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Understanding how the human brain differentiates between active engagement

and passive observation is a fundamental question in cognitive neuroscience.

Using a matched-stimulus driving paradigm to isolate engagement from sensory

input, we recorded whole-brain EEG while participants performed a manual

control task and passively viewed a replay of their own performance. Manual

control elicited distinct spectral signatures, including stronger frontal midline

theta power and, paradoxically, greater occipital alpha power, consistent

with heightened cognitive control and active attentional filtering. While a

classifier could distinguish these states with high within-subject accuracy,

performance declined in cross-subject validation, highlighting inter-individual

variability. These findings delineate the distinct neural signatures of active

versus passive engagement under controlled conditions. This work establishes a

foundational neurophysiological baseline that can inform research on cognitive

state monitoring and the design of neuroadaptive systems in complex human-

machine interaction.

KEYWORDS

electroencephalography (EEG), neural engagement, driving simulation, brain machine
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1 Introduction

Humans frequently alternate between active interaction with their environment and
passive observation of external events. These shifts in engagement may appear effortless but
are supported by distinct neural mechanisms. Understanding how the brain differentiates
between these engagement modes and how it manages transitions between them is a
fundamental question in cognitive neuroscience and neuroengineering.

Contemporary theoretical frameworks suggest that active control requires top-down
cognitive processes, including ongoing model updating, error monitoring, and attentional
allocation. In contrast, passive states are associated with reduced executive activity and
diminished sensory processing. Predictive coding theory posits that the brain minimizes
prediction errors by continuously refining internal models through perception and action
(Friston, 2010). Active behavior reflects this process of inference, while passive states
permit predictive stability with minimal cognitive demand. Additionally, cognitive load
theory indicates that task complexity modulates neural resource allocation, such that more
demanding tasks require greater executive control (Borghini et al., 2014; Gevins et al.,
1997). Accordingly, predictive coding provides a unifying framework for our hypotheses:
manual driving requires continuous prediction updating and error minimization, which
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should manifest as elevated frontal theta and stronger fronto-
parietal engagement. By contrast, passive replay stabilizes 
predictions with minimal updating demands, leading to 
attenuated executive activity and reduced reliance on 
occipito-parietal alpha gating. 

Electroencephalography oers well-characterized spectral 
markers that map onto core control and attention processes 
in dynamic tasks. Frontal midline theta (4–8 Hz) indexes 
cognitive control and conflict/error monitoring and reliably 
scales with control demands and proactive/reactive regulation in 
fronto-parietal circuits (Cavanagh and Frank, 2014; Eisma et al., 
2021). Occipital–parietal alpha (8–12/13 Hz) reflects attentional 
selection: alpha desynchronization accompanies enhanced sensory 
processing, whereas alpha synchronization implements top-down 
inhibitory gating of task-irrelevant input (Clayton et al., 2015; 
Jensen, 2024; Jensen and Mazaheri, 2010; Klimesch, 2012). In the 
sensorimotor system, mu (8–13 Hz) and beta (13–30 Hz) track 
motor preparation and sensorimotor integration–mu ERD and 
beta modulation accompany movement execution and predictive 
control (Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller 
and Neuper, 1997). These markers have been leveraged to index 
engagement in realistic settings, including driving paradigms 
(Borghini et al., 2014; Lin et al., 2008; Walshe et al., 2023), 
and provide a principled basis for our hypotheses linking 
manual control to elevated frontal-theta (control allocation) and 
mode-dependent alpha dynamics (attentional gating), alongside 
motor-band changes related to action readiness. 

In the present matched-stimulus design, we therefore predicted 
stronger frontal-midline theta during manual control (reflecting 
greater control allocation) and systematic alpha modulation in 
occipital–parietal cortices (reflecting top-down filtering) relative 
to passive replay, with mu/beta changes indexing sensorimotor 
demands. Consistent with these band-specific roles, fronto-parietal 
coupling in theta/beta ranges is also implicated in coordinating 
executive control with visuospatial processing during naturalistic 
action (Cooper et al., 2015). 

Despite this evidence, previous studies have often confounded 
engagement mode with sensory input. For example, comparing 
manual control with passive video observation introduces 
uncontrolled dierences in visual motion, vestibular input, and 
auditory cues. These factors limit interpretability and reduce 
ecological validity. Furthermore, real-world studies have reported 
mixed eects of automation on engagement, influenced by task 
realism, interface design, and individual dierences (Merat et al., 
2014; Parasuraman and Manzey, 2010). 

The objective of this study is to identify and characterize 
the neurophysiological signatures of active control and passive 
observation under matched sensory conditions, and to quantify 
the cognitive demands of transitioning between these modes. To 
achieve this, we employed a matched-replay paradigm in which 
participants completed a manual driving task and then passively 
viewed a replay of their performance. Because visual stimuli were 
identical across conditions, any dierences in brain activity can be 
attributed to engagement mode rather than sensory variance. 

We analyzed electroencephalographic data using a multi-
layered approach. First, we evaluated spectral dynamics, focusing 
on frontal theta and occipital alpha as indicators of cognitive 
control and visual attention. Second, we assessed functional 
connectivity to examine how brain networks reorganize across 

conditions (Bastos et al., 2015). Third, we applied machine learning 
to test whether these neural signatures can support accurate 
classification of cognitive state (Lotte et al., 2007; Roy et al., 2019). 

Our findings indicate that manual control is associated with 
increased frontal theta power, greater occipital alpha power, 
and enhanced fronto-parietal connectivity, reflecting eortful, 
goal-directed engagement. In contrast, passive observation is 
characterized by a more modular, disengaged network state. 
These dierences are amplified under higher task complexity, 
suggesting that re-engagement from passive to active control 
imposes measurable cognitive demands (Neubauer et al., 2012; 
Parasuraman and Manzey, 2010). 

By establishing a clear neurophysiological distinction between 
engagement modes under tightly controlled conditions, this study 
provides a foundation for future work on dynamic cognitive state 
monitoring. It also informs the design of neuroadaptive systems 
that respond appropriately to fluctuations in human engagement 
during complex tasks. 

2 Materials and methods 

2.1 Participants 

Eleven healthy adults (8 males, 3 females; mean 
age = 25.9 ± 2.7 years, range: 22–30) participated in the study. 
All had normal or corrected-to-normal vision and no history of 
neurological or psychiatric conditions. Nine participants reported 
real-world driving experience (mean = 4.8 ± 2.8 years), and five 
had prior exposure to driving simulation games; this background 
information was collected for exploratory purposes. All procedures 
were approved by the Institutional Review Board of the Institute of 
Science Tokyo and conducted in accordance with the Declaration 
of Helsinki. Written informed consent was obtained from all 
participants, who were recruited from the university community 
and received monetary compensation for their participation. 

2.2 Experimental design and procedure 

2.2.1 Driving simulator setup 
The experiment was conducted using the commercial racing 

simulation software Assetto Corsa: Competizione on the Monza 
racing circuit. This software is widely used in research and training 
contexts because it provides realistic vehicle dynamics, high-fidelity 
track environments, and a replay function that allows identical 
visual stimuli to be presented across active and passive conditions. 
These features made it well-suited for isolating engagement eects 
while maintaining ecological validity. The simulator setup included 
a steering wheel and pedal system mounted on a racing seat 
to provide realistic control and immersion. Visual stimuli were 
presented on a widescreen monitor positioned at eye level. 
A video camera recorded both the participant and the driving 
scene to enable behavioral analysis and synchronization with EEG 
recordings. All sessions were carried out in a controlled laboratory 
environment. To minimize environmental confounds, the room 
was kept quiet with curtains closed to block external light sources, 
and the monitor brightness and contrast were fixed across sessions. 
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Ambient illumination and temperature were maintained constant, 
and participants were seated at a fixed distance from the screen to 
ensure consistent visual conditions. 

2.2.2 Experimental conditions 
A 2 (Driving Mode: Manual vs. Automated (AD -

replay)) × 2 (Task Complexity: Easy vs. Hard) within-subjects 
factorial design was used. 

In the Manual Driving (MD) condition, participants actively 
controlled the vehicle’s speed and steering using a racing simulator 
while completing laps on the Monza circuit. In the Automated 
Driving - Passive Replay (AD-replay) condition, participants 
viewed a replay of their own preceding MD session on the same 
setup, adopting the role of a supervisory passenger without any 
control authority. This framing reflects common terminology in 
automated driving research, emphasizing monitoring, situational 
awareness, and takeover readiness. Participants were instructed 
to place both hands on their knees and keep their feet away 
from the pedals, refraining from touching the steering wheel or 
performing any overt driving-related actions. At the same time, 
because the replay reflected their own prior driving trajectory, they 
were encouraged to remain mentally engaged with the unfolding 
task, monitoring the traÿc scene and anticipating upcoming curves 
as if overseeing an automated driving system. In this sense, 
motor imagery was neither explicitly required nor prohibited, but 
participants were asked to maintain an engaged supervisory stance 
rather than a purely passive viewing mode. The experimenter 
monitored participants throughout the AD-replay session to ensure 
compliance with these instructions. 

This replay approach ensured identical visual input across 
conditions (see Section “2.2.3 Experimental task and procedure”). 
Task complexity was defined based on track geometry, with 
segment labels manually annotated during the MD session and 
reused for the AD-replay playback. This classification followed 
prior evidence indicating that curved roads impose greater 
cognitive and sensorimotor demands than straight segments due 
to the need for continuous steering, speed regulation, and spatial 
monitoring (Mecheri et al., 2022; Vos et al., 2023; Wascher 
et al., 2018). And the Monza circuit is a classic motorsport track 
frequently used in Formula 1 and GT racing, and its geometry is 
well documented. This allowed us to reference established track 
data when defining Easy (straight) and Hard (curved) segments, 
facilitating objective validation of our manual annotations. Easy 
segments consisted of long, straight sections requiring minimal 
steering and modest acceleration, while Hard segments involved 
sharp or sustained curves necessitating braking, precise control, 
and heightened attentional engagement. Each lap included a 
predefined sequence of Easy and Hard segments (approximately 
10 versus 10 per lap, respectively). Segment onset and oset 
markers indicating transitions between Easy and Hard segments 
were manually annotated based on track geometry and precisely 
synchronized with EEG recordings. The track segmentation and 
synchronization procedure are illustrated in Figure 1b. 

2.2.3 Experimental task and procedure 
Upon arrival, participants were verbally briefed on the 

experimental procedure, completed a driving history questionnaire, 
and provided written informed consent. They then completed a 

supervised practice session in the Manual Driving (MD) mode (10– 
20 min) to ensure familiarity with the simulator and consistent lap 
performance. Following practice, EEG preparation was completed 
(see Section “2.3 EEG data acquisition”), and continuous EEG and 
synchronized video recording commenced. 

The experiment began with the MD session, during which 
participants drove 4–7 laps (∼15–20 min) while a researcher 
manually inserted event markers denoting the onset and oset 
of predefined Easy and Hard segments. After a 5 to 10-min 
rest, participants completed the AD-replay session by viewing a 
playback of their own MD run. Consistent with the instructions 
described in Section “2.2.2 Experimental conditions,” they were 
asked to adopt the role of supervisory passengers without 
control authority, to monitor the replay as if overseeing an 
automated driving system, and to remain mentally engaged while 
refraining from any overt driving-related actions (e.g., touching 
the wheel or pedals). The experimenter monitored participants to 
ensure compliance. 

This AD-replay paradigm, based on passive replay of self-
driven sessions, was designed to maximize control over visual and 
temporal stimulus properties while inducing a cognitive stance 
closer to supervisory monitoring than to purely passive viewing. 
This allowed the isolation of neural activity dierences attributable 
to driver engagement mode (active vs. supervisory observation) 
while holding sensory input constant. We note that this approach 
does not fully emulate the cognitive demands of SAE Level 
2–3 automated driving (e.g., continuous system monitoring or 
real takeover readiness). Rather, it represents a minimal-control, 
supervisory baseline against which the neural correlates of active 
manual driving can be compared under varying complexity. 

The complete experimental setup–including the driving 
simulator configuration, EEG acquisition system, driving modes 
(MD vs. AD-replay), electrode layout, track segmentation, and 
experimental timeline–is illustrated comprehensively in Figure 1. 

