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Objectives: Sturge-Weber syndrome (SWS) is a congenital neurological disorder
occurring in the early childhood. Timely diagnosis of SWS is essential for proper
medical intervention that prevents the development of various neurological
issues. Leptomeningeal angiomas (LA) are the clinical manifestation of SWS.
Detection of LA is currently performed by manual inspection of the magnetic
resonance images (MRI) by experienced neurologist, which is time-consuming
and lack of inter-rater consistency. The aim of the present study is to investigate
automated LA detection in MRI of SWS patients.
Methods: A Mamba-based encoder-decoder architecture was employed in
the present study. Particularly, a multi-scale multi-scan strategy was proposed
to convert 3-D volume into 1-D sequence, enabling capturing long-range
dependency with reduced computation complexity. Our dataset consists of 40
SWS patients with T1-enhanced MRI. The proposed model was first pre-trained
on a public brain tumor segmentation (BraTS) dataset and then fine-tuned and
tested on the SWS dataset using 5-fold cross validation.
Results and conclusion: Our results show excellent performance of the
proposed method, e.g., Dice score of 91.53% and 78.67% for BraTS and SWS,
respectively, outperforming several state-of-the-art methods as well as two
neurologists. Mamba-based deep learning method can automatically identify LA
in MRI images, enabling automated SWS diagnosis in clinical settings.

KEYWORDS

Sturge-Weber syndrome, leptomeningeal angiomas, magnetic resonance imaging,
Mamba, multi-scale multi-scan

1 Introduction

Sturge-Weber syndrome (SWS) is a rare congenital neurological disorder with an
incidence rate of approximately 1 in 20,000 to 50,000 live births (Comi, 2007). It is often
associated with facial port-wine stains (PWS), glaucoma, and ipsilateral leptomeningeal
angiomas (LA) (Sudarsanam and Ardern-Holmes, 2014; Thomas-Sohl et al., 2004). SWS
can lead to various neurological issues such as seizures, hemiparesis, headaches, and
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cognitive impairments, particularly in children under five
years (Sujansky and Conradi, 1995). Given the high susceptibility
to seizures in this age group, early detection of SWS and proper
medical intervention are crucial. Although facial PWS is a major
characteristic of SWS, not everyone with facial PWS suffers from
SWS (Thomas-Sohl et al., 2004). Therefore, it is recommended
that children with PWS undergo imaging evaluation, such as
magnetic resonance imaging (MRI), to determine whether they
have SWS (Bar et al., 2020).

Clinical manifestation of SWS is the presence of intracranial
vascular anomaly, i.e., LA (Ramirez and Jülich, 2024). Currently,
the identification of LA relies on visual inspection of the imaging
data, particularly MRI, by experienced clinicians. However, the
expertise of experienced doctors may not always be readily
available, and manual labeling of lesions is time-consuming.
Therefore, an automatic diagnosis tool is required for accurate and
efficient diagnosis of SWS.

With the advance in deep learning, encoder-decoder-
based frameworks such as U-Net and its variants have
become the dominant architectures for medical image
segmentation (Ronneberger et al., 2015; Çiçek et al., 2016;
Soh and Rajapakse, 2023; Chen et al., 2025), playing a key role in
computer-aided diagnosis (CAD) systems. U-Net primarily utilizes
the encoder-decoder structure with convolutional neural networks
(CNNs) in each layer to extract hierarchical image features,
enabling precise segmentation of the image in pixel level (Çiçek
et al., 2016). Moreover, nnU-Net automates hyperparameter tuning
and data preprocessing for U-Net, and therefore enhances the
performance in many segmentation tasks (Isensee et al., 2021).
However, while CNNs are efficient in feature extraction, they are
constrained by their local receptive fields, making it difficult to
capture long-range dependencies that are crucial for tasks where
global context is essential (Soh and Rajapakse, 2023).

In addition to CNNs, Transformer has emerged as a powerful
alternative, demonstrating exceptional ability to model global
relationships and capture long-range dependencies (Dosovitskiy
et al., 2021; Raghu et al., 2021). Vision Transformer(ViT) employs
the transformer architecture for image processing, capturing
global dependencies in images through self-attention mechanisms.
Nevertheless, their quadratic complexity associated with the length
of the input sequence renders them computationally intensive and
impractical for handling high-dimensional medical images (Gu and
Dao, 2024). This computational burden hinders their applicability
in real-world settings with limited resources.

Mamba has been recently proposed to capture long-range
dependence with reduced computational burden. It is built on the
state space models (SSMs) with optimized state space matrices (Gu
and Dao, 2024), and has shown promising performance in natural
language processing and also been adapted for computer vision
tasks (Zhu et al., 2025). However, as the SSMs work initially
on 1-D sequence, adapting Mamba for image tasks requires
to convert the 2- or 3-D images into 1-D sequence. Several
strategies have been proposed for such adaptation. U-Mamba
flattens image patches using a original scan order, i.e., row by row
sequentially (Ma et al., 2024). VMamba introduces a cross-scan
module to decompose 2-D images into four distinct 1-D scanning
paths (horizontal, vertical, and their reverse directions) to better

preserve spatial relationships (Liu Y. et al., 2024). Swin-UMamba
integrates a shifted window partitioning strategy (inspired by
Swin Transformers) with VMamba’s directional scanning, while
also leveraging ImageNet pre-training for enhanced feature
representation (Liu et al., J. 2024). In addition, SegMamba proposes
a tri-orientated scanning scheme for 3-D images, i.e., scanning
along axial, sagittal, and coronal planes separately to capture
volumetric dependencies (Xing et al., 2024).

