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Neural signatures of engagement
in driving: comparing active
control and passive observation
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Understanding how the human brain differentiates between active engagement
and passive observation is a fundamental question in cognitive neuroscience.
Using a matched-stimulus driving paradigm to isolate engagement from sensory
input, we recorded whole-brain EEG while participants performed a manual
control task and passively viewed a replay of their own performance. Manual
control elicited distinct spectral signatures, including stronger frontal midline
theta power and, paradoxically, greater occipital alpha power, consistent
with heightened cognitive control and active attentional filtering. While a
classifier could distinguish these states with high within-subject accuracy,
performance declined in cross-subject validation, highlighting inter-individual
variability. These findings delineate the distinct neural signatures of active
versus passive engagement under controlled conditions. This work establishes a
foundational neurophysiological baseline that can inform research on cognitive
state monitoring and the design of neuroadaptive systems in complex human-
machine interaction.
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1 Introduction

Humans frequently alternate between active interaction with their environment and
passive observation of external events. These shifts in engagement may appear effortless but
are supported by distinct neural mechanisms. Understanding how the brain differentiates
between these engagement modes and how it manages transitions between them is a
fundamental question in cognitive neuroscience and neuroengineering.

Contemporary theoretical frameworks suggest that active control requires top-down
cognitive processes, including ongoing model updating, error monitoring, and attentional
allocation. In contrast, passive states are associated with reduced executive activity and
diminished sensory processing. Predictive coding theory posits that the brain minimizes
prediction errors by continuously refining internal models through perception and action
(Friston, 2010). Active behavior reflects this process of inference, while passive states
permit predictive stability with minimal cognitive demand. Additionally, cognitive load
theory indicates that task complexity modulates neural resource allocation, such that more
demanding tasks require greater executive control (Borghini et al., 2014; Gevins et al,,
1997). Accordingly, predictive coding provides a unifying framework for our hypotheses:
manual driving requires continuous prediction updating and error minimization, which

01 frontiersin.org


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1698625
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1698625&domain=pdf&date_stamp=2025-11-06
mailto:koike@pi.titech.ac.jp
https://doi.org/10.3389/fnins.2025.1698625
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1698625/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Lietal.

should manifest as elevated frontal theta and stronger fronto-
parietal engagement. By contrast, passive replay stabilizes
predictions with minimal

attenuated

updating demands,
activity and

leading to
executive reduced reliance on
occipito-parietal alpha gating.

Electroencephalography offers well-characterized spectral
markers that map onto core control and attention processes
in dynamic tasks. Frontal midline theta (4-8 Hz) indexes
cognitive control and conflict/error monitoring and reliably
scales with control demands and proactive/reactive regulation in
fronto-parietal circuits (Cavanagh and Frank, 2014; Eisma et al,
2021). Occipital-parietal alpha (8-12/13 Hz) reflects attentional
selection: alpha desynchronization accompanies enhanced sensory
processing, whereas alpha synchronization implements top-down
inhibitory gating of task-irrelevant input (Clayton et al,, 2015;
Jensen, 2024; Jensen and Mazaheri, 2010; Klimesch, 2012). In the
sensorimotor system, mu (8-13 Hz) and beta (13-30 Hz) track
motor preparation and sensorimotor integration-mu ERD and
beta modulation accompany movement execution and predictive
control (Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller
and Neuper, 1997). These markers have been leveraged to index
engagement in realistic settings, including driving paradigms
(Borghini et al, 2014; Lin et al, 2008; Walshe et al., 2023),
and provide a principled basis for our hypotheses linking
manual control to elevated frontal-theta (control allocation) and
mode-dependent alpha dynamics (attentional gating), alongside
motor-band changes related to action readiness.

In the present matched-stimulus design, we therefore predicted
stronger frontal-midline theta during manual control (reflecting
greater control allocation) and systematic alpha modulation in
occipital-parietal cortices (reflecting top-down filtering) relative
to passive replay, with mu/beta changes indexing sensorimotor
demands. Consistent with these band-specific roles, fronto-parietal
coupling in theta/beta ranges is also implicated in coordinating
executive control with visuospatial processing during naturalistic
action (Cooper et al.,, 2015).

Despite this evidence, previous studies have often confounded
engagement mode with sensory input. For example, comparing
manual control with passive video observation introduces
uncontrolled differences in visual motion, vestibular input, and
auditory cues. These factors limit interpretability and reduce
ecological validity. Furthermore, real-world studies have reported
mixed effects of automation on engagement, influenced by task
realism, interface design, and individual differences (Merat et al.,
2014; Parasuraman and Manzey, 2010).