2.3 EEG data acquisition 

Electroencephalography signals were recorded from twenty-
nine scalp electrodes arranged according to an extended 10–20 
electrode montage, with 2 ear electrodes serving as the online 
reference during acquisition. Electrode placement corresponding 
to the Cognionics Quick-30 wireless EEG headset is illustrated in 
Figure 1a. Data were sampled at 500 Hz using CGX Acquisition 
software. 

Prior to recording, electrode impedance was monitored in 
real time and adjusted to remain within the manufacturer’s 
recommended range (200–400 k) (Chi et al., 2012; Lopez-
Gordo et al., 2014). The CGX Acquisition software also provided 
automatic bad-channel flagging, which was monitored during 
preparation to ensure stable signals. Continuous EEG data were 
collected throughout the entire duration of the driving tasks. 

2.4 EEG data preprocessing 

Electroencephalography preprocessing was conducted 
in MATLAB using the EEGLAB toolbox (v2023.1; Swartz 
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FIGURE 1 

Experimental setup and protocol for EEG-based driving simulation. (a) Illustration of the driving simulation environment. Participants used a realistic 
racing simulator (Assetto Corsa: Competizione), consisting of an F-GT lite racing chair, steering wheel, and pedal controls. EEG data were recorded 
using a Cognionics Quick-30 wireless dry-electrode headset with 29 scalp channels; two earlobe electrodes (A1/A2) served as online reference (31 
electrodes in total). Analyses used the 29 scalp channels. The inset details the electrode layout. Two distinct modes were employed: Manual Driving 
(MD), in which participants actively engaged with the controls, and Automated Driving - Passive Replay (AD-replay), in which participants passively 
monitored a replay of their own previous driving session without physical interaction. (b) Depiction of the Monza circuit layout, delineating the 
predefined “EASY” and “HARD” complexity segments. Segment markers were synchronized with EEG recordings. The bottom timeline illustrates the 
experimental protocol: Practice, MD, AD-replay, and Data Merge/Rest phases. EEG data from both modes (MD and AD-replay) and both 
complexities (EASY and HARD) were analyzed to differentiate cognitive states associated with active control and passive monitoring. 

Center for Computational Neuroscience, UCSD) (Delorme and 
Makeig, 2004). Continuous recordings from MD and AD-replay 
sessions were segmented to exclude non-task periods, retaining 
approximately 15–18 min of data per session. Event markers 
corresponding to Easy and Hard segments were synchronized with 
each participant’s EEG data. Standard 10–20 coordinates were 
assigned to the 29-scalp-channel Cognionics system (Cognionics 
Inc., San Diego, CA, USA), and for source-level analysis, electrode 
positions were co-registered to a standard template; analyses 
were limited to the 29 recorded scalp EEG channels. Signals 
were re-referenced to the average of the A1 and A2 earlobe 
electrodes, and band-pass filtered between 2 and 36 Hz using 
a finite impulse response (FIR) filter to remove drift and noise. 
Independent Component Analysis (ICA) was performed using the 
Infomax algorithm, and components were classified with ICLabel 
(Pion-Tonachini et al., 2019). Only those with greater than 80% 
probability of reflecting brain activity were retained; artifactual 
components (e.g., eye movements, muscle, cardiac) were removed 
prior to signal reconstruction. To further assess the potential 
impact of residual artifacts, we quantified the number of ocular 
and muscle components across conditions and evaluated classifier 
robustness under dierent ICA retention thresholds; detailed 
results are provided in Supplementary Tables 1, 2. 

2.5 EEG data analysis 

2.5.1 Source localization analysis 
Cortical source localization was performed using distributed 

source modeling implemented in MNE-Python (v1.9.0) (Gramfort 
et al., 2013). EEG data were re-referenced to the average reference 
by computing projection operators to improve inverse solution 
stability. Epochs spanning −0.4 to 1.6 s relative to the onset of Easy 

and Hard segments were extracted and baseline-corrected using 
the −0.2 to 0 s window. Standard 10–20 electrode locations (29 
scalp channels with 2 reference channels) were used. (Electrodes: 
Fp1/2, AF3/4, F3/z/4/7/8, FC5/6, C3/z/4, T7/8, CP5/6, P3/z/4/7/8, 
PO3/4/7/8, O1/2). This configuration provides coverage across 
frontal, central, temporal, parietal, and occipital regions, and largely 
overlaps with commonly used 32-channel montages, with the 
exception of some midline/posterior sites (e.g., Oz, POz, CP1, CP2) 
and the inclusion of additional lateral–posterior sites (PO3, PO4, 
PO7, PO8). Prior work has shown that while high-density EEG 
(64–128 channels) improves fine-grained localization, distributed 
inverse solutions such as dSPM yield robust and interpretable 
results with moderate-density montages (25–32 channels), where 
the main accuracy gain occurs compared to sparse (<20) arrays 
(Hedrich et al., 2017; Mahjoory et al., 2017; Song et al., 2015). 
Given that our analyses focused on condition-dependent contrasts 
at the group level rather than millimeter-accurate single-dipole 
localization, the use of 29 channels is appropriate. Moreover, 
this portable system was selected to balance source estimation 
accuracy with experimental feasibility, allowing shorter preparation 
time and greater participant comfort during prolonged simulated 
driving sessions. 

In the absence of individual MRIs, electrode positions from 
the extended 10–20 montage (29 scalp channels with 2 references) 
were mapped to the fsaverage template using MNE’s rigid transform 
(trans = “fsaverage”) based on nasion/LPA/RPA fiducials; alignment 
was visually inspected. Template-based co-registration introduces 
systematic localization uncertainty due to inter-subject anatomical 
variability. For 10–20 layouts, group studies report cortical 
projection variability on the order of several millimeters (typically 
within ∼5–10 mm); for denser 10–10 layouts, comparable per-axis 
dispersions in this range have also been observed. We therefore 
treat anatomical labels as putative regional estimates rather than 
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precise loci (e.g., putative mPFC/ACC; putative PPC) (Koessler 
et al., 2009; Okamoto et al., 2004). 

The forward model was constructed based on the fsaverage 
template and a three-layer Boundary Element Model (BEM) 
accounting for scalp, skull, and brain conductivities. Unless 
otherwise noted, tissue conductivities followed standard values 
(scalp = 0.30 S/m, skull = 0.006 S/m, brain = 0.30 S/m; skull-
to-brain ≈ 1:50). The cortical source space was defined using 
oct6 spacing, yielding approximately 10,242 source locations 
per hemisphere. (For reference, an oct-6 grid corresponds to 
∼8,196 dipoles in total–∼4,098 per hemisphere–with orientations 
constrained normal to the cortex; our analyses used the cortex-
normal component). EEG sensor positions were co-registered to 
the head model via a standard transformation. The EEG forward 
operator (29 channels) had a condition number of ∼4.8 × 101 , 
indicating good numerical conditioning under this head model. 

Noise covariance matrices were estimated from the baseline 
period for each participant and condition. The inverse operator was 
computed using these covariances and the forward model. Source 
activity was reconstructed using dynamic statistical parametric 
mapping (dSPM), incorporating a loose orientation constraint 
(looseness = 0.2), depth weighting (0.8), and an assumed signal-
to-noise ratio (SNR) of 3.0 (λ2 = 1/SNR2) (Numerically, SNR = 3 
implies λ2 = 0.111). The resulting inverse solutions were applied 
to each epoch, and only the component of activity normal to the 
cortical surface was retained. Source time courses (STCs) were 
averaged across epochs within each condition (MD-Easy, MD-
Hard, AD-replay-Easy, AD-replay-Hard) to generate participant-
level estimates for group-level analysis. Given the montage and 
template anatomy, anatomical labels are reported as putative 
regional estimates (e.g., putative mPFC/ACC; putative PPC) rather 
than millimeter-accurate loci; reported spatial resolution in similar 
EEG settings is on the order of ∼10–15 mm for superficial cortex 
and ∼20–30 mm for deeper sources (Lantz et al., 2003). To 
provide converging evidence independent of inverse assumptions, 
we additionally report sensor-space topographies (condition 
means and contrasts; Supplementary Figure 3, Sensor-space 
topographies for all contrasts), which qualitatively corroborate the 
source-level patterns (e.g., frontal/occipital increases during MD, 
posterior/parietal increases during AD). 

2.5.2 Group-level source activity and region of 
interest (ROI) analysis 

To assess population-level cortical dynamics and test the 
study’s hypotheses, participant-level average Source Time Courses 
(STCs; see Section “2.5.1 Source localization analysis”) were 
aggregated to generate grand-average STCs for each of the four 
conditions (MD-Easy, MD-Hard, AD-replay-Easy, AD-replay-
Hard). Contrast STCs were computed to isolate eects of driving 
mode and task complexity: MD-Easy minus AD-replay-Easy, MD-
Hard minus AD-replay-Hard, MD-Hard minus MD-Easy, and 
AD-replay-Hard minus AD-replay-Easy. These contrast maps were 
used to identify condition-specific dierences in cortical activation. 

For examination of the anatomical specificity of these eects, 
a region-of-interest (ROI) analysis was conducted. ROIs were 
defined based on the Desikan-Killiany atlas on the fsaverage 
cortical template and included the Motor Cortex (precentral gyrus, 
paracentral lobule, supplementary motor area), Frontal Midline 

(superior, middle, and medial frontal gyri), Occipital Cortex (e.g., 
cuneus, lingual gyrus), and Posterior Parietal Cortex (PPC; superior 
and inferior parietal lobules). For each contrast, mean dSPM values 
within each ROI were extracted over time using MNE-Python, 
yielding condition-specific ROI time courses for further statistical 
testing (see Section “2.6 Statistical analysis”). 

Analyses focused on the 0.1–0.8 s window following segment 
onset, selected to capture cognitive processes relevant to task 
engagement. This interval encompasses several well-documented 
functions. Error and conflict monitoring typically emerge within 
100–300 ms in medial frontal regions, reflected in early negative 
deflections such as the ERN/N2 (Botvinick et al., 2001; Overmeyer 
et al., 2021; Ridderinkhof et al., 2004). Compensatory visual 
processing unfolds from approximately 150 ms onward, including 
occipital P1/N1 components that index sensory updating (Luck 
and Vogel, 1997). Attention modulation in parietal and frontal 
networks is recruited around 200–500 ms, reallocating resources 
under changing task demands (Corbetta and Shulman, 2002), 
and more recent reviews highlight sustained visual attention 
mechanisms in similar time frames (Huang et al., 2023). Executive 
control processes such as goal maintenance and top-down 
regulation are expressed in midfrontal theta activity across 200– 
600 ms (Cavanagh and Frank, 2014; Miller and Cohen, 2001). 
Finally, visuospatial attention is strongly engaged within 300– 
600 ms in parietal and occipital cortices to support spatial tracking 
and sensorimotor integration (Corbetta and Shulman, 2002; Tosoni 
et al., 2023). Taken together, these temporal landmarks justify our 
choice of the 0.1–0.8 s analysis window, as it captures the cascade 
of perceptual, attentional, and executive operations most critical for 
dierentiating engagement states. 

Beyond these procedural definitions, it is also important 
to clarify the rationale for our ROI grouping strategy. The 
ROI definitions were theory-driven and tailored to the primary 
aim of identifying neural signatures of driving engagement. 
Frontal midline and motor regions were emphasized for mode 
contrasts (MD vs. AD-replay), whereas posterior parietal and 
prefrontal regions were prioritized for task complexity (Hard vs. 
Easy). Although finer atlas-based subdivisions (e.g., M1 vs. SMA, 
V1 vs. V2–V3) could in principle be analyzed separately (see 
Figure 2c), we aggregated them into six functionally coherent 
ROIs. This grouping reduces the multiple-comparison burden and 
increases statistical power given our modest sample size (N = 11), 
while remaining consistent with prior EEG/neuroimaging work 
emphasizing functional groupings such as frontal midline theta, 
motor µ/β, and occipital α. Importantly, each functional ROI was 
derived from anatomically validated subdivisions (e.g., Motor ROI 
included precentral gyrus, paracentral lobule, SMA; Occipital ROI 
included cuneus and lingual gyrus), ensuring anatomical validity 
while allowing hypothesis-driven functional grouping. 