Despite their wide application, deep-learning-based CAD
techniques have not yet been applied to the diagnosis of SWS. The
aim of the present study is therefore to develop a deep-learning-
based tool for automatic detection of LA in the brain MRI of SWS
patients. The study is designed as a retrospective investigation of a
clinical dataset consisting of 40 SWS patients. The encoder-decoder
structure and Mamba model are considered. In order to deal with
the random location of LAs in MRI scans, a novel multi-scale
multi-scan (MSMS) strategy is proposed to convert 3-D volumes
into 1-D sequences. Besides, due to the rareness of the disease
and thus limited sample size, transfer learning is considered by
pre-training the model with a public dataset, i.e, the brain tumor
segmentation (BraTS) benchmark dataset, and then fun-tuning and
testing it on our SWS dataset. The performance of the proposed
method is compared with CNNs, Transformers, and state-of-
the-art (SOTA) Mamba-based models in terms of a number of
evaluation metrics.

The main novelty and contributions of the present study are
summarized hereafter.

• An encoder-decoder deep learning method was employed, for
the first time, for automatic identification of LA in the brain
MRI images, and thus for automated diagnosis of SWS.

• Mamba model is embedded in the encoder in order to capture
long-rang dependency in 3-D volumes.

• A multi-scale multi-scan strategy is proposed in the Mamba
model to extract multi-scale futures along different directions
of the 3-D volume.

• Pre-training on the BraTS dataset is employed to address the
challenge of limited sample size.

2 Material and methods

2.1 Dataset and pre-processing

This study was designed as a retrospective study of existing
data collected during clinical practice at Xinhua Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine (XH-SJTU-
SM). Patients diagnosed as SWS between June 2008 and August
2024 were considered. The exclusion criteria include: (a) younger
than 3 months; (b) syndrome type II, i.e., without LA; (c) missing
clinical information or poor-quality images impeding manual
annotation. Consequently, 40 SWS patients (13 girls and 27 boys,
age between 5-696 months) were involved in this study. The study
protocol was approved by the Ethics Committee at XH-SJTU-SM
with the number XHEC-D-2024-090. Written informed consent
of each subject was waived by the ethics committee due to its
retrospective nature.
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T1-weighted MRI images were analyzed in the present study.
They were recorded using different scanners, i.e., Siemens, Philips,
and General Electric (GE), with two different magnetic field
strengths, i.e., 1.5T and 3T. Details of the scanners and their
parameters are summarized in Table 1. In each MRI image, the
brain areas containing LA were annotated as the ground truth
by one experienced neuroradiologist from XH-SJTU-SM using
the well-known ITK-SNAP toolbox (Yushkevich et al., 2006).
An representative examples of LA in T1-enhanced MRI and the
corresponding annotations is shown in Figure 1. Note that marking
only the abnormal intracranial vessels in the MRI image was quite
difficult and therefore was not considered in the present study.

In each MRI image, the skull was first removed using the
FSL toolbox (Yushkevich et al., 2006) to avoid its affects on the
identification of contrast-enhanced LA. Then the images recorded
with different scanners and protocols were resampled to uniform
physical spacing of 0.47 mm × 0.47 mm × 6.5 mm. In addition,
each image was cropped to contain only the brain area. Due to

TABLE 1 MRI scanners and corresponding parameters.

Scanner NOP TR/TE FOV MZ ST

Si 1.5T 3 1,600/8.9 200 × 200 256 × 180 5

Ph 3T 5 1,800/20 230 × 187 260 × 189 5

GE 3T 17 1,750/24 200 × 200 320 × 224 5

GE 1.5T 15 520/9.9 240 × 240 320 × 160 5

Si, Siemens; Ph, Philips; NOP, number of patients; TR, repetition time (ms); TE, echo time
(ms); FOV, Filed of view (mm2); MZ, Matrix size (pixel2); ST, Slice thickness (mm).

different brain sizes of the subjects, the largest size of the cropped
image was determined as 320 pixels × 320 pixels, and all cropped
images were zero-padded to this unique size to keep consistency for
further analysis.

Furthermore, a harmonization technique (Tan et al., 2023) was
applied to the cropped images to compensate the influence of
different scanners and imaging parameters. To this end, a high-
quality MRI scan was first selected among all the images as a
reference image (Iref) based on visual inspection. Then each brain
image I was smoothed using k Gaussian kernels with different
standard deviations:

I(k) = Gσk ∗ I, (1)

where Gσk denotes the kth Gaussian kernel, and σk = 0, 2, 4, 6, for
k = 0, 1, 2, 3, respectively. Note that σ0 = 0 corresponds to the
original (non-smoothed) image.

