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Editorial on the Research Topic

Therapeutic potential of adult neurogenesis in neurodegenerative and

neuropsychiatric disorders

Neurogenesis is the process by which new neurons are added to the brain from neural

stem/progenitor cells (NSCs) (Bond et al., 2015; Elliott et al., 2025). While such process

is highly apparent during brain development (Villalba et al., 2021), investigations over

the last three decades have shown that neurogenesis continues into adulthood in specific

brain areas, such as the hippocampus and the olfactory bulb (Bond et al., 2015; Salta

et al., 2023; Elliott et al., 2025). Moreover, while the issue remains controversial, there is

sufficient evidence from multiple studies to support neurogenesis occurring in the adult

human hippocampus (Zanirati et al., 2023; Márquez-Valadez et al., 2025; Dumitru et al.,

2025). Neurogenesis during brain development is a widespread process that builds the

complex neural circuitry of the brain, occurring extensively across most regions (Villalba

et al., 2021). In contrast, adult neurogenesis is limited to specific areas, particularly the

hippocampus, producing new neurons for specific functions rather than overall brain

expansion (Bond et al., 2015; Salta et al., 2023; Elliott et al., 2025).

Adult hippocampal neurogenesis (AHN) plays a vital role inmaintaining hippocampus

function and responding to new challenges (Bond et al., 2015; Salta et al., 2023; Elliott

et al., 2025). Numerous studies have linked the extent of AHN to learning and memory,

mood, cognitive flexibility, pattern separation, and brain plasticity (Bond et al., 2015;

Elliott et al., 2025; Farmand et al., 2025). However, the factors such as sleep deprivation

and stress can adversely influence the production and integration of these new neurons

into existing hippocampal circuitry (Bond et al., 2015; Toda et al., 2019). The rate of

adult hippocampal neurogenesis also decreases with age (Rao et al., 2006; Hattiangady

and Shetty, 2008a,b; Hattiangady et al., 2008; Boldrini et al., 2018). In neurodegenerative

conditions, such as Alzheimer’s disease, it declines substantially due to various pathological

factors, which may contribute to hippocampus-dependent cognitive impairments (Salta

et al., 2023; Elliott et al., 2025). In contrast, in conditions such as status epilepticus, the
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rate of AHN increases dramatically, leading to abnormal migration

of newly born neurons and the formation of dysfunctional

circuitry, which likely contributes to chronic epilepsy (Rao

et al., 2008). Waned neurogenesis has been linked to several

neurological conditions, including the chronic phase of epilepsy

and traumatic brain injury (Hattiangady and Shetty, 2008b;

Kodali et al., 2023), and neuropsychiatric disorders (Hussaini

et al., 2014; Márquez-Valadez et al., 2025). As a result, AHN is

considered a potential therapeutic target for many neurological

and neurodegenerative diseases. Since adult neurogenesis primarily

occurs in the hippocampus in humans (Zanirati et al., 2023;

Márquez-Valadez et al., 2025; Dumitru et al., 2025), emerging

research is investigating the possibility of transforming non-

neuronal cells in the brain into region-specific neurons by

delivering reprogramming factors (Wei and Shetty, 2021; Bocchi

et al., 2022; Marichal et al., 2024). This approach is still in its

early stages, and its effectiveness is being studied across various

models of neurological and neurodegenerative diseases (Peterson).

If successful, it could revolutionize the replacement of specific types

of neurons lost due to injury or disease.

This Research Topic collection comprises five original research

articles and one review article, all published in Frontiers in

Neuroscience. These studies, conducted on animal models, have

provided new insights into the mechanisms underlying postnatal

neurogenesis, adult neurogenesis, lineage programming, and stem

cell grafting. The significant novel findings from these studies are

summarized in the following section.

A study on neurogenesis during the development of the

dentate gyrus (DG) reveals discrete transcriptional programs

coordinating the differentiation and neurogenic progression of

granule neuronal progenitors (GNPs) at embryonic vs. postnatal

stages of DG neurogenesis (Ohyama et al.). Specifically, the study

identified that during development, a sequential expression of the

transcription factor Zeb1 is observed in neural stem progenitor

pools, characterized by cells positive for GFAP and Sox2, followed

by Scratch2 (Scrt2) expression in intermediate progenitors that

are positive for Tbr2, Prox1, and NeuroD. Additionally, the study

suggested that postnatal GNPs utilize the transcription factor

Nkx6-2 to facilitate neuronal differentiation through epithelial-to-

mesenchymal transition (EMT)-associated mechanisms (Ohyama

et al.). A study by Miyamoto et al. provided insights into the gene

expression profiles of neuroblasts migrating in the peri-injured

cortex. They demonstrate that in neuroblasts migrating in the

peri-injured cortex, the expression of genes involved in regulating

migration direction and preventing cell death is upregulated,

while the expression of genes involved in cell proliferation and

maintenance of the immature state is downregulated. Additional

analysis implied that in the injured brain, the proliferative activity

of neuroblasts migrating toward lesions is suppressed by TGF-

β secreted from microglia and macrophages surrounding the

lesion (Miyamoto et al.). The results highlighted that migrating

neuroblasts can exhibit slightly but distinctly different properties

depending on the microenvironment along their journey.