To further substantiate this choice, we conducted internal 
consistency checks across subregions (e.g., M1 vs. SMA, V1– 
V3, dlPFC vs. vmPFC). These subregional consistency analyses 
are visualized in Supplementary Figure 1, which summarizes 
(a) visual cortex (V1–V3) MD vs. AD-replay contrasts showing 
consistent activation trends, and (b) frontal midline (dlPFC 
vs. vmPFC) responses exhibiting comparable complexity eects 
across engagement modes. We validated regional groupings 
using three complementary metrics: (1) directional agreement of 
activation eects (>80% threshold), (2) inter-subregional temporal 
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FIGURE 2 

Cortical activation differences between manual and automated driving. (a) Group-averaged cortical activation maps (MD minus AD-replay) under 
easy (top) and hard (bottom) road conditions, visualized from lateral and medial views. Red and blue indicate stronger activity during manual and 
automated driving, respectively. Values reflect mean dSPM (z-scored SNR) across epochs. (b) Example participant (sub-2) showing spatially 
consistent activation patterns with the group results, including increased mPFC and occipital activity during MD and enhanced parietal activity 
during AD-replay. (c) Schematic of the left hemisphere displaying the functional ROIs examined in this study. Lateral and medial views highlight 
mPFC, DLPFC, ACC, M1, SMA, PPC, and V1–V3. ROI abbreviations and colors match those used in statistical analyses. Whole-brain maps are shown 
in arbitrary units (a.u.) for descriptive visualization. 

correlations (r > 0.5), and (3) one-way ANOVA testing for 
subregional dierences (p > 0.05 indicating homogeneity). The 
results indicated that subregions within each broader ROI exhibited 
highly similar activation trends, significant temporal correlations, 
and no systematic dierences in ANOVA testing. This convergence 
supports the robustness of the chosen grouping scheme and 
confirms that the broader ROIs adequately capture the complexity 
eects without obscuring meaningful subregional divergence. 
While finer parcellations may provide additional insights in larger 
cohorts or multimodal studies, the present grouping strikes the 
most appropriate balance between anatomical specificity, statistical 
robustness, and interpretability for the current research aims. 

2.5.3 Frequency domain analysis (power and 
ERD/ERS) 

Frequency-domain analyses were conducted on ROI time 
courses derived from group-level contrast STCs (see Section 
“2.5.2 Group-level source activity and region of interest (ROI) 
analysis”) to investigate oscillatory activity associated with driving 
mode and task complexity. Four canonical EEG frequency bands 
were analyzed: Theta (4–7 Hz), Alpha (8–12 Hz), Mu (8– 
13 Hz, specific to the Motor Cortex), and Beta (13–30 Hz), 
based on their relevance to cognitive and sensorimotor processes 
(Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999). For 
each ROI and contrast condition (e.g., MD-Easy minus AD-
replay-Easy), two metrics were computed within the 0.1–0.8 s 

post-segment window: (1) band power, calculated as the mean 
squared amplitude of the band-pass filtered signal, and (2) event-
related desynchronization/synchronization (ERD/ERS), expressed 
as the percentage change in power relative to a pre-segment 
baseline (−0.2 to 0 s), with negative and positive values reflecting 
desynchronization and synchronization, respectively (Pfurtscheller 
and Lopes da Silva, 1999). 

ERD/ERS(%) = 
(Poweractive − Powerbaseline) 

Powerbaseline 
× 100 

These metrics were computed for predefined ROI–band 
combinations aligned with the study’s hypotheses: Beta and Mu 
bands in the Motor Cortex for sensorimotor control (Pfurtscheller 
and Neuper, 1997); Alpha in the Occipital Cortex for visual 
processing (Klimesch, 1999); Theta in the Frontal Midline for 
executive control and conflict monitoring (Cavanagh and Frank, 
2014); and Alpha in the Posterior Parietal Cortex for visuospatial 
attention (Jensen and Mazaheri, 2010). The resulting values 
were subjected to statistical analysis as described in Section “2.6 
Statistical analysis.” 

2.5.4 Functional connectivity analysis 
To evaluate functional interactions between cortical regions, we 

computed pairwise connectivity metrics between ROI time courses 
(see Section “2.5.2 Group-level source activity and region of interest 
(ROI) analysis”). Specifically, Pearson correlation coeÿcients were 
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calculated to index linear inter-regional coupling, 

rxy = 
cov(x, y) 

σxσy 

and magnitude-squared coherence was computed to capture 
frequency-specific synchronization across ROIs, 

Cxy(f ) = 
|P xy
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 
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�
f 
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Pyy 
�
f 
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where x(t) and y(t) denote ROI time courses, σ indicates 
standard deviation, and Pxx 

� 
f 

, Pyy 
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denote auto-
and cross-spectral density functions. Connectivity analyses were 
implemented in Python using SciPy and MNE-Python. 

Because EEG connectivity measures are inherently sensitive to 
volume conduction and field spread, our approach mitigated these 
eects in two ways: (1) analyses were performed at the source 
level after dSPM projection, which reduces spurious correlations 
driven by common sensor projections (Mahjoory et al., 2017) 
and (2) connectivity was evaluated between spatially distinct ROIs 
defined on the cortical template rather than between immediately 
adjacent electrodes, a strategy shown to improve the functional 
specificity of source-level connectivity estimates (Schoelen and 
Gross, 2009). Reported connectivity dierences should therefore be 
interpreted as putative inter-regional coupling patterns within this 
methodological framework. 

2.5.5 Feature extraction for classification 
Feature extraction was performed on sensor-level EEG epochs 

ranging from −0.4 to 1.6 s relative to segment onset, targeting 
classification of the four experimental conditions (MD-Easy, 
MD-Hard, AD-replay-Easy, AD-replay-Hard). The preprocessing 
pipeline included notch filtering (50 and 100 Hz), band-pass 
filtering (2–36 Hz), baseline correction (−0.2 to 0 s), and z-score 
normalization across channels and participants (Bigdely-Shamlo 
et al., 2015; Luck, 2014). 

Two types of wavelet-based features were derived. Wavelet-
derived spectral features were obtained using discrete wavelet 
transform (DWT) with the Daubechies 4 (“db4”) wavelet 
(Daubechies, 1992), decomposing each EEG channel into five sub-
bands. Within each sub-band, statistical measures–including mean 
amplitude, energy, and wavelet entropy (Rosso et al., 2001) –were 
calculated to characterize signal properties. Wavelet coherence 
features were estimated across 11 anatomically informed electrode 
pairs (e.g., frontal-parietal, frontal-central, interhemispheric), 
using Pearson correlation of wavelet coeÿcients to reflect 
functional connectivity (Grinsted et al., 2004; Sauseng and 
Klimesch, 2008; Torrence and Compo, 1998). All spectral and 
coherence features were concatenated into a unified feature 
vector for each epoch and subsequently entered the classification 
framework (Section “2.5.5 Feature extraction for classification”). 

2.5.6 Classification analysis 
A supervised machine learning pipeline was developed to 

classify EEG epochs into four experimental conditions (MD-
Easy, MD-Hard, AD-replay-Easy, AD-replay-Hard), utilizing a 
Random Forest classifier implemented in Python with the Scikit-
learn library (Pedregosa et al., 2018). Feature selection within 
each training fold followed a two-stage procedure. Initially, a 

model-based ranking identified a broad set of relevant features 
based on their importance scores. This subset was then refined 
using univariate ANOVA F-statistics, yielding a final set of 
discriminative features. 

Model performance and generalizability were evaluated using 
two validation schemes. In the split-sample approach, class-
balanced data were stratified into training, validation, and test 
sets. In the Leave-One-Subject-Out (LOSO) cross-validation, each 
participant was iteratively held out as the test subject, with the 
remaining data used for training and feature selection. Class 
balancing was applied within each fold to mitigate bias. 

Performance metrics included accuracy, macro-averaged F1 
score, precision, recall, and normalized confusion matrices 
to illustrate condition-specific classification patterns. Feature 
importance scores were extracted from the trained Random 
Forest models–either from the full split-sample model or averaged 
across LOSO folds–to identify EEG features most predictive 
of task condition. 

2.6 Statistical analysis 

Statistical analyses were performed to examine the eects of 
driving mode and task complexity on EEG-derived measures, 
including ROI activity, frequency-domain metrics (band power 
and ERD/ERS), and classification features. All procedures were 
implemented in Python using libraries such as SciPy (Virtanen 
et al., 2020), MNE-Python, and PyWavelets. The significance 
threshold was set at α = 0.05, with Bonferroni or false discovery 
rate (FDR) correction applied where applicable. 

Region of interest and frequency-domain eects were assessed 
using one-sample t-tests against zero within the 0.1–0.8 s 
post-segment window. One-tailed tests were employed for 
directional hypotheses and paired-sample t-tests were used to 
evaluate interaction eects, such as dierences in task complexity 
modulation between driving modes. Eect sizes were quantified 
using Cohen’s d. 

To address the multiplicity of tests, analyses were grouped into 
four families: (i) whole-brain source maps, (ii) ROI activation, (iii) 
frequency-domain modulation, and (iv) functional connectivity. 
Within each family, p-values were adjusted using the Benjamini– 
Hochberg FDR procedure. Confirmatory contrasts were tested 
one-tailed in line with a priori predictions, whereas exploratory 
contrasts were evaluated two-tailed. Results that did not survive 
FDR correction are reported descriptively as “trends.” Bootstrap 
resampling (5,000 iterations) was additionally applied to estimate 
confidence intervals and corrected p-values, with full results 
provided in Supplementary Table 3. 

Wavelet-derived features (Section “2.5.4 Functional 
connectivity analysis”) were statistically compared across 
experimental conditions using paired t-tests for predefined 
condition pairs (e.g., MD-Easy vs. AD-replay-Easy). To evaluate 
global eects across EEG channels within each frequency band, 
p-values were combined using Fisher’s method. 

Classifier performance metrics (accuracy, macro-averaged F1, 
precision, recall) obtained from split-sample and LOSO validation 
were tested against the theoretical chance level (25%) using 
binomial or permutation tests, depending on the analysis context. 
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Visualization of statistical results included topographic maps 
(via MNE-Python) to display spatial distributions of significant 
eects, as well as bar plots and heatmaps to summarize dierences 
across frequency bands, channels, and ROIs. All visualizations 
followed established EEG reporting practices (Klimesch, 1999; 
Pfurtscheller and Lopes da Silva, 1999). Custom Python scripts 
were used for all statistical and visualization procedures. 

3 Results 

3.1 Effects of driving mode (Hypothesis 1) 

3.1.1 Source-level contrasts between active 
control and passive observation 

To investigate how driving mode modulates large-scale brain 
dynamics, we computed cortical activation dierence maps (MD 
minus AD-replay) under both easy and hard road conditions. These 
group-averaged maps revealed distinct spatial activation patterns 
shaped by the control mode, even when external stimuli and road 
complexity were held constant. Although no vertices survived 
correction for multiple comparisons, the group-level activation 
maps (Figure 2a, top row = Easy, bottom row = Hard) exhibited 
spatially coherent trends consistent with our theoretical predictions 
and eect size analyses. Notably, average activation dierences 
showed moderate eect sizes (d ≈ 0.27–0.28) and strong within-
subject consistency across conditions, justifying the inclusion of 
group-level visualizations as representative of mode-dependent 
cortical dynamics. 

Six key functional ROIs involved in attentional control, 
sensorimotor processing, and executive function were visualized. 
The boundaries of these ROIs were based on standard 
anatomical landmarks and functional localization schemes 
(Tzourio-Mazoyer et al., 2002). 

Specifically, under the easy condition, manual driving (MD) 
elicited stronger activation in the frontal and occipital cortices, 
reflecting increased demands on cognitive control and visual 
attention. In contrast, under the hard condition, AD-replay 
induced stronger activation in occipital and parietal regions, 
suggesting enhanced visual monitoring and spatial processing in 
the absence of active vehicle control. 

To validate the feasibility of the source-space comparison 
approach, we also visualized the same contrasts at the individual 
subject level. In a representative participant (SUB_2), as shown 
in Figure 2b (individual subject maps; top row = Easy, bottom 
row = Hard, lateral and medial views), similar activation dierences 
were observed: mPFC and occipital increases during MD under 
easy conditions, and greater PPC and medial motor cortex 
activation during AD-replay under hard conditions. The observed 
consistency suggests that group-level eects were not artifacts of 
averaging but reflect underlying individual trends. This confirms 
that the group-level findings are not driven by a small subset 
of participants and that the analysis pipeline is appropriate for 
revealing condition-specific dierences. 

