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Introduction: Epilepsy is a neurological disorder characterized by abnormal

neuronal discharges in the brain, posing a persistent challenge in clinical

diagnosis. This study presents a high-performance epileptic seizure detection

framework that integrates advanced feature extraction and classification

techniques using EEG signals.

Methods: We conduct experiments on the Bonn and CHB-MIT EEG datasets.

The EEG signals are preprocessed through bandpass filtering and five-level

Discrete Wavelet Transform (DWT) decomposition. From each sub-band, four

representative features are systematically extracted. To mitigate severe class

imbalance, we propose a two-stage balancing strategy: cluster centroid-based

under-sampling initially reduces the interictal-to-ictal ratio to 2:1, followed

by Borderline Synthetic Minority Oversampling Technique (BLSMOTE) in the

feature space. A hybrid classification model that combines Convolutional Sparse

Autoencoder (CSAE) with Gated Recurrent Unit (GRU) is proposed in the paper.

The encoder weights from the pre-trained CSAE are transferred to the GRU-

based classifier to enhance feature representation and model generalization.

Results: The proposed method achieves outstanding performance, with

accuracy, sensitivity, specificity, precision, f1 score and AUC of 98.46, 98.27,

98.50, 98.36, 98.31, and 98.23% on the Bonn dataset, and 99.49, 99.21, 99.77,

99.49, 99.35, and 99.57% on the CHB-MIT dataset, respectively. These results

validate the effectiveness of the proposed approach.

Discussion: This study introduces a novel framework combining cluster

centroid-based under-sampling, BLSMOTE oversampling, and transfer learning

via CSAE-GRU integration. The method offers a promising direction for reliable

and clinically applicable automated epilepsy diagnosis.
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seizure detection, convolutional neural network, gated recurrent unit, sparse
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1 Introduction 

Epilepsy, as a prevalent neurological disorder aecting 
individuals of all ages, arises from paroxysmal abnormal neuronal 
discharges within the brain. Among neurological disorders, 
epilepsy ranks second only to cerebrovascular disease in prevalence 
(Beniczky et al., 2021). Common types of epilepsy encompass focal 
epilepsy, generalized epilepsy, idiopathic seizure, and secondary 
seizure (Sethy et al., 2023). Seizure typically entail loss of 
consciousness accompanied by convulsions, posing risks of 
irreversible brain damage, shock, and potentially fatal outcomes 
in severe instances (Sharan and Berkovsky, 2020). This condition 
poses a significant threat to patient lives, with the recurrent 
nature of epileptic seizure exerting a persistent negative impact, 
both physically and psychologically. Therefore, the diagnosis and 
treatment of epilepsy hold paramount significance. 

Electroencephalography (EEG) refers to the recording of 
electrical activity generated by brain neurons on the scalp surface, 
widely attributed to synaptic activity in the cerebral cortex (Islam 
et al., 2023). EEG serves as a cost-eective, intuitive, and convenient 
method for recording brain activity by aÿxing electrode patches 
to the patient’s scalp surface, facilitating the capture of EEG 
signals (Al-Hajjar and Al-Qurabat, 2023). Presently, the primary 
approach to epilepsy detection involves diagnosis by experienced 
specialist physicians through EEG observation. However, this 
method heavily relies on the expertise and proficiency of the 
specialist, potentially leading to misdiagnosis due to prolonged 
and intricate evaluations (Zanetti et al., 2020). Seizure manifest 
in various EEG signal patterns, with fluctuations observed even 
within the EEG signals of the same patient across dierent 
seizure onset times (Ingolfsson et al., 2024). Hence, there is 
an urgent need for an intelligent diagnosis system which can 
detect epilepsy automatically and accurately. This system is also 
called Computer-Aided Diagnosis Systems (CADS), with AI-
based CADS oering potential enhancements in diagnostic speed 
and accuracy (Malekzadeh et al., 2021; Mandhouj et al., 2021; 
Shankar et al., 2021). 

The study of EEG signal has a history of several decades. 
New diagnostic techniques and classification algorithms emerge 
one after another. The automatic seizure detection system mainly 
classifies the interictal and ictal stages of EEG signals. It involves 
extracting important features from EEG signals using various 
digital signal processing techniques, and then classifying the 
extracted features based on statistical characteristics, Machine 
Learning (ML) or Deep Learning (DL) (Wang et al., 2025). 
Feature extraction plays a pivotal role in discerning the presence 
or absence of epilepsy from EEG signals, with the eÿcacy of 
features directly influencing classifier performance (Hu et al., 2021). 
However, the non-linear and variable characteristics of EEG signals, 
coupled with inevitable noise interferences during acquisition, 
present challenges to the accuracy of automated epilepsy detection 
(van Westrhenen et al., 2023). 

In recent years, great progress has been made in the field of 
seizure detection, many scholars have explored and proposed a 
variety of non-linear signal analysis strategies to deal with the 
complex characteristics of epileptic EEG (Mostafa et al., 2024; 
Wei et al., 2021). As a function of time, the feature extraction 
of EEG signal can be realized directly in time domain or 

converted to frequency domain for further analysis. Currently, the 
features extracted from EEG signals are generally classified into 
four categories: Time-domain features, frequency-domain features, 
time-frequency-domain features and nonlinear features. In the 
time domain, some researchers have proposed statistical properties 
such as Standard Deviation (STD) and mean (Savadkoohi et al., 
2020). In Shah et al. (2024), they extracted STD, mean, kurtosis, 
and skewness from EEG signals as characteristics. In the frequency 
domain, seizures can be detected by calculating the Power Spectral 
Density (PSD) of the EEG signal. Liu et al. (2023) segmented 
EEG PSD into periodic and non-periodic components, facilitating 
automatic epilepsy detection through parameterization of the PSD. 
In the time-frequency domain, wavelet-based feature extraction 
is widely used in the field of seizure research (Savadkoohi et al., 
2020). By mapping the original signal to the time-frequency joint 
domain, the Wavelet Transform (WT) cannot only display the 
overall information of the signal, but also highlight the local 
information of the signal well (Boonyakitanont et al., 2020). 
Some researchers have successfully realized the detection of 
epileptic seizures by using WT. Yogarajan et al. (2023) applied 
Stationary Wavelet Transform (SWT) to the pre-filtered EEG 
signals and extracted a range of features from the decomposed 
sub-bands, including Hjorth parameters, Mean Absolute Value 
(MAV), STD, kurtosis, Root Mean Square (RMS), adjacent sub-
band MAV ratio, activity, mobility, and complexity. To reduce 
model complexity, they employed the Binary Dragonfly Algorithm 
(BDFA) for feature selection, retaining only approximately 13% 
of the most informative features. Similarly, L. V. Tran et al. 
utilized Discrete Wavelet Transform (DWT) for multi-resolution 
analysis of EEG signals, focusing on sub-bands D3∼D5 and A5 
after decomposition. They extracted statistical features such as 
maximum, mean, median, number of zero-crossings, STD, kurtosis 
and skewness from these sub-bands. Furthermore, Binary Particle 
Swarm Optimization (BPSO) was applied to reduce the feature 
dimensionality by 75% for subsequent classification tasks (Tran 
et al., 2022). Capturing nonlinear features in EEG signals is also 
a key task for researchers, and some of the widely used non-
linear features include entropy (Malekzadeh et al., 2021), Fractal 
Dimension (FD), maximum Lyapunov exponent, hurst exponent, 
etc. As a core metric, entropy can directly quantify the degree 
of dynamic change within the system and eectively evaluate the 
complexity of the system. In the field of seizure detection, a series 
of entropy evaluators have shown significant application potential, 
among which approximate entropy, fuzzy entropy (Acharya et al., 
2019), Shannon entropy and sample entropy are widely used in the 
analysis process. Tsipouras (2019) used spectral entropy, which is 
the Shannon entropy of the PSD of the EEG signal. According to 
the current literature review, most studies tend to integrate multiple 
types of features to comprehensively capture the connections 
between data, so as to improve the eÿciency of classification 
algorithms (Pidvalnyi et al., 2025). Khan et al. (2020) introduced 
an automatic epilepsy detection method relying on a hybrid 
Local Binary Pattern (LBP)-WT algorithm. In this approach, LBP 
transforms signals, while WT decomposes them, extracting features 
including kurtosis, semi-variance, and Interquartile Range (IQR), 
followed by epilepsy seizure diagnosis via a linear discriminant 
analysis classifier. In another study, Pale et al. (2024) extracted the 
mean amplitude, approximate zero crossing, relative and absolute 
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PSD, and line length of the EEG signal as features to help identify 
dierent EEG patterns. 