The objective of this study is to identify and characterize
the neurophysiological signatures of active control and passive
observation under matched sensory conditions, and to quantify
the cognitive demands of transitioning between these modes. To
achieve this, we employed a matched-replay paradigm in which
participants completed a manual driving task and then passively
viewed a replay of their performance. Because visual stimuli were
identical across conditions, any differences in brain activity can be
attributed to engagement mode rather than sensory variance.

We analyzed electroencephalographic data using a multi-
layered approach. First, we evaluated spectral dynamics, focusing
on frontal theta and occipital alpha as indicators of cognitive
control and visual attention. Second, we assessed functional
connectivity to examine how brain networks reorganize across
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conditions (Bastos et al., 2015). Third, we applied machine learning
to test whether these neural signatures can support accurate
classification of cognitive state (Lotte et al., 2007; Roy et al., 2019).

Our findings indicate that manual control is associated with
increased frontal theta power, greater occipital alpha power,
and enhanced fronto-parietal connectivity, reflecting effortful,
goal-directed engagement. In contrast, passive observation is
characterized by a more modular, disengaged network state.
These differences are amplified under higher task complexity,
suggesting that re-engagement from passive to active control
imposes measurable cognitive demands (Neubauer et al., 2012;
Parasuraman and Manzey, 2010).

By establishing a clear neurophysiological distinction between
engagement modes under tightly controlled conditions, this study
provides a foundation for future work on dynamic cognitive state
monitoring. It also informs the design of neuroadaptive systems
that respond appropriately to fluctuations in human engagement
during complex tasks.

2 Materials and methods

2.1 Participants

adults
age = 25.9 £ 2.7 years, range: 22-30) participated in the study.

Eleven healthy (8 males, 3 females; mean
All had normal or corrected-to-normal vision and no history of
neurological or psychiatric conditions. Nine participants reported
real-world driving experience (mean = 4.8 £ 2.8 years), and five
had prior exposure to driving simulation games; this background
information was collected for exploratory purposes. All procedures
were approved by the Institutional Review Board of the Institute of
Science Tokyo and conducted in accordance with the Declaration
of Helsinki. Written informed consent was obtained from all
participants, who were recruited from the university community

and received monetary compensation for their participation.

2.2 Experimental design and procedure

2.2.1 Driving simulator setup

The experiment was conducted using the commercial racing
simulation software Assetto Corsa: Competizione on the Monza
racing circuit. This software is widely used in research and training
contexts because it provides realistic vehicle dynamics, high-fidelity
track environments, and a replay function that allows identical
visual stimuli to be presented across active and passive conditions.
These features made it well-suited for isolating engagement effects
while maintaining ecological validity. The simulator setup included
a steering wheel and pedal system mounted on a racing seat
to provide realistic control and immersion. Visual stimuli were
presented on a widescreen monitor positioned at eye level.
A video camera recorded both the participant and the driving
scene to enable behavioral analysis and synchronization with EEG
recordings. All sessions were carried out in a controlled laboratory
environment. To minimize environmental confounds, the room
was kept quiet with curtains closed to block external light sources,
and the monitor brightness and contrast were fixed across sessions.
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Ambient illumination and temperature were maintained constant,
and participants were seated at a fixed distance from the screen to
ensure consistent visual conditions.

2.2.2 Experimental conditions

A 2 (Driving Mode: Manual vs. Automated (AD -
replay)) x 2 (Task Complexity: Easy vs. Hard) within-subjects
factorial design was used.

In the Manual Driving (MD) condition, participants actively
controlled the vehicle’s speed and steering using a racing simulator
while completing laps on the Monza circuit. In the Automated
Driving - Passive Replay (AD-replay) condition, participants
viewed a replay of their own preceding MD session on the same
setup, adopting the role of a supervisory passenger without any
control authority. This framing reflects common terminology in
automated driving research, emphasizing monitoring, situational
awareness, and takeover readiness. Participants were instructed
to place both hands on their knees and keep their feet away
from the pedals, refraining from touching the steering wheel or
performing any overt driving-related actions. At the same time,
because the replay reflected their own prior driving trajectory, they
were encouraged to remain mentally engaged with the unfolding
task, monitoring the traffic scene and anticipating upcoming curves
as if overseeing an automated driving system. In this sense,
motor imagery was neither explicitly required nor prohibited, but
participants were asked to maintain an engaged supervisory stance
rather than a purely passive viewing mode. The experimenter
monitored participants throughout the AD-replay session to ensure
compliance with these instructions.