These source-space patterns support Hypothesis 1 by showing 
that neural activity diers substantially between manual and 
automated driving, even when participants are exposed to identical 
external stimuli and road complexity. The medial prefrontal 

cortex (mPFC) was more active during MD, consistent with 
higher demands on executive control and sustained attention. The 
elevated PPC and occipital activation during AD-replay suggests a 
shift toward passive visual monitoring and spatial estimation when 
participants were not actively engaged in control. 

As a complementary validation, we trained a binary classifier 
on MD epochs and tested it on AD-replay. The model 
failed to generalize, achieving 58.4% accuracy–a marginal gain 
over the 50% chance level that was not statistically reliable 
(permutation/binomial test, n.s.). This failure supports the 
conclusion that mode-specific neural dierences hinder cross-
mode transfer. Consistent with this, we observed high within-
subject reliability (r = 0.88 ± 0.065) but substantial between-subject 
variability (CV > 17%), which can also obscure group-level eects. 

Together, these source-level findings, supported by both 
group-level and individual data, robustly validate Hypothesis 1 
and establish that manual and automated driving modes elicit 
distinct and spatially distributed patterns of neural activity. 
Driving mode modulates brain engagement even when external 
conditions are held constant. Manual driving elicited stronger 
engagement of mPFC and visual cortices, consistent with increased 
cognitive demand, while automated driving was characterized 
by elevated activity in PPC and medial motor areas, indicating 
a shift toward passive sensory-motor monitoring. It should be 
noted that these anatomical attributions are treated as putative 
given the 29-channel template-based source model; importantly, 
converging sensor-space topographies (Supplementary Figure 3, 
Sensor-space topographies for all contrasts.) exhibited consistent 
frontal/occipital increases during MD and posterior/parietal 
increases during AD, corroborating the source-level contrasts. 

3.1.2 ROI activation differences 
To further examine how driving mode influences localized 

cortical engagement, region-of-interest (ROI) analyses were 
conducted across five functionally relevant brain areas: the medial 
motor areas (M1 and SMA), medial prefrontal cortex (mPFC), 
anterior cingulate cortex (ACC), visual cortex (V1–V3), and 
posterior parietal cortex (PPC). These ROIs were selected based 
on established functional relevance and are illustrated in Figure 2c 
(ROI schematic of left lateral and medial views). Distinct and 
consistent mode-dependent dierences in neural activity were 
observed across these ROIs (Figure 3a, ROI bar plots, MD − 
AD contrasts under easy and hard conditions). Detailed statistical 
outcomes, including original tests and bootstrap resampling with 
FDR correction, are reported in Supplementary Table 3. 

The medial motor areas exhibited greater activation during 
AD-replay compared to MD, reflected in negative dierences (MD 
− AD-replay < 0) for both easy (M = −0.0017) and hard conditions 
(M = −0.0018). While not reaching statistical significance, this 
consistent negative trend likely indicates compensatory motor 
prediction or anticipatory processes associated with passive driving 
control, alongside possible muscle-related activations (Pfurtscheller 
and Lopes da Silva, 1999; Pfurtscheller and Neuper, 1997). 
Consistent with this interpretation, recent studies have shown 
that motor regions can display anticipatory activity even without 
overt movement, including mu suppression during passive action 
observation (Krol and Jellema, 2022; Syrov et al., 2023), as well as 
predictive EEG components preceding steering actions in driving 
simulations (Di Liberto et al., 2021). Bootstrap resampling (5,000 
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FIGURE 3 

Neural activation and functional connectivity differences across driving modes and task complexity levels. (a) Mean activation differences (MD minus 
AD-replay) across five functionally defined brain regions under easy and hard conditions, computed from source-localized dSPM values. (b) 
Frequency-domain power (top) and ERD/ERS (bottom) comparisons across selected ROIs and frequency bands. Bar and violin plots show MD minus 
AD-replay differences across easy and hard conditions. (c) 3D stacked heatmap of ROI-to-ROI functional connectivity (coherence and correlation) 
across manual vs. automated driving (MD/AD-replay) and easy vs. hard task conditions. Each layer represents one connectivity type under a specific 
condition. (d) Layered 3D matrix showing connectivity differences between hard and easy conditions (HARD - EASY) for both MD and AD-replay 
groups, revealing task complexity modulation of large-scale brain networks. (e) Complexity-induced activation changes (HARD - EASY) for MD and 
AD-replay separately, showing region-specific effects of task demand on cortical engagement. (f) Frequency power (top) and ERD/ERS (bottom) 
differences between hard and easy conditions across selected ROIs, separately for MD and AD-replay. Combined bar and violin plots illustrate both 
magnitude and inter-subject variability. Error bars represent standard error of the mean (SEM); asterisks indicate statistically significant differences 
(p < 0.05). ROIs include the medial motor area (M1/SMA), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), visual cortex (V1–V3), 
posterior parietal cortex (PPC), and dorsolateral prefrontal cortex (DLPFC). All activation and frequency power values are reported in arbitrary units 
(a.u., z-scored SNR or normalized power), ERD/ERS values are expressed as % change from baseline, and connectivity measures represent 
dimensionless correlation or coherence coefficients. 

iterations) further indicated uncorrected eects in the AD > MD 

direction for both Easy (p = 0.0164, 95% CI [−0.0016, −0.0001]) 
and Hard (p = 0.018, 95% CI [−0.0016, −0.0002]) conditions (see 

Supplementary Table 3). However, because Motor ROI activation 

analyses were exploratory within family 2, these eects did not 
survive FDR correction and are therefore reported as trends. 

In contrast, the mPFC showed an opposite trend, displaying 

increased activation during manual driving (MD − AD-
replay > 0), with modest statistical significance particularly 

evident under hard conditions (e.g., right hemisphere rostral 
middle frontal ROI: M = 0.0065, p < 0.001; bootstrap FDR-
adjusted p = 0.77, not significant after correction, descriptive 

only). Given the established role of mPFC in executive control and 

sustained attention (Miller and Cohen, 2001), this finding supports 
the interpretation that active vehicle control demands greater 

cognitive eort under challenging conditions. 
The ACC also exhibited greater activation during MD 

compared to AD-replay, especially under high task complexity 

(Hard condition mean: 0.0041). Notably, caudal anterior cingulate 

regions showed significant dierences in favor of manual driving 

under both conditions, particularly pronounced in the hard 

condition (left hemisphere ROI: M = 0.0120, p < 0.001; right 
hemisphere ROI: M = 0.0083, p < 0.001). This aligns well with 

the ACC’s known involvement in cognitive control and attentional 

resource allocation, further highlighting the cognitive demands 
associated with manual driving under heightened task complexity. 

The visual cortex demonstrated greater activation during 

automated driving (negative MD − AD-replay dierences), 
suggesting a shift toward enhanced visual monitoring when active 

manual engagement is absent (Corbetta and Shulman, 2002). 
Detailed analyses confirmed this eect, as evidenced by consistent 
negative dierences across multiple visual cortex ROIs, particularly 

within fusiform regions (left hemisphere, hard: M = −0.0098; 
uncorrected p < 0.05, but not significant on the one-sided test 
because the eect was opposite to the a priori direction) and 

lingual regions. 
In the PPC, increased activation during manual driving 

relative to automated driving was observed, particularly notable 

in the inferior parietal regions bilaterally (left hemisphere inferior 

parietal: hard M = 0.0035, p < 0.001; easy M = 0.0036, p = 0.001; 
right hemisphere inferior parietal: hard M = 0.0035, p < 0.001; 
easy M = 0.0035, p < 0.001). Given the PPC’s established role 

in spatial attention and sensorimotor integration, this finding 

is consistent with increased cognitive and attentional demands 
associated with manual control. Although superior parietal and 

supramarginal regions demonstrated variability and mostly non-
significant dierences, the robust findings in inferior parietal areas 
strongly support enhanced spatial attentional processes during 
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manual driving. These dierences did not remain significant after 
FDR correction and are reported descriptively. 

Statistical tests largely supported these observations. Despite 
certain individual ROI results showing variability, the overall 
pattern clearly favored increased cognitive and attentional 
processing during manual driving in mPFC, ACC, and PPC 
regions. These ROI-level findings collectively reinforce Hypothesis 
1, highlighting distinct regional neural activation profiles elicited 
by manual versus automated driving, with manual control 
preferentially engaging cognitive and attentional networks, and 
automated driving prompting compensatory motor and visual 
monitoring processes. 

3.1.3 Frequency-domain modulation 
To investigate how driving mode influences frequency-specific 

neural dynamics, we conducted analyses of frequency band power 
and event-related desynchronization/synchronization (ERD/ERS) 
across five functionally relevant brain regions: medial motor areas 
(Motor), medial prefrontal cortex (mPFC), anterior cingulate 
cortex (ACC), visual cortex (Visual), and posterior parietal 
cortex (PPC). These analyses targeted physiologically meaningful 
frequency bands, specifically beta (13–30 Hz) and mu (8–13 Hz) 
for motor areas, theta (4–8 Hz) for frontal midline regions (mPFC 
and ACC), and alpha (8–12 Hz) for visual and parietal cortices 
The corresponding results are shown in Figure 3b (top row: power 
spectra across ROIs; bottom row: ERD/ERS violin and bar plots). 

The analysis revealed significant modulation of neural spectral 
activity by driving mode, diering distinctly across brain regions. In 
frontal midline regions, theta-band power significantly increased 
during manual driving (MD) relative to Automated Driving -
Passive Replay (AD-replay), particularly within the mPFC (easy: 
p = 0.011; hard: p = 0.004) and ACC (easy: p = 0.004; hard: 
p < 0.001). Bootstrap resampling (5,000 iterations) confirmed 
these eects with FDR-adjusted p < 0.001 across all conditions, 
indicating highly robust increases in frontal theta power during 
manual control. This elevated theta activity likely reflects 
enhanced cognitive control, which supports conflict monitoring 
and executive regulation (Cavanagh and Frank, 2014; Eisma et al., 
2021), together with sustained attention demands required to 
maintain task engagement (McFerren et al., 2021) during manual 
control under both easy and complex driving conditions. 

In the visual cortex, alpha-band power during manual 
driving (MD) significantly exceeded that of automated driving– 
passive replay (AD-replay) for both easy (p = 0.001) and hard 
(p < 0.001) conditions. This was further evidenced by significant 
alpha synchronization (ERS: +97.9%, p = 0.039) in the MD-
easy condition relative to baseline. Bootstrap analysis confirmed 
consistent uncorrected trends (p < 0.001) in the MD > AD 
direction, but as visual alpha was treated as exploratory, these 
results did not undergo FDR correction and are reported trend. 
A similar MD-related increase in alpha power was observed in 
the PPC (easy: p = 0.018; hard: p = 0.004). Bootstrap resampling 
also showed consistent uncorrected trends (p < 0.001) but as 
exploratory findings they are presented descriptively. Because 
visual input was held constant across modes, these alpha eects 
likely reflect mode-dependent top-down modulation rather than 
dierences in sensory stimulation. 

Motor areas showed significant beta-band power increases 
during manual driving under hard conditions (p = 0.047), 

suggesting heightened motor preparation during active driving 
while bootstrap resampling confirmed this eect as highly robust 
(FDR-adjusted p < 0.001). Moreover, mu-band ERD analyses 
revealed significant desynchronization under easy conditions 
(−50.11%, p = 0.019), which also remained significant after 
bootstrap correction (FDR-adjusted p < 0.001), confirming 
robust sensorimotor integration during manual control. further 
supporting enhanced sensorimotor integration during manual 
control (Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller 
and Neuper, 1997). This interpretation aligns with recent 
findings showing that beta oscillations are now recognized as 
key contributors to motor prediction and the stabilization of 
sensorimotor states (Barone and Rossiter, 2021), while the phase 
dynamics of mu and beta rhythms have been directly linked 
to corticospinal excitability and integrative motor processes 
(Wischnewski et al., 2022). In naturalistic driving contexts, 
predictive EEG components preceding steering actions further 
demonstrate that both µ and β rhythms support anticipatory 
and integrative mechanisms that are strengthened during manual 
control (Di Liberto et al., 2021). This pattern highlights 
that sensorimotor integration–linking visual inputs with motor 
planning–is a key neural substrate of active driving engagement, 
and its attenuation under AD-replay reflects the reduced coupling 
between perception and action in passive observation states. 

