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This manuscript proposes a novel information-theoretic approach to the
quantification of experimental relevance, i.e., coverage, to achieve optimal
data assimilation results for nuclear engineering applications. Specifically, this
work posits the need for a new metric, called coverage (qC) of an application’s
quantity of interest, i.e., eigenvalue or power peaking for an advanced reactor
concept, defined herein as the theoretically maximum achievable reduction in
the quantity’s uncertainty given measurements from a pool of experiments in a
manner that is independent of the data assimilation procedure employed.
Currently, reduction in a quantity’s uncertainty is strongly biased by the
underlying assumptions of the assimilation procedure to account for the
under-determined nature of such problems and the similarity criterion
employed to identify relevant experiments. To address this challenge, this
work has developed a coverage metric, qC, based on mutual information,
which establishes a new conceptual framework for assessing coverage, one
that is independent of the model parameters and responses degree of variations
in both the experimental and application domains, i.e., linear vs non-linear, and
their prior uncertainty distributions, i.e., Gaussian vs. non-Gaussian. The qC is an
entropicmeasure capable of addressing coverage for general nonlinear problems
with non-Gaussian uncertainties and inclusive of the measurement uncertainties
frommultiple experiments. Numerical experiments frommanufactured analytical
problems as well as a set of benchmarks from the ICSBEP handbook are
employed to demonstrate its theoretical and practical performance as
compared to the ck-based experiment selection methodology, commonly
employed in the neutronic community. The manuscript then employs other
well-known adaptations to existing data assimilation methodologies for
nonlinear and non-Gaussian problems capable of achieving the coverage
posited by qC.
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1 Introduction

Data assimilation challenges in the nuclear community often
require the prediction of novel application responses given physics-
based models and a limited body of experimental data, such as
eigenvalue predictions in advanced reactor designs, different sets of
reactor conditions, etc. Various data assimilation procedures such as
generalized linear least squares (GLLS) in TSURFER (Williams et al.,
2011) commonly involve the adjustment of input parameters such as
cross-sections and their associated covariance libraries using the
available experimental data. This adjustment process is inherently
underdetermined, with thousands of parameters informed by tens of
experiments. The adjusted uncertainties are then propagated
through the forward model of the application to obtain an
estimate of the bias and uncertainty in the desired application
response. Other procedures, such as MOCABA (Hoefer et al.,
2015), apply a direct mapping between the experiments and
application through repeated Monte Carlo (MC) sampling and
directly compute the bias and uncertainty without the need for
adjustments. In general, these adjustment procedures are grounded
in the Bayesian approach, which is ubiquitous in the nuclear
community for its simplicity, scientific rigor, and amenability to
verification, validation, and uncertainty quantification.

However, the Bayesian approach is based on the principle of
incorporating all data and operates under the assumption that the
correct adjustments will be obtained with infinite experimentation
as the effects of less relevant experiments “cancel out.” This
assumption is no longer valid when experimental data are scarce,
as is common in the nuclear community, where experiments are
cost-prohibitive and limited. In this case, the approach is susceptible
to the error compensation phenomenon where the input parameters
may be overcorrected based on a handful of experiments from a
limited set assumed to be highly relevant, leading to overconfident
and inaccurate predictions. Further, useful experimental data may
be erroneously discarded as having low relevance, leading to
underconfident predictions. In other words, a practical use of the
Bayesian approach requires an assessment of the relevance of
experimental data a priori: that is, an impact assessment on the
application uncertainty—defined as coverage in this manuscript.
The key question addressed here is, How do we assess experimental
relevance and quantify its coverage a priori?

Previous work to assess coverage in the nuclear community
include filtering out experiments based on their ck-similarity
(Broadhead et al., 2004), via the use of thresholds. For example,
one may look for experiments with ck > 0.95, or if such experiments
with high similarity are not available, then a set of 5–10 experiments
with ck > 0.9 or 15–20 experiments with ck > 0.8 (Broadhead et al,
2004). Beyond the nuclear community, practitioners may use
metrics such as R2 and its variants to quantify coverage after the
adjustment procedure. However, this approach may confound the
practitioner when performing diagnostics on their model. For
instance, if a practitioner obtains a poor metric for the coverage,
is it because of assumptions made by their data assimilation,
i.e., adjustment procedure, such as linearity and Gaussianity, or is
it the best-possible estimate due to incomplete information inherent
in the experimental data? The consequences are markedly different;
whereas the former informs the practitioner of inadequacies in the
procedure, the latter informs them of inadequate relevant

experimental data and provides insight into what experiments
may improve coverage.

This manuscript posits that an important distinction is to be
made by the practitioner between experimental coverage and the
adjustment procedure used by data assimilation. This is due to the
various biases introduced by the adjustment procedure. For
example, the adjustment of cross-sections given limited
experimental data, e.g., critical eigenvalue, is highly ill-posed,
with a large number of degrees of freedom that require coverage
by the experimental data. Adopting a minimum-norm or other
variant regularization criterion in such cases may appear logical for
obtaining unique solution but is not resilient to the various sources
of uncertainties and error compensation phenomenon that is
unavoidable in practical problems, especially when the number of
measurements is much smaller than the number of uncertainty
sources. Examples of such uncertainties include epistemic
uncertainties from lack of knowledge of nuclear modeling
parameters and their prior uncertainties, aleatory uncertainties
from inherent randomness, and physics modeling uncertainties
from simplifying assumptions and numerical approximations.
The chosen data assimilation procedure may erroneously adjust
the underlying parameters in a manner that overcompensates some
uncertainties for other uncertainties that are unaccounted for, as
described earlier in the discussion on error compensation.

Mitigating these biases requires a full understanding of the
underlying system and its various sources of uncertainties, that
is, an accurate system-level high-fidelity physics model across all
operating conditions, which is either expensive or infeasible. The use
of machine-learning algorithms such as neural networks to
approximate the physics model further brings additional
assumptions and unknown biases, especially with limited data.
The resulting biases are difficult to hedge for and their impact on
inference in novel applications is unknown, reducing confidence in
practitioners.

The proposed debiasing paradigm (Mertyurek and Abdel-
Khalik, 2025) calls for a decoupling of the adjustment procedure
from the question of experimental coverage through an entropic-
based approach that directly maps relationships between the
application response of interest and the experimental data based
on known physics principles, sufficiently described by a first-
principles model. Note that a first-principles model need not
necessarily be high-fidelity and may even have relatively higher
uncertainty in the input parameters (and corresponding outputs). In
fact, a high-fidelity model may be over-tuned to a particular set of
benchmark conditions and provide overconfident results when
conditions change. It suffices that the model is physics-based and
provides a faithful representation of the true relationships between
the experimental data and the response(s) of interest. Capturing
these relationships yields a coverage metric free of any potential
biases introduced by the data assimilation adjustment procedure.