Each smoothed image I(k) was then normalized with respected
to the reference image, given by

Ĩ(k) = I(k) − μ(k)

σ (k) · σ (k)
ref + μ

(k)
ref , (2)

where μ and σ indicates respectively mean and standard deviation,
and μ

(k)
ref , σ

(k)
ref are computed from the smoothed reference image

I(k)
ref calculated as I(k)

ref = Gσk ∗ Iref. Finally, a harmonized image was
obtained as

Iharm =
3∑

k=0

Ĩ(k). (3)

FIGURE 1

LA in T1-enhanced brain MRI of the SWS patients and the corresponding annotations.
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FIGURE 2

The overall architecture of the proposed segmentation framework.

2.2 Mamba-based segmentation
framework

2.2.1 Overall framework
The overall architecture of the proposed segmentation

framework is illustrated in Figure 2. It is based on the U-Net
structure with six encoding and decoding layers. In the encoder,
each layer consists of two 3D CNN modules and a multi-scale
multi-scan (MSMS) Mamba block in between. The first CNN is
used to extract 3-D features from the input volume. It is composed
of a depthwise convolution followed by a pointwise convolution
for efficient channel-wise feature mixing (Zhang et al., 2019),
followed by an instance normalization (Ulyanov et al., 2016), and
a Leaky ReLU activation function (Xu et al., 2020). The MSMS-
Mamba block is connected to the output of the residual CNN to
enhance the model’s ability to capture long-range dependencies
and spatial correlations. The second 3D CNN is employed as
an efficient alternative to traditional max-pooling to progressively
down-sample the feature map in each encoding layer.

In the decoder, each layer comprises a 3D CNN module and
an up-sampling module, i.e., transposed 3D convolution. The
3D CNN module is the same as the encoder. The up-sampling
module leverages 3D transposed convolutions to progressively
restore the spatial resolution of feature maps. At the end of
the encoder, i.e., the final layer, a segmentation head with 1 Œ
1 convolution is employed to perform pixel-wise classification,
producing the final segmentation output. Besides, following
established practices in medical image segmentation (Isensee et al.,
2021; Hatamizadeh et al., 2021), skip connections are introduced
between corresponding encoding and decoding layers to retain
spatial detail and low-level features.

The main novelty and contribution of the present work lies
in the integration of the MSMS-Mamba block in the encoder to
enhance long-range dependency modeling and improve feature
fusion. The scheme of the MSMS-Mamba block is shown in the
left of Figure 2. It is composed of four consecutive components:
an initial layer normalization, the MSMS-Mamba module for
long-range dependency and multi-scale modeling, a second layer
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FIGURE 3

MSMS-Mamba module.

normalization, and a convolutional feed-forward network (Shi
et al., 2024) for feature refinement. Among the four components,
the MSMS-Mamba module is the key of the MSMS-Mamba block,
whose scheme is shown in Figure 3. It is built based on a SSM model
with dedicated MSMS strategy, as shown in Figure 4. Details of the
SSM model and the MSMS strategy are introduced hereafter.

2.2.2 Selective state space model
SSM is a class of sequence-to-sequence architecture that has

undergone significant evolution in recent years. The development
of SSMs (Gu et al., 2022) originates from their foundational
formulation as a linear time-invariant (LTI) system, which maps
an input sequence x(t) ∈ R

L to an output sequence y(t) ∈ R
L

through a hidden state h(t) ∈ C
N . The continuous form of SSMs

is defined as:

h′(t) = Ah(t) + Bx(t),

y(t) = Ch(t), (4)

where A ∈ C
N×N , B ∈ C

N , and C ∈ C
N are the system matrices,

and h(t) ∈ R
N represents the implicit latent state.

To make SSMs computationally tractable for discrete-time
sequences, the bilinear transform method is employed to discretize
the continuous ordinary differential equations. This results in the

discrete form of SSMs,

h[n] = A h[n − 1] + B x[n],

y[n] = C h[n], (5)

where A = (I−�/2·A)−1(I+�/2·A), B = (I−�/2·A)−1�B, and
C = C. Here, � denotes the step size for converting a continuous
sequence into a discrete sequence (Gu et al., 2022).

The discrete SSM can be further expressed in a convolutional
form, shown as

y[n] = CAnBx[0] + CAn−1Bx[1] + . . .

+ CA Bx[n − 1] + CBx[n],

K = (CB, CA B, . . . , CAn−1B, CAnB),

y = K ∗ x. (6)

The matrices A, B, and C remain fixed within every iteration.
This allows pre-computing the convolution kernel K , significantly
speeding up the training stage, as reported in Gu et al. (2022).

SSMs are the core of a Mamba model. However, the pre-
computing of K results in a static representation, where the same
matrices are applied to all tokens regardless of the input content,
limiting the model’s ability to perform context-aware reasoning.
To address this limitation, the Mamba model (Gu and Dao, 2024)
introduces a selective mechanism to SSMs, making the system
matrices input-dependent. This is achieved by constraining the
system matrixes B, C, and � as linear projection of the input
sequence x ∈ R

d using a weight matrix W ∈ R
d×N . This makes

B, C, and � input-dependent. Consequently, the input dependency
of � causes A to also become input-dependent, rendering the
pre-computed K inapplicable. To address this, a parallel scanning
algorithm is proposed in Mamba for efficient computation of these
matrices (Gu and Dao, 2024).