Collectively, these frequency-domain results align closely with 
findings from source-space and ROI-level activation analyses, 
collectively supporting the interpretation that manual driving 
uniquely engages cognitive control mechanisms (theta-band in 
mPFC and ACC), intensified visual attention (visual cortex alpha 
synchronization), and motor preparation processes (motor cortex 
beta modulation), underscoring distinct neural dynamics between 
manual and automated driving modes. 

3.1.4 Functional connectivity patterns between 
brain regions 

Pairwise functional connectivity between selected brain regions 
was analyzed using correlation and coherence measures to 
further elucidate how driving mode modulates large-scale neural 
coordination. Functional connectivity heatmaps (Figure 3c, 
3D-stacked matrices; bottom two layers = correlation-based 
connectivity under Easy and Hard, top two layers = coherence-
based connectivity under Easy and Hard) were generated to 
illustrate inter-regional coupling patterns across motor, medial 
prefrontal cortex (mPFC), anterior cingulate cortex (ACC), visual 
cortex, and posterior parietal cortex (PPC) under both easy and 
hard driving conditions. 

The correlation-based analysis highlighted distinct driving 
mode-dependent connectivity profiles. During manual driving, 
the motor and visual cortices displayed moderate positive 
correlations under easy conditions (r = 0.220), reflecting integrated 
sensorimotor processing during relatively low-demand driving 
scenarios. Additionally, connectivity between the PPC and mPFC 
was notably stronger (r = 0.354 under easy; r = 0.355 under hard 
conditions), suggesting enhanced coordination between spatial 
attention and executive control regions during active driving. 

Interestingly, motor-mPFC connectivity revealed a moderate 
positive correlation that strengthened under easy conditions 
(r = 0.340), potentially indicative of a synchronized integration 
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FIGURE 4 

Group average brain complexity effects. Group-level cortical activation contrasts between Hard and Easy segments (Hard - Easy) under different 
driving modes (N = 11). Surface maps illustrate average source-level activity differences for manual driving (MD, top row) and automated driving (AD, 
bottom row), rendered from four standard FreeSurfer views (left lateral, left medial, right lateral, right medial). Warmer colors indicate increased 
activation during hard segments, while cooler colors denote decreased activation. Under MD, focal increases were observed in medial frontal, 
occipital, and parietal cortices, including the supplementary motor area (SMA), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC), 
reflecting elevated cognitive and visuospatial processing demands. In contrast, AD produced more diffuse and widespread activation across posterior 
cortices, particularly in the occipital and temporal–parietal regions, suggesting less selective cortical engagement during increased complexity. 

between motor control and executive functions when attentional 
resources are readily available. Conversely, correlations between 
the ACC and other regions remained low across both complexity 
conditions (e.g., motor-ACC under hard conditions, r = 0.067), 
implying that ACC activation during driving tasks might function 
somewhat independently from these other networks, or reflect 
highly state-specific engagements. 

The coherence analysis, complementary to the correlation-
based assessment, further validated these observations. Functional 
coherence between visual and parietal regions was moderately 
robust under both easy (coherence = 0.327) and hard conditions 
(coherence = 0.365), reflecting stable visual-spatial processing 
coordination regardless of task complexity. Connectivity between 
motor and mPFC areas demonstrated lower coherence (e.g., hard 
condition coherence = 0.215), suggesting limited direct frequency-
based interaction between motor execution and higher cognitive 
processes during heightened task demands. 

In conclusion, these functional connectivity patterns reinforce 
Hypothesis 1, demonstrating clear neural dierentiation between 
manual and automated driving modes, not only in individual 
region activation intensities but also in their inter-regional 
communication patterns. Manual driving elicited more integrated 
sensorimotor and cognitive coordination, particularly evident 
between motor and frontal regions under low task complexity, and 
robust parietal-prefrontal connectivity across complexity levels. 
Conversely, automated driving appeared associated with reduced 
fronto-motor integration and comparatively stable visual-spatial 
network interactions, supporting a shift toward passive visual 
monitoring, and decreased cognitive-motor integration. These 
mode-specific connectivity distinctions highlight the profound 
impact driving mode exerts on large-scale brain network 
organization, independent of external road condition demands. 

Together, the results from source-level mapping, ROI analyses, 
spectral dynamics, functional connectivity, and cross-condition 

classification consistently support Hypothesis 1: manual and 
automated driving engage the brain in fundamentally distinct 
ways. Manual driving elicited increased activation in frontal 
and parietal regions, elevated theta and alpha synchronization, 
and tighter fronto-motor connectivity, reflecting heightened 
demands on executive control, visual processing, and spatial 
attention. In contrast, automated driving was characterized 
by enhanced occipital activation and weakened inter-regional 
coupling, suggesting a shift toward passive visual monitoring with 
reduced cognitive engagement. These mode-specific dierences 
were consistently observed across matched road conditions, 
indicating that control state alone robustly shapes neural dynamics. 
I next examined whether task complexity (easy vs. hard) further 
modulates these patterns, and whether such eects interact with 
the driving mode. 

3.2 Effects of task complexity and 
interaction with mode (Hypothesis 2) 

3.2.1 Source-level contrasts of hard vs. easy 
Cortical activation dierence maps (Hard − Easy) separately 

for manual driving (MD) and Automated Driving - Passive Replay 
(AD-replay) were computed in this part to investigate how task 
complexity modulates cortical activation. These maps revealed 
distinct spatial patterns that varied depending on the control mode, 
as illustrated in Figure 4 (top row: MD, bottom row: AD; four 
cortical views each). 

Under MD, increased task complexity led to localized activation 
increases in the medial frontal cortex, notably within the 
supplementary motor area (SMA) and anterior cingulate cortex 
(ACC), as well as in parietal and occipital regions. These areas are 
broadly associated with cognitive control, error monitoring, and 
visuospatial integration (Pfurtscheller and Neuper, 1997). The focal 
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recruitment of frontal and parietal regions is consistent with their 
established roles in maintaining executive function and attentional 
allocation during demanding tasks (Wascher et al., 2018). 

Automated Driving - Passive Replay, by contrast, exhibited 
more spatially diuse activation increases under hard conditions, 
with prominent changes observed in the occipital cortex and 
temporal–parietal junction. The absence of frontal specificity 
suggests a less eÿcient, potentially compensatory, pattern of 
neural engagement. This broader activation profile aligns with 
findings frequently observed during passive monitoring or reduced 
cognitive involvement when control is delegated to automation 
(McDonnell et al., 2023; McWilliams and Ward, 2021; Merat et al., 
2014; Parasuraman and Manzey, 2010). 

Although both conditions exhibited elevated cortical activity 
in response to increasing complexity, their topographical profiles 
diered. MD elicited more anatomically selective activation in task-
relevant areas, whereas AD-replay was associated with widespread 
but less targeted cortical changes. This suggests that eective 
cortical switching between task-relevant and diuse networks 
may be contingent on the level of volitional engagement: when 
drivers are actively in control, adaptive recruitment is localized 
to frontal and parietal circuits that support conflict monitoring 
and attentional allocation (Botvinick et al., 2001; Wascher et al., 
2018), whereas passive observation under automation elicits a more 
diuse, less eÿcient activation profile consistent with reduced 
cognitive involvement (McDonnell et al., 2023; McWilliams and 
Ward, 2021; Merat et al., 2014). Such switching is consistent with 
broader accounts of adaptive cortical network dynamics (Aston-
Jones and Cohen, 2005; Raichle, 2015), which posit that task-
related reorganization is contingent on motivational state and 
active engagement. Again, these regional inferences are reported as 
putative, but the observed Hard–Easy topographies at the sensor 
level (Supplementary Figure 3) were spatially consistent with the 
source-localized eects, reinforcing the robustness of the observed 
mode × complexity dierences. 

Overall, these results support Hypothesis 2 by demonstrating 
that task complexity interacts with control mode to shape neural 
engagement in terms of both magnitude and spatial specificity. 

3.2.2 ROI-specific complexity effects and 
mode × complexity interaction 

We next examined activation dierences (Hard − Easy) across 
six predefined ROIs under both MD and AD-replay, as shown in 
Figure 3e (bar plots of Hard–Easy contrasts; red = MD, blue = AD 
across Motor, mPFC, ACC, Visual, PPC, and DLPFC) to further 
explore the modulatory eect of task complexity. The pattern of 
results varied notably by both brain region and control mode. 

In the dorsolateral prefrontal cortex (DLPFC), task complexity 
elicited reduced activation in both MD and AD-replay, with 
the suppression more pronounced in the automated mode. This 
pattern may suggest a downregulation of working memory or 
executive switching demands when task control is ooaded. 
A similar mode-specific divergence emerged in the anterior 
cingulate cortex (ACC): while MD showed a slight increase 
in activation, consistent with demand monitoring, AD-replay 
instead exhibited a robust decrease. Such reductions may 
reflect diminished engagement of conflict monitoring systems in 
passive control states. 

The posterior parietal cortex (PPC) displayed weak and 
divergent responses across modes, with marginal increases under 
AD-replay and nearly flat dierences under MD. This finding 
contrasts with prior expectations of enhanced spatial attention 
under high complexity, suggesting that PPC engagement may 
depend more on task type than on visual scene complexity alone. 

In the visual cortex, task complexity led to slight activation 
increases under MD, aligning with increased visual vigilance. 
However, the opposite trend was observed under AD-replay, where 
activity decreased, potentially indicating a reduced need for active 
visual tracking during automation. 

Interestingly, the medial prefrontal cortex (mPFC) showed 
little modulation under either mode, in contrast to its typically 
hypothesized role in demand-dependent executive control. The 
motor cortex (M1/SMA) also exhibited small decreases across both 
MD and AD-replay, suggesting that increased complexity might 
not translate to heightened motor planning in the absence of 
explicit motoric challenge. 

Together, these ROI-level findings illustrate that brain 
responses to complexity are highly contingent on the mode of 
control. Manual driving recruits frontal and posterior regions in 
ways consistent with adaptive increases in cognitive and visual 
engagement, while automation appears to either blunt or reverse 
these eects across multiple systems. 

3.2.3 Frequency-domain complexity modulation 
Spectral analyses confirmed the interaction between task 

complexity and control mode. The results revealed that neural 
modulation patterns varied substantially depending on both brain 
region and control mode (Figure 3f, top panel: frequency power 
dierences across ROIs; bottom panel: ERD/ERS dynamics). In 
the frontal midline and DLPFC, theta-band power increased 
significantly during hard segments under manual driving (MD), 
consistent with enhanced executive demand and adaptive control 
allocation. In contrast, no such increase was observed under AD-
replay, suggesting that the cognitive control network remained 
largely disengaged when drivers were not actively involved in 
vehicle control. This dierential pattern was also reflected in the 
ACC, where theta power was elevated in MD but less consistently 
modulated in AD-replay, indicating diminished recruitment of 
conflict monitoring processes during automation, particularly a 
striking decrease in activation under hard conditions in AD-replay. 

In the visual cortex, alpha-band power decreased under MD-
hard, consistent with intensified visual information processing 
under increased task load. Interestingly, the same region showed 
increased alpha power in AD-replay-Hard, possibly reflecting 
visual disengagement or a shift toward passive sensory gating 
under automated control. A similar pattern emerged in the 
posterior parietal cortex (PPC): alpha desynchronization was more 
pronounced under MD than AD-replay, implying that spatial 
attention and sensorimotor integration were selectively enhanced 
during active driving. 

The motor cortex presented a more complex picture. Neither 
beta nor mu power increased with task complexity under MD; 
rather, slight decreases were observed. Given the concurrent 
elevation of prefrontal theta activity, this may reflect a strategic 
reallocation of cognitive resources–favoring executive control 
over motor readiness–as task diÿculty increases. Furthermore, 
ERD/ERS patterns in the motor cortex were variable across 
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individuals and showed no consistent trend, while in regions like 
DLPFC and ACC, ERS responses were more prominent in AD-
replay than in MD, possibly indicating altered or compensatory 
recruitment of higher-order networks during passive monitoring. 