In this context, coverage is defined independently of any specific
adjustment procedure and as a statistical limit on what can be
inferred about the application of interest given the experimental
data, akin to the concept of Shannon’s entropy in
telecommunications (Shannon, 1948), where the channel capacity
is calculated independently of the employed information error-
correction encoding algorithm. When defined as such, it is a
useful reference and a diagnostic tool to a practitioner in
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assessing the efficacy of their chosen data adjustment procedure and
the assumptions inherent in them, just as Shannon’s channel
capacity can be used to compare the efficacy of different error-
correcting encoding algorithms By defining coverage, the
practitioner can assess the relevance of their limited body of
experiments, select experiments that provide the most coverage,
and quantify their anticipated impact on improving the estimates of
the application of interest—that is, the anticipated reduction in
uncertainty—prior to applying any adjustment procedure. Then, the
practitioner can assess the performance of their procedure and
perform diagnostics such as hyperparameter tuning, validating
assumptions, etc., until it approaches the precomputed statistical
limit. Furthermore, they can optimize their experimental design to
maximum its value to the application of interest.

To achieve these goals, this manuscript introduces the metric qC
for coverage quantification, as defined in Equation 1, borrowing
from principles of information theory pioneered by C. Shannon in
the 1940s in the field of digital communication (Shannon, 1948).
Specifically, the concept of mutual information (Cover and Thomas,
1991), F(·), is adapted to a nuclear context as an assumption-free
metric of quantifying coverage of the application response of
interest, Ya, given the available body of experimental data, Ye,
and associated underlying parameters, reference values,
parameter uncertainties, measurements, measurement
uncertainties, etc., which are denoted by μ. For the rest of the
manuscript, the subscripts a and e denote the application
response(s) of interest and the experiment(s), respectively.

qC Ye,Ya( ) � 1 − e−F Ya ;Ye ,μ( ) (1)
F Ya;Ye, μ( ) � H Ya( ) −H Ya

∣∣∣∣Ye, μ( ) (2)

H X( ) � − ∫
x∈X

p x( ) lnp x( ) � E −lnp x( )[ ] (3)

Previous work in the financial analysis community has presented
mutual information as a global correlation coefficient for time-series
data (Athe and Abdel-Khalik, 2014), which has been adapted to the
nuclear community as a generalized similarity index (Dionisio et al.,
2004). The scope of this manuscript is to build upon the theoretical
underpinnings of the latter work, establish its ability to generalize
existing indices such as ck to nonlinear and non-Gaussian problems,
and demonstrate its value in cases where multiple low-ck experiments
(typically discarded) may provide significant coverage.

Information theory defines the mutual information between two or
more variables as the reduction in entropy,H(·), of one variable gained
upon knowledge of the other(s) as defined in Equation 2. Here, entropy
is a general metric characterizing the uncertainty of a variable defined in
Equation 3, in a similar manner to how the mean and standard
deviation characterizes the Gaussian distribution via the central limit
theorem. Themutual information can then be interpreted as the average
“information gain” obtained by reducing the entropy (i.e., uncertainty)
in the application response of interest upon knowledge of the
experimental data and associated parameters. It is also the
theoretical upper limit (Carrara and Ernst, 2017) of inference for
any procedure and is useful in diagnosing overfitting and/or
underfitting.

The use of entropy enables the practitioner to work across a wide
range of uncertainty distributions as opposed to using existing

methods that typically require Gaussianity. Under the principle
of maximum entropy when the mean and covariance are known,
the underlying parameters, e.g., cross-sections, are assumed to be
Gaussian. Nevertheless, nonlinearities in experiment(s) and/or
application(s) result in corresponding non-Gaussian priors for
the responses, which hinders the quantification of coverage using
traditional tools that only account for first-order sensitivities and
assume Gaussianity of the experiment(s) and application. With the
use of entropy, the practitioner can accurately construct reliable
confidence intervals to improve parameter estimates for general
non-Gaussian distributions.

The scope of this work is to provide a theoretical basis for qC and
mutual information, its value to practitioners, and demonstration of
its effectiveness to tackle non-linear and non-Gaussian data
assimilation problems, as well as a real use-case to identify high-
value experiments on a set of benchmarks from the International
Criticality Safety Benchmark Evaluation Project (ICSBEP)
handbook. The handbook consists of a set of criticality safety
benchmark experiments in a standardized format (Nuclear
Energy Agency, 1995) describing the fissile material used
(Plutonium, highly enriched Uranium, etc.), the physical form of
the material (metal, compound, etc.), and the neutron spectrum
(fast, thermal, etc.). The benchmarks contain the information to
compute sensitivities and build representative calculational models
as well as the experimental eigenvalues and their associated
uncertainties. In the numerical experiment discussed in this
manuscript, the sensitivities the experimental measurements are
utilized. The rest of the manuscript is divided as follows: Section 2
provides a background on inference procedure, as well as existing
coverage metrics and their shortcomings. Section 3 introduces the
qC metric, the intuition behind Equation 1, additional information
on qc computation, comparisons to GLLS-based metrics such as ck,
and applicability as a experimental selection tool. Section 4 outlines a
numerical experiment using a dataset composed of linear and
nonlinear models that highlight the necessity of a procedure-free
coverage metric and the ability of qC in quantifying coverage a priori.
Then, the value of qC to identify high-value but low ck experiments is
demonstrated on a set of 100 benchmarks from the ICSBEP
handbook. Section 5 summarizes the results of the numerical
experiment and discusses future avenues of research.

2 Background

The similarity coefficient, ck, between an application and a single
experiment has gained significant traction in the nuclear community
in response to coverage quantification challenges. It is defined by the
correlation coefficient in Equation 4 between the application and
experiment sensitivities for a given experiment i, denoted by sa and
sie, respectively, and is weighted by the prior covariance matrix Σz of
the dependent variable z (typically cross-sections).

cik �
sTaΣzsie







sTaΣzsa
√ 







siTe Σzsie

√ (4)

Assuming strictly linear dependence of both the experiment and
the application responses on the cross sections (both within and
outside the operational range to account for changes in conditions),
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Gaussian prior covariance of the cross-section, and zero
measurement uncertainty, ck can be interpreted as coverage of
the application response of interest for a single experiment.
Consequently, the approach suffers from a few key deficiencies,
namely, the following.

Measurement Uncertainty: ck ignores measurement uncertainty
inherent to experimentation and therefore cannot be directly
translated to coverage. For instance, experiments with high ck
and high measurement uncertainty may be less relevant than
those with a relatively lower ck but lower measurement
uncertainty. In other words, it is not possible for a practitioner to
answer the following question a priori: What coverage is achievable
if I utilize experimental data with ck � 0.9?

One-to-One: As a correlation coefficient, ck can only assess an
individual experiment and cannot account for synergistic
relationships among multiple experiments in coverage. As
demonstrated later in this manuscript, it is possible for multiple
low ck experiments below a user-defined threshold to provide
greater coverage than a high ck experiment, controlling for
measurement uncertainty. Methodologies in (Broadhead et al.,
2004; Kiedrows and ki, 2014) that combine ck across multiple
experiments are tied in with the GLLS procedure to obtain stable
biases and do not enjoy the interpretation that the one-to-one
variant enjoys by virtue of being a correlation coefficient.