This replay approach ensured identical visual input across
conditions (see Section “2.2.3 Experimental task and procedure”).
Task complexity was defined based on track geometry, with
segment labels manually annotated during the MD session and
reused for the AD-replay playback. This classification followed
prior evidence indicating that curved roads impose greater
cognitive and sensorimotor demands than straight segments due
to the need for continuous steering, speed regulation, and spatial
monitoring (Mecheri et al, 2022; Vos et al, 2023; Wascher
et al,, 2018). And the Monza circuit is a classic motorsport track
frequently used in Formula 1 and GT racing, and its geometry is
well documented. This allowed us to reference established track
data when defining Easy (straight) and Hard (curved) segments,
facilitating objective validation of our manual annotations. Easy
segments consisted of long, straight sections requiring minimal
steering and modest acceleration, while Hard segments involved
sharp or sustained curves necessitating braking, precise control,
and heightened attentional engagement. Each lap included a
predefined sequence of Easy and Hard segments (approximately
10 versus 10 per lap, respectively). Segment onset and offset
markers indicating transitions between Easy and Hard segments
were manually annotated based on track geometry and precisely
synchronized with EEG recordings. The track segmentation and
synchronization procedure are illustrated in Figure 1b.

2.2.3 Experimental task and procedure

Upon arrival, participants were verbally briefed on the
experimental procedure, completed a driving history questionnaire,
and provided written informed consent. They then completed a
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supervised practice session in the Manual Driving (MD) mode (10-
20 min) to ensure familiarity with the simulator and consistent lap
performance. Following practice, EEG preparation was completed
(see Section “2.3 EEG data acquisition”), and continuous EEG and
synchronized video recording commenced.

The experiment began with the MD session, during which
participants drove 4-7 laps (~15-20 min) while a researcher
manually inserted event markers denoting the onset and offset
of predefined Easy and Hard segments. After a 5 to 10-min
rest, participants completed the AD-replay session by viewing a
playback of their own MD run. Consistent with the instructions
described in Section “2.2.2 Experimental conditions,” they were
asked to adopt the role of supervisory passengers without
control authority, to monitor the replay as if overseeing an
automated driving system, and to remain mentally engaged while
refraining from any overt driving-related actions (e.g., touching
the wheel or pedals). The experimenter monitored participants to
ensure compliance.

This AD-replay paradigm, based on passive replay of self-
driven sessions, was designed to maximize control over visual and
temporal stimulus properties while inducing a cognitive stance
closer to supervisory monitoring than to purely passive viewing.
This allowed the isolation of neural activity differences attributable
to driver engagement mode (active vs. supervisory observation)
while holding sensory input constant. We note that this approach
does not fully emulate the cognitive demands of SAE Level
2-3 automated driving (e.g., continuous system monitoring or
real takeover readiness). Rather, it represents a minimal-control,
supervisory baseline against which the neural correlates of active
manual driving can be compared under varying complexity.

The complete experimental setup-including the driving
simulator configuration, EEG acquisition system, driving modes
(MD vs. AD-replay), electrode layout, track segmentation, and
experimental timeline-is illustrated comprehensively in Figure 1.

2.3 EEG data acquisition

Electroencephalography signals were recorded from twenty-
nine scalp electrodes arranged according to an extended 10-20
electrode montage, with 2 ear electrodes serving as the online
reference during acquisition. Electrode placement corresponding
to the Cognionics Quick-30 wireless EEG headset is illustrated in
Figure la. Data were sampled at 500 Hz using CGX Acquisition
software.

Prior to recording, electrode impedance was monitored in
real time and adjusted to remain within the manufacturer’s
recommended range (200-400 kQ) (Chi et al., 2012; Lopez-
Gordo et al,, 2014). The CGX Acquisition software also provided
automatic bad-channel flagging, which was monitored during
preparation to ensure stable signals. Continuous EEG data were
collected throughout the entire duration of the driving tasks.

2.4 EEG data preprocessing

Electroencephalography = preprocessing was  conducted
in MATLAB using the EEGLAB toolbox (v2023.1; Swartz
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FIGURE 1
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Experimental setup and protocol for EEG-based driving simulation. (a) Illustration of the driving simulation environment. Participants used a realistic
racing simulator (Assetto Corsa: Competizione), consisting of an F-GT lite racing chair, steering wheel, and pedal controls. EEG data were recorded
using a Cognionics Quick-30 wireless dry-electrode headset with 29 scalp channels; two earlobe electrodes (A1/A2) served as online reference (31
electrodes in total). Analyses used the 29 scalp channels. The inset details the electrode layout. Two distinct modes were employed: Manual Driving
(MD), in which participants actively engaged with the controls, and Automated Driving - Passive Replay (AD-replay), in which participants passively
monitored a replay of their own previous driving session without physical interaction. (b) Depiction of the Monza circuit layout, delineating the
predefined "EASY” and "HARD" complexity segments. Segment markers were synchronized with EEG recordings. The bottom timeline illustrates the
experimental protocol: Practice, MD, AD-replay, and Data Merge/Rest phases. EEG data from both modes (MD and AD-replay) and both
complexities (EASY and HARD) were analyzed to differentiate cognitive states associated with active control and passive monitoring.

