionuclide 

B. Here, A refers to one of the five stable Zn isotopes: 64Zn, 66Zn, 
67Zn, 68Zn, and 70Zn, and B denotes one of Cu or Zn 

radionuclides listed in Reference (39). Furthermore, Ga 

radionuclides were evaluated as products B by replacing neutrons 

with protons in the above equations. Finally, the yield was 

multiplied by the saturation factor to evaluate the amount 

produced at the EOI. Stable isotopes of 63Cu and 65Cu can be 

produced by reactions such as 64Zn(n,n’p)63Cu and 68Zn(n, 

p3n)65Cu, respectively. Their production reduced the specific 

activity of the products 64Cu and 67Cu. Consequently, an absolute 

yield evaluation of these isotopes is imperative, because they are 

not detectable by radiation detectors.

2.2 Separation of 67Cu and 64Zn from 
irradiated 68Zn and natZn

We developed a new sublimation and column 

chromatography separation apparatus to be installed in an 

existing hot cell at the Research Center for Accelerator and 

Radioisotope Science (RARiS) facility at Tohoku University. The 

apparatus was designed for the production and separation/ 

purification of 64Cu and 67Cu using the cyclotron at Tohoku 

University. To obtain 67Cu and 64Cu from irradiated 68Zn and 
natZn, respectively, the same separation apparatus was used for 

both sublimation and column chromatography because both 

irradiated samples contained common impurity radionuclides 

belonging to Cu and Zn in addition to the desired 67Cu and 64Cu.

2.2.1 Sublimation separation of Zn

The initial separation of 67Cu (or 64Cu) in the milligram range 

from neutron-irradiated bulk 68Zn (or natZn) was achieved using 

the sublimation method, originally developed by the Argonne 

National Laboratory (ANL) group (40). We developed a vertical- 

type sublimation apparatus (Figure 4) instead of the horizontal- 

type due to the inadequate effective dimensions within the cell.

Cooling devices were attached to the upper Range and top of 

the vacuum vessel to facilitate the recovery of sublimated Zn inside 

the system. Sublimation is an effective method for the separation 

of Zn and Cu due to the substantial difference in their boiling 

points: The boiling points of Zn and Cu are 907°C and 2,562°C, 

respectively. In this study, sublimation experiments were 

performed at temperatures of 500 and 600°C under a vacuum of 

2.0 × 10−5 hectopascal (hPa) to determine the optimal 

temperature for maximizing Zn sublimation while reducing the 

amount of distilled Cu. This apparatus can separate more than 

40 g of Zn via thermal separation.

The furnace temperature can be controlled remotely, and the 

separation vessel can be raised or lowered remotely outside the 

cell. Two 67Cu activities were produced by irradiating 43.6 g of 
natZn, consisting of three pellets, with accelerator neutrons, and 

bombarding an enriched 68Zn pellet (3.93 g) with photons. 

Accelerator neutrons and photons were generated by a cyclotron 

and an electron linear accelerator (linac), respectively, at Tohoku 

University. The irradiated Zn samples were placed in a quartz 

tube with quartz beads (7 mm ϕ), which were dispersed between 

the pellets to serve as fillers and increase the sublimation surface 

among samples comprising more than 10 g of multiple pellets to 

increase the sublimation surface area of the Zn and shorten the 

sublimation time (28). γ-ray spectra were recorded every 3 min 

using a CZT detector while heating, in order to monitor 

FIGURE 4 

Layout of the sublimation separation apparatus for an irradiated Zn 

sample. (1) Irradiated Zn sample containing 67Cu activity, (2) quartz 

beads, (3) sublimated Zn element, (4) vacuum chamber, (5) 

electric tubular furnace, (6) electric leak valve, (7) vacuum gauge, 

(8) CZT γ-ray detector, (9) cold trap, (10) turbomolecular pump, 

(11) motor, (12) butterfly valve.
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changes in the activity of 67Cu (185 keV) and 65Zn (1,116 keV) 

over time. After heating was stopped, the furnace was lowered 

to allow the system to cool below 200°C, after which the 

equipment was returned to atmospheric pressure. The quartz 

components were then removed and weighed to determine the 

Zn deposition and sublimation efficiency.

The efficiency of sublimation separation of irradiated Zn was 

determined online by comparing the activity of 65Zn (1,116 keV 

γ-ray) measured with the CZT detector before and after 

separation. The Zn accumulated in the quartz tube during the 

sublimation of Cu from the irradiated Zn was collected for 

recycling. Prior to collection, the distribution of accumulated Zn 

was determined by measuring the 65Zn (1,116 keV) signal using 

a high-purity germanium (HPGe) detector. The separation yield 

of Zn was calculated using a gravimetric method.