In the process of automatic seizure detection, after feature 
extraction, the design of eÿcient and accurate discriminant feature 
classifier is another key link in the whole process. In recent decades, 
due to the rapid development of machine learning and deep 
learning, they have been widely used in many fields (Hamed et al., 
2025; Wang et al., 2023). For example, Ameen et al. classified 
cardiovascular diseases based on Electrocardiography (ECG) and 
Phonocardiography (PCG) (Ameen et al., 2024), and Abdel Hady 
et al. predicted abdominal fat in their research (Abdel Hady 
et al., 2024) and some research on Parkinson’s disease (Eliwa and 
Abd El-Hafeez, 2025). Similarly, there are also many applications 
in epileptic seizure detection. K-Nearest Neighbor (KNN) and 
Support Vector Machine (SVM) are the most commonly used 
forms of ML (Supriya et al., 2020). Chen et al. (2020) first computed 
the signal strength at each EEG data point and applied Empirical 
Mode Decomposition (EMD) to decompose suspicious EEG 
segments into Intrinsic Mode Functions (IMFs). Singular Value 
Decomposition (SVD) was then used to extract representative 
features from the IMFs. These features were subsequently fed 
into two one-class SVMs, and the final epilepsy detection was 
determined by combining their outputs. In the study by Savadkoohi 
et al. (2020), KNN and SVM were used to classify the best features 
after t-test and Sequential Forward Floating Selection (SFFS) 
selection. Al-Hadeethi et al. (2020) introduced another two-phase 
classification method for seizure detection, utilizing covariance 
matrices in conjunction with adaptive boosting and Least Squares-
SVM (LS-SVM). At present, many researchers have focused on 
the field of neural networks, especially their diverse variants, and 
are committed to exploring the potential and advantages of these 
models in classification tasks (Eliwa et al., 2023; Eliwa et al., 
2024). Yu and Meng (2023) designed a model of Convolutional 
Neural Network (CNN) with an Attention Mechanism (AM), 
leveraging the multifrequency characteristics of EEG signals to map 
multilayer correlation information onto a network topology. Zhang 
et al. (2024) introduced a brain-inspired impulse neural network 
amalgamating Spiking Neural Network (SNN) models with data 
augmentation and adversarial strategies. Ein Shoka et al. proposed 
a novel approach that integrates chaos theory for secure EEG-based 
seizure detection (Ein Shoka et al., 2023). The EEG time-series 
signals were first transformed into two-dimensional spectrograms 
using the Teager-Kaiser Energy Operator (TKEO). To ensure data 
privacy in open network environments, the spectrograms were 
encrypted using the Arnold Transform (AT) and the chaotic baker 
mapping algorithm. Subsequently, they used transfer learning 
to transfer the learning results of multiple pre-trained CNN 
models on large-scale image datasets to the classification task of 
epileptic seizures, and achieved an accuracy of 86.11% on the 
CHB-MIT dataset. Zhang et al. (2023) initially employed a 64th 
order Butterworth bandpass filter to mitigate EEG signal noise, 
segmenting the complete EEG signal into multiple segments via 
a sliding window. Subsequently, they normalized the EEG signal 
using z-scores and trained EEG net, deep convolution network, 
and shallow convolution network models with the processed 
data. Although CNNs have been widely used in the field of 
seizure classification due to their powerful learning ability, their 
ability to capture temporal features is relatively limited when 
processing data rich in time series information such as EEG 

signals, which limits their performance in this field to a certain 
extent, resulting in unsatisfactory classification results in some 
cases. Studies in recent years have shown that Long Short-term 
Memory (LSTM) dominates the field of seizure research. Liu 
et al. (2020) proposed a new deep Convolutional-LSTM (C-LSTM) 
model for the first time to detect tumors and seizures. In the 
study by Hussain et al. (2021), they presented a DL architecture 
integrating CNN-LSTM which decomposes EEG signals into time-
domain, frequency-domain, and time-frequency-domain features 
for binary and ternary classification. The highest accuracy of 
99.27% was attained using time-frequency domain signals, while 
96.64 and 94.71% accuracy were achieved with frequency domain 
and time domain signals, respectively. However, compared with 
LSTM, Gated Recurrent Unit (GRU) shows a more streamlined 
parameter configuration and a more concise structural architecture, 
which gives it superior modeling capabilities when dealing with 
complex data sequences, which has led to extraordinary progress 
in the field of automatic seizure detection. In Zhang et al. (2022), 
they used a Bidirectional GRU (BiGRU) to classify the relative 
energy extracted from the WT sub-bands as features, and finally 
achieved an average sensitivity of 93.89% and a specificity of 
98.49% on the CHB-MIT dataset. To enhance performance in 
epileptic seizure detection, researchers have increasingly adopted 
innovative methodologies. For example, Lih et al. (2023) divided 
the collected EEG signals into segments every 5 s, calculated the 
Pearson correlation coeÿcient matrix for these segments, discarded 
the lower triangle, and only vectorized the upper triangle as 
input features. By incorporating a learnable positional encoding 
into the embedding vectors of these correlation coeÿcients, the 
transformer architecture was able to more eectively capture spatial 
relationships between EEG channels. Shoeibi et al. (2021) manually 
extracted 50 distinct features, including mean, variance, mode, 
peak slope, largest Lyapunov exponent, Shannon entropy, and 
approximate entropy. Prior to classification, features were ranked 
using the fisher score, and only those with higher scores were 
retained. Their classifier design embedded an Auto-Encoder (AE) 
within a CNN framework, where the AE component facilitated 
the extraction of more informative representations from the input 
signals. However, their evaluation relied on a single random 
train-test split (70% training, 30% testing), rendering the results 
sensitive to data partitioning. Takahashi et al. (2020) introduced 
an AE-CNN architecture with a novel “non-seizure but abnormal” 
class. A patient-specific AE layer was used to monitor EEG 
anomalies, combining the unsupervised learning capability of 
AEs with CNNs’ eectiveness in image-based classification. This 
approach significantly reduced the false positive rate. Srinivasan 
et al. (2023) proposed a hybrid deep learning model that combines 
a 3D Deep Convolutional Auto-Encoder (3D-DCAE) for automatic 
feature learning with a Bidirectional LSTM (BiLSTM) for temporal 
sequence modeling. This architecture improved both training 
eÿciency and classification accuracy, underscoring the benefits of 
integrating temporal and spatial modeling in EEG analysis. 

As discussed above, deep learning techniques have become 
powerful tools for addressing the complex signal classification 
challenges in epileptic seizure detection. However, several issues 
remain unsolved. EEG data are inherently highly imbalanced, 
which can bias classifiers toward the majority class. Moreover, 
most existing oversampling or under-sampling methods are 
applied in isolation, potentially distorting the distribution of 
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the minority class. In addition, many deep models directly 
process raw or filtered EEG signals without leveraging informative 
time-frequency features that can capture both spectral and 
temporal dynamics. Importantly, limited research has explored 
the integration of autoencoders with temporal models to fully 
exploit the spatiotemporal dependencies of EEG signals. To address 
these limitations, this study proposes a novel hybrid model, 
termed Convolutional Sparse Autoencoder-Gated Recurrent Unit 
(CSAE-GRU). The model first constructs a CSAE to enhance 
the sparsity and discriminability of learned representations. The 
weights obtained during CSAE pretraining are transferred to 
the classification model to reduce training cost. The pretrained 
CSAE outputs are flattened and then fed into a GRU network 
with 64 hidden units to capture temporal patterns, followed by a 
fully connected layer and a softmax activation for binary seizure 
classification. The main contributions of this work are summarized 
as follows: 

(1) We develop an eective two-stage data balancing strategy that 
combines cluster-centroid under-sampling and Borderline-
Synthetic Minority Oversampling Technique (BLSMOTE) to 
address severe class imbalance inherent in seizure detection. 

