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Purpose: The physical properties of 44S¢, combined with its imminent clinical
application, position it as a prime candidate for in vivo positronium lifetime
imaging. In this study, we investigate the count statistics for ortho-
positronium (oPs) measurements with **Sc on a commercial long-axial field-
of-view (LAFOV) PET/CT.

Method: A NEMA image quality phantom was filled with 41.7 MBq of **Sc
dissolved in water and scanned on a LAFOV PET/CT. Three-photon events
were identified using a prototype feature of the scanner and dedicated
software. The lifetime of oPs was determined in the phantom spheres and in
4 x 4 x 4 mm? voxels.

Results: All measured oPs lifetimes are compatible, within the uncertainties,
with the literature values for water. The oPs lifetime is 2.65 + 0.50,
1.39 4+ 0.20 and 1.76 + 0.18 ns in the three smallest spheres of the phantom
and 1.79 + 0.57 ns for a single voxel in the central region of the largest
sphere. The relative standard deviation in the background regions of the time
difference distributions, i.e., for time differences smaller than —2.7 ns, is
above 20%—even for voxels inside the phantom spheres.

Conclusions: Despite the favorable physical properties of 445c, the count
statistics of three-photon events remains a challenge. The high prompt-
photon energy causes a significant amount of random three-photon
coincidences with the given methodology and, therefore, increases the
statistical uncertainties on the measured oPs lifetime.
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scandium-44, long axial field-of-view PET/CT, positronium, positronium lifetime
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1 Introduction

Investigating the lifetime of ortho-positronium (oPs), the
spin-1 state of an electron-positron bound system, has offered
valuable insights into the structural properties of matter for
decades (1-8). More recently, the medical community has
shown interest in measuring oPs lifetimes in human tissue
(9-12). So-called oPs lifetime imaging, i.e., constructing a three-
dimensional image of the human body with the oPs lifetime as
voxel value (13), has the potential to provide diagnostic
information about the tissue microenvironment, in particular
oxygenation levels, that is currently unavailable in clinical
routine (13-23). Recently, the first in vivo oPs lifetime images
were determined with the dedicated multi-photon J-PET
scanner prototype (24), and notably also the first in vivo oPs
lifetime measurements with a commercial PET/CT system were
demonstrated (25, 26). Different dedicated image reconstruction
techniques for oPs lifetime imaging have been presented in the
literature (20, 22, 27-32).

The oPs lifetime can be measured by determining the time
difference between a prompt-photon, emitted during the nuclear
decay along with the positron, and the two photons with
511keV energy from the positron annihilation. The prompt-
photon serves as the start time, while the detection of the
annihilation photons sets the stop time. The two annihilation
photons are also used to determine the place of annihilation
(33). Histograming all measured time differences gives a
Positron Annihilation Lifetime (PAL) spectrum that contains
several components, including the oPs lifetime. The oPs lifetime
is of particular interest, as it depends on the molecular structure
of the surrounding matter (9, 10). oPs lifetime measurements
require a positron-emitting radionuclide with prompt-photon
emission, together with the possibility of detecting and
localizing three-photon events' (3yE). The detection of 37yE
poses significant challenges, particularly in a clinical
environment. Positron emission tomography (PET) systems are
designed to detect photon pairs with 511keV energy. The
detection of single-photon events with different energies is not
part of the design of clinical PET/CT
Nonetheless, Ref. (34) presented the first use of a clinical PET/

CT scanner for oPs lifetime measurements by extending the

core scanners.

detection and processing capabilities to 3yE. An accurate
measurement of oPs lifetime requires the detection of a
substantial number of 3yE. The increased sensitivity of long-
axial field-of-view (LAFOV) PET/CT systems (35-38) proved to
be a key factor for oPs lifetime measurement on a commercial
PET/CT system.

Radionuclides with prompt-photon emission are readily
available in clinics, of which ®Ga labeled with [°®Ga]Ga-
PSMA-617 and [%®Ga]Ga-DOTA-TOC is by far the most

Yn this study, we do not consider three-photon decays of oPs
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widely adapted. 32Rb and to some extent !2!I are also used in
clinical routine, which is why Refs. (24, 25) relied on ®®Ga
and ¥Rb for in vivo measurements. The prompt-photon
branching ratio (BR,) is, of course, a key physical parameter
to maximize the count statistics of 3yE. ®®Ga and 82Rb have
only a limited BR,. If the positron emission fraction is taken
into account, also the seemingly high BR, of '*I drops
significantly. **Sc, on the other hand, has a very high BR, in
conjunction with a high positron fraction, which makes it a
prime candidate for oPs lifetime imaging (38, 39). There is
legitimate hope that #*Sc can overcome the challenge of
detecting enough 37yE for a reliable determination of the
useful lifetime of oPs (38).