Center for Computational Neuroscience, UCSD) (Delorme and
Malkeig, 2004). Continuous recordings from MD and AD-replay
sessions were segmented to exclude non-task periods, retaining
approximately 15-18 min of data per session. Event markers
corresponding to Easy and Hard segments were synchronized with
each participant’s EEG data. Standard 10-20 coordinates were
assigned to the 29-scalp-channel Cognionics system (Cognionics
Inc., San Diego, CA, USA), and for source-level analysis, electrode
positions were co-registered to a standard template; analyses
were limited to the 29 recorded scalp EEG channels. Signals
were re-referenced to the average of the Al and A2 earlobe
electrodes, and band-pass filtered between 2 and 36 Hz using
a finite impulse response (FIR) filter to remove drift and noise.
Independent Component Analysis (ICA) was performed using the
Infomax algorithm, and components were classified with ICLabel
(Pion-Tonachini et al., 2019). Only those with greater than 80%
probability of reflecting brain activity were retained; artifactual
components (e.g., eye movements, muscle, cardiac) were removed
prior to signal reconstruction. To further assess the potential
impact of residual artifacts, we quantified the number of ocular
and muscle components across conditions and evaluated classifier
robustness under different ICA retention thresholds; detailed
results are provided in Supplementary Tables 1, 2.

2.5 EEG data analysis

2.5.1 Source localization analysis

Cortical source localization was performed using distributed
source modeling implemented in MNE-Python (v1.9.0) (Gramfort
et al,, 2013). EEG data were re-referenced to the average reference
by computing projection operators to improve inverse solution
stability. Epochs spanning —0.4 to 1.6 s relative to the onset of Easy
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and Hard segments were extracted and baseline-corrected using
the —0.2 to 0 s window. Standard 10-20 electrode locations (29
scalp channels with 2 reference channels) were used. (Electrodes:
Fpl/2, AF3/4, F3/z/4/7/8, FC5/6, C3/z/4, T7/8, CP5/6, P3/z/4/7/8,
PO3/4/7/8, O1/2). This configuration provides coverage across
frontal, central, temporal, parietal, and occipital regions, and largely
overlaps with commonly used 32-channel montages, with the
exception of some midline/posterior sites (e.g., Oz, POz, CP1, CP2)
and the inclusion of additional lateral-posterior sites (PO3, PO4,
PO7, PO8). Prior work has shown that while high-density EEG
(64-128 channels) improves fine-grained localization, distributed
inverse solutions such as dSPM yield robust and interpretable
results with moderate-density montages (25-32 channels), where
the main accuracy gain occurs compared to sparse (<20) arrays
(Hedrich et al., 2017; Mahjoory et al., 2017; Song et al., 2015).
Given that our analyses focused on condition-dependent contrasts
at the group level rather than millimeter-accurate single-dipole
localization, the use of 29 channels is appropriate. Moreover,
this portable system was selected to balance source estimation
accuracy with experimental feasibility, allowing shorter preparation
time and greater participant comfort during prolonged simulated
driving sessions.

In the absence of individual MRIs, electrode positions from
the extended 10-20 montage (29 scalp channels with 2 references)
were mapped to the fsaverage template using MNE’s rigid transform
(trans = “fsaverage”) based on nasion/LPA/RPA fiducials; alignment
was visually inspected. Template-based co-registration introduces
systematic localization uncertainty due to inter-subject anatomical
variability. For 10-20 layouts, group studies report cortical
projection variability on the order of several millimeters (typically
within ~5-10 mm); for denser 10-10 layouts, comparable per-axis
dispersions in this range have also been observed. We therefore
treat anatomical labels as putative regional estimates rather than
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precise loci (e.g., putative mPFC/ACC; putative PPC) (Koessler
et al., 2009; Okamoto et al., 2004).