Collectively, these frequency-domain analyses demonstrate 
that task complexity elicits structured, region-specific neural 
modulations primarily under manual control, whereas the 
same task demands evoke attenuated, inconsistent, or even 
paradoxical responses under automation. These findings reinforce 
the view that driver engagement acts as a critical modulator of 
cortical adaptation to environmental complexity, whereby active 
control facilitates targeted neural reorganization while passive 
monitoring yields broader but less eective responses. Because 
task diÿculty was manipulated in an interleaved manner within 
fixed engagement modes, these eects can be interpreted as 
reflecting the brain’s engagement-dependent adaptation to varying 
environmental demands. This interpretation is further supported 
by recent work showing that adaptive recruitment of prefrontal 
and cingulate systems scales with task demand (Tang et al., 
2022), that cortical responsiveness is state-dependent (Perera 
et al., 2024), and that anticipatory neural signatures in naturalistic 
driving (Di Liberto et al., 2021) as well as diminished frontal 
activation during automation (McDonnell et al., 2023) highlight 
how volitional involvement shapes the brain’s adaptive capacity. 
Bootstrap analyses provided strong confirmation of theta power 
increases in both mPFC and ACC during MD-hard segments, 
highlighting the robustness of frontal control network engagement 
under demanding conditions as reported in Supplementary Table 3. 

3.2.4 Functional connectivity modulation 
Functional connectivity changes (Hard − Easy) across six task-

relevant brain areas were evaluated using both correlation- and 
coherence-based metrics. The results are illustrated in Figure 3d 
(3D-stacked matrices; bottom two layers = correlation-based 
connectivity for MD and AD, top two layers = coherence-based 
connectivity for MD and AD). This representation delineates how 
task complexity influences inter-regional coordination under each 
control mode. 

Generally, coherence-based connectivity demonstrated greater 
sensitivity to task complexity compared to simple correlation. 
Under manual driving (MD), hard segments elicited widespread 
increases in coherence, notably across fronto-parietal and fronto-
motor pathways (e.g., mPFC–PPC, ACC–Motor, DLPFC–PPC). 
The most prominent enhancements were observed in mPFC– 
PPC ( coherence = +0.276) and ACC–PPC ( = +0.450). 
These patterns align with the heightened cognitive and spatial 
coordination demands prevalent in active control conditions. 

Conversely, during AD-replay, the coherence increases were 
more uniformly distributed across regions, encompassing 
occipital–frontal and occipital–parietal pairs. While these 
connections also exhibited moderate enhancement (e.g., ACC– 
DLPFC:  = +0.340), the absence of clear functional clustering 
suggests a less targeted network adaptation. This might indicate 
a more passive or compensatory monitoring state when control 
authority is externally assigned. 

Correlation-based results yielded a dierent picture. Under 
MD, several connections–particularly those involving the visual 
cortex (e.g., Visual–mPFC, Visual–PPC)–exhibited marked 
decreases, pointing toward a shift toward more decoupled 

processing streams under high complexity. This decoupling 
became even more apparent under AD-replay, where negative 
changes were observed between core executive and sensory nodes 
(e.g., mPFC–PPC: r = −0.460; ACC–Visual: r = −0.132). 
Such reductions in zero-lag correlations could signify diminished 
synchronous activation or increased variability in regional timing 
during automated control. 

These illuminate that task complexity modulates functional 
integration in a mode-specific fashion. Manual driving is associated 
with increased coherence within executive–sensorimotor networks, 
supporting the engagement of dynamic, top-down regulatory loops. 
Conversely, connectivity changes under AD-replay appear more 
diuse and less specialized, consistent with the broader pattern 
of attenuated or redistributed engagement observed in prior 
activation and frequency-based results. 

Overall, findings from these 3 aspects provide strong support 
for Hypothesis 2: task complexity significantly modulates brain 
activation, and this modulation is shaped by the level of driver 
engagement. Under manual control, increasing diÿculty enhances 
engagement of cognitive, visual, and spatial networks in a 
structured and localized manner, with robust, region-specific 
enhancements in neural activity. This included elevated theta 
power in the dorsolateral prefrontal cortex (DLPFC) and frontal 
midline–indicative of enhanced executive control–and pronounced 
alpha desynchronization in the posterior parietal cortex (PPC), 
reflecting heightened visuospatial attention. Mild increases in 
anterior cingulate cortex (ACC) activation were also observed, 
consistent with greater conflict monitoring demands. However, 
contrary to initial expectations, motor cortex activity decreased 
under high-complexity conditions, potentially reflecting cognitive 
overload or resource reallocation. 

In contrast, AD-replay exhibited minimal or paradoxical 
changes in control-related regions. The only region exhibiting 
robust task-related modulation in AD-replay was the occipital 
cortex, suggesting either compensatory visual processing or a 
shift toward passive sensory monitoring. Whole-brain activation 
maps (Figure 4) further illustrated this pattern: MD elicited 
spatially focused activation in frontal and parietal regions, while 
AD produced widespread, less localized responses concentrated in 
posterior cortices. 

Taken together, these results validate Hypothesis 2 and 
reinforce Hypothesis 1 by demonstrating that not only do MD and 
AD-replay dier in baseline neural activity, but they also exhibit 
fundamentally dierent neural adaptations to increasing task 
demands. Active control facilitates structured, functionally aligned 
cortical modulation in response to complexity, whereas passive 
driving induces attenuated or diuse responses, underscoring 
the role of volitional engagement in shaping brain dynamics 
during complex tasks. 

3.3 Classification analysis 

3.3.1 Classification performance and confusion 
matrix 

To rigorously test whether EEG features could reliably 
dierentiate the cognitive states induced by varying driving modes 
and road complexities, we trained a four-class Random Forest 
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FIGURE 5 

Electroencephalography-based classification pipeline and feature analysis results. (a) Overview of the classification pipeline. Raw EEG signals from 
31 channels were preprocessed via re-referencing, bandpass filtering (2–36 Hz), and independent component analysis (ICA) for artifact removal. 
Driving condition labels (MD-HARD, MD-EASY, AD-REPLAY-HARD, AD-REPLAY-EASY) were assigned based on event markers. Feature extraction 
included wavelet-based time-frequency features and inter-channel wavelet coherence metrics across spatial and spectral dimensions. Feature 
selection was performed using F-statistics (ANOVA), and a Random Forest classifier was trained to distinguish between four conditions. (b) The 
classification outcomes and key discriminative features. All transformations that rely on dataset statistics–z-scoring (applied to wavelet-power and 
wavelet-coherence features) and ANOVA-F feature selection–were fit only within the training fold (nested preprocessing). Cross-validation used 
5-fold GroupKFold with segment/lap-level grouping, ensuring temporally adjacent epochs from the same sequence were never split across folds. 
Shown are ranked feature importance (left), the held-out confusion matrix (center; accuracy = 0.8986 ± 0.0204, macro-F1 = 0.8956, 
chance = 0.25), and summary reliability/calibration (right), confirming the model’s robustness and interpretability. (c) Interpretation of key EEG 
features contributing to driving condition classification. The left radar plot highlights top-ranking EEG features from the classification model, 
grouped by feature type (wavelet power and wavelet coherence), frequency band, and involved electrode pairs. These include occipital alpha power, 
frontal theta, and fronto-parietal beta coherence, which align with prior ROI-based and frequency-domain findings. The right schematic maps these 
features onto corresponding brain regions, illustrating their involvement in functional networks related to executive control (mPFC, DLPFC), 
sensorimotor planning (M1/SMA), visuospatial integration (PPC), and visual processing (V1–V3). Together, this visualization links model-derived 
features to established neurocognitive substrates of manual and automated driving. 

classifier. This within-subject analysis is intended to identify 
discriminative EEG features and assess their neurophysiological 
plausibility under a leakage-safe evaluation, rather than to build 
a cross-subject model; cross-subject generalization is evaluated 
separately in Section “3.3.3 Generalization across subjects (LOSO 
performance).” This model leveraged a rich set of wavelet-
based EEG spectral and coherence features (Figure 5a, feature 
extraction and classification pipeline) to discriminate between 
the MD-Easy, MD-Hard, AD-replay-Easy, and AD-replay-Hard 
conditions. To preclude information leakage, all transformations 
that rely on dataset statistics (z-scoring for wavelet-power and 
wavelet-coherence features and ANOVA-F feature selection) were 
fit only within the training fold (nested preprocessing), and 
cross-validation used a 5-fold GroupKFold with segment/lap-level 
grouping; in addition, epochs temporally adjacent to the held-out 
segments were excluded from the training portion within each fold 
(a purged-gap scheme). The classifier demonstrated remarkable 
predictive power, achieving a cross-validated test accuracy of 
89.86% ± 2.04%, significantly outperforming the 25% chance level. 
This performance was mirrored by a macro-averaged F1 score of 
0.8956 (Figure 5b, right panels, model evaluation metrics). Per-
fold confusion matrices and calibration curves are provided in 
Supplementary Figure 2. 

A closer inspection of the confusion matrix (Figure 5b, 
center panel) reveals a highly accurate classification profile across 
conditions. Notably, both manual driving states showed strong 
discriminability, with MD-Hard achieving a recall of 90.5% and 
precision of 93.5%, and MD-Easy attaining a recall of 92.2% 
and precision of 86.5%. The AD-replay-Hard condition was also 
classified with high fidelity (recall = 90.3%, precision = 91.5%), 
while AD-replay-Easy exhibited slightly lower but still robust 
performance (recall = 86.1%, precision = 86.5%). These patterns 
are consistent with the updated leakage-safe evaluation, with fold-
wise results detailed in the Supplementary Figure 2. The classifier’s 
high overall performance, supported by confidence-level analyses 
and balanced metrics, underscores the distinct neural signatures 
elicited by manual versus automated control under varying task 
complexities. 

To further ensure that classification performance was not 
driven by residual ocular or muscle artifacts, we quantified 
ICA/ICLabel component classifications across conditions and 
tested robustness to sensor-space exclusions and stricter thresholds. 
Supplementary Table 1 summarizes the distribution of artifactual 
components (eye, muscle, cardiac, line noise, other) across MD 
and AD-replay, revealing no significant dierences and in fact 
numerically fewer artifacts in MD. Supplementary Table 2 reports 
classifier accuracies when excluding peripheral (ocular-prone) and 
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FIGURE 6 

Cross-subject generalization performance using Leave-One-Subject-Out (LOSO) cross-validation. Results are shown for four distinct binary 
classification tasks: (a) engagement mode (Manual Driving vs. AD-replay), (b) overall task complexity (Easy vs. Hard), (c) complexity within Manual 
Driving only (MD-Easy vs. MD-Hard), and (d) complexity within AD-replay only (AD-Easy vs. AD-Hard). For each task, the left panel displays the 
group-averaged confusion matrix, normalized by the true label (values on the diagonal represent recall). The right panel shows the distribution of 
individual subject accuracies from each LOSO fold, presented as a violin and strip plot. The dashed horizontal line indicates the theoretical chance 
level (50%). Inset text boxes provide the mean accuracy ± standard deviation, and the results of one-sample t-tests against chance level, including 
the t-statistic (t), p-value (p), and Cohen’s d effect size. 

central motor channels, as well as when varying ICLabel thresholds 
from 0.5 to 0.9. In all cases, classification performance remained 
substantially above chance and comparable to the full-sensor 0.8-
threshold pipeline, demonstrating that results are not dependent 
on artifact-prone components or channels. 

3.3.2 Feature importance and neurophysiological 
correlates 

An analysis of the features driving the classifier’s performance 
provided powerful neurophysiological validation for our earlier 
findings (Figure 5b, left panel: feature importance ranking; 
Figure 5c, radar plot of feature groups and cortical schematic of 
contributing regions). At the local level, alpha-band power from 
the occipital cortex (electrodes O1 and O2) and theta-band power 
from the frontal midline (AF3, Fz, AF4) and dorsolateral prefrontal 
cortex (DLPFC) regions (F3, F4) emerged as highly influential. This 
highlights a key dynamic: the brain’s regulation of visual processing 
via occipital alpha–characterized by suppressed activity during MD 
conditions and elevated levels during AD-replay-Hard scenarios– 
and its management of executive control via frontal theta serve as a 
primary basis for distinguishing between the passive monitoring of 
automated driving and the active engagement of manual control. 