Although #!Sc is not yet available in clinical routine,
production routes, purification and labeling as well as first in-
human studies have been reported in the literature (40-49). *4Sc
can be paired with its therapeutic analog *’Sc for theranostic
applications, enabling seamless transitions between diagnostic
imaging and targeted therapy. Adding diagnostic information
from oPs lifetime imaging could boost the tailored effectiveness
of therapeutic applications with %Sc, the B~ -emitting
theranostic partner of *Sc.

In this brief report, we investigate the properties of *4Sc for
oPs lifetime imaging on a commercial LAFOV PET/CT. While
Refs. (25, 34, 50) showed that 241 outperforms %8Ga and #Rb in
terms of 3yE count statistics, the current study investigates the
performance of #Sc with respect to oPs lifetime imaging and
how it compares to '**I using the methodology described in

Refs. (25, 34, 50).

2 Method

4Sc was produced at the Paul Scherrer Institute (PSI,
Switzerland). The radionuclide production and post-irradiation
processing at PSI have been established and are being further
developed and optimized, as documented in Refs. (46, 51, 52).
At Inselspital’s Department of Nuclear Medicine (Switzerland) a
standard NEMA image quality phantom (Data Spectrum Corp.)
without lung insert was filled with a total of 41.7 MBq at scan
time. The dose calibrator in the Department of Nuclear
Medicine (VDC-405/VIK-202, Comecer, The Netherlands) was
cross-calibrated with a *4Sc reference activity from PSL Ref. (53)
describes the calibration of PSI’s dose calibrator for **Sc. The
activity concentration in the six phantom spheres at scan time
was 40.68kBq/mL while the background concentration was
3.90kBq/mL. The phantom was scanned for 20 min in the so-
called singles mode on a Biograph Vision Quadra (Siemens
USA).
interactions into a list mode file. The sorting of 39E is

Healthineers, Singles mode stores all single-crystal
performed using the same prototype software as described in
Refs. (25, 34, 50). The annihilation photon energy window is
476 to 546keV with a double coincidence time window of
4.2ns, while the prompt-photon energy window is 720 to
735keV, i.e., the last two energy bins. Apart from the time and
energy window selection, a minimal distance of 30 crystals
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(equivalent to a 100 mm radius) is applied in order to control the
176Lu background (34). No reconstruction algorithm is applied,
i.e., the spatial localization of the 37E is purely based on time-
of-flight (TOF) of the 511keV photons (34). As described in
Ref. (34), Quadra resolves photon energies up to 726keV.
Beyond this energy, all detected photons are collected in a single
energy bin. Since the prompt-photon of *Sc has an energy of
1157.022 + 0.015keV, all prompt-photon events are located in
The
annihilation and prompt-photons for each 3yE were binned in

the last energy bin. time differences between the
order to obtain a PAL spectrum. The time bins are 133 ps wide.
For the parameter fit we select only those 3yE with time
differences between —2ns and 8.6 ns.

For the determination of the oPs lifetime, we rely on the same
Bayesian fitting procedure as in Refs. (25, 34, 50). The fit model for
the PAL spectrum consists of three lifetime components, i.e.,
direct annihilation, para-positronium and oPs, convoluted with
a Gaussian function that models the detection system. Solving
the convolution integral analytically, the fit model can be
written in terms of error functions:

3
F(AH) =b+ N - Z?e(alflAtn+2Ao 7.)/(27)
c
Ay — At>
V2o )

c=1

. erfc( il +
V2T,

¢y

In Equation 1, b denotes a constant background and N is a
normalization constant. The relative branching ratios of the
three lifetimes 71,3 are BR;,3. The two parameters o and A,
define the Gaussian function. They represent the timing
resolution and time offset. We use a Bayesian fitting procedure
that minimizes a Gaussian likelihood for determining the
parameter’s posterior distributions. Equation 2 shows the prior
distributions for the fit parameters

73 ~ N(1.78 ns, 0.8 ns),
BR) 3 ~ Dirichlet(0.75, 3.1, 1.15),
o~ N(0.1ns,0.05ns), )
A ~ N(0ns, 0.5ns),
N~ N(4, 0.1 - A),

where A is the integrated of the PAL spectrum with a subtracted
background b. The value of b is determined as the mean counts
with time differences smaller than —2.7ns. The values of the
direct annihilation and oPs lifetime are fixed to reference values
of 71 =0.388ns and 7, = 0.125ns. Setting priors for 7, does
not impact the result significantly (25, 34). The Bayesian
approach allows us to marginalize nuisance parameters. In fact,
we are mostly interested in 73 and the branching ratios (for
sanity checks and comparison with established results from the
literature). We report the fit results in terms of marginalized
posterior distributions. The posterior distribution for 73 is
almost a perfect Gaussian function, hence the standard deviation
is a reasonable measure for the uncertainty. However, this does
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not apply to BR;,3 and we therefore provide the highest density
interval (HDI) of the posterior distribution in the results.