(2) We propose a novel CSAE–GRU classification framework 
that integrates handcrafted feature extraction with 
sparse representation learning and temporal modeling, 
thereby reducing model complexity and improving 
computational eÿciency. 

(3) We employ transfer learning to reuse the pretrained sparse 
encoder’s parameters, reducing training time and enhancing 
generalization across dierent EEG datasets. 

The sections of this paper are organized as follows. Section 
2 outlines the two datasets utilized in the study, alongside a 
comprehensive description of the proposed methodology. Section 

3 presents the experimental results and discussion of this study. 
The conclusion of the paper is provided in section 4. Section 5 
discusses the limitations of this study and outlines directions for 
future research. 

2 Materials and methods 

2.1 Datasets 

The data used in this study were obtained from publicly 
available datasets, including the Bonn dataset and the CHB-
MIT epilepsy database, both of which are widely utilized in 
epilepsy research. All data adhere to applicable ethical standards 
and were fully anonymized at the time of collection, containing 
no information that could identify individual participants. This 
study strictly complies with the ethical principles outlined in the 
declaration of Helsinki, and the datasets were exclusively used for 
scientific research purposes. 

2.1.1 Bonn dataset 
The first dataset is a publicly available dataset provided by 

Dr. R.G. Andrzejak, University of Bonn, Germany. The dataset 
was recorded by the same 12-bit analog-to-digital converter, and 
consisted of five subsets (A, B, C, D, and E). Dataset A is the EEG 
signals obtained from five healthy volunteers in the awake and eyes-
open state, dataset B is the EEG signals obtained from five healthy 
volunteers in the awake and eyes-closed state, datasets C∼E are 
from the EEG archives of five dierent patients with preoperative 
diagnosis. Datasets C, D correspond to interictal states, while 
dataset E represents the ictal state. Each of these five types of 
datasets consists of 100 segments, and the sampling frequency of 
each segment is 173.61 Hz, with the duration time of 23.6 s. Each 
fragment contains a total of 4,097 sample points. Figure 1 plots 

FIGURE 1 

Examples of the five types of EEG signals. 
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the EEG signal of the 1st segment of each subset. We employed 
10 distinct classification tasks of the Bonn dataset, the specifics of 
which are delineated in Table 1. 

2.1.2 CHB-MIT dataset 
The second dataset used in this study is the CHB-MIT scalp 

EEG database, which was created by the Massachusetts Institute 
of Technology in collaboration with Boston Children’s Hospital. 
The EEG signals were recorded at a sampling rate of 256 Hz and a 
resolution of 16 bits. The dataset records long-term EEGs of 5 males 
aged 3–22 years and 17 females aged 1.5–19 years (Ru et al., 2024). 
The EEG recordings of each patient are stored in a separate file in 
the European data format, and each file usually contains at least 1 h 
of continuous data, totaling about 976 h. A total of 185 epileptic 
seizure events were recorded in the entire dataset. All epileptic 
seizure events were annotated by professionals in the “summary” 
file, providing the start and end time of the file and the precise 
start and end time of each epileptic seizure. It is worth noting that 
the occurrence of epileptic seizures showed significant dierences 
between dierent patients. Following the method proposed by Yang 
et al. (2021) and considering that frequent seizures would reduce 
the practical significance of the epileptic seizure detection task, this 

TABLE 1 Classification tasks on the Bonn dataset. 

Cases Classification 
tasks 

Description 

Case 1 A VS. E Healthy-Seizure 

Case 2 B VS. E Healthy-Seizure 

Case 3 C VS. E Interictal-Seizure 

Case 4 D VS. E Interictal-Seizure 

Case 5 AB VS. E Healthy-Seizure 

Case 6 CD VS. E Interictal-Seizure 

Case 7 BC VS. E No seizure-Seizure 

Case 8 ABCD VS. E No seizure-Seizure 

Case 9 A VS. D Healthy-Interictal 

Case 10 AB VS. CD Healthy-Interictal 

study focused on patients with less than 10 seizures. Therefore, EEG 
recordings from 10 selected patients were used in this experiment. 
The fundamental information of the 10 patients in the CHB-MIT 
dataset utilized in this experiment is presented in Table 2. We 
extracted ictal EEG segments from the annotated seizure onset to 
the seizure oset and applied a 2-s sliding window with 50% overlap 
(step size of 1 s) to generate multiple fixed-length seizure samples. 
To ensure a clear distinction between ictal and interictal periods, we 
defined the EEG signal at least 4 h away from the seizure event as 
the interictal period (Dissanayake et al., 2021). This time interval 
was chosen to ensure that the interictal data reflect the patient’s 
stable baseline brain activity, free from the transient physiological 
changes that occur before or after a seizure. These interictal signals 
were then segmented into non-overlapping 2-s epochs. 

2.2 Methods 

The overall workflow of the proposed automatic epileptic 
seizure detection system is illustrated in Figure 2. First, EEG 
signals are preprocessed through bandpass filtering, followed by 
multi-scale feature extraction using DWT. Next, a tailored data 
balancing strategy is employed to address the severe class imbalance 
between ictal and interictal samples. Finally, a hybrid deep learning 
classification model, combining CSAE and GRU, is introduced to 
enable accurate seizure detection. 

2.2.1 Data preprocessing 
The original EEG signals exhibit high dynamics and 

non-stationarity, and it is often subject to interference from 
physiological noise, environmental noise, and 50/60 Hz industrial 
frequency signals during acquisition. In order to ensure the 
accuracy and reliability of subsequent EEG signal analysis, it is 
imperative to remove the noise in the original EEG signals and 
enhance the signal-to-noise ratio. 

Initially, we used the 5th-order Butterworth band-pass filter 
in the frequency range of 0.5∼60 Hz to filter the artifacts and 
noise from the original EEG signals, this configuration eectively 
removes low-frequency drift, baseline fluctuations, and certain 

TABLE 2 Basic patient information on the CHB-MIT dataset. 

Number Sex Age Number of 
channels 

Number of 
seizures 

Seizure duration 
(s) 

Recording 
duration (h) 

Pt01 F 11 23 7 442 40.55 

Pt 03 F 14 23 7 402 38 

Pt 05 F 7 23 5 558 39 

Pt 09 F 10 23–24 4 276 67.87 

Pt 10 M 3 23 7 447 50.02 

Pt 14 F 9 23 8 169 26 

Pt 19 F 19 23 3 236 28.93 

Pt 20 F 6 23 8 294 27.6 

Pt 21 F 13 23 4 199 32.83 

Pt 23 F 6 23 7 424 26.56 

Total – – – 60 3,447 377.36 
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FIGURE 2 

General structure of the proposed methodology. 

power line interference (Shah et al., 2024). The Butterworth filter 
is an Infinite Impulse Response (IIR) filter characterized by an 
extremely flat frequency response within the passband. The transfer 
function of an n_th order Butterworth filter is shown in Equation 1. 

H(jω) 2 
= 

1 

1 + (ω/ωc)
2n (1) 

where ωc is the cuto frequency and n is the filter order controlling 
the roll-o rate. 

To further capture the time-frequency characteristics of the 
EEG signals, WT was applied in the experiment. It is widely 
employed in signal processing, facilitates signal decomposition into 
sub-signals of various scales, thereby capturing local features of the 
signal across dierent frequencies. This transform utilizes a window 
function of variable size to decompose a signal. For a signal x(t), the 
expression for Continuous Wavelet Transform (CWT) is shown in 
Equation 2. 