Experimental Redundancy: ck cannot diagnose experimental
redundancy found in experimental benchmarks. Here, we imply
redundant coverage, which may not necessarily be the same
experiment performed multiple times. For example, two
experiments may synergistically provide coverage for an
application that makes a third experiment redundant; however,
when viewed individually, the three experimental sensitivities
may be dissimilar. This may lead to the selection of an
experiment with high ck (with the application) that is also
heavily correlated with a pre-selected set of experiments, leading
to almost no meaningful reduction in uncertainty (i.e., no additional
coverage). This may even occur at the cost of a low ck experiment
that is independent and potentially offers greater coverage of the
application. This phenomenon is better explained through the lens
of subspace analysis presented in Sections 3.2, 5.2.

Nonlinearity and Non-Gaussianity: By virtue of being a
correlation coefficient, ck measures linear relationships and
cannot generally assess relevance for nonlinear problems in the
nuclear industry, such as eigenvalue dependence onH/Xmoderator-
to-fuel ratio. The use of a threshold may disregard relevant
experimental data that have a nonlinear but symmetric
relationship, due to low ck, e.g., quadratic around the reference.
Further, the application and/or experimental sensitivities at the
reference may not be characteristic of the function’s behavior
across the entire region of interest, resulting in low ck at the
reference, but potentially high ck elsewhere.

Modifications to ck have been previously suggested in the
nuclear community to mitigate issues related to multiple
experiments, experimental redundancy, and measurement
uncertainty while retaining its interpretation as a metric
(Broadhead et al., 2004; Kiedrowski, 2014) to assess experimental
coverage. However, as a correlation coefficient, it relies on linear
sensitivities and Gaussian uncertainties of the underlying
parameters. As demonstrated in the numerical experiments later

in this manuscript, the approach may fail to accurately identify
experimental relevance and quantify coverage when the experiments
and/or application responses of interest exhibit nonlinearity.

The value of qC in identifying potential useful experiments that
have low one-to-one ck values with applications is more apparent in
the context of trending analysis (Broadhead et al., 2004) and
WHISPER (Kiedrowski, 2014), where ck is used as a threshold
criterion to determine whether a system falls within the area of
applicability of the experiment. In (Broadhead et al., 2004), it is
observed that as experiments are added in decreasing order of ck, the
computed bias begins to significantly break away from previously
computed values. The suggested approach is to increase the number
of experiments selected to enable the bias estimate to stabilize and
converge. On the other hand, WHISPER (Kiedrowski, 2014) utilizes
the χ2-statistic computed following the adjustment and a threshold
(default = 1.2) to accept the experiment or reject it as inconsistent. In
this case, the method to accept/reject, i.e., to determine whether an
experiment provides coverage, is tied to the GLLS procedure, and
not independently determined.

Here, qC may be utilized to assess the total value of a set of
benchmark experiments independent of GLLS, by computing the
mutual information of all the experiments with the application.
Then, an iterative approach may be designed where the
experiment with the highest qC is initially selected, followed
by the experiment that maximizes the qC when added to the
already-selected experiment. As mutual information is invariant
to redundant information, the iterative procedure selects
experiments one-by-one until the total qC of the selected set is
close to the value of the entire set, as defined by the tolerance
criterion of the user. As demonstrated in the numerical sections
on the manufactured analytical problems and the benchmarks
from the ICSBEP handbook, this approach provides stable
convergent behavior for GLLS, does not arbitrarily define a
minimum number of experiments or ck threshold like
(Broadhead et al., 2004; Kiedrowski, 2014), and accounts for
the synergy amongst the experiments not captured by the one-to-
one ck. By not discarding experiments solely based on ck value,
this approach also enables practitioners to extract the full value of
their existing body of experiments and determining whether the
captured coverage is sufficient before building new experimental
benchmarks.

3 Methodology

The proposed qC metric avoids the limitations of extant metrics
through an entropic approach that places no assumptions on
linearity, the probability distribution, and the specific adjustment
procedure. Because this metric directly computes the mutual
information, both linear and nonlinear dependencies between the
application responses and the experimental data are accounted for.
This approach also bypasses a critical computational limitation of
computing individual entropies for some distributions. As critiqued
by Jaynes in his work on the limiting density on discrete points
(Jaynes, 1957), the entropy of continuous variables as defined by
Shannon, H(X) � −∫

x∈Xp(x) lnp(x)dx, lacks several favorable
properties of its discrete counterpart, especially the lack of
invariance to the change of variables, as well as divergence if the
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integral is approximated by Riemann summation with an increasing
number of bins. However, since mutual information is the difference
of entropies, the effect of divergence and change of variables are
zeroed out (Jaynes, 1957). It also remains identical if computed using
known analytical expressions for differential entropy, Jaynes’
adaptation, or in the limit of Riemann summation, assuming the
bins are kept identical for all variables. Another key advantage is that
mutual information possesses the property of invariance to change
of variables, redundant experiments, and irrelevant experiments,
and it is typically computationally tractable for most problems of
interest to the nuclear community using published algorithms such
as k-nearest neighbors (Kraskov et al., 2003), mutual information
neural estimation (Belghazi et al., 2018), etc. It also enables a
practitioner to assign the value of a new redundant experiment
as zero if it does not increase mutual information (and,
by extension, qC).

Mutual information for continuous variables as encountered in
the nuclear community is bounded on [0,∞), inspiring the
nonlinear transform in Equation 1 that bounds qC on [0, 1],
where 0 indicates no coverage and 1 indicates perfect coverage
by the experiment. As mutual information is an upper bound on
coverage, the former case implies that no adjustment procedure can
be used to glean value from the experimental data without additional
assumptions/biases made by the practitioner; conversely, the latter
case assures the practitioner that the application response is
theoretically perfectly predictable given the experimental data.
Being independent of the adjustment procedure, qC informs the
practitioner on “what” data to use for the analysis by providing an
upper bound on coverage but not “how” to achieve the coverage; that
is, it does not inform the practitioner of the specific adjustment
procedure. To this end, the machine learning community has
developed parameter-free methods and universal approximators
such as neural networks to achieve close to the performance
predicted by qC, which may further be combined with Bayesian
approaches for verification, validation, and uncertainty
quantification.

3.1 Equivalence for linear models with
Gaussian uncertainties

The following sections relate qC to well-known metrics such as
C-similarity based on the GLLS methodology, which is well suited
for linear and Gaussian problems. Under such conditions, Equation
1 simplifies to the reduction in uncertainty (as characterized by the
standard deviation σ) of a single application response of interest, Ya,
given the body of experimental data, Ye, μ.