We determined the oPs lifetime for the six spheres s;..¢ of the
NEMA phantom (nominal diameters: 10, 13, 17, 22, 28, 37 mm).
Furthermore, we binned the spatial distribution of the detected

3. For each voxel, the oPs

3yE into voxels of 4 x 4 x 4mm
lifetime is determined according to the same Bayesian fitting as

for the phantom spheres.

3 Results

The left panel of Figure 1 shows the maximum intensity
projection (MIP) of the 3yE histoimage. The binning is chosen
according to the CT image, ie., 1.52 x 1.52 X 1.65 mm?>. Even
without any reconstruction methodology, i.e., using only TOF
for the localization of the 37yE, the smallest sphere s; of the
NEMA phantom is visible. The absence attenuation correction is
clearly visible through the darkening on the border of the
phantom. Some *4Sc activity stuck to the left wall of the phantom.

The total number of 3yE in the full field of view collected
during the 30 min scan is 539862149 for a triple coincidence
time window from —15ns to +15ns. These are, however,
mostly random 3vyE. In contrast, a 20 min scan in standard
coincidence mode with a larger coincidence window of 435keV
to 585keV of the same phantom yields 2405451 960 net trues.
This includes the standard random correction methods for
coincidence PET.

On the right of Figure 1 the relative error in the background
region of the PAL spectrum, ie., for time differences that are
smaller than —2.7ns, is shown. The error inside the spheres
decreases as there is a higher activity concentration. Due to the
decreasing number of 3yE towards the center of the phantom,
the error increases towards the center of the phantom (there is
no attenuation correction).

Figure 2 shows the measured PAL spectrum with the fit
prediction for the three smallest spheres and a single voxel in the
center of the largest sphere sg. The error bars plotted on the
measurement points are the relative error in the background
region of the PAL spectrum, ie., the relative standard deviation of
all time differences < —2.7 ns. The 68% HDI plotted in Figure 2
represents prediction uncertainty of the fit. The fit results
corresponding to the PAL spectrum in Figure 2 are reported in
Table 1 together with the fit results of the larger phantom spheres.
The posterior distribution of 7; is Gaussian, hence we report the
error on 73 as a standard deviation in Table 1. This does not apply
to the relative branching ratios of the three lifetime components
BR;,3, since these are Dirichlet distributed random variables.
Their error is therefore quoted as a 68% HDL

In Figure 3 a slice of the full oPs lifetime image, together with
the fit error on 7 with a 4 x 4 x 4mm’® binning, is presented.
While the oPs lifetime image is not particularly interesting -
after all, the phantom is filled with water - the marginalized
uncertainty on 73 clearly increases in the central region of the
phantom. Note that only for the four largest spheres, the error
decreases visibly.
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FIGURE 1
MIP of the 3yE histoimage with a voxel size that corresponds to the CT image (left) and the relative error in the background region of the PAL
spectrum in a single slice with 4 x 4 x 4mm? voxel size (right).
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FIGURE 2
PAL spectrum of all 3yE with the fit prediction in the three smallest spheres of the NEMA phantom and of a single 4 x 4 x 4 mm? voxel in the center
of sg.
4 Discussion Quadra’s inability to resolve *Sc’s photopeak. Detector hits

above 726 keV are collected in a single integrating bin, as clearly
From the discussion in Ref. (34), it is clear that the key illustrated in Figure 4. One should, therefore, expect that more
question is whether the high BR, of **Sc can overcome the random coincidences are selected due to the high prompt-
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TABLE 1 Fit results for the six phantom spheres and a single 4 x 4 x 4mm? voxel in the center of s,.

Fit T3 [ns] BR1 HD|BR1 BR2 HD|3R2 BR3 HD|5R3
51010 mm 2.65 + 0.50 0.072 [0.0, 0.091] 0.659 [0.608, 0.736] 0.269 [0.242, 0.301]
5,013 mm 1.39 + 0.20 0.077 [0.049, 0.106] 0.623 [0.573, 0.679] 0.30 [0.267, 0.324]
53017 mm 1.76 + 0.18 0.062 [0.041, 0.083] 0.651 [0.62, 0.687] 0.287 [0.27, 0.301]
54022 mm 1.86 + 0.09 0.057 [0.047, 0.067] 0.655 [0.639, 0.671] 0.288 [0.281, 0.296]
55028 mm 1.73 £ 0.1 0.091 [0.08, 0.103] 0.603 [0.585, 0.622] 0.306 [0.296, 0.314]
56037 mm 1.78 + 0.08 0.066 [0.057, 0.076] 0.642 [0.627, 0.657] 0.292 [0.285, 0.299]
Voxel 1.79 + 0.57 0.051 [0.0, 0.063] 0.609 [0.553, 0.717] 0.34 [0.266, 0.386]
0.8
0.6
)
=
04 ¥
<
0.2
0.0
FIGURE 3
Slice of the oPs lifetime image (left) and 73 error (right) with 4 x 4 x 4mm? voxels.
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FIGURE 4
Energy spectrum of 10° detector hits from #4Sc.