CWT(a, b) = 
Z

∞ 

−∞ 
x(t) 

1 
√ 

|a| 
ψ∗ ( 

t−b 

a 
)dt (2) 

where, ψ is a wavelet function, ψ ∗denotes the conjugate complex 
of the wavelet function, a and b denote the scale and displacement 
parameters, respectively. CWT poses a significant computational 
challenge due to the necessity of determining the wavelet transform 
function at all scales. DWT oers an eÿcient solution to this 
issue by converting the scaling and displacement parameters into 
exponential powers of DWT is shown in Equation 3. 

DWT(j, k) = 
1 q 
2j 

X 
x(t)ψ ∗ ( 

t−k2j 

2j 
) (3) 

If the signal is divided from the delta to the gamma band by 
the traditional method, it cannot adapt to the characteristics of 
EEG because of the fixed frequency band. Compared with this 
classification, the multi-scale and flexible analysis of DWT can 
observe the changes of EEG signals at dierent scales. In addition, 
DWT can eectively remove the noise in EEG signal and provide 

accurate information in time-domain and frequency-domain. 
The DWT employed the Daubechies 4 (db4) wavelet because 
of its compact support, orthogonality, and smooth waveform, 
which make it highly suitable for capturing the transient and 
non-stationary characteristics of EEG signals. Its four vanishing 
moments enable precise reconstruction of the underlying EEG 
rhythms while minimizing boundary distortion during multi-
level decomposition. In the first-stage decomposition, the signal 
is processed by the DWT, which successively applies low-pass 
and high-pass filters followed by down-sampling. In accordance 
with Nyquist’s theorem, the original EEG signal is decomposed 
at the first level to yield two sub-bands: Approximation (A1) 
and Detail (D1), spanning the frequency ranges of 0 to fs/4 
and fs /4 to fs /2, respectively. Likewise, further decomposition 
operations are performed on A1, dividing it into the higher-
frequency component D2 and lower-frequency component A2. 
Subsequent iterations of decomposition entail further division of 
the approximation coeÿcients through the application of low-
pass and high-pass filters, alongside down-sampling. The schematic 
diagram illustrating the five-level discrete wavelet transform of the 
EEG signal is depicted in Figure 3. Through five-level DWT, the 
EEG signals are converted into sub-bands A5, D5, D4, D3, D2, 
and D1, the corresponding frequency ranges of the Bonn dataset 
are 0∼2.713, 2.713∼5.425, 5.425∼10.85, 10.85∼21.7, 21.7∼43.4, 
and 43.4∼86.8 Hz, respectively, and the corresponding frequency 
ranges of the CHB-MIT dataset are 0∼4, 4∼8, 8∼16, 16∼32, 
32∼64, and 64∼128 Hz, respectively. 

2.2.2 Feature extraction 
In this section, we conduct feature extraction for each sub-band 

obtained after the DWT for seizure detection. In this study, we 
focus on extracting four features from each of the six sub-bands, 
emphasizing time-frequency-domain and nonlinear features. These 
features include: MAV, STD, PSD, and Fuzzy Entropy (FuEn). 
The extracted features are summarized in Table 3. For the 
Bonn dataset, which contains single-channel EEG recordings, the 
resulting feature matrix has a size of N × 24 (N denotes the 
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FIGURE 3 

DWT five-level decomposition schematic. 

TABLE 3 Detailed description of dataset features. 

Datasets Sub-band Extracted 
features 

Number of 
channels 

Features per 
segment 

Feature 
matrix 

Train/test 
ratio 

Bonn A5, D1∼D5 MAV, STD, PSD, FuEn 1 24 N × 24 0.8/0.2 

CHB-MIT A5, D1∼D5 MAV, STD, PSD, FuEn 23 552 N × 552 0.8/0.2 

number of EEG segments). The CHB-MIT dataset includes 23 EEG 
channels, so its feature matrix has a size of N × 552. Each row 
represents an EEG segment, and each column corresponds to an 
extracted feature. A total of 80% of the feature samples are allocated 
to the training set, and the remaining 20% to the test set. The 
training set is balanced through a two-stage procedure described 
in the following section, while the test set retains the original class 
distribution to better reflect the data ratio encountered in clinical 
practice. 

MAV, known for its simplicity and eectiveness, oers notable 
advantages in capturing abnormal amplitude variations in EEG 
signals of epilepsy patients. The mathematical expression for the 
MAV is shown in Equation 4. 

MAV = 
1 

N 

XN 

i = 1 
|x(i)| (4) 

where, N represents the number of samples in the EEG signal, and 
x(i) denotes the amplitude value of the ith sample. 

STD, a crucial statistical measure, is primarily employed 
to assess the volatility and instability of a signal. It quantifies 
the degree of dispersion of signal values relative to the mean 
signal value. When abnormal data points exist within the 
signal, these outliers typically result in an elevated STD value. 
Consequently, monitoring changes in standard deviation enables 
eective capture of EEG dynamics to ascertain seizure occurrences. 
The mathematical expression for the STD is shown in Equation 5. 

STD = 

r 
1 

N 

XN 

i = 1 
(xi − x)2 (5) 

where, N denotes the number of samples in the signal, and xi 
signifies the value of the ıth sample. 

PSD of EEG signals serves as a crucial tool for analyzing 
changes in the time and frequency domains of brain activity. The 
EEG signal consists of multiple frequency components, including 
δ-waves, θ-waves, α-waves, β-waves, and γ-waves. Abnormal 
spectral characteristics are frequently associated with pathological 
states. Thus, by comparing the energy spectral density of patient 
groups with that of normal groups, we can more accurately identify 
and diagnose brain disorders, facilitating improved screening of 
seizure and inter-ictal periods in epilepsy. 

Entropy, serving as a characterization metric, is commonly 
utilized to depict the uncertainty, disorder, or information content 
of a system (Jindal et al., 2019). In time series analysis, entropy 
is introduced to describe the complexity and regularity of signals. 
Traditional entropy methods often encounter challenges when 
delineating boundaries between uncertain and definite classes. To 
address this issue, Lotfi Zaden introduced fuzzy theory (Fu et al., 
2020). Fuzzy entropy, as an extension of traditional entropy, is 
particularly suitable for the analysis of non-stationary time series 
and biomedical signals. 

2.2.3 Two-stage data balancing strategy 
Data class imbalance remains a critical challenge in EEG-

based epileptic seizure detection, significantly impacting model 
performance. In real-world clinical datasets, the number of ictal 
samples is substantially lower than that of interictal samples. 
Even when overlapping sliding windows are used to augment 
data, severe imbalance persists. This pronounced disparity often 
leads to biased classification, causing classifiers to be insensitive 
to minority class data and thereby degrading performance in 
clinical applications. For instance, in the first patient of the CHB-
MIT dataset, there are 25,200 interictal samples compared to 
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FIGURE 4 

The structure of the proposed CSAE-GRU. 

only 435 ictal samples, resulting in a ratio of approximately 60:1. 
To address this substantial imbalance, we propose a two-stage 
data balancing strategy comprising interictal under-sampling and 
ictal oversampling. The detailed implementation of these stages is 
described below. 

2.2.3.1 Under-sampling stage based on cluster centroids 
We first applied a cluster centroid-based under-sampling 

method to reduce the number of interictal samples. This technique 
leverages k-means clustering to group the interictal data, where the 
number of clusters corresponds to the target number of retained 
samples. In this study, the sampling strategy parameter was set 
to 0.5, ensuring a 2:1 ratio between interictal and ictal samples. 
To maintain experimental reproducibility, the random seed was 
fixed at 42. Within each cluster, synthetic representative samples 
were generated by computing the centroid of the data points, 
eectively reducing the volume of interictal data while preserving 
essential information. 