Assume a single application response of interest, represented by
the random variable Ya, and a set of experiments represented by the
random vector, Ye, and parameters μ. If the underlying parameters
are Gaussian and the applications and experiments are linear
functions, then:

F Ya;Ye, μ( ) � H Ya( ) −H Ya

∣∣∣∣Ye, μ( )
Here, the entropy of a Gaussian variable x ∈ X ~ N (�x, σx) is

derived using the probability distribution p(·) as

H X( ) � − ∫
x∈X

p x( ) lnp x( )

� E −lnp x( )[ ]
� E −ln e

− x− �x( )2
2σ2x





2πσ2x
√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

� E ln





2πσ2x

√ + x − �x( )2
2σ2x

[ ]
� ln σx





2π

√ + E x − �x( )2[ ]
2σ2x

� ln σx




2π

√ + 1
2
� ln σx





2πe

√

F Ya;Ye, μ( ) � H Ya( ) −H Ya

∣∣∣∣Ye, μ( )
� ln σa,prior





2πe

√( ) − ln σa,post




2πe

√( )
� ln

σa,prior
σa,post

qLGC � 1 − e−F Ya ;Ye ,μ( ) � 1 − σa,post
σa,prior

(5)

As depicted in Equation 5, the simplified metric, qLGC , is readily
interpretable to a practitioner in contrast to ck. The value of a new
experiment is clearly quantifiable as providing ΔqLGC additional
reduction in the uncertainty. For example, a qLGC � 0.9 implies
that the posterior uncertainty is reducible to 1/10th the prior. If
the addition of a new experiment increases qLGC to 0.95, then it may
be understood that the experiment provides an additional 5%
reduction in posterior uncertainty. On the other hand, the
additional coverage characterized by an increase in ck is both a
function of measurement uncertainty and follows a more complex
nonlinear relationship involving the ratio of variances. For example,
assuming zero measurement uncertainty, c2k � 1 − σ2a,post/σ

2
a,prior,

(i.e., R2), which is not as readily interpretable as the simple linear
relationship of qC.

The expression can be simplified further when the linear model
is known. Assume the parameters μ consist of the measurement
uncertainty Σm (typically diagonal and user-input), dependent
variable z with mean �z and prior covariance matrix Σz obtained
from ENDF libraries in tools such as SCALE. The linear model
describing the experiments and application response are
represented using the sensitivity matrix Se and vector sa,
respectively, where each column of Se corresponds to the
sensitivity of a given experiment.

Ye � STe z + m, m ~ N 0,Σm( )
Ya � sa

Tz, z ~ N �z,Σz( )
The prior application uncertainty is characterized by its

standard deviation, σa,prior �








saTΣzsa

√
. For the linear model, a

Bayesian update is the optimal procedure in an information-
theoretic sense given an experimental measurement ym. The
posterior covariance matrix, Σz,post, is then estimated as follows,
akin to the GLLS procedure:

Σz,post � Σz − ΣzSe STe ΣzSe + Σm( )−1STe Σz
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The adjustment covariance matrix is propagated through to the
application, yielding the posterior standard deviation of the
application response of interest, σa,post �











saTΣz,postsa

√
. The

proposed coverage metric, qC, can be expressed solely in terms of
the application and experimental sensitivities and the provided
covariance information in Equation 6.

qLGC � 1 −






























saTΣz I − Se STe ΣzSe + Σm( )−1STe Σz( )sa

saTΣzsa

√
(6)

3.2 Assessing the value of individual
experiments

While qLGC in Equation 6 provides the total coverage of an
experimental set, it is also capable of doing so in an incremental
fashion by highlighting individual experiments that provide the
highest incremental coverage. Suppose the set of available
experiments are divided into Sce, a matrix containing the
sensitivities of experiments already selected for Bayesian update
and providing coverage c, and sne , a new experimental sensitivity
under consideration, differentiated by the superscript n. Initially, Sce
may be an empty set. Without loss of generality, Equation 3 is better
interpreted by first setting the prior covariance matrix of the
dependent variable to identity and neglecting the measurement
uncertainty—that is, by setting Σz � I,Σm � 0. The first selected
experiment that provides the greatest coverage, in this case, is the
experiment that aligns most closely to the application—specifically,
the one with the highest cosine similarity, as expected.

For subsequent selection, (I − Se(STe ΣzSe + Σm)−1STe ) in
Equation 3 reduces to a projection operator onto the null space
of the selected experiments in Sce. This is denoted as non-coverage in
this manuscript, as depicted in Figure 1, where the null operator
acting on the application sensitivity creates a residual vector (in
dashed blue). This denotes the component of the application
sensitivity not explained or accounted for by the selected
experiment, contrasting with the component already accounted

for (in dashed black) and denoted as coverage. Similarly, the
operator acting on the new experiment sensitivity also yields a
residual not already accounted for by the existing body of
experiments. Here, the component already covered by the
existing body of experiments (in dashed red) is irrelevant or
redundant. In the general case, Equation 3 reduces to Equation
7 below.

qC � 1 −










1 − cos 2 α

sin 2 β

√
(7)

Herein lies a key deviation from ck-based methods. Whereas ck
is one-to-one, qC considers the entire subspace spanned by the
selected experiments in order to account for potential redundancies
and/or synergies between experiments. The visual representation in
Figure 1 shows that a new experiment with sensitivity sne forms two
angles: α with the application non-coverage vector and β with its
(redundant) projection on the subspace spanned by Sce. Note that
although the two angles appear complementary in Figure 1
indicating perfect coverage (or qC � 1), this is because we have
restricted it to a 2-D plane in three dimensions for visualization, and
therefore perfect coverage is obtained as long as sne has a component
orthogonal the 2-D plane. In higher dimensions, the coverage
subspace is a hyperplane, i.e., α + β may not necessarily equal 90°
and therefore may not necessarily provide perfect coverage of qC � 1.

Additionally, ck considers only the relationship between sne and
sa and may fail to account for redundancies (β ~ 0°, α ~ 90°)
where the new experiment adds minimal value. It may also miss
cases of synergy (small α angles), where a traditionally low ck
experiment is capable of providing maximal coverage when
combined with another experiment by jointly generating a
subspace containing the application sensitivity. Through this
iterative process, it is possible to select a subset of experiments
that provide high coverage of a given application and converge
quickly to the theoretical limit offered by the entire available body of
experiments.

Note that despite the presence of a cosine (like ck), the new
experiment with the highest coverage may not necessarily be the one

FIGURE 1
Graphical representation showing experimental coverage of application and the impact of adding a new experiment.
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with the highest cosine similarity (cos α) with the application non-
coverage but must also balance against the redundancy (sin β) from
previous experiments. If the practitioner wishes to use ck, they must
re-project all the remaining experimental sensitivities onto the null
operator defined above at each iteration, effectively ensuring sin β �
1 for all remaining candidate experiments for selection.

When Σz ≠ I, the cosine similarity in the first experimental
selection is replaced by ck, and all experimental and application
sensitivities are projected onto the subspace of the prior covariance.
For problems of practical interest to the nuclear community, the effect
of measurement uncertainty (i.e., Σm ≠ 0) is a perturbation of the
sensitivities in the system, which in turn has a “smoothing” effect on the
coverage of each experiment. For linear (L), Gaussian (G), zero
measurement uncertainty (Z), and a single experiment (S), there is
no iterative selection process, and the qC metric is related to ck as
indicated below in Equation 8. As it is amonotonic function, the highest
ck experiment provides the greatest coverage under LGZS conditions.

qLGZSC � 1 −
















saTΣzsa − sTaΣzse( )2

sTe Σzse( )
saTΣzsa

√√
� 1 −




















1 − sTaΣzse( )2

saTΣzsa( ) sTe Σzse( )
√

� 1 −






1 − c2k

√
(8)

3.3 Monte Carlo adaptation

MC sampling is a popular tool in the nuclear community that is
used to circumvent the problem of computing sensitivities and
computing vector–matrix products when the dependent variable
has high dimensionality, such as cross-sections on the order of 104−5.
Some algorithms, such as MOCABA (Hoefer et al., 2015), utilize this
technique to directly predict integral functions of nuclear data and
avoid adjusting the intermediate nuclear data itself. Although the
original qC formulation in Equation 1 is expressed directly in terms
of the integral functions and can be directly computed using random
samples of the application responses and experimental data, this
section derives an equivalent formulation for qLGC .