In another study, Otsubo and associates employed an adeno-

associated virus knockdown system in mice, providing evidence

that Desmoplakin (Dsp), a component of desmosomal cell-cell

junctions, has a role in maintaining DG function, including

neuronal activity and adult neurogenesis, and anxiolytic-like effects

(Otsubo et al.). Dsp expression was observed primarily in mature

dentate granule cells, and its knockdown resulted in reduced

expression of the activity-dependent transcription factor FosB,

as well as increased expression of calbindin, a mature neuronal

marker. Additionally, knockdown of Dsp in DG diminished the

serotonin responsiveness of synapses formed by dentate granule

cell axons, adversely affecting adult neurogenic processes in the DG

and altering behavioral outcomes in a test for anxiety-like behavior.

Overall, the study uncovered a previously unknown function of

Dsp in the DG. However, it remains to be determined how Dsp

binds to dentate granule cells and how it regulates neuronal activity,

neurogenesis, and emotional behaviors.

Two additional articles in this Research Topic focus on the

altered development of DGneurogenesis and its impact on epileptic

susceptibility, as well as the role of seizure-induced neurogenesis in

cognitive impairments. The study by Ruiz-Reig et al. investigated

the functional consequences of p53 deletion in the cortex and

hippocampus by generating a conditional mutant mouse (p53-

cKO) in which p53 is deleted from pallial progenitors and their

derivatives. Interestingly, such deletion did not alter the number of

neurons in the cortex or the hippocampal cornu ammonis but led to

increased proliferative cells in the subgranular zone of the DG and

more granule cells in the granule cell layer of the DG. Additionally,

p53-cKOmice exhibited a higher density of glutamatergic synapses

in the CA3 region, resulting in hyperexcitability and increased

epileptic susceptibility (Ruiz-Reig et al.). The authors suggest that,

considering the role of p53 in the proliferation and self-renewal of

neural stem cells in the subventricular zone, its potential role in

glioblastoma genesis warrants further investigation. The study by

Francis et al. investigated whether reducing the aberrant increase

in neurogenesis could prevent cognitive impairments that emerge

in the chronic epilepsy phase. In a long-term amygdala kindling

model (consisting of 99 electrical stimulations), they showed

that treatment with temozolomide, a DNA-alkylating agent,

during a period of heightened neurogenesis can reduce aberrant

neurogenesis in the hippocampus and prevent impairments in

contextual fear discrimination and object recognition memory

tasks (Francis et al.). Overall, the study implied that strategies that

can selectively reduce aberrant adult neurogenesis could prevent

cognitive deficits associated with chronic epilepsy.

In addition to the original research articles discussed

above, the Research Topic collection includes a mini-review

article that critically discusses the promise of recruiting

resident non-neuronal cells by lineage programming, vis-à-

vis replacing lost neurons via grafting of stem cell-derived

neurons (Peterson). The review highlighted that the therapeutic

recruitment strategy enables the more precise control of the

location, connectivity, and extent of replacement neurons,

thereby providing a wider range of therapeutic options than

those offered by the engraftment of stem cell-derived neurons

alone. However, the review noted that although progress has

been made in recruiting resident non-neuronal cells using a

direct in vivo reprogramming strategy, further refinements in

efficiency and subtype specification are needed to advance this

strategy. The review also highlighted the current limitations of

the approach of direct reprogramming of non-neuronal cells,
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including the low conversion yield, preciseness in targeting only

non-neuronal cells, the use of viral vectors for reprogramming,

potential loss of cells because of unsuccessful reprogramming,

yet to be proven long-term survival and integration of

reprogrammed neurons and the need to test the efficacy of

reprogramming strategies to convert human non-neuronal cells

implanted into the brain in animal models into Bonafide mature

neurons (Peterson).

In summary, the article collection in this Research Topic,

representing the second volume of the RT “Advances in Adult

Neurogenesis,” provides several novel insights into neurogenesis

in the developing and adult DG, injured cortex, and aberrant

neurogenesis in pathological conditions such as chronic epilepsy.

In addition, the mini-review article weighs the pros and cons of

in vivo reprogramming vs. stem cell-derived neuronal grafting for

replacing lost neurons in the brain affected by neurological and

neurodegenerative conditions.
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