2.2.3.2 Oversampling stage based on the BLSMOTE 
Following the under-sampling process, although the class 

distribution was substantially improved, the number of seizure 
samples remained insuÿcient for ideal classification performance. 
To address this, we employed the BLSMOTE technique to further 
augment the seizure class and achieve complete class balance. 
Unlike traditional SMOTE, which performs indiscriminate random 
interpolation across all minority samples, BLSMOTE focuses 
on generating synthetic samples near the decision boundary. 
This targeted oversampling helps avoid redundancy and reduces 
the risk of introducing noise from distant or non-informative 
regions. Specifically, BLSMOTE first identifies minority class 
samples located near the decision boundary and then uses the 
KNN algorithm to interpolate between these boundary samples 
and their neighboring seizure instances. In our experiment, the 
BLSMOTE sampling strategy was set to 1, and the random seed 
was fixed at 42 to ensure reproducibility. The generated synthetic 
seizure samples were then incorporated into the training set, with 
care taken to prevent data leakage. In this study, BLSMOTE 

was applied in the feature space rather than directly on raw 
EEG segments. Synthesizing in the feature domain preserves the 
physiological interpretability of the data and avoids potential 
distortions that may arise when manipulating raw EEG signals. 
In contrast, oversampling in the time-domain would require 
additional preprocessing steps such as filtering, segmentation, and 
feature extraction, thereby increasing computational overhead. By 
operating in the feature space, our method enhances computational 
eÿciency while maintaining the integrity and biological validity of 
the dataset. 

2.2.4 Classification 
In this study, a hybrid model named CSAE-GRU is developed 

to achieve reliable epileptic seizure detection by combining 
convolutional sparse feature learning with temporal sequence 
modeling. The overall structure is shown in Figure 4. The 
model begins with a CSAE that is responsible for learning 
compact and informative feature representations. The input to 
the CSAE consists of the handcrafted features. Before entering 
the network, these features are normalized to the range [0, 1] 
and reshaped into a four-dimensional tensor of size D∗ 1 ∗ 1 
∗ N, where D denotes the feature dimension and N the batch 
size. The encoder is designed to capture the local dependencies 
among neighboring features through convolutional operations, 
progressively increasing the number of channels from 1 to 32 and 
then reducing it to 16. Each convolutional block includes batch 
normalization, a ReLU activation, and dropout regularization to 
enhance sparsity and prevent overfitting. The decoder mirrors 
the encoder structure, reconstructing the original feature maps 
from the latent representation by gradually restoring the channel 
dimensions from 16 back to 1. The reconstruction process is guided 
by a loss function, as shown in Equation 6. 

L = x − x̂ 2 
2 + λ h 1 (6) 

where x represents the original input signal, ˆ x represents the 
reconstructed signal output by the decoder, h is the encoded feature, 
and λ controls the sparsity strength. 
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After the CSAE pre-training phase, the encoder weights 
used to capture key feature patterns are transferred to two 
convolutional blocks. This parameter transfer preserves the learned 
spatial structure and accelerates the convergence of the classifier. 
The output of the convolutional blocks is flattened into a one-
dimensional vector and passed to a GRU network consisting 64 
hidden units. The GRU module plays a central role in capturing 
the temporal evolution and contextual dependencies among the 
reconstructed EEG feature sequences. Each GRU cell consists of an 
update gate and a reset gate that regulate the flow of information 
through the network. The update gate controls how much of the 
past information is retained, while the reset gate determines how 
much of the previous state should be forgotten when processing 
a new input. This gating mechanism allows the GRU to eectively 
model long-term dependencies and mitigate the vanishing-gradient 
problem, which is often encountered in traditional recurrent 
neural networks. By processing feature vectors, the GRU captures 
transitions between interictal and ictal states, thus enhancing 
the model’s ability to distinguish seizure patterns. The final 
hidden state of the GRU is fed into a fully connected layer 
followed by a softmax activation function to produce the binary 
classification output. 

The CSAE and GRU components are trained using the Adam 
optimizer with an initial learning rate of 0.001. The CSAE is 
trained for a maximum of 30 epochs with a reconstruction-
loss threshold as an early-stopping criterion, while the GRU-
based classifier is trained for up to 50 epochs. Dropout 
rates of 0.2 in the autoencoder and 0.5 in the classifier 
are used to further mitigate overfitting. The architecture and 
hyperparameters are kept consistent across all experiments on 
both datasets to maintain fair comparisons. The detailed layer 
configuration of the proposed CSAE-GRU network is presented 
in Table 4. The experimental parameters and training settings 
are summarized in Table 5 to ensure the reproducibility of the 
proposed framework. 

The proposed CSAE-GRU model aims to achieve accurate 
and stable epileptic seizure detection through a combination of 
sparse feature reconstruction and temporal pattern learning. In this 
framework, a CSAE is first used to reconstruct representative EEG 

TABLE 4 Detailed layer configuration of the proposed CSAE-GRU model. 

Module Layer Parameters Activation/ 
regularization 

CSAE encoder Conv1 3 × 1 kernel, 32 

filters 
BN-ReLU-Dropout (0.2) 

Conv2 3 × 1 kernel, 16 

filters 
BN-ReLU-Dropout (0.2) 

CSAE decoder Conv1 3 × 1 kernel, 16 

filters 
BN-ReLU 

Conv2 3 × 1 kernel, 1 filter Regression layer 

Transferred 

layers 
Frozen Conv1 3 × 1 kernel, 32 

filters 
BN-ReLU 

Frozen Conv2 3 × 1 kernel, 16 

filters 
BN-ReLU 

GRU module GRU Hidden units: 64 Dropout (0.5) 

Classifier Fully connected Units: 2 Softmax 

TABLE 5 Experimental setup and training parameters. 

Parameter Value Description 

Optimizer Adam Adaptive momentum adjustment 

Learning rate 0.001 Empirically determined for stable 

convergence 

Batch size 32 Balances training stability 

Epochs 30/50 Maximum training iterations for each 

stage 

Dropout rate 0.2/0.5 Prevents overfitting and improves 
generalization 

features, and the learned encoder weights are then transferred to 
the subsequent GRU-based classifier. This design allows the model 
to retain discriminative information learned during unsupervised 
pretraining while improving the generalization ability of the 
classifier. Algorithm 1 outlines the entire procedure of the proposed 
framework, and Figure 5 presents the flowchart, including the 
decision steps for reconstruction loss and validation accuracy 
during training. 

Algorithm 1 Pseudocode of the proposed epileptic seizure detection 
framework. 

Input: EEG datasets Hyperparameters: sparsity weight λ, reconstruction threshold 

τ, patience p 

Output: Classification results (accuracy, sensitivity, specificity, AUC) 

1. Data preprocessing 

a. Apply bandpass filtering to remove interference. 
b. Split EEG signals into fixed-length segments. 

2. Feature extraction and reconstruction 

a. Apply DWT to obtain sub-bands A5, D1∼D5 

b. Calculate time-frequency domain features and nonlinear features 
c. Form the feature matrix XN × number of features , labels y 

3. Split data into 80% training and 20% testing. 

4. CSAE pretraining 

a. Build encoder-decoder with sparsity. 
b. Train to minimize reconstruction loss: L = ||x − x̂||2 

2 + λ||h||1 

c. Stop when L ≤ τ, save encoder parameters W∗ 
enc for transfer. 

5. Weight transfer and GRU training 

a. The two convolution blocks call encoder parameters W∗ 
enc 

b. For each fold k 1, 2, , 5 

I. Train model using traink , validate onvalk 

II. If validation accuracy does not improve for p epochs, stop training and 

restore best weights. 

6. Testing Phase 

a. Evaluate the trained model on the unseen 20% test set. 
b. Compute final metrics: accuracy, sensitivity, specificity, AUC. 

3 Results and discussion 

3.1 Evaluation indicators 

In this study, we employed five essential metrics, namely 
accuracy, sensitivity, specificity, precision and F1 score to 
evaluate the performance of the proposed automatic seizure 
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diagnostic method. These indicators are calculated as shown in 
Equations 7–11. 

