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Introduction: Epilepsy is a neurological disorder characterized by abnormal
neuronal discharges in the brain, posing a persistent challenge in clinical
diagnosis. This study presents a high-performance epileptic seizure detection
framework that integrates advanced feature extraction and classification
techniques using EEG signals.

Methods: We conduct experiments on the Bonn and CHB-MIT EEG datasets.
The EEG signals are preprocessed through bandpass filtering and five-level
Discrete Wavelet Transform (DWT) decomposition. From each sub-band, four
representative features are systematically extracted. To mitigate severe class
imbalance, we propose a two-stage balancing strategy: cluster centroid-based
under-sampling initially reduces the interictal-to-ictal ratio to 2:1, followed
by Borderline Synthetic Minority Oversampling Technique (BLSMOTE) in the
feature space. A hybrid classification model that combines Convolutional Sparse
Autoencoder (CSAE) with Gated Recurrent Unit (GRU) is proposed in the paper.
The encoder weights from the pre-trained CSAE are transferred to the GRU-
based classifier to enhance feature representation and model generalization.

Results: The proposed method achieves outstanding performance, with
accuracy, sensitivity, specificity, precision, f1 score and AUC of 98.46, 98.27,
98.50, 98.36, 98.31, and 98.23% on the Bonn dataset, and 99.49, 99.21, 99.77,
99.49, 99.35, and 99.57% on the CHB-MIT dataset, respectively. These results
validate the effectiveness of the proposed approach.

Discussion: This study introduces a novel framework combining cluster
centroid-based under-sampling, BLSMOTE oversampling, and transfer learning
via CSAE-GRU integration. The method offers a promising direction for reliable
and clinically applicable automated epilepsy diagnosis.

KEYWORDS

seizure detection, convolutional neural network, gated recurrent unit, sparse
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1 Introduction

Epilepsy, as a prevalent neurological disorder affecting
individuals of all ages, arises from paroxysmal abnormal neuronal
discharges within the brain. Among neurological disorders,
epilepsy ranks second only to cerebrovascular disease in prevalence
(Beniczky et al., 2021). Common types of epilepsy encompass focal
epilepsy, generalized epilepsy, idiopathic seizure, and secondary
seizure (Sethy et al, 2023). Seizure typically entail loss of
consciousness accompanied by convulsions, posing risks of
irreversible brain damage, shock, and potentially fatal outcomes
in severe instances (Sharan and Berkovsky, 2020). This condition
poses a significant threat to patient lives, with the recurrent
nature of epileptic seizure exerting a persistent negative impact,
both physically and psychologically. Therefore, the diagnosis and
treatment of epilepsy hold paramount significance.

Electroencephalography (EEG) refers to the recording of
electrical activity generated by brain neurons on the scalp surface,
widely attributed to synaptic activity in the cerebral cortex (Islam
etal.,2023). EEG serves as a cost-effective, intuitive, and convenient
method for recording brain activity by affixing electrode patches
to the patient’s scalp surface, facilitating the capture of EEG
signals (Al-Hajjar and Al-Qurabat, 2023). Presently, the primary
approach to epilepsy detection involves diagnosis by experienced
specialist physicians through EEG observation. However, this
method heavily relies on the expertise and proficiency of the
specialist, potentially leading to misdiagnosis due to prolonged
and intricate evaluations (Zanetti et al., 2020). Seizure manifest
in various EEG signal patterns, with fluctuations observed even
within the EEG signals of the same patient across different
seizure onset times (Ingolfsson et al., 2024). Hence, there is
an urgent need for an intelligent diagnosis system which can
detect epilepsy automatically and accurately. This system is also
called Computer-Aided Diagnosis Systems (CADS), with Al-
based CADS offering potential enhancements in diagnostic speed
and accuracy (Malekzadeh et al, 2021; Mandhouj et al., 2021;
Shankar et al., 2021).

The study of EEG signal has a history of several decades.
New diagnostic techniques and classification algorithms emerge
one after another. The automatic seizure detection system mainly
classifies the interictal and ictal stages of EEG signals. It involves
extracting important features from EEG signals using various
digital signal processing techniques, and then classifying the
extracted features based on statistical characteristics, Machine
Learning (ML) or Deep Learning (DL) (Wang et al, 2025).
Feature extraction plays a pivotal role in discerning the presence
or absence of epilepsy from EEG signals, with the efficacy of
features directly influencing classifier performance (Hu etal., 2021).
However, the non-linear and variable characteristics of EEG signals,
coupled with inevitable noise interferences during acquisition,
present challenges to the accuracy of automated epilepsy detection
(van Westrhenen et al., 2023).

In recent years, great progress has been made in the field of
seizure detection, many scholars have explored and proposed a
variety of non-linear signal analysis strategies to deal with the
complex characteristics of epileptic EEG (Mostafa et al., 2024;
Wei et al., 2021). As a function of time, the feature extraction
of EEG signal can be realized directly in time domain or
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converted to frequency domain for further analysis. Currently, the
features extracted from EEG signals are generally classified into
four categories: Time-domain features, frequency-domain features,
time-frequency-domain features and nonlinear features. In the
time domain, some researchers have proposed statistical properties
such as Standard Deviation (STD) and mean (Savadkoohi et al.,
2020). In Shah et al. (2024), they extracted STD, mean, kurtosis,
and skewness from EEG signals as characteristics. In the frequency
domain, seizures can be detected by calculating the Power Spectral
Density (PSD) of the EEG signal. Liu et al. (2023) segmented
EEG PSD into periodic and non-periodic components, facilitating
automatic epilepsy detection through parameterization of the PSD.
In the time-frequency domain, wavelet-based feature extraction
is widely used in the field of seizure research (Savadkoohi et al.,
2020). By mapping the original signal to the time-frequency joint
domain, the Wavelet Transform (WT) cannot only display the
overall information of the signal, but also highlight the local
information of the signal well (Boonyakitanont et al., 2020).
Some researchers have successfully realized the detection of
epileptic seizures by using WT. Yogarajan et al. (2023) applied
Stationary Wavelet Transform (SWT) to the pre-filtered EEG
signals and extracted a range of features from the decomposed
sub-bands, including Hjorth parameters, Mean Absolute Value
(MAV), STD, kurtosis, Root Mean Square (RMS), adjacent sub-
band MAV ratio, activity, mobility, and complexity. To reduce
model complexity, they employed the Binary Dragonfly Algorithm
(BDFA) for feature selection, retaining only approximately 13%
of the most informative features. Similarly, L. V. Tran et al.
utilized Discrete Wavelet Transform (DWT) for multi-resolution
analysis of EEG signals, focusing on sub-bands D3~D5 and A5
after decomposition. They extracted statistical features such as
maximum, mean, median, number of zero-crossings, STD, kurtosis
and skewness from these sub-bands. Furthermore, Binary Particle
Swarm Optimization (BPSO) was applied to reduce the feature
dimensionality by 75% for subsequent classification tasks (Tran
et al., 2022). Capturing nonlinear features in EEG signals is also
a key task for researchers, and some of the widely used non-
linear features include entropy (Malekzadeh et al., 2021), Fractal
Dimension (FD), maximum Lyapunov exponent, hurst exponent,
etc. As a core metric, entropy can directly quantify the degree
of dynamic change within the system and effectively evaluate the
complexity of the system. In the field of seizure detection, a series
of entropy evaluators have shown significant application potential,
among which approximate entropy, fuzzy entropy (Acharya et al.,
2019), Shannon entropy and sample entropy are widely used in the
analysis process. Tsipouras (2019) used spectral entropy, which is
the Shannon entropy of the PSD of the EEG signal. According to
the current literature review, most studies tend to integrate multiple
types of features to comprehensively capture the connections
between data, so as to improve the efficiency of classification
algorithms (Pidvalnyi et al., 2025). Khan et al. (2020) introduced
an automatic epilepsy detection method relying on a hybrid
Local Binary Pattern (LBP)-WT algorithm. In this approach, LBP
transforms signals, while WT decomposes them, extracting features
including kurtosis, semi-variance, and Interquartile Range (IQR),
followed by epilepsy seizure diagnosis via a linear discriminant
analysis classifier. In another study, Pale et al. (2024) extracted the
mean amplitude, approximate zero crossing, relative and absolute
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PSD, and line length of the EEG signal as features to help identify
different EEG patterns.