2.2.3 Multi-scale multi-scan strategy
Mamba is initially designed for processing 1-D series, but

can be adapted for image processing tasks by serializing the 2-D
or 3-D image into a 1-D sequence through flattening operation.
However, directly applying Mamba to flattened 3-D medical images
leads to limited receptive fields, hindering the model’s ability
to effectively capture spatial correlations in higher-dimensional
data. This limitation becomes particularly evident in 3-D medical
imaging, where preserving spatial structure is essential for accurate
analysis. To address this challenges, we propose a MSMS strategy
to convert our 3-D MRI data into 1D sequence, which is
designed as a dual-branch structure in order to extract multi-scale
features, as shown in Figure 4. The upper branch performs feature
extraction across different directions through a combination of
sub-sampling and multi-scan operations. Meanwhile, the parallel
lower branch maintains the original resolution to preserve fine-
grained spatial information.

In the upper branch, sub-sampling is first employed to divide
the input 3D volume V into several smaller sub-volumes (SVs)
in order to alleviate long-range forgetting (Shi et al., 2024). To
this end, the 3D volume V is uniformly partitioned into N
segments along each axis, resulting in N3 basic elements: V =
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FIGURE 4

SSM with multi-scale multi-scan strategy.

TABLE 2 Sub-volumes obtained by down-sampling and the
corresponding scan order.

SV Sub-sample Scan order

SV1 V{x1, x3; y1, y3; z1, z3} [1, 2, 3, 4, 5, 6, 7, 8]

SV2 V{x2, x4; y1, y3; z1, z3} [8, 7, 6, 5, 4, 3, 2, 1]

SV3 V{x1, x3; y2, y4; z1, z3} [1, 3, 2, 4, 5, 7, 6, 8]

SV4 V{x2, x4; y2, y4; z1, z3} [8, 6, 7, 5, 4, 2, 3, 1]

SV5 V{x1, x3; y1, y3; z2, z4} [1, 5, 2, 6, 3, 7, 4, 8]

SV6 V{x2, x4; y1, y3; z2, z4} [8, 4, 7, 3, 6, 2, 5, 1]

SV7 V{x1, x3; y2, y4; z2, z4} [1, 2, 4, 3, 5, 6, 8, 7]

SV8 V{x2, x4; y2, y4; z2, z4} [7, 8, 6, 5, 3, 4, 2, 1]

{xi; yj; zk}N
i,j,k=1. In the present study, N = 4 thus 64 basic elements

are obtained. Then 8 SVs can be derived, with each consisting of 8
basic elements sampled from the entire volume (two elements from
each axis), as shown in Table 2. For instance, the SV1 in Table 2 is
sampled from {x1, x3}, {y1, y3}, and {z1, z3}, denoted as

SV1 = V{x1, x3; y1, y3; z1, z3}. (7)

Each SV is numbered in the same way as shown in Figure 4.
Different scanning orders along different spatial directions are then
employed to flatten each SV into 1-D sequence, as listed in Table 2.
The multi-scan operation is designed to extract multi-scale features
from each SV while effectively expanding the receptive field.
Instead of bidirectional scanning, only unidirectional scanning for
each SV is considered to achieve a trade-off between segmentation
performance and computational complexity. However, different
scanning orders are employed for different SVs, equalling to multi-
directional scanning of the original volume with reduced spatial
sample rate. Such diverse scanning patterns across different SVs
enable complementary coverage among sequences, facilitating joint
expansion of context without increasing computational cost. SSM
is then applied to each flattened 1-D sequence, which is followed
by the multi-merge operation, an inverse operation of multi-scan,
reconstructs the 3-D volume based on the output of SSMs.

2.3 Evaluation

2.3.1 Evaluation on public BraTS dataset
The performance of the proposed segmentation framework

was first evaluated on a public dataset from the BraTS2023
Challenge (Kazerooni et al., 2024), which includes 1251 3D
brain MRI images with gliomas. This dataset was acquired from
multiple institutions under standard clinical conditions using four
modalities (T1, T1Gd, T2, and T2-FLAIR). Whole tumor (WT),
tumor core (TC), and enhancing tumor (ET) were manually
annotated by experienced medical experts. Only T1-enhanced
images were considered, the same as our SWS dataset. We adopted
a 7:1:2 split for training, validation, and testing, and trained the
model for 1,000 epochs to ensure efficient learning and reliable
performance evaluation.

2.3.2 Evaluation on SWS dataset with pre-training
strategy

While evaluating the model on the SWS dataset, a pre-
training strategy was considered due to the limited subject size.
In this scenario, the entire BraTS2023 dataset (Kazerooni et al.,
2024) was adopted to pre-train the model for 1,000 epochs.
Although gliomas in BraTS differ morphologically from SWS
lesions, both share common segmentation principles—particularly
the enhanced intensity patterns in T1-weighted images. Thus, pre-
training on BraTS enables the model to leverage relevant priors
and helps alleviate the limitations imposed by the small scale of the
SWS dataset.