Accuracy (ACC) = 
TP + TN 

TP + TN + FP + FN 
(7) 

Sensitivity (SEN) = 
TP 

TP + FN 
(8) 

Specificity (SPE) = 
TN 

TN + FP 
(9) 

Precision (PRE) = 
TP 

TP + FP 
(10) 

F1 score (F1) = 
2TP 

2TP + FN + FP 
(11) 

where, True Positive (TP), False Positive (FP), True Negative (TN) 
and False Negative (FN) denote the four classification outcomes, 
reflecting the model’s ability to correctly or incorrectly identify 
epileptic and non-epileptic samples. 

3.2 k-fold cross-validation 

In view of the fact that the dataset used in the experiment 
was composed of EEG signals recorded by patients under uniform 
conditions, and there was no clear topic or category boundary 
set in advance, we used the k-fold cross-validation method to 
ensure the generality of the test through multiple iterations of 
training and verification, and to reduce the possible bias caused 
by random division of data. In this paper, the performance of 
the model is evaluated using the fivefold cross-validation method. 
In this approach, all data are randomly divided into 5 mutually 
exclusive subsets. During each iteration, four subsets are randomly 
selected for model training, while the remaining subset is reserved 
for testing. This process is repeated five times, with each subset 
being used as the test set exactly once. Subsequently, the average 
performance across all iterations is calculated to assess the overall 
model performance. 

3.3 Results 

3.3.1 Distribution of features 
To evaluate the discriminative power of the extracted features, 

we visualize them for interpretability. Figure 6 illustrates the 
distributions of four representative features extracted from the D3 
sub-band across five EEG signal types in the Bonn dataset. As 
shown in Figures 6A–C, horizontal breakpoints are introduced 
to distinguish the categories. The ictal (type E) signals exhibit 
markedly higher values across three features compared to the other 
four types. In particular, the PSD reaches nearly 91,000, reflecting 
the dramatic energy fluctuations characteristic of seizure activity. 
The STD values for healthy signals (types A and B) and interictal 
signals (types C and D) remain consistently low with narrow value 
ranges, whereas the STD for ictal signals displays considerable 
variability. The MAV exhibits a similar trend to PSD, with ictal 
signals reaching peak values exceeding 300. Figure 6D presents 

FIGURE 5 

Flowchart of the proposed CSAE-GRU algorithm. 

the distribution of fuzzy entropy across the five signal categories. 
A clear hierarchical structure emerges, where the first four signal 
types exhibit relatively low fuzzy entropy values. Notably, type D 
signals show the lowest entropy, while type E signals demonstrate 
significantly higher fuzzy entropy, indicating increased signal 
complexity and disorder during seizure events. 

To validate the eectiveness of the proposed two-stage 
data balancing strategy, we present a case study using data 
from the first patient in the CHB-MIT dataset. Figure 7 
illustrates the feature distribution of EEG samples after under-
sampling and oversampling. Specifically, Figure 7A shows the 
distribution of interictal samples following cluster centroid under-
sampling, while Figure 7B demonstrates the distributional changes 
after applying BLSMOTE-based oversampling. To compare the 
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FIGURE 6 

Ridgeline plot on the Bonn dataset for (A) PSD features, (B) STD features, (C) MAV features, (D) Fuzzy entropy features. 

distributional shifts between ictal and interictal samples before 
and after balancing, both probability density estimation curves 
and histograms are employed. In Figure 7A, the original interictal 
sample distribution exhibits pronounced skewness and high 
concentration in specific regions. After applying k means-based 
cluster centroid under-sampling, the resulting distribution displays 
a significant reduction in redundant samples while preserving the 
core morphological characteristics of the original feature space. 
Compared to conventional random under-sampling, this method 
better retains feature diversity and minimizes information loss. As 
shown in Figure 7B, the BLSMOTE-generated synthetic samples 
exhibit a broader and more dispersed distribution across the 
feature space. Unlike standard SMOTE, which performs simple 
linear interpolation, BLSMOTE focuses on generating samples in 
ambiguous boundary regions, thus capturing more discriminative 
information. This enhancement allows the classifier to more 
eectively distinguish minority class instances and improves overall 
model robustness in imbalanced data scenarios. 

Figure 8 presents violin plots of the STD feature extracted 
from the D3 sub-band of the Bonn dataset Figure 8A and the 

CHB-MIT dataset Figure 8B. To minimize visual clutter and avoid 
confusion from multiple features, we selectively display only one 
representative sub-band and feature. As shown in the plots, the 
STD values of ictal signals are significantly higher than those 
of interictal signals in both datasets. The Bonn dataset exhibits 
considerable signal variability, with ictal STD values reaching up 
to approximately 400 µV, whereas in the CHB-MIT dataset, the 
maximum ictal value is around 120 µV. This discrepancy may 
stem from individual dierences among patients or underlying 
pathological variations between datasets. Additionally, ictal signals 
not only exhibit elevated feature values but also display a noticeable 
long-tail distribution with extreme outliers. In contrast, interictal 
signals are characterized by lower and more stable STD values, with 
fluctuations confined to a narrower range. This stark dierence 
in distribution further highlights the potential of STD as a 
discriminative feature for seizure detection. 

3.3.2 Experiment results 
The experiments were conducted on a computer equipped 

with an Intel Core i7-13700KF processor (3.4 GHz), 32 GB RAM, 
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FIGURE 7 

Results of the two-stage data balancing strategy (A) Under-sampling of interictal samples using cluster centroids, (B) Oversampling of ictal samples 
using BLSMOTE. 

FIGURE 8 

Violin plots of feature distribution on the datasets for (A) Bonn dataset, (B) CHB-MIT dataset. 

and a 64-bit Windows 11 Professional operating system. All 
implementations were performed using MATLAB R2022a with its 
deep learning and signal processing toolboxes. The computational 
cost of the proposed framework depends primarily on the number 
of training epochs and feature processing steps. To quantitatively 
assess the computational eÿciency of the proposed framework, 
both execution time and memory utilization were continuously 
monitored during training and testing. For the CHB-MIT dataset, 
the average runtime per fold was 58.69 s, yielding a total runtime 
of 300.83 s across fivefold. For the Bonn dataset, the average 
runtime per fold was 1.21 and 6.17 s overall. The MATLAB 
memory consumption remained stable at approximately 8.2–8.5 
GB throughout all experiments. 

The proposed CSAE-GRU model was comprehensively 
evaluated on both the Bonn and CHB-MIT datasets. The detailed 
results are presented in Figure 9 and Tables 6, 7. In terms of 
overall average performance, on the Bonn dataset, the CSAE-
GRU model achieved an average performance of 98.46% ACC, 
98.27% SEN, 98.50% SPE, and 98.23% AUC. On the CHB-MIT 

dataset, the model demonstrated even higher performance, 
with respective values of 99.49, 99.21, 99.77, and 99.57%. The 
CSAE-GRU model achieved 100% SPE in some scenarios. For 
example, in the A-E and C-E scenarios of the Bonn dataset, and 
in the Pt03 and Pt23 of CHB-MIT, the model can accurately 
distinguish non-epileptic EEG signals, which is a critical point in 
actual clinical applications. Similarly, the model achieved 100% 
SEN in tasks such as D-E and CD-E in the Bonn dataset, as 
well as in CHB-MIT subjects Pt03, Pt19, and Pt23, indicating 
zero missed detections in these cases. This result highlights 
the model’s strong potential to reliably capture seizure-related 
patterns, which is of great significance for applications requiring 
high sensitivity. Horizontal comparisons across dierent task 
configurations reveal that in more complex A-D and AB-CD 
combinations, the boundaries between the two types of signals are 
relatively fuzzy. The model’s classification ACC slightly declined 
but remained above 95%. This demonstrates the model’s ability to 
capture subtle discriminative features through CSAE, even under 
complex scenarios. In the CHB-MIT dataset, although the overall 
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FIGURE 9 

Classification results of the proposed CSAE-GRU classifier on the datasets for (A) Bonn dataset, (B) CHB-MIT dataset. 

performance was consistently high, a slight performance drop 
was observed for subject Pt14. The observed results indicate that 
inter-subject variability, such as dierences in seizure onset zones, 
clinical presentations, and EEG recording configurations, poses 
a significant challenge to model generalization and performance. 
These observations underscore the need for further optimization 
to enhance the model’s adaptability and robustness across diverse 
patient populations. 