In the process of automatic seizure detection, after feature
extraction, the design of efficient and accurate discriminant feature
classifier is another key link in the whole process. In recent decades,
due to the rapid development of machine learning and deep
learning, they have been widely used in many fields (Hamed et al.,
2025; Wang et al., 2023). For example, Ameen et al. classified
cardiovascular diseases based on Electrocardiography (ECG) and
Phonocardiography (PCG) (Ameen et al., 2024), and Abdel Hady
et al. predicted abdominal fat in their research (Abdel Hady
et al., 2024) and some research on Parkinson’s disease (Eliwa and
Abd El-Hafeez, 2025). Similarly, there are also many applications
in epileptic seizure detection. K-Nearest Neighbor (KNN) and
Support Vector Machine (SVM) are the most commonly used
forms of ML (Supriya et al., 2020). Chen et al. (2020) first computed
the signal strength at each EEG data point and applied Empirical
Mode Decomposition (EMD) to decompose suspicious EEG
segments into Intrinsic Mode Functions (IMFs). Singular Value
Decomposition (SVD) was then used to extract representative
features from the IMFs. These features were subsequently fed
into two one-class SVMs, and the final epilepsy detection was
determined by combining their outputs. In the study by Savadkoohi
et al. (2020), KNN and SVM were used to classify the best features
after t-test and Sequential Forward Floating Selection (SFES)
selection. Al-Hadeethi et al. (2020) introduced another two-phase
classification method for seizure detection, utilizing covariance
matrices in conjunction with adaptive boosting and Least Squares-
SVM (LS-SVM). At present, many researchers have focused on
the field of neural networks, especially their diverse variants, and
are commiitted to exploring the potential and advantages of these
models in classification tasks (Eliwa et al.,, 2023; Eliwa et al,
2024). Yu and Meng (2023) designed a model of Convolutional
Neural Network (CNN) with an Attention Mechanism (AM),
leveraging the multifrequency characteristics of EEG signals to map
multilayer correlation information onto a network topology. Zhang
et al. (2024) introduced a brain-inspired impulse neural network
amalgamating Spiking Neural Network (SNN) models with data
augmentation and adversarial strategies. Ein Shoka et al. proposed
anovel approach that integrates chaos theory for secure EEG-based
seizure detection (Ein Shoka et al., 2023). The EEG time-series
signals were first transformed into two-dimensional spectrograms
using the Teager-Kaiser Energy Operator (TKEO). To ensure data
privacy in open network environments, the spectrograms were
encrypted using the Arnold Transform (AT) and the chaotic baker
mapping algorithm. Subsequently, they used transfer learning
to transfer the learning results of multiple pre-trained CNN
models on large-scale image datasets to the classification task of
epileptic seizures, and achieved an accuracy of 86.11% on the
CHB-MIT dataset. Zhang et al. (2023) initially employed a 64th
order Butterworth bandpass filter to mitigate EEG signal noise,
segmenting the complete EEG signal into multiple segments via
a sliding window. Subsequently, they normalized the EEG signal
using z-scores and trained EEG net, deep convolution network,
and shallow convolution network models with the processed
data. Although CNNs have been widely used in the field of
seizure classification due to their powerful learning ability, their
ability to capture temporal features is relatively limited when
processing data rich in time series information such as EEG
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signals, which limits their performance in this field to a certain
extent, resulting in unsatisfactory classification results in some
cases. Studies in recent years have shown that Long Short-term
Memory (LSTM) dominates the field of seizure research. Liu
et al. (2020) proposed a new deep Convolutional-LSTM (C-LSTM)
model for the first time to detect tumors and seizures. In the
study by Hussain et al. (2021), they presented a DL architecture
integrating CNN-LSTM which decomposes EEG signals into time-
domain, frequency-domain, and time-frequency-domain features
for binary and ternary classification. The highest accuracy of
99.27% was attained using time-frequency domain signals, while
96.64 and 94.71% accuracy were achieved with frequency domain
and time domain signals, respectively. However, compared with
LSTM, Gated Recurrent Unit (GRU) shows a more streamlined
parameter configuration and a more concise structural architecture,
which gives it superior modeling capabilities when dealing with
complex data sequences, which has led to extraordinary progress
in the field of automatic seizure detection. In Zhang et al. (2022),
they used a Bidirectional GRU (BiGRU) to classify the relative
energy extracted from the WT sub-bands as features, and finally
achieved an average sensitivity of 93.89% and a specificity of
98.49% on the CHB-MIT dataset. To enhance performance in
epileptic seizure detection, researchers have increasingly adopted
innovative methodologies. For example, Lih et al. (2023) divided
the collected EEG signals into segments every 5 s, calculated the
Pearson correlation coefficient matrix for these segments, discarded
the lower triangle, and only vectorized the upper triangle as
input features. By incorporating a learnable positional encoding
into the embedding vectors of these correlation coefficients, the
transformer architecture was able to more effectively capture spatial
relationships between EEG channels. Shoeibi et al. (2021) manually
extracted 50 distinct features, including mean, variance, mode,
peak slope, largest Lyapunov exponent, Shannon entropy, and
approximate entropy. Prior to classification, features were ranked
using the fisher score, and only those with higher scores were
retained. Their classifier design embedded an Auto-Encoder (AE)
within a CNN framework, where the AE component facilitated
the extraction of more informative representations from the input
signals. However, their evaluation relied on a single random
train-test split (70% training, 30% testing), rendering the results
sensitive to data partitioning. Takahashi et al. (2020) introduced
an AE-CNN architecture with a novel “non-seizure but abnormal”
class. A patient-specific AE layer was used to monitor EEG
anomalies, combining the unsupervised learning capability of
AEs with CNNs’ effectiveness in image-based classification. This
approach significantly reduced the false positive rate. Srinivasan
et al. (2023) proposed a hybrid deep learning model that combines
a 3D Deep Convolutional Auto-Encoder (3D-DCAE) for automatic
feature learning with a Bidirectional LSTM (BiLSTM) for temporal
sequence modeling. This architecture improved both training
efficiency and classification accuracy, underscoring the benefits of
integrating temporal and spatial modeling in EEG analysis.

As discussed above, deep learning techniques have become
powerful tools for addressing the complex signal classification
challenges in epileptic seizure detection. However, several issues
remain unsolved. EEG data are inherently highly imbalanced,
which can bias classifiers toward the majority class. Moreover,
most existing oversampling or under-sampling methods are
applied in isolation, potentially distorting the distribution of
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the minority class. In addition, many deep models directly
process raw or filtered EEG signals without leveraging informative
time-frequency features that can capture both spectral and
temporal dynamics. Importantly, limited research has explored
the integration of autoencoders with temporal models to fully
exploit the spatiotemporal dependencies of EEG signals. To address
these limitations, this study proposes a novel hybrid model,
termed Convolutional Sparse Autoencoder-Gated Recurrent Unit
(CSAE-GRU). The model first constructs a CSAE to enhance
the sparsity and discriminability of learned representations. The
weights obtained during CSAE pretraining are transferred to
the classification model to reduce training cost. The pretrained
CSAE outputs are flattened and then fed into a GRU network
with 64 hidden units to capture temporal patterns, followed by a
fully connected layer and a softmax activation for binary seizure
classification. The main contributions of this work are summarized
as follows:

(1) We develop an effective two-stage data balancing strategy that
combines cluster-centroid under-sampling and Borderline-
Synthetic Minority Oversampling Technique (BLSMOTE) to
address severe class imbalance inherent in seizure detection.