The non-radioactive Cu present in the Zn sample was 

removed prior to irradiation, because it lowers the specific 

activity of the 64Cu or 67Cu product (28). The zinc samples were 

sublimated at 650°C for 120 min under vacuum to prevent 

oxidation. The sublimated zinc was subsequently collected, 

melted, and prepared as pellets for irradiation. This method can 

also be applied to the recycling of enriched zinc after the 

separation of 67Cu (64Cu).

The copper remaining in the test tube was further purified 

using commercially available resins, as described below.

2.2.2 Purification of 67Cu by column 
chromatography

The purification scheme is illustrated in Figure 5. Two CU 

Resin cartridges (2 ml and 1 ml, TrisKem International) and one 

TK201 cartridge (2 ml, TrisKem International) were pre- 

conditioned with 30 ml of 0.01 M HCl (15 ml for the 1 ml 

resin) and 30 ml of 8 M hydrochloric acid, respectively. A 1 ml 

CU Resin cartridge was placed below the 2 ml cartridge as a 

guard column to retain any copper that may have leaked from 

the larger cartridge. After the sublimation of bulk Zn, quartz 

beads were added to the test tube to fill the void space, and 8 

M hydrochloric acid was added until the tube opening was 

submerged, —typically requiring approximately 15 ml, —to 

ensure the complete dissolution of the copper and Zn residues. 

Dissolution was enhanced by applying ultrasonic waves for 

10 min. The solution containing dissolved Cu and Zn was 

transferred to another container. The test tubes were washed 

with ultrapure water under ultrasonic agitation for 10 min. The 

resulting solution was filtered through a glass filter to remove 

insoluble residues and ash. The pH of the filtrate was adjusted 

to pH 2–3 using a NaOH solution.

This pH-adjusted solution was loaded onto the CU Resin 

cartridge to adsorb 67Cu, followed by washing with 45 ml of 

0.01 M HCl to remove residual Zn and other impurities. The 

Row rate was maintained at 1.0 ml/min, controlled by a 

peristaltic pump. After trapping copper in the CU Resin, 8 ml of 

8 M HCl was passed through the column to elute 67Cu, which 

was then reabsorbed onto the TK201 resin. The final 67Cu 

product was eluted with 14 ml of 0.05 M HCl, followed by acid 

removal through evaporation. The same purification procedure 

was use to separate 64Cu from 64Zn.

The total time required for sublimation and chromatography 

steps was 8 h, each step requiring 4 h.

3 Results

We discuss these results by referring to the γ-ray branching 

ratios obtained from the decay of 67Cu, as shown in Figure 1A.

3.1 Absolute activity and radionuclide purity 
of 64Cu and 67Cu

Figure 6 shows the γ-ray spectrum of irradiated 68Zn. The 

observed γ-ray peaks originate from the decay of 67Cu (91, 93, 

185, 209, 300, and 394 keV), 65Ni (T1/2 = 2.52 h; 366, 508, 610, 

and 1,116 keV), 65Zn (T1/2 = 244 d; 1,116 keV), and 69mZn 

(T1/2 = 13.8 h; 439 keV). The isotope assignments of the 

observed γ-rays were based on their energies, decay curves, and 

known branching ratios.

The activity of 67Cu and the impurity of 65Zn (as well as 64Cu 

and the impurities of 61Cu, 62Zn, and 63Zn) at EOI were 

determined by considering the branching ratios of the observed 

FIGURE 5 

Purification steps of 67Cu from Zn.
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185 keV and 1,116 keV (and 1,346 keV and 656 keV, 597 keV, and 

670 keV) γ-rays (41), as well as the γ-ray detection efficiency of the 

HPGe detector, which was calibrated using a standard 152Eu γ-ray 

source. The self-absorption of the γ-rays in the irradiated 68Zn 

sample was corrected using the photon cross-sectional database 

provided by the National Institute of Standards and Technology 

(42). The calculated yields of 67Cu and 65Zn (along with 64Cu, 
61Cu, 62Zn, and 63Zn) at EOI, obtained using the radionuclide 

production rates, irradiation time, and deuteron beam intensity, 

are presented in Table 1. The calculated and measured yields 

were in good agreement within an uncertainty of ±20%. The 

total systematic uncertainty in the calculated yields was 

estimated to be 23%, taking into account the uncertainty of 18% 

in the measured neutron data for the natC(d,n) reaction (43), 

and an assumed 15% uncertainty in the evaluated cross sections. 