The forward model was constructed based on the fsaverage
template and a three-layer Boundary Element Model (BEM)
accounting for scalp, skull, and brain conductivities. Unless
otherwise noted, tissue conductivities followed standard values
(scalp = 0.30 S/m, skull = 0.006 S/m, brain = 0.30 S/m; skull-
to-brain ~ 1:50). The cortical source space was defined using
oct6 spacing, yielding approximately 10,242 source locations
per hemisphere. (For reference, an oct-6 grid corresponds to
~8,196 dipoles in total-~4,098 per hemisphere-with orientations
constrained normal to the cortex; our analyses used the cortex-
normal component). EEG sensor positions were co-registered to
the head model via a standard transformation. The EEG forward
operator (29 channels) had a condition number of ~4.8 x 10!,
indicating good numerical conditioning under this head model.

Noise covariance matrices were estimated from the baseline
period for each participant and condition. The inverse operator was
computed using these covariances and the forward model. Source
activity was reconstructed using dynamic statistical parametric
mapping (dSPM), incorporating a loose orientation constraint
(looseness = 0.2), depth weighting (0.8), and an assumed signal-
to-noise ratio (SNR) of 3.0 (A? = 1/SNR?) (Numerically, SNR = 3
implies A2 = 0.111). The resulting inverse solutions were applied
to each epoch, and only the component of activity normal to the
cortical surface was retained. Source time courses (STCs) were
averaged across epochs within each condition (MD-Easy, MD-
Hard, AD-replay-Easy, AD-replay-Hard) to generate participant-
level estimates for group-level analysis. Given the montage and
template anatomy, anatomical labels are reported as putative
regional estimates (e.g., putative mPFC/ACC; putative PPC) rather
than millimeter-accurate loci; reported spatial resolution in similar
EEG settings is on the order of ~10-15 mm for superficial cortex
and ~20-30 mm for deeper sources (Lantz et al, 2003). To
provide converging evidence independent of inverse assumptions,
we additionally report sensor-space topographies (condition
means and contrasts; Supplementary Figure 3, Sensor-space
topographies for all contrasts), which qualitatively corroborate the
source-level patterns (e.g., frontal/occipital increases during MD,
posterior/parietal increases during AD).

2.5.2 Group-level source activity and region of
interest (ROI) analysis

To assess population-level cortical dynamics and test the
study’s hypotheses, participant-level average Source Time Courses
(STCs; see Section “2.5.1 Source localization analysis”) were
aggregated to generate grand-average STCs for each of the four
conditions (MD-Easy, MD-Hard, AD-replay-Easy, AD-replay-
Hard). Contrast STCs were computed to isolate effects of driving
mode and task complexity: MD-Easy minus AD-replay-Easy, MD-
Hard minus AD-replay-Hard, MD-Hard minus MD-Easy, and
AD-replay-Hard minus AD-replay-Easy. These contrast maps were
used to identify condition-specific differences in cortical activation.

For examination of the anatomical specificity of these effects,
a region-of-interest (ROI) analysis was conducted. ROIs were
defined based on the Desikan-Killiany atlas on the fsaverage
cortical template and included the Motor Cortex (precentral gyrus,
paracentral lobule, supplementary motor area), Frontal Midline
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(superior, middle, and medial frontal gyri), Occipital Cortex (e.g.,
cuneus, lingual gyrus), and Posterior Parietal Cortex (PPC; superior
and inferior parietal lobules). For each contrast, mean dSPM values
within each ROI were extracted over time using MNE-Python,
yielding condition-specific ROI time courses for further statistical
testing (see Section “2.6 Statistical analysis”).

Analyses focused on the 0.1-0.8 s window following segment
onset, selected to capture cognitive processes relevant to task
engagement. This interval encompasses several well-documented
functions. Error and conflict monitoring typically emerge within
100-300 ms in medial frontal regions, reflected in early negative
deflections such as the ERN/N2 (Botvinick et al., 2001; Overmeyer
et al, 2021; Ridderinkhof et al., 2004). Compensatory visual
processing unfolds from approximately 150 ms onward, including
occipital P1/N1 components that index sensory updating (Luck
and Vogel, 1997). Attention modulation in parietal and frontal
networks is recruited around 200-500 ms, reallocating resources
under changing task demands (Corbetta and Shulman, 2002),
and more recent reviews highlight sustained visual attention
mechanisms in similar time frames (Huang et al., 2023). Executive
control processes such as goal maintenance and top-down
regulation are expressed in midfrontal theta activity across 200-
600 ms (Cavanagh and Frank, 2014; Miller and Cohen, 2001).
Finally, visuospatial attention is strongly engaged within 300-
600 ms in parietal and occipital cortices to support spatial tracking
and sensorimotor integration (Corbetta and Shulman, 2002; Tosoni
et al,, 2023). Taken together, these temporal landmarks justify our
choice of the 0.1-0.8 s analysis window, as it captures the cascade
of perceptual, attentional, and executive operations most critical for
differentiating engagement states.