(2) We propose a novel CSAE-GRU classification framework
that integrates handcrafted feature with
sparse representation learning and temporal modeling,
thereby
computational efficiency.

extraction

reducing model complexity and improving
(3) We employ transfer learning to reuse the pretrained sparse
encoder’s parameters, reducing training time and enhancing

generalization across different EEG datasets.

The sections of this paper are organized as follows. Section
2 outlines the two datasets utilized in the study, alongside a
comprehensive description of the proposed methodology. Section
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FIGURE 1
Examples of the five types of EEG signals
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3 presents the experimental results and discussion of this study.
The conclusion of the paper is provided in section 4. Section 5
discusses the limitations of this study and outlines directions for
future research.

2 Materials and methods

2.1 Datasets

The data used in this study were obtained from publicly
available datasets, including the Bonn dataset and the CHB-
MIT epilepsy database, both of which are widely utilized in
epilepsy research. All data adhere to applicable ethical standards
and were fully anonymized at the time of collection, containing
no information that could identify individual participants. This
study strictly complies with the ethical principles outlined in the
declaration of Helsinki, and the datasets were exclusively used for
scientific research purposes.

2.1.1 Bonn dataset

The first dataset is a publicly available dataset provided by
Dr. R.G. Andrzejak, University of Bonn, Germany. The dataset
was recorded by the same 12-bit analog-to-digital converter, and
consisted of five subsets (A, B, C, D, and E). Dataset A is the EEG
signals obtained from five healthy volunteers in the awake and eyes-
open state, dataset B is the EEG signals obtained from five healthy
volunteers in the awake and eyes-closed state, datasets C~E are
from the EEG archives of five different patients with preoperative
diagnosis. Datasets C, D correspond to interictal states, while
dataset E represents the ictal state. Each of these five types of
datasets consists of 100 segments, and the sampling frequency of
each segment is 173.61 Hz, with the duration time of 23.6 s. Each
fragment contains a total of 4,097 sample points. Figure 1 plots
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the EEG signal of the 1st segment of each subset. We employed
10 distinct classification tasks of the Bonn dataset, the specifics of
which are delineated in Table 1.

2.1.2 CHB-MIT dataset

The second dataset used in this study is the CHB-MIT scalp
EEG database, which was created by the Massachusetts Institute
of Technology in collaboration with Boston Children’s Hospital.
The EEG signals were recorded at a sampling rate of 256 Hz and a
resolution of 16 bits. The dataset records long-term EEGs of 5 males
aged 3-22 years and 17 females aged 1.5-19 years (Ru et al., 2024).
The EEG recordings of each patient are stored in a separate file in
the European data format, and each file usually contains at least 1 h
of continuous data, totaling about 976 h. A total of 185 epileptic
seizure events were recorded in the entire dataset. All epileptic
seizure events were annotated by professionals in the “summary”
file, providing the start and end time of the file and the precise
start and end time of each epileptic seizure. It is worth noting that
the occurrence of epileptic seizures showed significant differences
between different patients. Following the method proposed by Yang
et al. (2021) and considering that frequent seizures would reduce
the practical significance of the epileptic seizure detection task, this

TABLE 1 Classification tasks on the Bonn dataset.

Cases ‘ Classification ’ Description
tasks

Case 1 AVS.E Healthy-Seizure
Case 2 BVS.E Healthy-Seizure
Case 3 CVS.E Interictal-Seizure
Case 4 DVS.E Interictal-Seizure
Case 5 ABVS.E Healthy-Seizure
Case 6 CD VS.E Interictal-Seizure
Case 7 BCVS.E No seizure-Seizure
Case 8 ABCD VS.E No seizure-Seizure
Case 9 AVS.D Healthy-Interictal
Case 10 ABVS.CD Healthy-Interictal

TABLE 2 Basic patient information on the CHB-MIT dataset.

10.3389/fnins.2025.1698960

study focused on patients with less than 10 seizures. Therefore, EEG
recordings from 10 selected patients were used in this experiment.
The fundamental information of the 10 patients in the CHB-MIT
dataset utilized in this experiment is presented in Table 2. We
extracted ictal EEG segments from the annotated seizure onset to
the seizure offset and applied a 2-s sliding window with 50% overlap
(step size of 1 s) to generate multiple fixed-length seizure samples.
To ensure a clear distinction between ictal and interictal periods, we
defined the EEG signal at least 4 h away from the seizure event as
the interictal period (Dissanayake et al., 2021). This time interval
was chosen to ensure that the interictal data reflect the patient’s
stable baseline brain activity, free from the transient physiological
changes that occur before or after a seizure. These interictal signals
were then segmented into non-overlapping 2-s epochs.

2.2 Methods

The overall workflow of the proposed automatic epileptic
seizure detection system is illustrated in Figure 2. First, EEG
signals are preprocessed through bandpass filtering, followed by
multi-scale feature extraction using DWT. Next, a tailored data
balancing strategy is employed to address the severe class imbalance
between ictal and interictal samples. Finally, a hybrid deep learning
classification model, combining CSAE and GRU, is introduced to
enable accurate seizure detection.

2.2.1 Data preprocessing

The original EEG signals exhibit high dynamics and
non-stationarity, and it is often subject to interference from
physiological noise, environmental noise, and 50/60 Hz industrial
frequency signals during acquisition. In order to ensure the
accuracy and reliability of subsequent EEG signal analysis, it is
imperative to remove the noise in the original EEG signals and
enhance the signal-to-noise ratio.

Initially, we used the 5th-order Butterworth band-pass filter
in the frequency range of 0.5~60 Hz to filter the artifacts and
noise from the original EEG signals, this configuration effectively
removes low-frequency drift, baseline fluctuations, and certain

Number of Number of Seizure duration Recordi
channels seizures (s) duration
Pt01 F 11 23 7 442 40.55
Pt03 F 14 23 7 402 38
Pt 05 F 7 23 5 558 39
Pt 09 F 10 23-24 4 276 67.87
Pt10 M 3 23 7 447 50.02
Pt 14 F 9 23 8 169 26
Pt19 F 19 23 3 236 28.93
Pt 20 F 6 23 8 294 27.6
Pt21 F 13 23 4 199 32.83
P23 F 6 23 7 424 26.56
Total - - - 60 3,447 377.36
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FIGURE 2
General structure of the proposed methodology.

power line interference (Shah et al., 2024). The Butterworth filter
is an Infinite Impulse Response (IIR) filter characterized by an
extremely flat frequency response within the passband. The transfer
function of an n_th order Butterworth filter is shown in Equation 1.

) 1

T T e

1
where o, is the cutoff frequency and # is the filter order controlling
the roll-off rate.