The total systematic uncertainty in the experimental values was 

calculated to be 12%, based on the estimated uncertainties in 

the distance between the carbon target and the sample, spatial 

distribution of the deuteron beam intensity and diameter, and γ- 

ray detection efficiency of the HPGe detector.

The measured activity of 67Cu at Ein = 52 MeV at EOI was 

1.23 ± 0.05 kBq, which was approximately 3.2 times higher than 

0.383 ± 0.02 kBq measured at Ein = 40 MeV. In contrast, the 

measured yield of 65Zn at 52 MeV was 2.9 ± 0.16 Bq, which was 

approximately 12 times higher than 0.25 ± 0.02 Bq, measured at 

40 MeV. The substantial increase in 67Cu yield observed when 

employing 52 MeV deuteron beams underscores the practical 

advantage of expanding the availability of 67Cu, 65Zn was 

separated from 67Cu via sublimation.

Figure 7 shows the gamma-ray spectrum of irradiated 64Zn. 

The observed gamma-ray peaks originate from the decay of 
64Cu (511 and 1346 keV), 61Cu (T1/2 = 3.32 h, 656 keV), 62Zn 

(T1/2 = 9.26 h, 548.4 and 596.6 keV)  63Zn (T1/2 = 38.5 minutes. 

669.6 and 962.1 keV). The measured activities of 64Cu, 61Cu, 
62Zn, and 63Zn at Ein = 41 MeV at the EOI were 6.61  ± 0.42 

kBq, 59.4 ± 4.7 Bq, 214 ± 12 Bq, and 39.5 ± 3.6 kBq, respectively, 

as listed in Table 2. 64Cu produced the low amount level of 
61Cu radioactive waste. Copper-61 is produced by the 64Zn(n, 

p3n)61Cu reaction. Short lived impurity radionuclide 62Zn and 
63Zn can be separated by sublimation process.

FIGURE 6 

γ-ray spectrum of the neutron irradiated 68ZnO using a deuteron beam of 52 MeV. The γ-ray peaks originate from the decays of 67Cu (open circles), 
65Ni (open triangles), 69mZn (filled diamond), and 65Zn (filled square).

TABLE 1 The measured and calculated activities of 67Cu, 64Cu, 65Zn, 69mZn, 65Ni, 66Ga, and 67Ga at the EOI of enriched 68Zn at Ein = 52 and 40 MeV 
are shown.

Radionuclide 67Cu 64Cu 65Zn 69mZn 65Ni 66Ga 67Ga 65Cu/67Cu 63Cu/67Cu

T1/2 2.58 d 0.53 d 244 d 0.57 d 0.11 d 0.39 d 3.2 d

Unit Bq Bq Bq Bq Bq Bq Bq Atoms/cc Atoms/cc

52 MeV

Exp. 1.23 × 103 <5 × 10−1 2.9 8.7 × 101 ND ND ND

Cal. 1.20 × 103 8.1 × 101 4.3 1.1 × 102 5.5 × 103 1.1 × 10−1 7.2 × 10−1 0.13 0.004

40 MeV

Exp. 3.83 × 102 <6 2.5 × 10−1 5.3 × 10 ND ND ND

Cal. 3.88 × 102 7.5 4.5 × 10−1 5.7 × 10 2.4 × 103 5.1 × 10−3 8.4 × 10−2 0.05 0.005

The table also presents the ratio of calculated numbers of atoms for non-radioactive 65Cu and 63Cu relative to 67Cu. ND = not detected.
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3.2 Separation

Figure 8 shows the γ-ray spectrum measured after the 

purification of the neutron irradiated natZnO. The γ-ray 

peaks come from the decays of 64Cu and 67Cu. A 65Zn 

radionuclide impurity in the final 64Cu product was below 

the detection limit of gamma-ray spectrometry providing 
65Zn/64Cu\0.01%.

The Zn separation yield was determined using a 

gravimetric method. Using this apparatus, thermal 

separation was performed on 43.6 g of irradiated natural 

zinc, achieving a sublimation rate of 99% and recovering 

94% of the zinc in a reusable form. At the end of the 

thermal separation process, the Cu-67 yield reached 87%, 

and subsequent chemical purification resulted in an overall 

Cu-67 recovery yield of 79%. For 3.932 g of enriched 68Zn, 

the separation efficiency was 99% by sublimation and 95% 

by column chromatography, with a total separation 

efficiency of 94%. The sublimation time for natZn was 

93 min, whereas that for 68Zn was 20 min. In both 

samples, the amount of 67Cu remaining in the non- 

sublimated material was less than 50 mg, which enabled 

subsequent purification by chromatography.