Revisiting the linear model below, we first observe that the inner
product between sensitivities can be computed via random sampling
as STe Σzsa � E[(STe z)(sTaz)] � E[(STe z + m)(sTaz)]
since E[(m)(sTaz)] � 0.

Ye � STe z + m, m ~ N 0,Σm( )
Ya � sa

Tz, z ~ N �z,Σz( )
Here, z is sampled according to the prior covariance matrix Σz.

Similarly, all inner products in Equation 6 may be identified and
replaced. Given the presence of the expectation operator in both the
numerator and denominator of Equation 6, it can be reduced to
summation across allN samples of the responses. We introduce YNe

and yNa to describe the matrix and vector containing N samples of
the experimental data and application responses, respectively, along
each column with the mean subtracted. Note that computer models
typically do not account for measurement uncertainty, and the user
must simulate additional measurement uncertainty to avoid
overestimating the coverage. We may compute qLGC using Monte
Carlo using Equation 9 below.

qLGC � 1 −


































sa

TΣzsa − sa
TΣzSe STe ΣzSe + Σm( )−1STe Σzsa

sa
TΣzsa

√
� 1 −






























1 − yTNaYNe( ) YT

NeYNe( )−1 YT
NeyNa( )

yTNayNa

√ (9)

Following similar arguments presented in Section 3.2 and
visualized in Figure 1, the methodology reduces to a minimum-
norm least-squares procedure. It fits the simulated experiments
(inflated by measurement uncertainty) to the application
response of interest, assuming that the underlying parameter z is
sampled according to the prior covariance Σz. This approach
achieves the same outcome as the GLLS procedure.

4 Numerical experiments

This section illustrates the value of qC to the data assimilation
community in (a) identifying synergistic experiments that greatly
increase coverage currently discarded as having low relevance and
(b) accurately capturing experimental coverage for nonlinear
applications and/or experiments. Three numerical experiments
are considered: (1) a purely linear problem, (2) a nonlinear
problem, and (3) quantifying coverage among 100 randomly
selected benchmarks from the ICSBEP handbook for a given
application.

4.1 Linear model

Consider the following analytical problem composed of a set of
four experiments and a single application response described by a
linear model with the same notation as that given in the previous
section. The four experimental outputs, which are denoted by the
vector Ye � [Y1

e Y
2
e Y

3
e Y

4
e]T, represent eigenvalues that are linear

functions of the cross-sections, represented by the six-dimensional
vector z � [z1 z2 z3 z4 z5 z6]T. The application eigenvalue, denoted
by the scalar Ya, is also a linear function of the cross-sections. The
mean and prior covariance of the cross-sections are denoted by �z
and Σz, respectively. The objective of this model is to identify the
experiments that yield the greatest coverage of the application, and
to predict the application bias and uncertainty at some unknown
condition (e.g., hot full-power). Once the practitioner identifies the
relevant experiments, they apply a Bayesian update to obtain a
posterior estimate of the application bias and uncertainty.

Ye �
−0.0024 0.0072 0.0033 −0.0033 −0.0185 0.0143
0.0020 −0.0030 −0.0020 0.0036 −0.0100 0.0223
0.0102 0.0054 0.0039 −0.0173 0.0098 0.0089
0.0039 0.0065 −0.0029 −0.0058 −0.0151 0.0172

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

z1
z2
z3
z4
z5
z6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

1.120
0.995
0.950
1.080

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + m

Ya � −0.0020z1 + 0.0024z2 + 0.0009z3 − 0.0004z4 − 0.0084z5

+ 0.0048z6 + 1.14
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z ~ N �z,Σz( ), m ~ N 0, 10−6 * I( )
�z � 7.2056 7.3183 0.8779 10.1643 9.4983 2.7368[ ]

Σz �

0.2997 0.0728 0.0326 −0.2604 0.2862 −0.0670
0.0728 0.0992 0.0297 −0.1685 0.0873 0.0308
0.0326 0.0297 0.0893 −0.1098 0.0105 0.1196
−0.2604 −0.1685 −0.1098 0.4998 −0.2460 −0.2558
0.2862 0.0873 0.0105 −0.2460 0.4769 −0.2630
−0.0670 0.0308 0.1196 −0.2558 −0.2630 0.7697

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The experimenter performs highly accurate experiments to
obtain measurements at these unknown conditions with zero-
mean error, denoted by m, and measurement uncertainty
represented by a purely diagonal covariance matrix (i.e., it is
proportional to the identity matrix I). For brevity, constants are
displayed to four digits of precision. The application and
experimental eigenvalues are typically known at the reference
conditions, such as cold conditions, fresh fuel, etc., at �z and
tabulated in Table 1, along with the ck values using first-order
sensitivities.

4.2 Nonlinear model

This numerical experiment is designed to demonstrate the
ability of qC to capture coverage in nonlinear models in which
nonlinearities may exist in both the experiments and applications. In
this scenario, first-order sensitivities analyzed by metrics such as ck
may not necessarily capture all possible variations in the response of
interest; likewise, using techniques that assume linearity of the
experiments and applications, such as GLLS, may even provide
under- or over-confident posteriori estimates of the predicted
application bias and uncertainty. Consider the following
nonlinear problem, of which all notation is consistent with the
previous section. The dimensionality of the problem is reduced to
three cross-sectional dimensions, two experiments, and a single
application.

Ye � Y1
e

Y2
e

[ ] � f z1, z2, z3( )
g z1, z2, z3( )[ ] + m

Ya � h z1, z2, z3( )
z ~ N �z,Σz( ), m ~ N 0, 10−6 * I( )
�z � 6.86214 8.07431 4.18035[ ]

Σz �
0.05668 0.00443 −0.01213
0.00443 0.06333 0.01029
−0.01213 0.01029 0.00690

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

The objective remains the same: to identify the experiments that
yield the greatest coverage of the application and to predict the
application bias and uncertainty at some unknown condition (e.g.,
hot full-power). The full expressions include up to third-order and
cross-interaction terms (z1z2, z3z21, etc.) and are provided in the
Supplementary Material. Like the previous numerical experiment,
the application and experimental eigenvalues are known at the
reference conditions, and the ck values, which are calculated
using the first-order sensitivities at the reference point, are
tabulated in Table 2.

4.3 ICSBEP benchmarks

In this numerical experiment, a randomly selected subset of
100 benchmarks from the ICSBEP handbook are chosen as a
potential list of candidate experiments for GLLS, along with one
application benchmark, namely, HEU-SOL-THERM-013–003. The
100 benchmarks have absolute ck values across the entire spectrum
of 0.0–1.0, with 80 benchmarks having ck > 0.8, among which
19 benchmarks are highly similar with ck > 0.9, and 9
benchmarks have ck > 0.97. The highest ck value in the subset is
0.986. The initial application uncertainty, as measured by the
standard deviation, is approximately 0.00718 (718 pcm).