To further capture the time-frequency characteristics of the
EEG signals, WT was applied in the experiment. It is widely
employed in signal processing, facilitates signal decomposition into
sub-signals of various scales, thereby capturing local features of the
signal across different frequencies. This transform utilizes a window
function of variable size to decompose a signal. For a signal x(¢), the
expression for Continuous Wavelet Transform (CWT) is shown in
Equation 2.

o 1

CWT(a,b) = / *(j)dt @)
a

. x(1) T
where, 1 is a wavelet function, y*denotes the conjugate complex
of the wavelet function, a and b denote the scale and displacement
parameters, respectively. CWT poses a significant computational
challenge due to the necessity of determining the wavelet transform
function at all scales. DWT offers an efficient solution to this
issue by converting the scaling and displacement parameters into
exponential powers of DWT is shown in Equation 3.

—ky
> o (5

o

If the signal is divided from the delta to the gamma band by

DWT(j, k) = (3)

the traditional method, it cannot adapt to the characteristics of
EEG because of the fixed frequency band. Compared with this
classification, the multi-scale and flexible analysis of DWT can
observe the changes of EEG signals at different scales. In addition,
DWT can effectively remove the noise in EEG signal and provide
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accurate information in time-domain and frequency-domain.
The DWT employed the Daubechies 4 (db4) wavelet because
of its compact support, orthogonality, and smooth waveform,
which make it highly suitable for capturing the transient and
non-stationary characteristics of EEG signals. Its four vanishing
moments enable precise reconstruction of the underlying EEG
rhythms while minimizing boundary distortion during multi-
level decomposition. In the first-stage decomposition, the signal
is processed by the DWT, which successively applies low-pass
and high-pass filters followed by down-sampling. In accordance
with Nyquist’s theorem, the original EEG signal is decomposed
at the first level to yield two sub-bands: Approximation (A1)
and Detail (D1), spanning the frequency ranges of 0 to f;/4
and f; /4 to f; /2, respectively. Likewise, further decomposition
operations are performed on Al, dividing it into the higher-
frequency component D2 and lower-frequency component A2.
Subsequent iterations of decomposition entail further division of
the approximation coefficients through the application of low-
pass and high-pass filters, alongside down-sampling. The schematic
diagram illustrating the five-level discrete wavelet transform of the
EEG signal is depicted in Figure 3. Through five-level DWT, the
EEG signals are converted into sub-bands A5, D5, D4, D3, D2,
and D1, the corresponding frequency ranges of the Bonn dataset
are 0~2.713, 2.713~5.425, 5.425~10.85, 10.85~21.7, 21.7~43.4,
and 43.4~86.8 Hz, respectively, and the corresponding frequency
ranges of the CHB-MIT dataset are 0~4, 4~8, 8~16, 16~32,
32~64, and 64~128 Hz, respectively.

2.2.2 Feature extraction

In this section, we conduct feature extraction for each sub-band
obtained after the DWT for seizure detection. In this study, we
focus on extracting four features from each of the six sub-bands,
emphasizing time-frequency-domain and nonlinear features. These
features include: MAV, STD, PSD, and Fuzzy Entropy (FuEn).
The extracted features are summarized in Table 3. For the
Bonn dataset, which contains single-channel EEG recordings, the
resulting feature matrix has a size of N x 24 (N denotes the
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FIGURE 3
DWT five-level decomposition schematic.

TABLE 3 Detailed description of dataset features.

Datasets Sub-band Extracted

features

Number of
channels

Train/test
ratio

Feature
matrix

Features per
segment

Bonn A5, D1~D5 MAYV, STD, PSD, FuEn

N x 24 0.8/0.2

CHB-MIT A5, D1~D5 MAV, STD, PSD, FuEn

23 552 N x 552 0.8/0.2

number of EEG segments). The CHB-MIT dataset includes 23 EEG
channels, so its feature matrix has a size of N x 552. Each row
represents an EEG segment, and each column corresponds to an
extracted feature. A total of 80% of the feature samples are allocated
to the training set, and the remaining 20% to the test set. The
training set is balanced through a two-stage procedure described
in the following section, while the test set retains the original class
distribution to better reflect the data ratio encountered in clinical
practice.

MAYV, known for its simplicity and effectiveness, offers notable
advantages in capturing abnormal amplitude variations in EEG
signals of epilepsy patients. The mathematical expression for the
MAV is shown in Equation 4.

MAV = £ 3 x| )

where, N represents the number of samples in the EEG signal, and
x(i) denotes the amplitude value of the i sample.

STD, a crucial statistical measure, is primarily employed
to assess the volatility and instability of a signal. It quantifies
the degree of dispersion of signal values relative to the mean
signal value. When abnormal data points exist within the
signal, these outliers typically result in an elevated STD value.
Consequently, monitoring changes in standard deviation enables
effective capture of EEG dynamics to ascertain seizure occurrences.
The mathematical expression for the STD is shown in Equation 5.

STD = \/ % vaz i — %)? 5)

where, N denotes the number of samples in the signal, and x;

signifies the value of the 1" sample.
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PSD of EEG signals serves as a crucial tool for analyzing
changes in the time and frequency domains of brain activity. The
EEG signal consists of multiple frequency components, including
d-waves, O-waves, a-waves, B-waves, and y-waves. Abnormal
spectral characteristics are frequently associated with pathological
states. Thus, by comparing the energy spectral density of patient
groups with that of normal groups, we can more accurately identify
and diagnose brain disorders, facilitating improved screening of
seizure and inter-ictal periods in epilepsy.

Entropy, serving as a characterization metric, is commonly
utilized to depict the uncertainty, disorder, or information content
of a system (Jindal et al., 2019). In time series analysis, entropy
is introduced to describe the complexity and regularity of signals.
Traditional entropy methods often encounter challenges when
delineating boundaries between uncertain and definite classes. To
address this issue, Lotfi Zaden introduced fuzzy theory (Fu et al.,
2020). Fuzzy entropy, as an extension of traditional entropy, is
particularly suitable for the analysis of non-stationary time series
and biomedical signals.

2.2.3 Two-stage data balancing strategy

Data class imbalance remains a critical challenge in EEG-
based epileptic seizure detection, significantly impacting model
performance. In real-world clinical datasets, the number of ictal
samples is substantially lower than that of interictal samples.
Even when overlapping sliding windows are used to augment
data, severe imbalance persists. This pronounced disparity often
leads to biased classification, causing classifiers to be insensitive
to minority class data and thereby degrading performance in
clinical applications. For instance, in the first patient of the CHB-
MIT dataset, there are 25,200 interictal samples compared to
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FIGURE 4

The structure of the proposed CSAE-GRU.

only 435 ictal samples, resulting in a ratio of approximately 60:1.
To address this substantial imbalance, we propose a two-stage
data balancing strategy comprising interictal under-sampling and
ictal oversampling. The detailed implementation of these stages is
described below.

2.2.3.1 Under-sampling stage based on cluster centroids

We first applied a cluster centroid-based under-sampling
method to reduce the number of interictal samples. This technique
leverages k-means clustering to group the interictal data, where the
number of clusters corresponds to the target number of retained
samples. In this study, the sampling strategy parameter was set
to 0.5, ensuring a 2:1 ratio between interictal and ictal samples.
To maintain experimental reproducibility, the random seed was
fixed at 42. Within each cluster, synthetic representative samples
were generated by computing the centroid of the data points,
effectively reducing the volume of interictal data while preserving
essential information.