Beyond these procedural definitions, it is also important
to clarify the rationale for our ROI grouping strategy. The
ROI definitions were theory-driven and tailored to the primary
aim of identifying neural signatures of driving engagement.
Frontal midline and motor regions were emphasized for mode
contrasts (MD vs. AD-replay), whereas posterior parietal and
prefrontal regions were prioritized for task complexity (Hard vs.
Easy). Although finer atlas-based subdivisions (e.g., M1 vs. SMA,
V1 vs. V2-V3) could in principle be analyzed separately (see
Figure 2c), we aggregated them into six functionally coherent
ROIs. This grouping reduces the multiple-comparison burden and
increases statistical power given our modest sample size (N = 11),
while remaining consistent with prior EEG/neuroimaging work
emphasizing functional groupings such as frontal midline theta,
motor /B, and occipital a. Importantly, each functional ROI was
derived from anatomically validated subdivisions (e.g., Motor ROI
included precentral gyrus, paracentral lobule, SMA; Occipital ROI
included cuneus and lingual gyrus), ensuring anatomical validity
while allowing hypothesis-driven functional grouping.

To further substantiate this choice, we conducted internal
consistency checks across subregions (e.g., M1 vs. SMA, VI-
V3, dIPFC vs. vmPFC). These subregional consistency analyses
are visualized in Supplementary Figure 1, which summarizes
(a) visual cortex (V1-V3) MD vs. AD-replay contrasts showing
consistent activation trends, and (b) frontal midline (dIPFC
vs. vimPFC) responses exhibiting comparable complexity effects
across engagement modes. We validated regional groupings
using three complementary metrics: (1) directional agreement of
activation effects (>80% threshold), (2) inter-subregional temporal
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FIGURE 2

in arbitrary units (a.u.) for descriptive visualization.

Cortical activation differences between manual and automated driving. (a) Group-averaged cortical activation maps (MD minus AD-replay) under
easy (top) and hard (bottom) road conditions, visualized from lateral and medial views. Red and blue indicate stronger activity during manual and
automated driving, respectively. Values reflect mean dSPM (z-scored SNR) across epochs. (b) Example participant (sub-2) showing spatially
consistent activation patterns with the group results, including increased mPFC and occipital activity during MD and enhanced parietal activity
during AD-replay. (c) Schematic of the left hemisphere displaying the functional ROIs examined in this study. Lateral and medial views highlight
mPFC, DLPFC, ACC, M1, SMA, PPC, and V1-V3. ROl abbreviations and colors match those used in statistical analyses. Whole-brain maps are shown

correlations (r > 0.5), and (3) one-way ANOVA testing for
subregional differences (p > 0.05 indicating homogeneity). The
results indicated that subregions within each broader ROI exhibited
highly similar activation trends, significant temporal correlations,
and no systematic differences in ANOVA testing. This convergence
supports the robustness of the chosen grouping scheme and
confirms that the broader ROIs adequately capture the complexity
effects without obscuring meaningful subregional divergence.
While finer parcellations may provide additional insights in larger
cohorts or multimodal studies, the present grouping strikes the
most appropriate balance between anatomical specificity, statistical
robustness, and interpretability for the current research aims.

2.5.3 Frequency domain analysis (power and
ERD/ERS)

Frequency-domain analyses were conducted on ROI time
courses derived from group-level contrast STCs (see Section
“2.5.2 Group-level source activity and region of interest (ROI)
analysis”) to investigate oscillatory activity associated with driving
mode and task complexity. Four canonical EEG frequency bands
were analyzed: Theta (4-7 Hz), Alpha (8-12 Hz), Mu (8-
13 Hz, specific to the Motor Cortex), and Beta (13-30 Hz),
based on their relevance to cognitive and sensorimotor processes
(Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999). For
each ROI and contrast condition (e.g., MD-Easy minus AD-
replay-Easy), two metrics were computed within the 0.1-0.8 s
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post-segment window: (1) band power, calculated as the mean
squared amplitude of the band-pass filtered signal, and (2) event-
related desynchronization/synchronization (ERD/ERS), expressed
as the percentage change in power relative to a pre-segment
baseline (—0.2 to 0 s), with negative and positive values reflecting
desynchronization and synchronization, respectively (Pfurtscheller
and Lopes da Silva, 1999).