The objective of the numerical experiment is to demonstrate the
ability of qC to capture the theoretical coverage provided by the
entire set of experiments, identify the experiment that provides the
most coverage, and deploy the iterative selection to procedure to
select relevant experiments. The GLLS procedure is then applied to
compute the posterior bias based on the selected experiments. The
approach is then compared to the ck-based threshold and rejection
approaches outlined in (Broadhead et al., 2004; Kiedrowski, 2014),
where the benchmarks are ordered in decreasing order of ck. We also
demonstrate the marked break in the estimated bias with the
inclusion of experiments in order of their ck as observed in
(Broadhead et al., 2004) where the ck cutoff is lowered, whereas
the effect is eliminated in the qC-based approach.

5 Results and discussion

This section demonstrates the qC metric in capturing coverage
for both linear and nonlinear problems for which the response
distribution may or may not be Gaussian. It also compares the
performance of qC to existing ck-based methodologies used in the
nuclear community and evaluates their respective impacts on data
assimilation tools such as GLLS and machine learning.

TABLE 1 Numerical experiment 1 data sheet.

Experiment ck Reference Measurement
(mean)

Experiment 1 (Y1
e ) 0.9598 0.9882 0.9792

Experiment 2 (Y2
e ) 0.9585 0.9885 0.9795

Experiment 3 (Y3
e ) −0.2009 1.0082 1.0228

Experiment 4 (Y4
e ) 0.8627 0.9988 0.9937

Application (Ya) — 1.0815 —

TABLE 2 Numerical experiment 2 data sheet.

Experiment ck Reference Measurement
(mean)

Experiment 1 (Y1
e ) −0.1679 1.0083 1.0174

Experiment 2 (Y2
e ) 0.9985 1.0015 1.0096

Application (Ya) — 1.0017 —
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5.1 Linear model

In this section, we investigate experimental relevance in the linear
problem in Section 4.1 via two approaches: ck and qC. The qC-based
methodology analyzes the four available experiments using the
mutual information in Equation 1 and tabulated in Table 3. The
MC methodology described in Section 3.3 and Equation 5 was
deployed by simulating N � 100, 000 samples of the application
and experiments and corrupting the experiment simulation with
measurement uncertainty. The analytical linear Gaussian
expression in Equation 3 and a k-nearest-neighbor-based mutual
information algorithm (Kraskov et al., 2003) are provided for
comparison.

Computing qC prior to applying the GLLS procedure with the
application reveals the following:

• qC reveals that experiments 1 and 3 provide the highest
coverage for the application, and this method is capable of
achieving ~95% reduction in the prior application uncertainty.
This is counterintuitive to a pure ck-based approach, which
would nominally discard experiment 3 due to its low ck value
and would include only experiments 1 and 2.

• qC reveals redundancy between experiments 1 and 2 despite
their high ck values, demonstrating that they provide very little
additional value. For example, the addition of experiment 2 to
experiment 1 adds a reduction of only 0.01% in uncertainty as
measured by the qC value.

• qC reveals significant synergy between two mid/low-ck
experiments. The set containing experiments 3 and
4 provides 88.34% reduction, whereas a set containing
experiments 1 and 2 (high ck) provides a reduction of
only 72.28%.

Once the experiments are selected and included in the relevant
set by the practitioner, the GLLS procedure/Bayesian update as
described in Section 3.1 is applied to obtain a posterior bias and
uncertainty. The table below shows the GLLS results for the
above cases with the reduction in ratio of standard deviations,
indicating a perfect match with that predicted by qC and
validating Equation 2.

The results in Table 4 display some counterintuitive behavior, as
noted above, primarily due to the inability of ck to capture
redundancies and synergies between experiments because it
instead assesses experiments individually. It is unable to capture
the value of an experiment a priori andmay potentially discard high-
value experiments that provide high coverage.

Furthermore, applying the GLLS procedure in descending order
of ck displays unstable behavior: drastic changes in bias are observed
when low ck experiments are included. The inclusion of experiments
in the order of 1 → 2 → 4 → 3 . . ., in descending order of ck, yields
unstable bias estimates (−355 → − 355 → − 486 → − 505) and a
sharp reduction in uncertainty when low ck experiments are
added. This behavior is also reported in (Broadhead et al., 2004)
and demonstrated in the ICSBEP benchmark results in Section 5.3.A
practitioner, on the other hand, may anticipate and desire
convergent behavior as more experiments are included and their
relevance decreases. This outcome is achieved by ordering
experiments by the additional coverage provided as described by
the iterative selection process in Sections 2, 3.2, which quickly
converges to a stable bias estimate with the inclusion of just two
experiments (1 and 3).

Since the problem is linear, a subspace analysis of the
sensitivities can also be performed by projecting the application
sensitivities onto the experiments and computing the cosine between
the application sensitivity and its projection, as visualized in Section
3.2. Since the prior covariance matrix Σz ≠ I, all application and
experimental sensitivities are first projected onto the subspace of the
prior covariance matrix and normalized. The cosine is calculated
according to Equation 10 below.

cos θ � sTaΣzSe STe ΣzSe( )−1STe Σzsa






sTaΣzsa

√ 




















sTaΣzSe STe ΣzSe( )−1STeΣzsa

√ (10)

As in Table 5, we see that the cosine expression reduces to the ck
value for a single application and a single experiment and can be
extended to evaluate relevance between an application and multiple
experiments. Note that this analysis does not account for the
perturbation introduced by the measurement uncertainty, but it
is assumed that the effect cancels out because it is identical across all
four experiments. The highest coverage is achieved when

TABLE 3 Computed qC for numerical experiment 1.

Experiments ck values qC (MC) qC (Kraskov) qLG
C

Experiment 1 0.9618 0.7235 0.7235 0.7227

Experiments 1 and 2 0.9618, 0.9309 0.7235 0.7244 0.7228

Experiments 1 and 3 0.9618, −0.2323 0.9550 0.9554 0.9549

Experiments 1 and 4 0.9618, 0.8527 0.8646 0.8651 0.8643

Experiments 3 and 4 −0.2323, 0.8527 0.8835 0.8841 0.8834

Experiments 1, 2 and 3 0.9618, 0.9309, −0.2323 0.9557 0.9560 0.9555

Experiments 1, 2 and 4 0.9618, 0.9309, 0.8527 0.8842 0.8846 0.8839

All four experiments 0.9574 0.9577 0.9573

Bolded values indicate experiments that must be selected to provide coverage close to the theoretical maximum.

Frontiers in Nuclear Engineering frontiersin.org09

Sundaram et al. 10.3389/fnuen.2025.1675308

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2025.1675308


experiments 1 and 3 are included, with a cosine of 1 indicating
perfect coverage. In other words, the application vector is fully
contained in the subspace spanned by the sensitivities of
experiments 1 and 3, and therefore the application can be
predicted perfectly if the experimental measurements are known
with zero measurement uncertainty. For nonlinear problems, the
sensitivity at the reference is not sufficient to characterize all
variations in the application, and other extensions (Bang et al.,
2012) may be suitable to identify relevant experiments.