2.2.3.2 Oversampling stage based on the BLSMOTE
Following the under-sampling process, although the class
distribution was substantially improved, the number of seizure
samples remained insufficient for ideal classification performance.
To address this, we employed the BLSMOTE technique to further
augment the seizure class and achieve complete class balance.
Unlike traditional SMOTE, which performs indiscriminate random
interpolation across all minority samples, BLSMOTE focuses
on generating synthetic samples near the decision boundary.
This targeted oversampling helps avoid redundancy and reduces
the risk of introducing noise from distant or non-informative
regions. Specifically, BLSMOTE first identifies minority class
samples located near the decision boundary and then uses the
KNN algorithm to interpolate between these boundary samples
and their neighboring seizure instances. In our experiment, the
BLSMOTE sampling strategy was set to 1, and the random seed
was fixed at 42 to ensure reproducibility. The generated synthetic
seizure samples were then incorporated into the training set, with
care taken to prevent data leakage. In this study, BLSMOTE
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was applied in the feature space rather than directly on raw
EEG segments. Synthesizing in the feature domain preserves the
physiological interpretability of the data and avoids potential
distortions that may arise when manipulating raw EEG signals.
In contrast, oversampling in the time-domain would require
additional preprocessing steps such as filtering, segmentation, and
feature extraction, thereby increasing computational overhead. By
operating in the feature space, our method enhances computational
efficiency while maintaining the integrity and biological validity of
the dataset.

2.2.4 Classification

In this study, a hybrid model named CSAE-GRU is developed
to achieve reliable epileptic seizure detection by combining
convolutional sparse feature learning with temporal sequence
modeling. The overall structure is shown in Figure 4. The
model begins with a CSAE that is responsible for learning
compact and informative feature representations. The input to
the CSAE consists of the handcrafted features. Before entering
the network, these features are normalized to the range [0, 1]
and reshaped into a four-dimensional tensor of size D* 1 * 1
* N, where D denotes the feature dimension and N the batch
size. The encoder is designed to capture the local dependencies
among neighboring features through convolutional operations,
progressively increasing the number of channels from 1 to 32 and
then reducing it to 16. Each convolutional block includes batch
normalization, a ReLU activation, and dropout regularization to
enhance sparsity and prevent overfitting. The decoder mirrors
the encoder structure, reconstructing the original feature maps
from the latent representation by gradually restoring the channel
dimensions from 16 back to 1. The reconstruction process is guided
by aloss function, as shown in Equation 6.

L= x—%3+%h, (6)

where x represents the original input signal, X represents the
reconstructed signal output by the decoder, / is the encoded feature,
and \ controls the sparsity strength.
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After the CSAE pre-training phase, the encoder weights
used to capture key feature patterns are transferred to two
convolutional blocks. This parameter transfer preserves the learned
spatial structure and accelerates the convergence of the classifier.
The output of the convolutional blocks is flattened into a one-
dimensional vector and passed to a GRU network consisting 64
hidden units. The GRU module plays a central role in capturing
the temporal evolution and contextual dependencies among the
reconstructed EEG feature sequences. Each GRU cell consists of an
update gate and a reset gate that regulate the flow of information
through the network. The update gate controls how much of the
past information is retained, while the reset gate determines how
much of the previous state should be forgotten when processing
a new input. This gating mechanism allows the GRU to effectively
model long-term dependencies and mitigate the vanishing-gradient
problem, which is often encountered in traditional recurrent
neural networks. By processing feature vectors, the GRU captures
transitions between interictal and ictal states, thus enhancing
the model’s ability to distinguish seizure patterns. The final
hidden state of the GRU is fed into a fully connected layer
followed by a softmax activation function to produce the binary
classification output.

The CSAE and GRU components are trained using the Adam
optimizer with an initial learning rate of 0.001. The CSAE is
trained for a maximum of 30 epochs with a reconstruction-
loss threshold as an early-stopping criterion, while the GRU-
based classifier is trained for up to 50 epochs. Dropout
rates of 0.2
are used to further mitigate overfitting. The architecture and

in the autoencoder and 0.5 in the classifier
hyperparameters are kept consistent across all experiments on
both datasets to maintain fair comparisons. The detailed layer
configuration of the proposed CSAE-GRU network is presented
in Table 4. The experimental parameters and training settings
are summarized in Table 5 to ensure the reproducibility of the
proposed framework.

The proposed CSAE-GRU model aims to achieve accurate
and stable epileptic seizure detection through a combination of
sparse feature reconstruction and temporal pattern learning. In this
framework, a CSAE is first used to reconstruct representative EEG

TABLE 4 Detailed layer configuration of the proposed CSAE-GRU model.

CSAE encoder | Convl 3 x 1 kernel, 32 BN-ReLU-Dropout (0.2)
filters
Conv2 3 x 1 kernel, 16 BN-ReLU-Dropout (0.2)
filters
CSAE decoder | Convl 3 x 1kernel, 16 BN-ReLU
filters
Conv2 3 x 1kernel, 1 filter |Regression layer
Transferred Frozen Convl |3 x 1 kernel, 32 BN-ReLU
layers filters
Frozen Conv2 |3 x 1kernel, 16 BN-ReLU
filters
GRU module GRU Hidden units: 64 Dropout (0.5)
Classifier Fully connected |Units: 2 Softmax
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TABLE 5 Experimental setup and training parameters.

Optimizer Adam Adaptive momentum adjustment

Learning rate 0.001 Empirically determined for stable
convergence

Batch size 32 Balances training stability

Epochs 30/50 Maximum training iterations for each
stage

Dropout rate 0.2/0.5 Prevents overfitting and improves
generalization

features, and the learned encoder weights are then transferred to
the subsequent GRU-based classifier. This design allows the model
to retain discriminative information learned during unsupervised
pretraining while improving the generalization ability of the
classifier. Algorithm 1 outlines the entire procedure of the proposed
framework, and Figure 5 presents the flowchart, including the
decision steps for reconstruction loss and validation accuracy
during training.

Algorithm 1 Pseudocode of the proposed epileptic seizure detection
framework.

Input: EEG datasets Hyperparameters: sparsity weight A, reconstruction threshold
T, patience p

Output: Classification results (accuracy, sensitivity, specificity, AUC)

1. Data preprocessing
a. Apply bandpass filtering to remove interference.
b. Split EEG signals into fixed-length segments.

2. Feature extraction and reconstruction
a. Apply DWT to obtain sub-bands A5, D1~D5
b. Calculate time-frequency domain features and nonlinear features

c. Form the feature matrix Xy x number of features» 1abels y

3. Split data into 80% training and 20% testing.

4. CSAE pretraining
a. Build encoder-decoder with sparsity.
b. Train to minimize reconstruction loss: L = ||x — %ll% + AllAlly
c. Stop when L < 1, save encoder parameters W}, for transfer.

5. Weight transfer and GRU training
a. The two convolution blocks call encoder parameters W, .
b. Foreach foldk 1,2,,5
L. Train model using trainy, validate onvaly
II. If validation accuracy does not improve for p epochs, stop training and
restore best weights.

6. Testing Phase
a. Evaluate the trained model on the unseen 20% test set.

b. Compute final metrics: accuracy, sensitivity, specificity, AUC.

3 Results and discussion

3.1 Evaluation indicators

In this study, we employed five essential metrics, namely
accuracy, sensitivity, specificity, precision and FIl score to
evaluate the performance of the proposed automatic seizure
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diagnostic method. These indicators are calculated as shown in
Equations 7-11.

Accuracy (ACC) [P+ TN %)
ccurac =
4 TP+ TN + FP+ FN
TP
Sensitivity (SEN) = —— 8
ensitivity ( ) TP+ EN (8)
TN
Specificity (SPE) = ———— 9
pecificity (SPE) TN + FP %)
o TP
Precision (PRE) = ———— (10)
TP + FP
2TP
Flscore(F1) = —————— (11)
2TP + FN + FP

where, True Positive (TP), False Positive (FP), True Negative (TN)
and False Negative (FN) denote the four classification outcomes,
reflecting the model’s ability to correctly or incorrectly identify
epileptic and non-epileptic samples.