3.3.3 Verification of the effectiveness of the 
CSAE-GRU model 

To further verify the contribution of each component in the 
proposed CSAE-GRU architecture, we compared it with four 
additional variants: CNN, GRU, CNN-GRU, and CSAE-MLP. The 
results of all metrics are summarized in Table 8. As shown, the 
proposed CSAE-GRU consistently achieves the best performance 
across all evaluation indicators. Compared with the CNN model, 
CSAE-GRU improves ACC by 1.68 and 2.94% on the Bonn 

and CHB-MIT datasets, respectively, while the SEN increases 
by more than 3 percentage points. When compared with CNN-
GRU, it is evident that replacing the conventional CNN with the 
CSAE module leads to further performance gains in all metrics, 
highlighting the noise-robustness advantage of CSAE-based feature 
learning. Unlike traditional CNNs, which tend to capture 
redundant or noisy spatial patterns, the convolutional sparse 
autoencoder enforces sparsity constraints and self-reconstruction 
objectives, thereby producing more discriminative and noise-
resistant representations. To evaluate the contribution of temporal 
modeling, the GRU layer was replaced with a Multilayer Perceptron 
(MLP) while keeping the same CSAE encoder. On the CHB-MIT 
dataset, this modification resulted in decreases in several metrics, 
with accuracy dropping by 1.67% and specificity by 1.91%, among 
others. These results confirm that temporal dependency modeling 
is essential, particularly for long, multi-channel EEG sequences 
such as CHB-MIT. The GRU eectively leverages the structured 
spatial representations provided by CSAE to capture dynamic 
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TABLE 6 Specific results of the proposed model on the Bonn dataset. 

Case ACC (%) SEN (%) SPE (%) PRE (%) F1 (%) AUC (%) 

A–E 99.50 98.33 100 99.16 98.75 99.89 

B–E 99.00 98.11 98.92 98.47 98.29 98.04 

C–E 99.50 98.82 100 99.41 99.11 99.15 

D–E 99.50 100 99.13 99.56 99.78 99.44 

AB–E 98.75 98.06 99.03 98.54 98.30 98.40 

CD–E 99.33 100 98.06 99.03 99.51 98.63 

BC–E 98.00 97.62 98.95 98.29 97.95 98.24 

ABCD–E 98.80 98.90 97.89 98.39 98.65 98.39 

A–D 95.50 94.92 97.07 96.00 95.45 95.59 

AB–CD 96.75 97.98 95.54 96.76 97.37 96.52 

TABLE 7 Specific results of the proposed model on the CHB-MIT dataset. 

Case ACC (%) SEN (%) SPE (%) PRE (%) F1 (%) AUC (%) 

Pt01 99.52 98.51 99.53 99.02 98.76 99.56 

Pt03 100 100 100 100 100 100 

Pt05 99.85 99.69 100 99.85 99.77 99.89 

Pt09 99.00 98.59 100 99.29 98.94 99.37 

Pt10 99.09 98.63 100 99.31 98.97 99.65 

Pt14 98.79 99.00 99.00 99.00 99.00 98.97 

Pt19 99.67 100 99.20 99.60 99.80 99.55 

Pt20 99.31 98.70 100 99.35 99.02 99.25 

Pt21 99.69 99.00 100 99.50 99.25 99.50 

Pt23 100 100 100 100 100 100 

TABLE 8 Ablation results of different model variants on the datasets. 

Dataset Model ACC SEN SPE PRE F1 

Bonn CNN 96.80 95.06 96.84 95.95 95.50 

GRU 95.81 95.57 95.83 95.70 95.63 

CNN-GRU 97.20 96.30 97.26 96.78 96.54 

CSAE-MLP 97.35 97.87 97.34 97.61 97.74 

CSAE-GRU 98.48 98.27 98.50 98.36 98.31 

CHB-MIT CNN 96.55 94.44 96.64 95.54 94.99 

GRU 95.51 97.01 95.24 96.12 96.57 

CNN-GRU 98.81 98.15 98.83 98.49 98.32 

CSAE-MLP 97.82 97.46 97.86 97.66 97.56 

CSAE-GRU 99.49 99.21 99.77 99.49 99.35 

seizure-related transitions and suppress temporal noise, leading to 

superior overall performance. 
In order to further provide an intuitive comparison of the 

performance among dierent classification models, Figure 10 

presents the ROC curves of the proposed CSAE-GRU model in 

contrast to single CNN and GRU models. Figures 10A, B depict 
the average ROC curves obtained from fivefold cross-validation 

for the A-E classification task on the Bonn dataset and the Pt01 

classification task on the CHB-MIT dataset, respectively. In both 

scenarios, the CSAE-GRU model achieved superior AUC values 
of 99.89 and 99.56%, respectively. Its ROC curves lie closer to 

the upper left corner, indicating excellent classification capability. 
Notably, when the False Positive Rate (FPR) was below 0.02, the 

True Positive Rate (TPR) remained above 99%, demonstrating the 

model’s ability to minimize missed detections without increasing 

false alarms. These results confirm that the CSAE-GRU model 
outperforms both standalone CNN and GRU models, further 

validating the eectiveness of combining CSAE for robust feature 
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FIGURE 10 

ROC curves for the three classification models (A) on the Bonn dataset, (B) on the CHB-MIT dataset. 

TABLE 9 Comparison of the previous methods and proposed method on Bonn dataset. 

Papers Year Methods Case [ACC (%)/SEN (%)/SPE (%)] 

Mert and Akan (2018) 2018 EMD+IMF + PSD A–E (97.90/100/95.76) 
B–E (83.70/78.38/76.66) 
C–E (96.40/97.88/94.11) 
D–E (93.00/97.88/88.55) 

Raghu et al. (2019) 2019 Matrix determinant + SVM/KNN/MLP B–E (96.06/98.45/93.65) 
C–E (97.60/95.75/99.45) 
D–E (97.62/94.90/99.45) 
AB–E (97.10/95.70/98.50) 
CD–E (96.95/97.60/94.30) 
ABCD–E (96.52/96.55/96.50) 

Al-Hadeethi et al. (2021) 2021 KST +Mann-Whitney U +Covariance Matrix +AB-BP-NN C–E (99.00/99.00/99.00) 
CD–E (98.00/98.00/97.00) 
ABCD–E (98.00/99.00/98.00) 

Aayesha et al. (2022) 2022 Time domain + Spectrum + Non-linear features + LBP+ 

Feedforward Neural Network 

A–E (96.67/93.33/100) 
B–E (91.67/93.33/90.00) 
C–E (91.67/90.00/93.33) 
D–E (85.00/83.33/86.67) 
AB–E (90.00/76.47/98.21) 
CD–E (91.11/91.18/91.07) 

Liu et al. (2023) 2023 PSD + SVM/KNN/Decision tree (DT)/Linear Discriminant 
Analysis (LDA) 

D–E (98.50/98.00/99.00) 
CD–E (98.70/97.00/99.50) 
ABCD–E (98.40/95.00/99.25) 

Wang et al. (2023) 2023 Hybrid 3 CNN-1 LSTM C–E (98.20/NA/NA) 
D–E (97.60/NA/NA) 
CD–E (97.90/NA/NA) 

Huang et al. (2024) 2024 TCNN-SA A–E (97.37/94.88/99.91) 
B–E (93.50/88.07/99.00) 

Mekruksavanich et al. (2024) 2025 CNN+ ResBiGRU+ CBAM A–E (99.00/99.00/99.00) 
B–E (99.00/99.00/99.00) 
C–E (97.50/97.50/97.50) 
D–E (98.50/98.50/98.50) 

This work 2025 DWT + STD + PSD + MAV + Fuzzy entropy +CSAE-GRU A–E (99.50/98.33/100) 
B–E (99.00/98.11/98.92) 
C–E (99.50/98.82/100) 
D–E (99.50/100/99.13) 
AB–E (98.75/98.06/99.03) 
CD–E (99.33/100/98.06) 
BC–E (98.00/97.62/98.95) 
ABCD–E (98.80/98.90/97.89) 
A–D (95.50/94.92/97.07) 
AB–CD (96.75/97.98/95.54) 
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TABLE 10 Comparison of the previous methods and proposed method on CHB-MIT dataset. 