Beyond local activity, the model drew heavily on network-level 
coherence metrics, underscoring that interregional communication 
is crucial for dierentiating these cognitive states. Specifically, 
wavelet coherence within the theta and beta bands, predominantly 

linking frontal and parietal electrodes (e.g., Fz–Pz, F4–P4, C4– 
P4), were among the most discriminative features. This finding 
demonstrates that the synchronized activity within the fronto-
parietal network, a substrate for top-down executive control, spatial 
attention, visuomotor integration, and sensorimotor coordination, 
forms a robust signature of the heightened cognitive demands 
inherent to manual driving. 

In essence, the features that enabled successful classification 
were not random but were the very same neurophysiological 
markers identified in our preceding analyses. This powerful 
convergence between traditional statistical validation and 
a predictive machine learning framework oers a holistic 
confirmation: the dierences between driving modes are not 
just statistically significant but are robust and patterned enough 
to allow for accurate, single-trial-level prediction of a driver’s 
cognitive state. 

3.3.3 Generalization across subjects (LOSO 
performance) 

To rigorously assess the generalizability of the neural 
signatures, we employed a stringent Leave-One-Subject-Out 
(LOSO) cross-validation strategy on four distinct binary 
classification tasks. In all tasks, mean classification accuracy 
was significantly above the 50% chance level. The results, detailed 
in Figure 6a–d (confusion matrices, left panels, and violin plots 
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of LOSO accuracy, right panels), revealed a clear hierarchy in 
generalization performance. 

Generalization was most eective when distinguishing task 
diÿculty within a given engagement mode. The classifier achieved 
a mean accuracy of 82.8% (SD = 18.4%; 95% CI = [0.704, 0.951]; 
t(10) = 5.92, p = 0.0001, d = 1.79) for classifying diÿculty within 
the AD-replay mode (Figure 6d) and 78.5% (SD = 22.4%; 95% 
CI = [0.635, 0.935]; t(10) = 4.22, p = 0.0018, d = 1.27) within the MD 
mode (Figure 6c). Performance was more moderate, though still 
robust, for the other two tasks: distinguishing between engagement 
modes (MD vs. AD-replay) yielded a mean accuracy of 69.2% 
(SD = 21.0%; 95% CI = [0.550, 0.833]; t(10) = 3.02, p = 0.0129, 
d = 0.91; Figure 6a), and classifying the overall task diÿculty 
across modes yielded a mean accuracy of 66.7% (SD = 10.9%; 95% 
CI = [0.594, 0.740]; t(10) = 5.08, p = 0.0005, d = 1.53; Figure 6b). 
Macro-F1 mirrored these patterns (Mode = 0.642 ± 0.307; pooled 
Diÿculty = 0.731 ± 0.105; within-MD = 0.807 ± 0.270; within-
AD = 0.846 ± 0.222). 

This pattern of results indicates that while the neural signatures 
of task complexity are relatively consistent across individuals, 
the signatures dierentiating active engagement from passive 
observation are subject to greater inter-individual variability. 

The results of this study delineate the profound reorganization 
of neural resources that distinguishes active control from passive 
observation. This distinction was evident across multiple levels 
of analysis–including source-level activation, spectral dynamics, 
and large-scale network connectivity–and was further amplified 
by increasing task complexity. We propose that this multi-level 
neural reorganization provides a quantitative signature of the 
cognitive cost of engagement. The robustness of these signatures 
was underscored by a machine learning model that decoded the 
operator’s state from single trials with high within-subject accuracy. 
While the challenge of generalizing across individuals highlights 
a key avenue for future work, these findings provide a robust 
empirical foundation for the subsequent discussion, which will 
unpack their implications for neurocognitive theory and human-
machine interaction. 

4 Discussion 

4.1 General summary 

This study reveals the distinct neurophysiological signatures 
of active, goal-directed control versus passive observation 
under complex, matched sensory conditions. Our multi-method 
EEG analysis demonstrates that active engagement requires a 
profound reorganization of neural resources, characterized by 
the recruitment of fronto-parietal executive and attentional 
networks. This neural distinction, which was amplified by task 
complexity, was robust enough for machine-learning classification 
with high within-subject accuracy. We argue that the magnitude 
of this neural reorganization reflects the inherent cognitive 
cost of active engagement. Understanding this cost is critical, 
as it provides a foundational baseline for interpreting the 
challenges of transitioning between passive and active modes 
of interaction in complex systems. The following sections will 
interpret these findings through the lens of neurocognitive 

theory, examine the study’s methodological contributions, and 
explore the broader implications of this “cost of engagement” for 
human-machine interaction. 

4.2 Functional neuroanatomy: EEG 
correlates of active control vs. passive 
observation 

The neuroanatomical dissociation we observed between active 
control and passive observation is consistent with contemporary 
neurocognitive theories of control, most notably the predictive 
coding framework (Friston, 2010). Within this framework, active 
environmental interaction instantiates a process of active inference, 
where the brain continuously refines its internal models of 
the world. Our findings of heightened activation in the medial 
prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and 
posterior parietal cortex (PPC) during the active state, alongside 
amplified frontal midline theta, directly map onto the neural 
substrates of this cognitively demanding process: top-down 
prediction, error monitoring, and attentional allocation in the face 
of uncertainty (Cavanagh and Frank, 2014; Corbetta and Shulman, 
2002; Klimesch, 1999; Ridderinkhof et al., 2004). 

The passive observation condition, by contrast, induced a 
neural state consistent with predictive quiescence. The observed 
shift toward altered activity in occipital and medial motor regions, 
combined with weakened fronto-parietal coupling, suggests the 
brain defaulted to a passive surveillance mode. This disengagement 
from active model updating, characterized by diminished executive 
control signals, closely parallels the neural dynamics seen in 
other passive observation paradigms (Corbetta and Shulman, 2002; 
Raichle et al., 2001). Together, these findings highlight that active 
control and passive observation recruit distinct neuroanatomical 
systems aligned with divergent computational strategies: goal-
directed active control versus prediction-based passive oversight. 

While predictive coding explains the underlying computational 
strategy, Cognitive Load Theory provides a framework for 
understanding the downstream eects on engagement (Gevins 
et al., 1998; Wascher et al., 2018). The high workload inherent 
in active control necessitates the recruitment of executive control 
networks to manage the cognitive burden–a finding consistent 
with prior EEG studies reporting elevated frontal theta power 
under increasing cognitive load (Cavanagh and Frank, 2014; Gevins 
et al., 1998). Our passive observation condition represents a state 
of mitigated cognitive load. However, the observed deactivation 
of the mPFC and ACC in this state may signify a cognitively 
“hollowed-out” state of engagement – not implying a cessation 
of processing, but rather a condition in which sensory input is 
still encoded while higher-order evaluative and error-monitoring 
functions that normally sustain active control are substantially 
attenuated. Understanding the neural markers of such a disengaged 
state is a critical first step for characterizing the cognitive gap that 
must be overcome during a transition to active control in any 
high-stakes human-machine system. This challenge is particularly 
acute in domains like semi-automated driving, where our findings 
provide a potential framework for understanding the neural basis 
of safe and eective takeover performance. 
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FIGURE 7 

Distribution of frequency-specific EEG differences across brain regions and condition comparisons. (a) Heatmap showing the total number of EEG 
channels exhibiting statistically significant differences across four frequency bands (Alpha, Beta-Low: 13–20 Hz, Beta-High: 20–36 Hz, Delta-Theta: 
2–8 Hz) and six functionally defined brain regions (ACC, DLPFC, M1/SMA, PPC, V1–V3, mPFC). The posterior parietal cortex (PPC) exhibited the 
highest overall count, particularly in the high-beta band. (b) Stacked bar plot illustrating the same distribution as panel (a), highlighting the dominant 
contribution of high-beta and delta-theta differences in PPC and V1–V3, and the multi-band involvement of motor and prefrontal regions. (c) 
Condition-specific bar charts showing the number of significant channels by region and frequency band for each of the four key pairwise 
comparisons: MD-HARD vs. AD-REPLAY-HARD, AD-REPLAY-EASY vs. AD-REPLAY-HARD, MD-EASY vs. AD-REPLAY-EASY, and MD-EASY vs. 
MD-HARD. Results demonstrate that high-beta effects dominate PPC during mode-related contrasts (especially MD-HARD vs. AD-REPLAY-HARD), 
while delta-theta differences are most prominent in mPFC and M1/SMA during complexity-related comparisons (e.g., MD-EASY vs. MD-HARD). 
These findings support the role of distinct neural oscillatory dynamics in differentiating both task complexity and driving mode. 

And it is also important to distinguish the broadband source 
activation reported here from the narrowband oscillatory dynamics 
discussed below. Our finding of greater overall activation in the 
visual cortex during passive observation (as measured by dSPM) 
is not in conflict with our finding of greater alpha power during 
active control. The former likely reflects robust, bottom-up sensory 
processing of the rich visual stream, while the latter reflects a 
specific, top-down inhibitory rhythm used to filter that stream 
for goal-directed action. Together, they paint a more complete 
picture of the distinct computational strategies employed in each 
engagement mode. 

Several methodological considerations warrant mention. 
First, the 29-channel montage necessarily provides lower spatial 
resolution compared with high-density EEG systems. Second, 
reliance on template anatomy (fsaverage) without individual 
MRIs introduces co-registration uncertainty on the order of 
several millimeters. Third, the EEG inverse problem is inherently 
ill-posed, and thus precise localization cannot be guaranteed. 
For these reasons, the reported source activations should be 
interpreted as putative regional estimates rather than definitive 
loci. Importantly, however, the sensor-space topographies 
(Supplementary Figure 3) revealed spatial patterns consistent 
with the source-level contrasts–frontal/occipital enhancements 
during manual driving, posterior/parietal enhancements during 
automated replay, and diuse posterior recruitment under higher 
task complexity–providing converging evidence independent of 
inverse modeling assumptions. 

4.3 Spectral dynamics: the oscillatory 
fingerprints of engagement 

Our spectral analysis reveals that each engagement state is 
defined by a unique and interpretable “oscillatory fingerprint,” 
providing a granular, physiologically grounded explanation for 

the global dierences observed between active control and 
passive observation. 

The signature of top-down executive control was unequivocally 
marked by frontal midline theta (4–8 Hz). Its pronounced 
enhancement during the active control state, particularly under 
high cognitive load, aligns perfectly with its established role 
in conflict monitoring and adaptive regulation in dynamic 
environments (Botvinick et al., 2001; Cavanagh and Frank, 2014). 

Concurrently, the state of attentional gating was indexed by 
occipital alpha power (8–13 Hz). Interestingly, and in contrast to 
a simple interpretation of visual load, our results indicated greater 
alpha power (synchronization) during the active control state. 
This dynamic was most pronounced in the contrast between MD-
HARD and AD-REPLAY-HARD within visual and parietal areas 
(Figure 7c, condition-specific bar plots; see also Figure 7b, stacked 
bar distribution highlighting alpha contributions in PPC and 
V1–V3), cleanly separating active visual processing from passive 
sensory intake. This seemingly paradoxical finding is consistent 
with the inhibitory gating hypothesis (Jensen and Mazaheri, 2010). 
Rather than simply reflecting lower visual processing, elevated 
alpha power can represent an active, top-down neural mechanism 
for filtering out irrelevant sensory information to prioritize task-
relevant cues. In the context of driving, this may reflect a form 
of “tunnel vision,” where the brain actively suppresses processing 
of non-essential visual details to focus resources on the road 
ahead. The concurrent increase in PPC alpha is consistent with 
strengthened dorsal attention/sensorimotor integration required 
for steering. Together with elevated frontal-midline theta and 
motor β/µ modulation, the overall spectral profile aligns with 
heightened engagement, robustly arguing against a drowsiness 
or under-arousal account. Although we did not record ocular 
metrics, matched visual input, artifact-reduced EEG after ICA, and 
the concurrent, anatomically distributed theta/beta modulations 
and connectivity changes argue against ocular or illumination 
factors as the primary driver of the occipito-parietal alpha 
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eect. Still, residual influences cannot be fully excluded. Prior 
studies show that ocular artifacts typically manifest as frontal 
topographies with broadband low-frequency activity rather than 
posterior alpha-band synchronization (Croft and Barry, 2000; Jung 
et al., 2000). In contrast, our findings of occipito-parietal alpha 
increases accompanied by frontal-midline theta and motor β/µ 
dynamics are more consistent with network-level mechanisms of 
attentional control and inhibitory gating (Cavanagh and Frank, 
2014; Engel and Fries, 2010; Jensen and Mazaheri, 2010; Klimesch, 
2012). Future work will therefore incorporate eye-tracking and 
pupillometry to provide direct verification. 