3.2 k-fold cross-validation

In view of the fact that the dataset used in the experiment
was composed of EEG signals recorded by patients under uniform
conditions, and there was no clear topic or category boundary
set in advance, we used the k-fold cross-validation method to
ensure the generality of the test through multiple iterations of
training and verification, and to reduce the possible bias caused
by random division of data. In this paper, the performance of
the model is evaluated using the fivefold cross-validation method.
In this approach, all data are randomly divided into 5 mutually
exclusive subsets. During each iteration, four subsets are randomly
selected for model training, while the remaining subset is reserved
for testing. This process is repeated five times, with each subset
being used as the test set exactly once. Subsequently, the average
performance across all iterations is calculated to assess the overall
model performance.

3.3 Results

3.3.1 Distribution of features

To evaluate the discriminative power of the extracted features,
we visualize them for interpretability. Figure 6 illustrates the
distributions of four representative features extracted from the D3
sub-band across five EEG signal types in the Bonn dataset. As
shown in Figures 6A-C, horizontal breakpoints are introduced
to distinguish the categories. The ictal (type E) signals exhibit
markedly higher values across three features compared to the other
four types. In particular, the PSD reaches nearly 91,000, reflecting
the dramatic energy fluctuations characteristic of seizure activity.
The STD values for healthy signals (types A and B) and interictal
signals (types C and D) remain consistently low with narrow value
ranges, whereas the STD for ictal signals displays considerable
variability. The MAV exhibits a similar trend to PSD, with ictal
signals reaching peak values exceeding 300. Figure 6D presents
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FIGURE 5
Flowchart of the proposed CSAE-GRU algorithm.

the distribution of fuzzy entropy across the five signal categories.
A clear hierarchical structure emerges, where the first four signal
types exhibit relatively low fuzzy entropy values. Notably, type D
signals show the lowest entropy, while type E signals demonstrate
significantly higher fuzzy entropy, indicating increased signal
complexity and disorder during seizure events.

To validate the effectiveness of the proposed two-stage
data balancing strategy, we present a case study using data
from the first patient in the CHB-MIT dataset. Figure 7
illustrates the feature distribution of EEG samples after under-
sampling and oversampling. Specifically, Figure 7A shows the
distribution of interictal samples following cluster centroid under-
sampling, while Figure 7B demonstrates the distributional changes
after applying BLSMOTE-based oversampling. To compare the

frontiersin.org


https://doi.org/10.3389/fnins.2025.1698960
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Xiang et al. 10.3389/fnins.2025.1698960
A e
- \l
-
A A
8 *———.....-.m B L
C C =
D D
3 et 13 m
T T T T T T T T T AL} T T M) T T T
0 20 40 600 300 1000 120 1400 1600 (300 W30 0 S 00 i 4w 450
4) (B
A A
; -—. 8 ‘ ‘
C - C
D D
£ ™ E .—A
T T T T % T T T T
0 0 20 » 40 310 0 1 2 ] 4 5
Q) (D)
FIGURE 6
Ridgeline plot on the Bonn dataset for (A) PSD features, (B) STD features, (C) MAV features, (D) Fuzzy entropy features.

distributional shifts between ictal and interictal samples before
and after balancing, both probability density estimation curves
and histograms are employed. In Figure 7A, the original interictal
sample distribution exhibits pronounced skewness and high
concentration in specific regions. After applying k means-based
cluster centroid under-sampling, the resulting distribution displays
a significant reduction in redundant samples while preserving the
core morphological characteristics of the original feature space.
Compared to conventional random under-sampling, this method
better retains feature diversity and minimizes information loss. As
shown in Figure 7B, the BLSMOTE-generated synthetic samples
exhibit a broader and more dispersed distribution across the
feature space. Unlike standard SMOTE, which performs simple
linear interpolation, BLSMOTE focuses on generating samples in
ambiguous boundary regions, thus capturing more discriminative
information. This enhancement allows the classifier to more
effectively distinguish minority class instances and improves overall
model robustness in imbalanced data scenarios.

Figure 8 presents violin plots of the STD feature extracted
from the D3 sub-band of the Bonn dataset Figure 8A and the
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CHB-MIT dataset Figure 8B. To minimize visual clutter and avoid
confusion from multiple features, we selectively display only one
representative sub-band and feature. As shown in the plots, the
STD values of ictal signals are significantly higher than those
of interictal signals in both datasets. The Bonn dataset exhibits
considerable signal variability, with ictal STD values reaching up
to approximately 400 wV, whereas in the CHB-MIT dataset, the
maximum ictal value is around 120 wV. This discrepancy may
stem from individual differences among patients or underlying
pathological variations between datasets. Additionally, ictal signals
not only exhibit elevated feature values but also display a noticeable
long-tail distribution with extreme outliers. In contrast, interictal
signals are characterized by lower and more stable STD values, with
fluctuations confined to a narrower range. This stark difference
in distribution further highlights the potential of STD as a
discriminative feature for seizure detection.

3.3.2 Experiment results

The experiments were conducted on a computer equipped
with an Intel Core i7-13700KF processor (3.4 GHz), 32 GB RAM,
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and a 64-bit Windows 11 Professional operating system. All
implementations were performed using MATLAB R2022a with its
deep learning and signal processing toolboxes. The computational
cost of the proposed framework depends primarily on the number
of training epochs and feature processing steps. To quantitatively
assess the computational efficiency of the proposed framework,
both execution time and memory utilization were continuously
monitored during training and testing. For the CHB-MIT dataset,
the average runtime per fold was 58.69 s, yielding a total runtime
of 300.83 s across fivefold. For the Bonn dataset, the average
runtime per fold was 1.21 and 6.17 s overall. The MATLAB
memory consumption remained stable at approximately 8.2-8.5
GB throughout all experiments.

The proposed CSAE-GRU model was comprehensively
evaluated on both the Bonn and CHB-MIT datasets. The detailed
results are presented in Figure 9 and Tables 6, 7. In terms of
overall average performance, on the Bonn dataset, the CSAE-
GRU model achieved an average performance of 98.46% ACC,
98.27% SEN, 98.50% SPE, and 98.23% AUC. On the CHB-MIT
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dataset, the model demonstrated even higher performance,
with respective values of 99.49, 99.21, 99.77, and 99.57%. The
CSAE-GRU model achieved 100% SPE in some scenarios. For
example, in the A-E and C-E scenarios of the Bonn dataset, and
in the Pt03 and Pt23 of CHB-MIT, the model can accurately
distinguish non-epileptic EEG signals, which is a critical point in
actual clinical applications. Similarly, the model achieved 100%
SEN in tasks such as D-E and CD-E in the Bonn dataset, as
well as in CHB-MIT subjects Pt03, Pt19, and Pt23, indicating
zero missed detections in these cases. This result highlights
the model’s strong potential to reliably capture seizure-related
patterns, which is of great significance for applications requiring
high sensitivity. Horizontal comparisons across different task
configurations reveal that in more complex A-D and AB-CD
combinations, the boundaries between the two types of signals are
relatively fuzzy. The model’s classification ACC slightly declined
but remained above 95%. This demonstrates the model’s ability to
capture subtle discriminative features through CSAE, even under
complex scenarios. In the CHB-MIT dataset, although the overall

frontiersin.org


https://doi.org/10.3389/fnins.2025.1698960
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Xiang et al.