photon energy of #Sc. The right panel of Figure 3 already hints
towards a high random 37E rate: even inside the spheres, the
relative error in the background region of the PAL spectrum
exceeds 20%. For a comparison, Ref. (50) only considered those
voxels with less than 20% background error for oPs
lifetime imaging.

The large number of random 3+E is reflected in the statistical
uncertainty of 73 reported in Table 1. All values for 73 in the
phantom are consistent with the literature value of 1.839 + 0.015ns

for water from Ref. (54) and with the results from Ref. (50) within
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their statistical uncertainty [note also the reference values in Ref.
(17)]. However, the marginalized uncertainties reported in Table 1
are rather large: only starting from s; the relative error starts
dropping below 10% (and reaches even 31.9 % in a single voxel).
This is likely more than the precision required to sense different
oxygenation levels in lesions, as discussed in Ref. (16).

73’s uncertainty is seen in Figure 3 as well. The variation on 73
across the whole phantom is quite large, given that the expected
oPs lifetime should be the same across the whole phantom. In
the right panel of Figure 3, only very few voxels have an error
below 0.3 ns. The mean uncertainty on 75 across the slice shown
in Figure 3 is 0.53ns. Only the four largest spheres of the
phantom have a visibly smaller uncertainty compared to the
phantom background.

The fit of the oPs lifetime critically depends on the time
differences after the peak in the PAL spectrum, i.e., on values
close to the random 37yE background. A useful quantity to
characterize the 3yE count statistics is therefore the peak signal-
to-background ratio (pSBR) in a PAL spectrum. In the
measurements with 2T, Ref. (50) reported a pSBR of about 55.5
for a 4 x 4 x 4mm® voxel in the water tube with an activity
concentration of 252kBq/ml and a scan time of 15min. For the
PAL spectrum in the 4 x 4 x 4mm? voxel in Figure 2, however,
the pSBR is only about 12.6. Despite the activity concentration
being higher in the '*!I measurements of Ref. (50), the scan
duration is 5min shorter. The error on 73 in a single voxel (last
row in Table 1) is about four times larger than the error
reported in Ref. (50) for the same voxel size. A similar picture
arises when looking at volumes of similar size, e.g., the sphere s4
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has a volume of 5.57 mL and is comparable with the volume of the
tubes in Ref. (50). The relative error on 73, however, is 4.8% while
Ref. (50) reports a 1.1% error for a 5mL tube with water. This
comparison is even more striking, when considering the BR,
per positron, which is almost 8 times higher for */Sc than for
1241, With the given methodology, resolving the photopeak
therefore seems key for a low random 37E rate. **Sc’s high BR,
cannot overcome Quadra’s limited detection capabilities for
high-energy photons. Given the energy spectrum in Figure 4, it
is clear that extending the prompt-photon energy window does
not yield a significant reduction of random 3vE. Also, note that
12475 lower prompt-photon energy (almost half compared to
448¢) increases the probability to interact within the detector
crystals. It should be emphasized that this conclusion applies to
the given methodology. Different detection methods (24) or
event selection procedures and/or random 37yE estimations as
e.g., in Ref. (55) may reduce the uncertainties on 73 in the case
of high-energy prompt-photons. We leave such an investigation
for future studies.

Ref. (56) did not attempt to perform a voxel-wise fit nor a fit to
the three smallest spheres of the NEMA phantom. On the other
hand, Ref. (57) seems to be able to fully exploit the high
prompt-photon BR, of *Sc. Both scanners in these studies do
not suffer from the limited energy range of Quadra and the
event selection and reconstruction algorithms are different.

In contrast to *Sc, ¥*Sc’s prompt photon is within Quadra’s
energy range and therefore, the afore mentioned discussion of
the high-energy prompt-photons does not apply. However, the
BR, per positron is in the same order of magnitude as '?*I and
82Rb i.e., much lower than for *Sc.

5 Conclusions

Given Quadra’s limited energy resolution and the current
methodology for selecting 37E, it does not seem that #Sc is able
to outperform %I in terms of count statistics for oPs lifetime
despite its favorable physical

imaging, properties and

clinical prospects.
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