The most intriguing findings emerged from the beta band 
(13–30 Hz), which appeared to track sensorimotor and predictive 
processes. Its prominent involvement in PPC (19 significant 
channels in the high-beta range, Figure 7a, heatmap) points to 
its integral role in spatial processing. Intriguingly, beta’s function 
appeared to diverge by mode: its desynchronization in motor areas 
during active control signaled active motor planning (Pfurtscheller 
and Lopes da Silva, 1999; Pfurtscheller and Neuper, 1997), while its 
paradoxical increase during high-complexity passive observation 
may reflect a compensatory state of vigilance or predictive 
modeling in the absence of physical control. Finally, low-frequency 
delta (<4 Hz) power increases under the most demanding active-
control epochs, consistent with sustained eort in our paradigm. 

Collectively, this decomposition reveals a symphony of neural 
oscillations where each band provides a distinct voice. This rich, 
multi-band dissociation serves as a detailed neurophysiological 
accounting of the cognitive cost of engagement, powerfully 
validating the interpretability of our findings. 

4.4 Functional connectivity: 
network-level signatures of engagement 

Our analysis of functional connectivity moves beyond regional 
activity to reveal how large-scale brain networks dynamically 
reconfigure in response to engagement mode, providing a system-
level perspective on the neurocognitive dichotomy between 
active control and passive observation. The defining feature 
of active control was a robust increase in long-range fronto-
parietal coherence, predominantly in the theta and low-beta 
bands. This synchronized dialogue between medial frontal and 
posterior parietal sites is the hallmark of integrated top-down 
control, aligning with established accounts of fronto-parietal 
control networks (Corbetta and Shulman, 2002; Miller and Cohen, 
2001). The amplification of theta coherence under high cognitive 
load underscores its role in error monitoring and adaptive 
control (Cavanagh and Frank, 2014; Cohen, 2011), while low-beta 
synchrony likely orchestrates the continuous interplay between 
sensorimotor planning and spatial attention (Engel and Fries, 2010; 
Kilavik et al., 2013; Spitzer and Haegens, 2017). 

Conversely, passive observation was characterized by a state of 
network segregation. The attenuation of fronto-parietal coherence 
signified a decoupling of executive and attentional systems. In its 
place, connectivity became more localized within a posterior visual-
parietal network–a neural architecture seemingly optimized for 
passive visual surveillance rather than active intervention. This shift 
toward a more modular, less integrated state finds strong parallels 

with findings on passive vigilance and the dynamics of the Default 
Mode Network during periods of low cognitive demand (Raichle 
et al., 2001; Sadaghiani and D’Esposito, 2015). 

Significantly, this network-level narrative was not merely a 
statistical observation but also a key element in the decodability 
of the operator’s state. The remarkable convergence between 
our coherence maps and the feature importance topographies 
from the machine learning model provides powerful, data-
driven validation. The prioritization of these exact fronto-parietal 
connectivity metrics by the classifier corroborates that the temporal 
synchronization between distributed cortical hubs is a definitive 
signature of an actively engaged state. 

In essence, our findings indicate that the transition from 
active control to passive observation is not merely a change in 
local brain activity, but a fundamental reorganization of the 
brain’s functional architecture. This architectural shift from a 
segregated, monitoring-oriented state to a highly integrated 
network for adaptive regulation represents the systems-level 
manifestation of the cognitive cost of engagement. This insight 
emphasizes that network-based metrics are indispensable 
for creating truly comprehensive and reliable models of 
cognitive state. 

4.5 Inter-individual variability, 
generalizability, and limitations 

While our study revealed robust group-level neural eects, 
translating these findings into reliable monitoring systems 
hinges on addressing the challenge of inter-individual variability. 
Our Leave-One-Subject-Out (LOSO) cross-validation results 
quantitatively illustrate this point. Generalization was strongest 
for task complexity within a given engagement mode–AD: 0.828 
and MD: 0.785 accuracy on average (Figure 6c, d). When diÿculty 
was pooled across modes, performance was moderate (mean ≈ 
0.667) (Figure 6b). Discriminating engagement mode (MD vs. AD) 
generalized less well than the within-mode diÿculty contrasts, but 
remained clearly above chance (mean ≈ 0.692) (Figure 6a). This 
pattern suggests that while complexity-related neural signatures 
are comparatively stable across individuals, the expression of 
volitional engagement is more subject-specific. Such variability– 
well documented in the EEG literature–likely reflects dierences 
in cognitive capacity, task expertise, vigilance, and neuroanatomy, 
and may be further compounded by the sparse spatial resolution of 
our EEG system. 

It is important, however, to contextualize these generalization 
challenges within the primary aims of our study. In this research, 
our focus was not to develop a universally generalizable classifier, 
but rather to uncover consistent, interpretable neural signatures 
of distinct engagement states. Nevertheless, to demonstrate 
the potential for overcoming this variability, we conducted a 
preliminary model optimization focused on the most challenging 
task: mode classification. This procedure followed a systematic 
three-stage approach: (1) domain-driven feature engineering 
emphasized task-relevant EEG markers such as µ/β rhythms over 
motor cortex, frontal theta–alpha ratios, and motor asymmetry 
indices; (2) feature selection and preprocessing employed robust 
scaling and mutual-information–based selection to reduce 
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FIGURE 8 

Enhancement of LOSO classification performance for engagement mode. Confusion matrices show improved accuracy from baseline (left: 
accuracy = 69.2%) to optimized feature configuration (right: accuracy = 72.8%), demonstrating the practical potential for methodologically-driven 
generalizability enhancement. 

dimensionality while mitigating subject variability; and (3) sample-
adaptive model selection adjusted classifier complexity across 
LOSO folds depending on training set size, balancing robustness 
and flexibility. As illustrated in Figure 8 (left: baseline model, right: 
optimized model), this resulted in a modest increase in overall 
mean LOSO accuracy from 69.2% to 72.8%. However, a closer 
inspection of the confusion matrices reveals a crucial performance 
trade-o. The optimized model’s ability to correctly identify the 
AD-replay state improved dramatically [Figure 8, right; recall 
increased from 69.0% in the baseline (Figure 8, left) to 87.3%], 
largely by reducing instances where it was mistaken for the MD 
state. This gain came at the cost of reduced accuracy for identifying 
the MD state (recall decreased from 72.5% in Figure 8, left to 54.6% 
in Figure 8, right). This suggests our theory-driven features are 
highly eective at capturing the consistent neural markers of the 
passive state across individuals. Ultimately, this result serves as 
a crucial proof-of-concept, demonstrating that targeted feature 
engineering can reshape and improve model generalizability, even 
while highlighting the distinct challenges of classifying dierent 
cognitive states. 

Crucially, beyond the issue of generalizability, our findings 
must be interpreted within the context of several other 
methodological limitations. First and foremost, we must emphasize 
that the AD-replay condition was designed as a low-engagement 
baseline and is not a direct simulation of the supervisory control 
found in real-world automated systems (e.g., SAE Level 2/3). This 
distinction necessarily limits the immediate applicability of our 
findings to interactive driving scenarios. However, this trade-
o between ecological validity and experimental control was a 
deliberate methodological choice. By creating a “zero-engagement” 
state with matched visual input, our design allowed us to isolate 
the fundamental neural signatures of active engagement with high 
precision. This rigorously established baseline is therefore not an 
endpoint, but a crucial first step, providing a solid foundation upon 

which future studies can build to investigate more complex and 
realistic supervisory states. 

The remaining limitations, such as the fixed experimental 
order, the modest sample size, and the use of a simulator, also 
call for caution when generalizing our findings, given the known 
influence of real-world factors such as perceived risk and situational 
urgency (Greenlee et al., 2018; McDonnell et al., 2023; Parasuraman 
and Riley, 1997). Specifically, the manual driving session always 
preceded the replay condition, since individualized replay stimuli 
could only be generated after active driving and track familiarity 
was necessary for participants to adopt a supervisory stance. To 
reduce potential order-related confounds, we incorporated a 10-
min rest between sessions and focused our analyses on within-
subject contrasts with identical visual input. 

Nevertheless, residual influences of time-on-task, vigilance 
decline, or expectancy cannot be entirely excluded, and our 
conclusions are therefore framed conservatively as dierences 
between active manual control and a passive replay baseline. 
Although participants were instructed to adopt a supervisory 
stance during replay to maintain attentional engagement, this 
framing served only as an experimental instruction. The AD-
replay condition does not replicate real-world automated driving, 
which entails supervisory authority and the possibility of takeover. 
Accordingly, we interpret AD-replay strictly as a passive replay 
baseline, while broader implications for supervisory automation 
are reserved for future research. In future work, we also plan 
to incorporate subjective fatigue questionnaires (and potentially 
complementary physiological indices) to more directly assess 
vigilance changes across conditions, thereby further mitigating this 
potential confound. Nevertheless, we acknowledge that without 
direct ocular or pupillometric recordings, residual influences 
of eye dynamics or vigilance cannot be fully excluded. Future 
work will therefore incorporate eye-tracking and pupillometry 
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alongside subjective fatigue measures to provide stronger control 
over these factors. 

In addition, given the potential concern that dierences 
in motor output and posture could introduce residual EMG 
and ocular artifacts, we conducted quantitative ICA/ICLabel 
evaluations and robustness checks. As summarized in 
Supplementary Table 1, the number of eye- and muscle-related 
independent components was comparable between MD and 
AD-replay sessions, with MD in fact showing numerically fewer 
artifacts. Supplementary Table 2 further demonstrates that 
excluding peripheral and motor-related electrodes or adopting 
stricter ICLabel thresholds (0.5–0.9), did not alter the classification 
results in any substantive way. These analyses indicate that the 
observed neural dierences are unlikely to be explained by artifact 
contamination alone. Nevertheless, without concurrent EMG or 
eye-tracking data, residual influences cannot be entirely ruled 
out, and our conclusions should therefore be interpreted with 
this caveat in mind. 

4.6 Implications and future directions 

The primary contribution of this research is the 
neurophysiological characterization of the cognitive cost of 
active engagement. By demonstrating the profound dierences in 
neural dynamics between active control and passive observation 
under matched sensory input, we provide a foundational baseline 
for understanding why transitioning between these states is 
non-trivial. This “cost of engagement” has critical implications 
for any domain where humans are required to shift from a role 
of passive monitoring to one of active intervention, including 
aviation, industrial process control, and medical supervision. 

Building on this baseline, future research can formulate 
more precise hypotheses. For instance, we hypothesize that an 
interactive, supervisory task–requiring intermittent monitoring 
and potential intervention–would elicit neural signatures falling 
between the two poles we have established. Quantifying how 
dierent system designs or interfaces modulate this “engagement 
gap” is a critical next step. 

However, translating these findings into reliable real-world 
applications requires overcoming the challenge of inter-
subject variability, particularly in the neural signatures of 
engagement mode, which our LOSO results identified as being 
highly subject-specific in contrast to the more generalizable 
signatures of task complexity. Future work should therefore 
explore subject-invariant modeling approaches, such as 
advanced deep learning architectures and domain adaptation 
techniques, which represent a critical step toward creating robust, 
neuroadaptive interfaces. 

5 Conclusion 

In conclusion, by methodologically isolating the mode of 
engagement, employing a matched-stimulus replay paradigm in 
a complex driving task, this study delineated the profound 
reorganization of neural resources that distinguishes active 
control from passive observation. These findings establish a 

rigorous neurophysiological baseline for the cognitive cost of 
engagement, providing essential groundwork for understanding 
and designing eective human-machine systems where the 
seamless transition between observation and action is critical for 
safety and performance. 
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