10.3389/fnins.2025.1698960

(A)

o8

ACC
SPE

SEN
AUC

BE

CDE BC-E ABCDE AD AB-CD

Averaze

98

97

95

ACC
SEE

SEN
AUC

Pt0l P03 P05 P09 Ptl0

FIGURE 9

Ptl4 Ptl9 Pt20 P21 P23 Avemze

Classification results of the proposed CSAE-GRU classifier on the datasets for (A) Bonn dataset, (B) CHB-MIT dataset.

performance was consistently high, a slight performance drop
was observed for subject Pt14. The observed results indicate that
inter-subject variability, such as differences in seizure onset zones,
clinical presentations, and EEG recording configurations, poses
a significant challenge to model generalization and performance.
These observations underscore the need for further optimization
to enhance the model’s adaptability and robustness across diverse
patient populations.

3.3.3 Verification of the effectiveness of the
CSAE-GRU model

To further verify the contribution of each component in the
proposed CSAE-GRU architecture, we compared it with four
additional variants: CNN, GRU, CNN-GRU, and CSAE-MLP. The
results of all metrics are summarized in Table 8. As shown, the
proposed CSAE-GRU consistently achieves the best performance
across all evaluation indicators. Compared with the CNN model,
CSAE-GRU improves ACC by 1.68 and 2.94% on the Bonn
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and CHB-MIT datasets, respectively, while the SEN increases
by more than 3 percentage points. When compared with CNN-
GRU, it is evident that replacing the conventional CNN with the
CSAE module leads to further performance gains in all metrics,
highlighting the noise-robustness advantage of CSAE-based feature
learning. Unlike traditional CNNs, which tend to capture
redundant or noisy spatial patterns, the convolutional sparse
autoencoder enforces sparsity constraints and self-reconstruction
objectives, thereby producing more discriminative and noise-
resistant representations. To evaluate the contribution of temporal
modeling, the GRU layer was replaced with a Multilayer Perceptron
(MLP) while keeping the same CSAE encoder. On the CHB-MIT
dataset, this modification resulted in decreases in several metrics,
with accuracy dropping by 1.67% and specificity by 1.91%, among
others. These results confirm that temporal dependency modeling
is essential, particularly for long, multi-channel EEG sequences
such as CHB-MIT. The GRU effectively leverages the structured
spatial representations provided by CSAE to capture dynamic
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TABLE 6 Specific results of the proposed model on the Bonn dataset.

“Cae ACCO) | SNGO | SEC) | PRED | FG0AUC() |
100

10.3389/fnins.2025.1698960

A-E 99.50 98.33 99.16 98.75 99.89
B-E 99.00 98.11 98.92 98.47 98.29 98.04
C-E 99.50 98.82 100 99.41 99.11 99.15
D-E 99.50 100 99.13 99.56 99.78 99.44
AB-E 98.75 98.06 99.03 98.54 98.30 98.40
CD-E 99.33 100 98.06 99.03 99.51 98.63
BC-E 98.00 97.62 98.95 98.29 97.95 98.24
ABCD-E 98.80 98.90 97.89 98.39 98.65 98.39
A-D 95.50 94.92 97.07 96.00 95.45 95.59
AB-CD 96.75 97.98 95.54 96.76 97.37 96.52
TABLE 7 Specific results of the proposed model on the CHB-MIT dataset.

Case ACC (%) | SEN(%) SPE (%) PRE (%) FL (%) AUC (%)
Pt01 99.52 98.51 99.53 99.02 98.76 99.56
Pt03 100 100 100 100 100 100
Pt05 99.85 99.69 100 99.85 99.77 99.89
Pt09 99.00 98.59 100 99.29 98.94 99.37
Pt10 99.09 98.63 100 99.31 98.97 99.65
Pt14 98.79 99.00 99.00 99.00 99.00 98.97
Pt19 99.67 100 99.20 99.60 99.80 99.55
Pt20 99.31 98.70 100 99.35 99.02 99.25
P21 99.69 99.00 100 99.50 99.25 99.50
Pt23 100 100 100 100 100 100

TABLE 8 Ablation results of different model variants on the datasets.

NN

Bonn C 96.80 95.06 96.84 95.95 95.50
GRU 95.81 95.57 95.83 95.70 95.63

CNN-GRU 97.20 96.30 97.26 96.78 96.54

CSAE-MLP 97.35 97.87 97.34 97.61 97.74

CSAE-GRU 98.48 98.27 98.50 98.36 98.31

CHB-MIT CNN 96.55 94.44 96.64 95.54 94.99
GRU 95.51 97.01 95.24 96.12 96.57

CNN-GRU 98.81 98.15 98.83 98.49 98.32

CSAE-MLP 97.82 97.46 97.86 97.66 97.56

CSAE-GRU 99.49 99.21 99.77 99.49 99.35

seizure-related transitions and suppress temporal noise, leading to
superior overall performance.

In order to further provide an intuitive comparison of the
performance among different classification models, Figure 10
presents the ROC curves of the proposed CSAE-GRU model in
contrast to single CNN and GRU models. Figures 10A, B depict
the average ROC curves obtained from fivefold cross-validation
for the A-E classification task on the Bonn dataset and the Pt01
classification task on the CHB-MIT dataset, respectively. In both
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scenarios, the CSAE-GRU model achieved superior AUC values
of 99.89 and 99.56%, respectively. Its ROC curves lie closer to
the upper left corner, indicating excellent classification capability.
Notably, when the False Positive Rate (FPR) was below 0.02, the
True Positive Rate (TPR) remained above 99%, demonstrating the
model’s ability to minimize missed detections without increasing
false alarms. These results confirm that the CSAE-GRU model
outperforms both standalone CNN and GRU models, further

validating the effectiveness of combining CSAE for robust feature
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TABLE 9 Comparison of the previous methods and proposed method on Bonn dataset.

Papers

Mert and Akan (2018)

Year

2018

‘ Methods

EMD+IMF + PSD

| Case [ACC (%)/SEN (%)/SPE (%)] |

A-E (97.90/100/95.76)

B-E (83.70/78.38/76.66)
C-E (96.40/97.88/94.11)
D-E (93.00/97.88/88.55)

Raghu et al. (2019)

2019

Matrix determinant + SVM/KNN/MLP

B-E (96.06/98.45/93.65)

C-E (97.60/95.75/99.45)
D-E (97.62/94.90/99.45)
AB-E (97.10/95.70/98.50)
CD-E (96.95/97.60/94.30)
ABCD-E (96.52/96.55/96.50)

Al-Hadeethi et al. (2021)

2021

KST +Mann-Whitney U +Covariance Matrix +AB-BP-NN

C-E (99.00/99.00/99.00)
CD-E (98.00/98.00/97.00)
ABCD-E (98.00/99.00/98.00)

Aayesha et al. (2022)

2022

Time domain + Spectrum + Non-linear features + LBP+
Feedforward Neural Network

A-E (96.67/93.33/100)
B-E (91.67/93.33/90.00)
C-E (91.67/90.00/93.33)
D-E (85.00/83.33/86.67)
AB-E (90.00/76.47/98.21)
CD-E (91.11/91.18/91.07)

Liu et al. (2023)

2023

PSD + SVM/KNN/Decision tree (DT)/Linear Discriminant
Analysis (LDA)

D-E (98.50/98.00/99.00)
CD-E (98.70/97.00/99.50)
ABCD-E (98.40/95.00/99.25)

Wang et al. (2023)

2023

Hybrid 3 CNN-1 LSTM

C-E (98.20/NA/NA)
D-E (97.60/NA/NA)
CD-E (97.90/NA/NA)

Huang et al. (2024)

2024

TCNN-SA

A-E (97.37/94.88/99.91)
B-E (93.50/88.07/99.00)

Mekruksavanich et al. (2024)

2025

CNN+ ResBiGRU+ CBAM

A-E (99.00/99.00/99.00)
B-E (99.00/99.00/99.00)
C-E (97.50/97.50/97.50)
D-E (98.50/98.50/98.50)

This work

2025

DWT + STD + PSD + MAV + Fuzzy entropy +CSAE-GRU

A-E (99.50/98.33/100)

B-E (99.00/98.11/98.92)

C-E (99.50/98.82/100)

D-E (99.50/100/99.13)
AB-E (98.75/98.06/99.03)
CD-E (99.33/100/98.06)
BC-E (98.00/97.62/98.95)
ABCD-E (98.80/98.90/97.89)
A-D (95.50/94.92/97.07)

AB-CD (96.75/97.98/95.54)

Frontiers in Neuroscience

15

frontiersin.org



https://doi.org/10.3389/fnins.2025.1698960
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Xiang et al.