(Power getive — Powerbaseline)

ERD/ERS(%) = x 100

Po Werpgseline

These predefined ROI-band
combinations aligned with the study’s hypotheses: Beta and Mu

metrics were computed for
bands in the Motor Cortex for sensorimotor control (Pfurtscheller
and Neuper, 1997); Alpha in the Occipital Cortex for visual
processing (Klimesch, 1999); Theta in the Frontal Midline for
executive control and conflict monitoring (Cavanagh and Frank,
2014); and Alpha in the Posterior Parietal Cortex for visuospatial
attention (Jensen and Mazaheri, 2010). The resulting values
were subjected to statistical analysis as described in Section “2.6
Statistical analysis.”

2.5.4 Functional connectivity analysis

To evaluate functional interactions between cortical regions, we
computed pairwise connectivity metrics between ROI time courses
(see Section “2.5.2 Group-level source activity and region of interest
(ROI) analysis”). Specifically, Pearson correlation coefficients were

frontiersin.org


https://doi.org/10.3389/fnins.2025.1698625
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Li et al.

calculated to index linear inter-regional coupling,

cov(x, y)

ey =
4 0x0y

and magnitude-squared coherence was computed to capture
frequency-specific synchronization across ROIs,

cop = L OF
’ Pux (f) Py (/)
where x(#) and y(t) denote ROI time courses, o indicates
standard deviation, and Py (f), Pyy (f), Py (f) denote auto-
and cross-spectral density functions. Connectivity analyses were
implemented in Python using SciPy and MNE-Python.

Because EEG connectivity measures are inherently sensitive to
volume conduction and field spread, our approach mitigated these
effects in two ways: (1) analyses were performed at the source
level after dSPM projection, which reduces spurious correlations
driven by common sensor projections (Mahjoory et al., 2017)
and (2) connectivity was evaluated between spatially distinct ROIs
defined on the cortical template rather than between immediately
adjacent electrodes, a strategy shown to improve the functional
specificity of source-level connectivity estimates (Schoffelen and
Gross, 2009). Reported connectivity differences should therefore be
interpreted as putative inter-regional coupling patterns within this
methodological framework.

2.5.5 Feature extraction for classification

Feature extraction was performed on sensor-level EEG epochs
ranging from —0.4 to 1.6 s relative to segment onset, targeting
classification of the four experimental conditions (MD-Easy,
MD-Hard, AD-replay-Easy, AD-replay-Hard). The preprocessing
pipeline included notch filtering (50 and 100 Hz), band-pass
filtering (2-36 Hz), baseline correction (—0.2 to 0 s), and z-score
normalization across channels and participants (Bigdely-Shamlo
etal., 2015; Luck, 2014).

Two types of wavelet-based features were derived. Wavelet-
derived spectral features were obtained using discrete wavelet
transform (DWT) with the Daubechies 4 (“db4”) wavelet
(Daubechies, 1992), decomposing each EEG channel into five sub-
bands. Within each sub-band, statistical measures-including mean
amplitude, energy, and wavelet entropy (Rosso et al., 2001) —were
calculated to characterize signal properties. Wavelet coherence
features were estimated across 11 anatomically informed electrode
pairs (e.g., frontal-parietal, frontal-central, interhemispheric),
using Pearson correlation of wavelet coefficients to reflect
functional connectivity (Grinsted et al, 2004; Sauseng and
Klimesch, 2008; Torrence and Compo, 1998). All spectral and
coherence features were concatenated into a unified feature
vector for each epoch and subsequently entered the classification
framework (Section “2.5.5 Feature extraction for classification”).

2.5.6 Classification analysis

A supervised machine learning pipeline was developed to
classify EEG epochs into four experimental conditions (MD-
Easy, MD-Hard, AD-replay-Easy, AD-replay-Hard), utilizing a
Random Forest classifier implemented in Python with the Scikit-
learn library (Pedregosa et al, 2018). Feature selection within
each training fold followed a two-stage procedure. Initially, a
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model-based ranking identified a broad set of relevant features
based on their importance scores. This subset was then refined
using univariate ANOVA F-statistics, yielding a final set of
discriminative features.

Model performance and generalizability were evaluated using
two validation schemes. In the split-sample approach, class-
balanced data were stratified into training, validation, and test
sets. In the Leave-One-Subject-Out (LOSO) cross-validation, each
participant was iteratively held out as the test subject, with the
remaining data used for training and feature selection. Class
balancing was applied within each fold to mitigate bias.

Performance metrics included accuracy, macro-averaged F1
score, precision, recall, and normalized confusion matrices
to illustrate condition-specific classification patterns. Feature
importance scores were extracted from the trained Random
Forest models-either from the full split-sample model or averaged
across LOSO folds-to identify EEG features most predictive
of task condition.