It is important to note that the experimental selection problem
does not have an optimal substructure. In other words, the set of n
experiments providing the highest coverage of a given application
does not necessarily contain the set of n − 1 experiments that
provide the highest coverage. As a counterexample, consider an
application sensitivity sa � [1 1 0] and a set of three experimental
sensitivities, s1e � [1 0 0], s2e � [0 1 0], and s3e � [1 1 0.01]. The single
experiment that provides the highest coverage is s3e ; however, it is not
contained in the set of two experiments s1e and s

2
e that provide perfect

coverage of the application. Building upon this counterexample, the
iterative procedure of picking the experiment with highest coverage
and appending to that set may not yield the optimal subset in the

sense of maximizing coverage with n selected experiments. In the
machine learning community, a similar problem exists in feature
selection, where the best n features are not necessarily the n best
features selected iteratively. Nevertheless, the problem of identifying
the optimal subset of experiments by brute force is computationally
intractable beyond a handful, and the iterative process mentioned
above works reasonably well in practice and converges to a stable
bias and uncertainty estimate on tests performed on larger datasets
of 100 experimental evaluations from the ICSBEP Handbook as
demonstrated in Section 5.3.

5.2 Nonlinear model

This section concerns experimental coverage for a nonlinear
model given two experiments. As indicated in Table 2, a ck-based
approach would typically cause a practitioner to discard experiment
1 and assume that experiment 2 provides the highest coverage. We
computed qC in Table 6 below using MC sampling and the
k-nearest-neighbors algorithm for mutual information.

The qC results indicate that the two experiments provide
significant coverage of the application individually and near-full
coverage synergistically despite the wide variation in ck values.
Figure 2 below depicts the variation in the application response
with respect to the two experiments, indicating that near-complete
coverage is feasible. As a proof-of-concept, we utilized a three-layer
feedforward neural network to compute an approximate fit of the
function and visualize the surface of the predicted response on the
3D plot in Figure 2. It is observed that the application eigenvalues lie
on the surface of the neural network-predicted response with low
error (arising out of measurement uncertainty). Note that the neural
net training itself is not the focus of the manuscript, and the fit is

TABLE 4 GLLS results for numerical experiment 1.

Experiments included Application bias Reduction, σa,prior � 913 pcm True solution

Experiment 1 −355 ± 253 pcm 0.7227 −506 pcm

Experiments 1 and 2 −355 ± 253 pcm 0.7228

Experiments 1 and 3 −505 ± 41 pcm 0.9549

Experiments 1 and 4 −473 ± 124 pcm 0.8643

Experiments 3 and 4 −502 ± 106 pcm 0.8834

Experiments 1, 2 and 3 −505 ± 41 pcm 0.9555

Experiments 1, 2 and 4 −486 ± 106 pcm 0.8839

All four experiments −505 ± 39 pcm 0.9573

Bolded values indicate experiments that must be selected to provide coverage close to the theoretical maximum.

TABLE 5 Linear subspace analysis for numerical experiment 1.

Experiments
included

cos θ between application
sensitivity and its projection onto

experiment sensitivities

Experiment 1 0.9618

Experiment 2 0.9309

Experiment 3 −0.2323

Experiment 4 0.8527

Experiments 1 and 2 0.9618

Experiments 1 and 3 1.0000

Experiments 1 and 4 0.9949

Experiments 3 and 4 0.9945

Bolded values indicate experiments that must be selected to provide coverage close to the

theoretical maximum.

TABLE 6 Computed qC for numerical experiment 2.

Experiments ck values qC (MC)

Experiment 1 −0.2214 0.3795

Experiment 2 0.9985 0.5823

Both Experiments 0.9282
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purely for illustrative purposes and to support the claim that the
application is covered by the experiments.

Through active subspace techniques (Bang et al., 2012), we observe
that the application response of interest primarily varies nonlinearly
along two directions, which are orthogonalized into directions u1 and
u2 and visualized in Figure 3. However, u2 vanishes at the reference
point due to symmetry and is therefore not captured by the application
sensitivity at the reference point (and therefore ck which is taken at the

reference point). Repeating the analysis on the experiments indicates a
single dominant direction of variation for each experiment despite the
nonlinearity, indicating that the sensitivities at the reference point, s1e
and s2e respectively, are sufficient to characterize the experiments over
the entire range. The variation of the experiments along this direction is
visualized in Figure 4.

Through the active subspace algorithm, the sensitivities are now
amenable to the subspace analysis performed previously. Using

FIGURE 2
Plot depicting variation of application/experiments eigenvalues and the best-fit surface.

FIGURE 3
Application Variations plotted along its active subspace directions.
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Equation 6, the cosine of each application sensitivity is computed
with respect to the experiments and is tabulated in Table 7. It is
observed that the combination of two experiments provides perfect
coverage of both directions of variations of the applications: that is,
the combined set of experiments spans the same subspace as that by
u1 and u2. This further supports the claim that the two experiments
provide near-perfect coverage of the application when measurement
uncertainty is also considered.

Next, we demonstrate that the naive GLLS methodology leads to
incorrect adjustments due to experimental nonlinearity, incorrect
estimates of the bias due to application nonlinearity, and
mischaracterization of the posteriori distribution with the standard
deviation due to non-Gaussianity (arising out of nonlinearity).

First, we observe that the experiment linearity assumption in
GLLS causes a miscalculation of the adjustment itself. Intuitively,
GLLS attempts to find a cross-section adjustment along the subspace
spanned by the experimental sensitivities Se � [s1e s2e] that minimizes
the squared Euclidean distance from both the reference and the
measurement. However, experimental nonlinearity may cause a
significant overshoot or undershoot in the calculated adjustment
depending on the concavity/convexity of the function, leading to an
error in the bias estimate.

Second, we observe that the application linearity assumption in
GLLS causes it to consider only the variation of the application given

by the sensitivity at the reference u1 and thus neglect other variations
(u2). Therefore, it assumes experiment 1 is of low relevance,
resulting in minimal adjustment to the covariance matrix. The
opposite occurs when experiment 2 is included; the experimental
relevance is overstated, and the predicted posterior uncertainty is
highly overconfident. The application nonlinearity causes further
error in the predicted bias as the procedure assumes linearity and
computes the inner product of the adjustment vector with u1.

The issue of experimental nonlinearity can be corrected with a
nonlinear adaptation to the GLLS procedure. Similar to GLLS, the
adjustment is made along se1 and se2 to minimize the squared
Euclidean distance from both the reference and the measurement, as
visualized in Figure 4. However, the process may be performed
iteratively in small steps with updated local gradients to account for
the experimental nonlinearity as in (Sobes et al., 2016), or via
nonlinear least-squares if the functional form of the experiment
is known, or an inverse neural network model if it can be
approximated. While a nonlinear iterative solver was utilized in
this work, the specific method is left to the practitioner and outside
the scope of the present work which focuses on the theoretically
achievable coverage.

Regarding the issue of application nonlinearity, the bias is
traditionally computed by considering only the reference
sensitivity in GLLS. Instead, in the proposed adaptation, once an
accurate adjustment is obtained from the above iterative procedure,
it is input into the forward model of the application to provide an
accurate estimate of the posterior bias. However, the nonlinearity of
the application almost certainly makes the posterior distribution
non-Gaussian even if the underlying parameters z are Gaussian. To
tackle this challenge, we adopted an MC simulation approach by
repeatedly sampling measurements from the provided measurement
Ye and simulated measurement uncertainty Σm; we then repeated
the above iterative procedure to obtain the posterior distribution of

FIGURE 4
Experiment 1 and 2 variations plotted along respective sensitivities.