Given the fact that the spatial sampling distance of the SWS
dataset in the z-axis is significantly larger than that of the x-
and y-axis, down-sampling in the z-axis of the BraTS dataset was
performed as it is originally equally sampled in all directions. After
pre-training, the obtained model was fine-tuned and tested on the
SWS dataset for 250 epochs, which is smaller than that of the
BraTS dataset (1,000) due to the much smaller size of the SWS
dataset. We utilized a 5-fold cross-validation strategy to evaluate
the performance of the proposed method.
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2.3.3 Performance metrics
To quantitatively evaluate the segmentation performance of

the proposed model on both datasets, the widely adopted dice
similarity (DS) coefficient was employed as the primary metric,
which measures the spatial overlap between model predictions and
ground truth annotations. This metric has become the de facto
standard in medical image segmentation due to its robustness in
assessing volumetric agreement. However, note that in the present
study the SWS dataset are severely imbalanced, i.e., much smaller
LA regions as compared the non-LA regions. Such imbalance may
lead to a low Dice score.

Therefore, other metrics such as sensitivity (Sen), specificity
(Spe), balanced accuracy (BAcc), accuracy (Acc), Jaccard Index
(JI) (Ronneberger et al., 2015), Kappa coefficient (Chmura Kraemer
et al., 2002), volumetric similarity (VS), Matthews correlation
coefficient (MCC) (Chicco and Jurman, 2020), and 95% Hausdorff
distance (HD95) (Huttenlocher et al., 1993) were also calculated
to measure the similarity between the segmented tumor and the
ground truth in order to achieve a comprehensive understanding
of the model performance.

2.3.4 Implementation details
The PyTorch deep learning framework was utilized in our

implementation. The training and evaluation processes were
executed on a high-performance computing node featuring
NVIDIA GeForce RTX 3090 graphics processor with CUDA 11.8
acceleration. We have implemented MSMSMamba on top of
the well-established nnU-Net framework (Isensee et al., 2021).
Its self-configuring feature has allowed us to focus on network
design rather than other trivial details. The loss function was a
combination of Dice loss and cross-entropy loss, defined as

Ltotal =
1
2
· LCE + 1

2
· LDice. (8)

The Cross Entropy Loss LCE and Dice Loss LDice are
respectively defined as

LCE = − 1
N

N∑

i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]
, (9)

and

LDice = 1 − 2
∑N

i=1 piyi + ε
∑N

i=1 pi +
∑N

i=1 yi + ε
, (10)

where N is the number of samples (or pixels), yi ∈ {0, 1} denotes
the ground truth label of the i-th sample, pi ∈ [0, 1] denotes
the predicted probability for the positive class, and ε is a small
constant (e.g., 10−6) to prevent division by zero. The combined
loss was supervised at each layer of the decoder to achieve deep
supervision, as suggested in previous studies (Lee et al., 2015), with
exponentially decayed weights (1/2i) assigned to lower-resolution
outputs. The AdamW optimizer with a weight decay of 0.05 was
considered (Liu Y. et al., 2024). A cosine learning rate decay was
adopted with an initial learning rate of 0.001.

Detailed model parameters of the CNN and Mamba blocks
are reported in Table 3. Note that each CNN block is composed

of a depthwise convolution and a pointwise convolution, and
only the parameters for depthwise convolution are shown here.
The pointwise convolution employed a fixed kernel (1,1,1) with
stride (1,1,1) in all layers. For the MSMS-Mamba blocks, the key
parameters, i.e., state dimension, convolutional kernel size, and
expansion ratio were set as default configuration in Mamba (Gu
and Dao, 2024).

3 Results

3.1 Segmentation results on BraTS dataset

Figure 5 shows an example of the segmentation results of the
WT, TC, and ET on the BraTS dataset, produced by our model
as well as several SOTA methods such as nnU-Net (Isensee et al.,
2021), UMamba (Ma et al., 2024), and SegMamba (Xing et al.,
2024), which are re-implemented in the present study based on
the open-source code. All methods seem to produce very good
segmentation results. However, the quantitative metrics over the
entire testing set, showing in Table 4, suggest that our model
outperforming nnU-Net, UMamba, and SegMamba except for Dice
in TC and HD95 in ET.

Besides, the performance of the proposed model is further
compared with several other models that were employed as baseline
models in a recent publication on the BraTS dataset (Xing et al.,
2024), including SegresNet (Myronenko, 2019), UX-Net (Lee et al.,
2023), MedNeXt (Roy et al., 2023), UNETR (Hatamizadeh et al.,
2022), SwinUNETR (Hatamizadeh et al., 2021), and SwinUNETR-
V2 (He et al., 2023). Note that, for these methods, no re-
implementation is performed in the present study due to the lack of
open-source code. Consequently, the results reported in Xing et al.
(2024) are used in the present study. Besides, only Dice and HD95
are reported in Xing et al. (2024). These two metrics are therefore
considered as metrics of the BraTS dataset for all the methods listed
in Table 4. It is clear that the performance of our method is superior
to those baseline models.

3.2 Segmentation results on SWS dataset

Figure 6 shows an representation example of the segmentation
results on the SWS dataset, produced by the proposed methods
as well as the comparison methods including nnU-Net, UMamba,
and SegMamba (re-implemented in the present study). It can
be observed that the proposed method produces more accurate
and coherent LA segmentations, particularly in regions with
irregular boundaries.