Papers Year Methods ACC (%) SEN (%) SPE (%) 

Wei et al. (2019) 2019 CNN+ Raw data 70.68 92.30 

k CNN+MIDS data NA 74.08 92.46 

CNN+ Data augmentation 72.11 95.89 

Tian et al. (2019) 2019 FFT+WPD+PCA+CNN 98.30 96.70 99.10 

Zanetti et al. (2020) 2020 Band power+5 Entropy +RF NA 96.60 92.50 

Peng et al. (2021) 2021 Stein kernel-based sparse representation 98.21 97.85 98.57 

Li and Chen (2021) 2021 FFT+2D matrix+ SVM 98.47 98.28 98.50 

Hu et al. (2021) 2021 MAS+MPSD+WPF+DNN+HNN 98.97 NA NA 

Zhang et al. (2022) 2022 DWT +Specific band energy +BiGRU 98.49 93.89 98.49 

Tang et al. (2024) 2024 Path signature + BiLSTM+ AM 99.09 99.28 98.95 

Shah et al. (2024) 2024 DWT+RNN 93.27 90.10 96.53 

Huang et al. (2025) 2025 CNN-BiLSTM + STFFDA 92.42 92.42 NA 

This work 2025 DWT + STD +PSD + MAV + Fuzzy entropy +CSAE-GRU 99.49 99.21 99.77 

extraction with GRU networks for temporal sequence modeling. 
The integration of spatial sparsity and temporal dependency 
contributes to the model’s superior discriminative power in EEG-
based seizure detection tasks. 

3.4 Discussion 

In order to evaluate the eectiveness of our proposed CSAE-
GRU classification method compared to other methods, we have 
compared the method proposed in this paper with the methods 
proposed in the literature in recent years. Table 9 lists the results 
of a wide variety of methods proposed in recent years on the 
Bonn dataset compared to the method proposed in this paper. 
It is clear from the table that among all the proposed methods, 
our study achieves higher results. Raghu et al. (2019) and Al-
Hadeethi et al. (2021) have extracted mathematical features of 
EEG signals based on linear algebra using matrices combined with 
algorithms to classify them, and they have achieved more than 95% 
of the classification results. Wang et al. (2023) proposed CNN-
LSTM classification method which achieved more than 97.6% ACC 
in binary classification task, but the rest of the metrics are not 
mentioned. Recently in Liu et al. (2023)’s study also used PSD as 
features and added linear discriminant analysis on top of SVM 
and KNN. Ultimately, an ACC of 98.5% was achieved on D-E 
grouping, which is 1% lower compared to the ACC of our proposed 
method on D-E grouping. They reported an average computational 
time of 0.0111 s per 10-s EEG epoch. This value reflects the 
processing time for each individual segment rather than the total 
training or testing duration, and no information regarding memory 
utilization was provided. In contrast, the proposed CSAE-GRU 
model achieved an end-to-end runtime of 6.17 s on the Bonn 
dataset. Huang et al. (2024) extracted time-varying features from 
EEG signals using a Temporal Convolutional Neural Network (T-
CNN), and then employed a Self-Attention (SA) Layer to weigh the 
importance of these features. The method achieved classification 
ACC of 97.37 and 93.5% on the A-E and B-E datasets, respectively. 
However, it is worth noting that the study only designed two 

classification experiments, limiting the validation of the method’s 
generalization capability. Mekruksavanich et al. (2024) enhanced 
sequential modeling by incorporating residual connections into the 
BiGRU architecture and further improved feature discriminability 
through the integration of the Convolutional Block Attention 
Module (CBAM). While their model achieved slightly higher 
SEN and SPE in the B-E classification task, it demonstrated 
inferior performance across the remaining groups compared to our 
proposed approach. 

Table 10 lists the compared results of our proposed method 
and other methods in recent years on the CHB-MIT dataset. 
Wei et al. (2019) designed an automatic seizure detection method 
based on the ability of CNNs to automatically extract and learn 
features, and designed a 12-layer CNN for classification. The CNN 
classification method that introduces MIDS and data enhancement 
has an increase in SEN and SPE compared with the original CNN 
classification method, but it is still lower than the method we 
proposed in this paper. Peng et al. (2021) also proposed a method 
for automatic diagnosis of epileptic seizure. Their EEG samples 
required approximately 0.26 s from preprocessing to outputting the 
class label. Unfortunately, the authors only reported the processing 
time for a single sample and did not specify the total execution 
time. Hu et al. (2021) achieved 98.97% ACC in his study using 
Deep Neural Network (DNN) for fusion of extracted features and 
then Hopfield Neural Network (HNN) for classification, however, 
only the accuracy of the proposed method was reported. We also 
refer to the study of Zhang et al. (2022) who first transformed 
the EEG signal using DWT, calculating the relative energy of 
specific wavelet bands as features, and then implemented automatic 
epilepsy detection using a BiGRU network, which achieved an 
ACC of 98.49% and a SEN of 93.89%. In addition, Tang et al. 
(2024) proposed a BiLSTM with an AM using Path signature 
to extract more representative features, achieving 99.09% ACC. 
They reported that the feature extraction process took 0.09–3.22 s, 
whereas the total execution time and memory utilization were not 
specified. Huang et al. (2025) introduced a novel framework Spatio-
Term Feature Fusion with Dual Attention (STFFDA), employing 
CNN and BiLSTM networks to jointly capture spatial dependencies 
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and temporal dynamics within raw EEG data. Comprehensive 
evaluation using 10-fold cross-validation on the CHB-MIT dataset, 
achieving both an ACC and SEN of 92.42%. 

4 Conclusion 

In this study, an advanced automatic detection method 
for epileptic seizure is introduced. To mitigate class imbalance 
commonly observed in EEG-based seizure datasets, we employ 
a novel two-stage data balancing strategy that combines cluster 
centroid-based under-sampling and BLSMOTE oversampling. 
Furthermore, we innovatively propose a hybrid classification 
model that combines CSAE with GRU network. By transferring 
the pre-trained sparse encoder weights to the classification stage, 
the model enhances the extraction of discriminative sparse 
features and improves generalization capability across diverse 
subjects. Extensive experiments conducted on both the Bonn 
and CHB-MIT datasets demonstrate that the proposed method 
achieves high accuracy, sensitivity, and specificity, outperforming 
conventional single-structure models. The framework is 
inherently simple to implement and operates independently 
of additional hyperparameter optimization strategies, thus 
reducing computational overhead and implementation complexity 
while maintaining superior detection performance. 

5 Limitations and future work 

Although the proposed CSAE-GRU framework has shown 
excellent performance in automatic seizure detection, several 
factors may limit its broader applicability. The experiments were 
conducted on two publicly available EEG datasets, which are widely 
used for benchmarking but do not fully capture the variability 
and artifacts typically present in clinical EEG recordings. In 
addition, the current work addresses only binary seizure detection, 
separating interictal and ictal conditions. In the next stage of our 
research, we aim to expand the model to classify multiple seizure 
types and to test it on larger, more heterogeneous clinical datasets. 
We also plan to design lighter network versions that can run 
eÿciently in real time on portable or embedded EEG devices. 
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