TABLE 7 Nonlinear subspace analysis for numerical experiment 2.

Experiments included cos θ with u1 cos θ with u2

Experiment 1 −0.2214 1.0000

Experiment 2 0.9985 −0.1679

Experiments 1 and 2 1.0000 1.0000
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z, p(z|Ye) in the Bayesian sense. The posterior distribution is then
input into the forward model to estimate the corresponding
uncertainty of the application bias, obtain confidence intervals,
etc. Note that both the posterior distribution of z and the
application uncertainty may be non-Gaussian and may not
necessarily be fully characterized by the covariance matrix Σz or
σa,post. For subsequent Bayesian updates, if desired, they may be
approximated using known distributions or constructed using
copulas to produce computationally tractable distributions.

Table 8 shows the predicted application bias with naïve GLLS,
the proposed adaptation, and the trained neural network. As
predicted, naïve GLLS provides an incorrect posterior estimate
due to the experimental and application nonlinearity, which is
resolved with the nonlinear adaptation. In this experiment, the
posterior distribution can be approximated by a Gaussian, and
the mean and standard deviation are provided in Table 8. Note
that this may not be true in the general case, and it may be better
suited to provide confidence intervals instead.

5.3 ICSBEP benchmark

As presented in Section 4.3, the selected benchmarks are ordered
in decreasing order of their absolute ck values with the GLLS
procedure applied after each benchmark inclusion. The

procedure is then repeated using the iterative qC procedure
outlined in Section 2 and Section 3.2 – the first selected
benchmark has the highest qC, and subsequent benchmarks are
selected in a manner that maximizes the total qC of the selected set
with the application. The posterior bias along with uncertainty
(standard deviation) are provided in Figure 5 below. We also
compute the total qC of all 100 benchmarks to be 0.84, i.e., a
theoretical 84% reduction in uncertainty achievable if all
experiments are included.

We first note that the qC-based approach accounts for
measurement uncertainty of each benchmark in the set and
identifies an experiment with ck � 0.978 as providing the highest
value to the chosen application, whereas the ck-based approach
selects the benchmark with ck � 0.986. When the GLLS procedure is
applied, the posterior uncertainty from the qC approach with just
one experiment reduces to 173 pcm from a prior of 718 pcm, a
reduction of 76.07%. This is a marked improvement from the
ck-based approach which yields 371 pcm, i.e., only a 48.63%
reduction in the prior uncertainty.

Figure 5 depicts significant breaks in the bias using the ck based
approach as the threshold is lowered to include experiments with ck
below 0.97, 0.86. 0.845, 0.814, 0.73, and 0.6. On the other hand, the
qC-based approach quickly stabilizes with the inclusion of
~25 experiments of varying ck values, indicating that the remaining
experiments add little value. A traditional ck-based approach such as in
(Broadhead et al., 2004) with a cutoff of ck � 0.9 and 23 benchmarks
yields a posterior bias of 364 ± 133 pcm, and ck � 0.8 and
80 benchmarks yields a posterior bias of 421 ± 123 pcm. On the
other hand, the qC-based approach yields 343 ± 122 pcm and
325 ± 112 pcm respectively, compared to the inclusion of the full
set of 100 benchmarks that yields a posterior bias of 319 ± 112 pcm
with the GLLS procedure.

TABLE 8 Comparison of methodologies for numerical experiment 2.

Methodology Application bias True solution

Naïve GLLS 995 ± 256 pcm −1,016 pcm

Nonlinear Adaptation −1011 ± 256 pcm

FIGURE 5
Posterior bias and uncertainty estimate computed after inclusion of ICSBEP benchmarks.
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The quicker convergence is also supported by Figure 6 which
computes the qC value after the inclusion of only a subset of
experiments from the set of 100 benchmarks. For comparison,
the number of benchmarks required by the ck-threshold
approach to achieve the same qC is depicted. For instance, the
ck-based approach requires four benchmarks to achieve the same

coverage as just one benchmark with the qC approach. The qC-based
approach also converges faster, achieving qC � 0.83 (within 0.01 of
the theoretical maximum) with 23 benchmarks, while the ck-based
approach requires 85 benchmarks and a ck threshold of 0.71.

Upon closer inspection of the first ten benchmarks selected by
the qC approach as depicted in Figure 7, we notice that the approach

FIGURE 6
Comparison of the ck and qC-based selection procedures in capturing coverage.

FIGURE 7
ck values of selected experiments between the two approaches.
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prefers the selection of benchmarks with ck values as low as 0.7 and
0.9 over some of the benchmarks with ck > 0.97, indicating some
degree of redundancy among the high ck experiments. In fact,
when expanding the selection to the first 23 benchmarks, the
qC-based approach selects 7 benchmarks with ck ∈ (0.47, 0.82),
benchmarks that would otherwise be discarded with a threshold-
based approach.

While this study pertains to a set of 100 benchmarks, the ability
to extract value out of low ck experiments is expected to be valuable
for applications where the number of available benchmarks is
limited and/or there is a lack of sufficiently high ck experiments.
In such cases, qC advises the practitioner on the most information
that can be extracted, which can then be used to inform future
experiments to improve their estimates.

6 Conclusion

The manuscript introduces qC, a novel coverage metric to
capture and quantify experimental relevance in nuclear datasets
independent of the specific data assimilation procedure used. Unlike
existing metrics such as ck that are better suited for single-
experiment, linear, and Gaussian problems, qC works across a
wide range of problems; here, a linear and a nonlinear analytical
problem are demonstrated as well as a real case with a set of
100 benchmarks from the ICSBEP handbook. We demonstrated
that ck, as a one-to-one metric, is not capable of identifying
experimental redundancies and synergies in providing coverage
of an application response of interest and may potentially discard
high-value experiments as irrelevant while overstating the value of
highly similar but low-value redundant experiments. qC, on the
other hand, captures coverage for not only a single experiment and
linear and Gaussian problems, but also for nonlinear problems with
non-Gaussian distributions and the coverage across multiple
experiments.

The scope of this manuscript is confined to the theoretical
underpinnings of the approach, its relationship to existing
coverage quantification metrics, the applicability of qC to
nonlinear and non-Gaussian problems, and its value in
identifying valuable low-ck experiments. As qC provides
theoretical coverage, it is also useful as a diagnostic tool to
improve data assimilation algorithms, as demonstrated using a
nonlinear adaptation of the GLLS procedure. The authors have
applied the methodology successfully to various reactor physics
applications. For instance, power and void histories of spent fuel
samples were inferred based on qC analysis of nuclide
concentrations from destructive assay measurements, leading to
significant improvements in predicted isotopic concentrations
due to corrected operational histories (Yin et al., 2024; Islam
et al., 2024; Yin et al., 2025). We are currently investigating
another use case involving targeted nuclear data covariance
adjustments guided by qC contributions from selected critical
experiments. Future work will be focused on machine-learning
applications for nuclear by combining neural network-based
adjustment procedures with Bayesian uncertainty quantification
to address nonlinearities and non-Gaussianity, where qC is used
as a diagnostic tool.
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