We have employed Grad-CAM (Selvaraju et al., 2017) to
visualize the feature activation maps. As shown in the Figure 7,
the proposed method exhibits the most distinct and concentrated
response in the lesion regions, indicating strong capability for LA
localization. In contrast, the nnU-Net and nnU-Net+Transformer
models show relatively diffuse activations, while SegMamba and
UMamba fail to accurately highlight the lesion areas. However, our
model’s stronger capability for LA localization may also lead to
increased false positive rate in the worst case shown in Figure 8,
where the boundary between two different brain areas has similar
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TABLE 3 Detailed model parameters of the proposed architecture.

Layer Encoder Decoder

3D CNN∗ Mamba Transposed Conv

Kernel Stride Channel dstate dconv ER Kernel Stride Channel

1 (3,3,1) (1,1,1) 2 → 32 16 4 2 (2,2,1) (1,1,1) 64 → 32

2 (3,3,1) (2,2,1) 32 → 64 16 4 2 (2,2,1) (1,1,1) 128 → 64

3 (3,3,1) (2,2,1) 64 → 128 16 4 2 (2,2,1) (1,1,1) 256 → 128

4 (3,3,3) (2,2,2) 128 → 256 16 4 2 (2,2,2) (2,2,2) 320 → 256

5 (3,3,3) (2,2,2) 256 → 320 16 4 2 (2,2,2) (2,2,2) 320 → 320

6 (3,3,3) (2,2,1) 320 → 320 16 4 2 (2,2,1) (2,2,1) 320 → 320

∗Each CNN block is composed of a depthwise convolution and a pointwise convolution, and only depthwise convolution parameters are shown here. The pointwise convolution uses a fixed
kernel (1,1,1) with stride (1,1,1) in all layers. dstate: state dimension; dconv: convolution kernel size; ER, Expansion ratio.

FIGURE 5

Example of the segmentation results on the BraTS dataset. Red, WT; Blue, TC; Green, ET.

characteristic as LA, i.e., highlighted (bright) pixels, and is therefore
identified as LA area.

The quantitative metrics of the 5-fold cross validation are
shown in Table 5. The proposed method achieves the highest
mean Dice score of 78.67%, outperforming nnUNet, UMamba,
and SegMamba by 1.87%, 2.24%, and 1.62%, respectively.
Additionally, the proposed method yields the highest scores
in all the other metrics except for specificity and HD95:
i.e., sensitivity (78.57%), balanced accuracy (88.87%), accuracy
(98.34%), Jaccard index (66.59%), Kappa coefficient (77.95%),
volume similarity (92.14%) and Matthews correlation coefficient
(78.38%). These results demonstrate the effectiveness of the
proposed method in segmenting LA in the MRI images of
SWS patients. The slightly lower specificity (99.16%) and
HD95 (15.49) may be explained by the higher false positive

rate of our model in the worst case scenario, as shown in
Figure 8.

Note that all the models yield very high specificity and accuracy.
A high specificity indicates good ability of the models to detect
negative samples (non-LA pixels). Besides, given the relatively
low sensitivity (below 80%), the observed high accuracy reveals
imbalanced distribution of the two classes of samples (LA and non-
LA pixels). This is indeed the case of the present study. As shown
in Figure 6, non-LA areas in the MRI images are much larger than
LA areas.

To further evaluate the performance of the proposed method
for LA detection, two readers (neurologists) were asked to annotate
the LA independently, and their results were compared with that of
our model. As shown in Table 5, the proposed deep learning model
outperforms the two readers in many evaluation metrics, except for
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TABLE 4 Segmentation results on the BraTS2023 dataset.

Methods WT TC ET Average

Dice (%) HD95 (mm) Dice (%) HD95 (mm) Dice (%) HD95 (mm) Dice (%) HD95 (mm)

SegresNet† 92.02 4.07 89.10 4.08 83.66 3.88 88.26 4.01

UX-Net† 93.13 4.56 90.03 5.68 85.91 4.19 89.69 4.81

MedNeXt† 92.41 4.98 87.75 4.67 83.96 4.51 88.04 4.72

UNETR† 92.19 6.17 86.39 5.29 84.48 5.03 87.68 5.49

SwinUNETR† 92.71 5.22 87.79 4.42 84.21 4.42 88.24 4.70

SwinUNETR-
V2†

93.35 5.01 89.65 4.41 85.17 4.41 89.39 4.51

nnU-Net 93.45 4.34 91.93 3.30 87.59 3.74 90.99 3.79

UMamba 93.18 4.07 91.78 3.19 87.89 4.01 90.95 3.76

SegMamba 93.30 4.12 92.49 3.14 87.21 3.91 91.00 3.72

Proposed 93.56 4.06 92.45 3.06 88.58 3.83 91.53 3.65

†Results reported in SegMamba (Xing et al., 2024). The bold values indicate the best performance.

sensitivity and accuracy where the readers achieve slightly higher
values. These results suggest that while the readers may detect
more true positive regions, our method provides more accurate and
consistent segmentation results overall.

3.3 Ablation study

Ablation study was performed on the SWS dataset in the
present study in order to demonstrate the effectiveness of
the proposed MSMS architecture as well as the pre-training
strategy. The results are reported in Table 6. All these models are
embedded in the encoder-decoder architecture shown in Figure 2.
Considering only the original Mamba, a Dice score of 76.01% is
observed for LA segmentation on the SWS dataset. By adding the
multi-scaling (down-sampling) module to the original Mamba, a
Dice score of 76.01% (with improvements of 0.89%) is achieved.
A combination of the original Mamba and the multi-scanning
module yields a Dice score of 75.90% (0.78% improvements
compared to the original Mamba).