4 Discussion

The 64Cu/67Cu pair is an emerging set of radionuclides for use 

in theragnostic due to their identical chemical and biological 

properties and their favorable physical properties. Therefore, 

increasing the availability of 67Cu and 64Cu is crucial for 

developing radiopharmaceuticals that target various diseases. The 

novel production method of both 67Cu and 64Cu using accelerator 

neutrons provided from accelerators was previously proposed.

The absolute activity and radionuclidic purity of 64Cu and those 

of 67Cu were measured for the first time using enriched 64ZnO and 
68ZnO at a deuteron energy of 41 MeV and 52 MeV, respectively. 

High radionuclidic purity of 64Cu was produced with a minimum 

level of radioactive waste. The 67Cu activity at 52 MeV was found 

to be 3.2 times higher than that at 40 MeV. The measured 

radioactivity and radionuclidic purity of 64Cu and 67Cu were in 

good agreement with the simulation based calculated values. The 

simulation further estimated the unmeasured yields of non- 

radioactive 63Cu and 65Cu relative to 64Cu and 67Cu at 41 MeV 

and 52 MeV, respectively. This information provides valuable 

insight into the specific activity of 64Cu and 67Cu.

Using the new apparatus, thermal separation was performed on 

43.6 g of irradiated natZn, achieving a sublimation efficiency (rate) of 

FIGURE 7 

γ-ray spectrum of the neutron irradiated 64ZnO using a deuteron beam of 41 MeV. The γ-ray peaks come from the decays of 64Cu (filled circle), 61Cu 

(open square), 62Zn (filled tringle), and 63Zn (open diamond).

TABLE 2 The measured and calculated activities of 64Cu, 61Cu, 62Zn, 63Zn, and 65Zn at the EOI of enriched 64Zn at Ein = 41 MeV are shown, along with the 
ratio of calculated numbers of atoms for non-radioactive 63Cu and 65Cu relative to 64Cu.

Radionuclide 64Cu 61Cu 62Zn 63Zn 65Zn 63Cu/64Cu

T1/2 0.53 d 3.33 h 9.26 h 38.5 m 244 d

Unit Bq Bq Bq Bq Bq Atoms/cc

41 MeV

Exp. 6.61 × 103 5.94 × 101 2.14E × 102 3.95 × 104 <2.0 × 10−1

Cal. 7.04 × 103 7.45 × 101 1.62E × 102 4.39 × 104 1.9 × 10−1 3.8

ND, not detected.
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99% and recovering 94% of the zinc in a reusable form. At the end of 

the thermal separation process, the 67Cu yield reached 87%, and 

subsequent chemical purification resulted in an overall 67Cu 

recovery yield of 79%. Separation experiments for 64Cu and 67Cu 

were conducted using neutron irradiated natZn of 43.6 g and 

enriched 68Zn of 3.932 g. The sublimation temperature for the 

irradiated Zn was adjusted to 600°C and 500°C to enhance the Zn 

sublimation yield while minimizing the co-distillation of copper. 

Gamma-ray spectrum measured after the purification of the natZnO 

show the dominant γ-ray peaks from the decays of 64Cu and 67Cu.

The present study demonstrates the fundamental steps for 

large-scale production of 64Cu and 67Cu. Deuteron beam 

intensity of 40 MeV used in this study was approximately 5 μA, 

0.1% of 5 mA 40 MeV. As a result of this work, a new project 

aimed at accelerating 25–40 MeV, 100 µA (20 times the current 

intensity) deuterons using the existing cyclotron at RARiS, 

Tohoku University, has been approved (44). This capability is 

expected to be achieved in the near future.

5 Conclusion

The radionuclide pair 64Cu and 67Cu is considered an ideal 

theranostic candidate due to its identical chemical properties, 

the versatile coordination chemistry of copper, and suitable 

physical characteristics. Accordingly, radiopharmaceuticals based 

on 64Cu and 67Cu are expected to play a key role in the 

theranostic treatment of various diseases.

A novel method for producing 64Cu and 67Cu pairs using 

accelerator neutrons has demonstrated excellent results, enabling 

the separation and purification of high-quality 64Cu and 67Cu pairs 

using the same separation apparatus by sublimation and column 

chromatography-based separation of 64Cu and 67Cu from irradiated 
64Zn and 68Zn. The central objective of the newly approved project 

is to strengthen ongoing research into the domestic production of 

radiopharmaceuticals containing 64Cu and 67Cu.
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