10.3389/fnins.2025.1698960

TABLE 10 Comparison of the previous methods and proposed method on CHB-MIT dataset.

Papers Year Methods ACC (%) SEN (%) SPE (%) ‘
Wei et al. (2019) 2019 CNN+ Raw data 70.68 92.30
k CNN+MIDS data NA 74.08 92.46
CNN+ Data augmentation 72.11 95.89
Tian et al. (2019) 2019 FFT+WPD+PCA+CNN 98.30 96.70 99.10
Zanetti et al. (2020) 2020 Band power+5 Entropy +RF NA 96.60 92.50
Peng et al. (2021) 2021 Stein kernel-based sparse representation 98.21 97.85 98.57
Li and Chen (2021) 2021 FFT+2D matrix+ SVM 98.47 98.28 98.50
Hu et al. (2021) 2021 MAS+MPSD+WPF+DNN+HNN 98.97 NA NA
Zhang et al. (2022) 2022 DWT +Specific band energy +BiGRU 98.49 93.89 98.49
Tang et al. (2024) 2024 Path signature + BiLSTM+ AM 99.09 99.28 98.95
Shah et al. (2024) 2024 DWT+RNN 93.27 90.10 96.53
Huang et al. (2025) 2025 CNN-BiLSTM + STFFDA 92.42 92.42 NA
This work 2025 DWT + STD +PSD + MAV + Fuzzy entropy +CSAE-GRU 99.49 99.21 99.77

extraction with GRU networks for temporal sequence modeling.
The integration of spatial sparsity and temporal dependency
contributes to the model’s superior discriminative power in EEG-
based seizure detection tasks.

3.4 Discussion

In order to evaluate the effectiveness of our proposed CSAE-
GRU classification method compared to other methods, we have
compared the method proposed in this paper with the methods
proposed in the literature in recent years. Table 9 lists the results
of a wide variety of methods proposed in recent years on the
Bonn dataset compared to the method proposed in this paper.
It is clear from the table that among all the proposed methods,
our study achieves higher results. Raghu et al. (2019) and Al-
Hadeethi et al. (2021) have extracted mathematical features of
EEG signals based on linear algebra using matrices combined with
algorithms to classify them, and they have achieved more than 95%
of the classification results. Wang et al. (2023) proposed CNN-
LSTM classification method which achieved more than 97.6% ACC
in binary classification task, but the rest of the metrics are not
mentioned. Recently in Liu et al. (2023)s study also used PSD as
features and added linear discriminant analysis on top of SVM
and KNN. Ultimately, an ACC of 98.5% was achieved on D-E
grouping, which is 1% lower compared to the ACC of our proposed
method on D-E grouping. They reported an average computational
time of 0.0111 s per 10-s EEG epoch. This value reflects the
processing time for each individual segment rather than the total
training or testing duration, and no information regarding memory
utilization was provided. In contrast, the proposed CSAE-GRU
model achieved an end-to-end runtime of 6.17 s on the Bonn
dataset. Huang et al. (2024) extracted time-varying features from
EEG signals using a Temporal Convolutional Neural Network (T-
CNN), and then employed a Self-Attention (SA) Layer to weigh the
importance of these features. The method achieved classification
ACC 0f 97.37 and 93.5% on the A-E and B-E datasets, respectively.
However, it is worth noting that the study only designed two
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classification experiments, limiting the validation of the method’s
generalization capability. Mekruksavanich et al. (2024) enhanced
sequential modeling by incorporating residual connections into the
BiGRU architecture and further improved feature discriminability
through the integration of the Convolutional Block Attention
Module (CBAM). While their model achieved slightly higher
SEN and SPE in the B-E classification task, it demonstrated
inferior performance across the remaining groups compared to our
proposed approach.

Table 10 lists the compared results of our proposed method
and other methods in recent years on the CHB-MIT dataset.
Wei et al. (2019) designed an automatic seizure detection method
based on the ability of CNNs to automatically extract and learn
features, and designed a 12-layer CNN for classification. The CNN
classification method that introduces MIDS and data enhancement
has an increase in SEN and SPE compared with the original CNN
classification method, but it is still lower than the method we
proposed in this paper. Peng et al. (2021) also proposed a method
for automatic diagnosis of epileptic seizure. Their EEG samples
required approximately 0.26 s from preprocessing to outputting the
class label. Unfortunately, the authors only reported the processing
time for a single sample and did not specify the total execution
time. Hu et al. (2021) achieved 98.97% ACC in his study using
Deep Neural Network (DNN) for fusion of extracted features and
then Hopfield Neural Network (HNN) for classification, however,
only the accuracy of the proposed method was reported. We also
refer to the study of Zhang et al. (2022) who first transformed
the EEG signal using DWT, calculating the relative energy of
specific wavelet bands as features, and then implemented automatic
epilepsy detection using a BiGRU network, which achieved an
ACC of 98.49% and a SEN of 93.89%. In addition, Tang et al.
(2024) proposed a BiLSTM with an AM using Path signature
to extract more representative features, achieving 99.09% ACC.
They reported that the feature extraction process took 0.09-3.22 s,
whereas the total execution time and memory utilization were not
specified. Huang et al. (2025) introduced a novel framework Spatio-
Term Feature Fusion with Dual Attention (STFFDA), employing
CNN and BiLSTM networks to jointly capture spatial dependencies
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and temporal dynamics within raw EEG data. Comprehensive
evaluation using 10-fold cross-validation on the CHB-MIT dataset,
achieving both an ACC and SEN of 92.42%.

4 Conclusion

In this study, an advanced automatic detection method
for epileptic seizure is introduced. To mitigate class imbalance
commonly observed in EEG-based seizure datasets, we employ
a novel two-stage data balancing strategy that combines cluster
centroid-based under-sampling and BLSMOTE oversampling.
Furthermore, we innovatively propose a hybrid classification
model that combines CSAE with GRU network. By transferring
the pre-trained sparse encoder weights to the classification stage,
the model enhances the extraction of discriminative sparse
features and improves generalization capability across diverse
subjects. Extensive experiments conducted on both the Bonn
and CHB-MIT datasets demonstrate that the proposed method
achieves high accuracy, sensitivity, and specificity, outperforming
The
inherently simple to implement and operates independently
thus
reducing computational overhead and implementation complexity

conventional single-structure models. framework is

of additional hyperparameter optimization strategies,

while maintaining superior detection performance.

5 Limitations and future work

Although the proposed CSAE-GRU framework has shown
excellent performance in automatic seizure detection, several
factors may limit its broader applicability. The experiments were
conducted on two publicly available EEG datasets, which are widely
used for benchmarking but do not fully capture the variability
and artifacts typically present in clinical EEG recordings. In
addition, the current work addresses only binary seizure detection,
separating interictal and ictal conditions. In the next stage of our
research, we aim to expand the model to classify multiple seizure
types and to test it on larger, more heterogeneous clinical datasets.
We also plan to design lighter network versions that can run
efficiently in real time on portable or embedded EEG devices.
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