Furthermore, the original Mamba with pre-training on the
BraTS dataset produces a Dice score of 76.43% on the SWS dataset,
improving 1.31% compared to original Mamba only. Without pre-
training, the combination of multi-scale and multi-scan strategies
yields a Dice score of 77.18%. Finally, as reported in Table 6,
the proposed method integrating multi-scale, multi-scan, and pre-
training achieves the best performance, i.e, with a Dice score of
78.67%. These results demonstrate the effectiveness of the MSMS
architecture and the pre-training strategy.

3.4 Computational complexity

The computational complexity of the proposed method as well
as the comparison methods are reported in Table 7. The training
and evaluation processes were executed on a high-performance
computing node featuring NVIDIA GeForce RTX 3090 graphics

processor with CUDA 11.8 acceleration. Due to the addition of
Mamba module in each encoding layer, the number of parameters
of the proposed method is higher than that of nnU-Net and
nnU-Net+Transformer, resulting in slightly higher inference time
(0.169 s). However, our model has the lowest Floating Point
Operations (892.44 Giga). Notably, for nnU-Net+Transformer,
our preliminary results indicate that incorporating a Transformer
module at every encoder layer leads to out-of-memory issue. As
a consequency, Transformer is only used in the last layer of the
encoder, e.g., at the bottleneck.

4 Discussion

The aim of the present study is to develop an artificial
intelligence (AI) model for automatic identification of LA in
the MRI images and thus for automated SWS diagnosis. Such
model is of great clinical importance as, currently, the detection
of LA in MRI for SWS diagnosis relies on manual inspection
by neuroradiologists, which is not only time-consuming and
experience-demanding but also lead to low inter-rater agreement.
To this end, the encoder-decoder architecture particularly nnU-Net
is employed as the basic framework of our model due to its excellent
performance in many segmentation tasks (Isensee et al., 2021).

Different from traditional nnU-Net using CNNs in each
encoding and decoding layer, Mamba is embedded in each
encoding layer in the present study in order to capture long-
range dependencies. Based on a selective SSM, Mamba has lower
computational complexity as compared to conventional sequential
modeling approaches such as RNN and Transformer (Gu and Dao,
2024). Besides, a novel MSMS strategy is proposed to convert the 3-
D volumes into sequences as input of the SSM. The MSMS strategy
integrates multi-resolution feature fusion with multi-scanning
order, enabling robust global context modeling while maintaining
linear complexity by explicitly decoupling spatial dependencies
across reduced scales and different directions. This lies in the main
novelty of the present study.
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FIGURE 6

Example of the segmentation results on the SWS dataset.

The ablation results shown in Table 6 demonstrate the
effectiveness of the MSMS strategy. Besides, the entire model
proposed in the present study outperforms several SOTA models,
including nnUNet, UMamba, and SegMamba, in both brain tumor
segmentation on the BraTS dataset and LA segmentation on
the SWS dataset. Our framework significantly enhances Mamba’s
feature extraction capability for 3D medical images through multi-
scale and multi-scan hierarchical integration, which systematically
aggregates discriminative features across varying receptive fields.
However, note that the reproduced results for SegMamba on the
BraTS dataset (Table 4) are slightly lower than that originally
reported in Xing et al. (2024), which may be due to possible
difference in the implementation hardware between the present
study and Xing et al. (2024).

Furthermore, a main challenge for the application of deep
learning to medical data is limited subject size, particularly for rare
diseases such as SWS. To overcome this challenge, we introduce
a transfer learning approach by pre-training the proposed model
on the BraTS dataset and fine-tuning it on the SWS dataset. The
ablation results shown in Table 6 illustrate the effectiveness of
the pre-training strategy. However, note that the characteristics
of the brain tumor (gliomas) in the pre-training dataset (BraTS)
differ significantly from that of the LA in the SWS dataset. It is
therefore reasonable to expect improved results after pre-training
on a dataset similar to SWS. On the other hand, our results may also
suggest that pre-training on the BraTS dataset may benefit lesion
segmentation in other rare brain diseases with limited dataset but
similar imaging madality.
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FIGURE 7

Feature activation maps.

FIGURE 8

Worst case scenario. Red, Ground Truth; Green, Prediction.

Interesting also to note that the MRI images of the 40 SWS
patients are collected with different equipments over a time span
of 16 years, which can be ascribed to the rareness of the disease.
Nevertheless, with such diverges in the recording equipments
and time span, the proposed method produces remarkable
segmentation results for the LA, suggesting good generalization
ability of the proposed method. In fact, the harmonization

technique (Tan et al., 2023) implemented in the pre-processing may
contribute significantly to such good generalization ability of the
proposed method.

Our results show that the proposed deep learning method
outperforms two neurologist in a number of metrics particularly
Dice core, which has been widely employed as the primary metric
in segmentation tasks. These results suggest that deep learning
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TABLE 5 Segmentation results on the SWS dataset.

Metric nnU-Net nnU-Net+T∗ UMamba SegMamba Proposed Reader-1 Reader-2

Sen (%) 77.31 ± 14.58 77.23 ± 14.98 77.85 ± 15.33 74.79 ± 17.70 78.57 ± 14.80 82.38 ± 14.25 79.42 ± 14.12

Spe (%) 99.18 ± 0.61 99.19 ± 0.52 98.91 ± 1.09 99.29 ± 0.58 99.16±0.65 98.90 ± 0.98 99.12 ± 1.33

BAcc (%) 88.24 ± 7.23 88.21 ± 7.43 88.38 ± 7.51 87.04 ± 8.78 88.87 ± 7.30 90.64 ± 7.26 89.27 ± 6.91

Acc (%) 98.21 ± 1.02 98.26±0.96 98.05 ± 1.23 98.27 ± 1.03 98.34 ± 0.95 98.70 ± 0.99 98.85 ± 1.36

JI (%) 64.01 ± 15.59 64.32 ± 16.73 63.55 ± 15.57 64.77 ± 16.65 66.59 ± 14.81 48.66 ± 18.77 51.41 ± 18.10

Kappa (%) 75.87 ± 13.73 75.92 ± 14.87 75.41 ± 14.07 76.14 ± 16.21 77.95 ± 13.12 62.41 ± 19.72 65.28 ± 17.96

VS (%) 89.73 ± 9.48 91.79 ± 9.37 89.56 ± 9.47 90.31 ± 8.33 92.14 ± 7.86 73.63 ± 22.29 79.31 ± 20.98

MCC (%) 76.53 ± 13.19 76.43 ± 14.41 76.10 ± 13.62 76.68 ± 16.00 78.38 ± 12.81 65.06 ± 17.46 67.54 ± 15.03

HD95 (mm) 17.16 ± 35.93 17.27 ± 38.26 16.83 ± 36.84 12.83 ± 32.16 15.49 ± 35.39 27.81 ± 41.41 19.87 ± 25.38

Dice (%) 76.80 ± 13.74 76.83 ± 13.83 76.43 ± 14.03 77.05 ± 16.23 78.67 ± 13.11 62.94 ± 19.98 65.76 ± 18.02

*nnU-Net+Transformer (Transformer is only used in the last layer of the encoder). The bold values indicate the best performance.

TABLE 6 Results of ablation study on the SWS dataset.

Original
Mamba

Multi-
scale

Multi-
scan

Pre-
training

Dice
(%)

� 75.12

� � 76.01

� � 75.90

� � 76.43

� � � 77.18

� � � � 78.67

The bold values indicate the best performance.

TABLE 7 Comparison of model’s computational complexity.

Model Inference
time†

(s/subject)

Floating
Point

Operations
(Giga)

Parameters
(Million)

nnU-Net 0.055 ± 0.001 928.51 361.04

nnU-Net +
Transformer∗

0.040 ± 0.023 928.95 376.61

UMamba 0.120 ± 0.001 1210.00 728.69

SegMamba 0.172 ± 0.000 965.34 594.40

Proposed 0.169 ± 0.000 892.44 570.28

† Mean ± stanard deviation over 10 repeated tests; ∗ Transformer is only used in the last layer
of the encoder. The bold values indicate the best performance.

method may be an alternative to neurologist for the identification
of LA and thus the diagnosis of SWS. In fact, The proposed method
can either be integrated in a MRI machine or work off-line on a
personal computer, indicating the feasibility of auto-segmentation
of LA for SWS diagnosis in clinical practice.

Interesting to note that while successfully locating LAs, our
model produces higher false positive rate, leading to over-diagnosis
in clinical settings. In general, false positives may be more
preferable than false negatives in clinical practice, as false negatives
yield missed diagnosis but false positives can be excluded by

post screening of neuroradiologists. Although neuroradiologists
is involved for post screening in case of false positives, the
working load is significantly reduced by using our model as a
pre-screening tool.

Note also that fully supervised learning is employed in the
present study in order to train the coefficients of the deep
learning network. The performance of a supervised deep learning
model relies strongly on the ground truth. In the present study,
annotating the abnormal intracranial vessels in the MRI image
is quite difficult and therefore not considered. Instead, the brain
area containing the LA is annotated. Besides, the annotation is
performed by only one neuroradiologist, limiting the accuracy of
the ground truth and therefore the performance of the proposed
model for LA segmentation. On the one hand, this may partially
explain the observed lowered segmentation results on the SWS
dataset as compared with that on the BraTS dataset. On the other
hand, self-supervised learning (Krishnan et al., 2022) or few-shot
learning (Song et al., 2023) with less dependence on the ground
truth annotation may be an interesting direction for future studies
on LA segmentation for SWS diagnosis.

5 Conclusion

In the present study, we propose a MSMS-based Mamba,
embedded into an encoder-decoder architecture, for the
identification of LA in the brain MRI images and thus for
automated diagnosis of SWS. A pre-training strategy is employed
to overcome the challenges introduced by small subject size.
Our results show promising segmentation performance of the
proposed model on the public BraTS dataset as well as our
40 SWS dataset, outperforming several SOTA models and two
independent readers. These findings suggest the feasibility of
using AI tool for automatic identification of LA, providing useful
information for clinical SWS diagnosis that is currently performed
by time-consuming manual inspection. Future studies may focus
on self-supervised learning and/or few-shot learning that depend
less on the ground truth in order to reduce the requirement of
accurate annotations.
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