2.6 Statistical analysis

Statistical analyses were performed to examine the effects of
driving mode and task complexity on EEG-derived measures,
including ROI activity, frequency-domain metrics (band power
and ERD/ERS), and classification features. All procedures were
implemented in Python using libraries such as SciPy (Virtanen
et al, 2020), MNE-Python, and PyWavelets. The significance
threshold was set at o = 0.05, with Bonferroni or false discovery
rate (FDR) correction applied where applicable.

Region of interest and frequency-domain effects were assessed
using one-sample t-tests against zero within the 0.1-0.8 s
post-segment window. One-tailed tests were employed for
directional hypotheses and paired-sample ¢-tests were used to
evaluate interaction effects, such as differences in task complexity
modulation between driving modes. Effect sizes were quantified
using Cohen’s d.

To address the multiplicity of tests, analyses were grouped into
four families: (i) whole-brain source maps, (ii) ROI activation, (iii)
frequency-domain modulation, and (iv) functional connectivity.
Within each family, p-values were adjusted using the Benjamini-
Hochberg FDR procedure. Confirmatory contrasts were tested
one-tailed in line with a priori predictions, whereas exploratory
contrasts were evaluated two-tailed. Results that did not survive
FDR correction are reported descriptively as “trends.” Bootstrap
resampling (5,000 iterations) was additionally applied to estimate
confidence intervals and corrected p-values, with full results
provided in Supplementary Table 3.

Wavelet-derived
connectivity analysis”)

“2.5.4
compared across

features  (Section Functional

were statistically
experimental conditions using paired t-tests for predefined
condition pairs (e.g., MD-Easy vs. AD-replay-Easy). To evaluate
global effects across EEG channels within each frequency band,
p-values were combined using Fisher’s method.

Classifier performance metrics (accuracy, macro-averaged F1,
precision, recall) obtained from split-sample and LOSO validation
were tested against the theoretical chance level (25%) using
binomial or permutation tests, depending on the analysis context.
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Visualization of statistical results included topographic maps
(via MNE-Python) to display spatial distributions of significant
effects, as well as bar plots and heatmaps to summarize differences
across frequency bands, channels, and ROIs. All visualizations
followed established EEG reporting practices (Klimesch, 1999;
Pfurtscheller and Lopes da Silva, 1999). Custom Python scripts
were used for all statistical and visualization procedures.

3 Results
3.1 Effects of driving mode (Hypothesis 1)

3.1.1 Source-level contrasts between active
control and passive observation

To investigate how driving mode modulates large-scale brain
dynamics, we computed cortical activation difference maps (MD
minus AD-replay) under both easy and hard road conditions. These
group-averaged maps revealed distinct spatial activation patterns
shaped by the control mode, even when external stimuli and road
complexity were held constant. Although no vertices survived
correction for multiple comparisons, the group-level activation
maps (Figure 2a, top row = Easy, bottom row = Hard) exhibited
spatially coherent trends consistent with our theoretical predictions
and effect size analyses. Notably, average activation differences
showed moderate effect sizes (d ~ 0.27-0.28) and strong within-
subject consistency across conditions, justifying the inclusion of
group-level visualizations as representative of mode-dependent
cortical dynamics.

Six key functional ROIs involved in attentional control,
sensorimotor processing, and executive function were visualized.
The of these ROIs
anatomical landmarks and functional localization
(Tzourio-Mazoyer et al., 2002).

Specifically, under the easy condition, manual driving (MD)

boundaries were based on standard

schemes

elicited stronger activation in the frontal and occipital cortices,
reflecting increased demands on cognitive control and visual
attention. In contrast, under the hard condition, AD-replay
induced stronger activation in occipital and parietal regions,
suggesting enhanced visual monitoring and spatial processing in
the absence of active vehicle control.

To validate the feasibility of the source-space comparison
approach, we also visualized the same contrasts at the individual
subject level. In a representative participant (SUB_2), as shown
in Figure 2b (individual subject maps; top row = Easy, bottom
row = Hard, lateral and medial views), similar activation differences
were observed: mPFC and occipital increases during MD under
easy conditions, and greater PPC and medial motor cortex
activation during AD-replay under hard conditions. The observed
consistency suggests that group-level effects were not artifacts of
averaging but reflect underlying individual trends. This confirms
that the group-level findings are not driven by a small subset
of participants and that the analysis pipeline is appropriate for
revealing condition-specific differences.

These source-space patterns support Hypothesis 1 by showing
that neural activity differs substantially between manual and
automated driving, even when participants are exposed to identical
external stimuli and road complexity. The medial prefrontal
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cortex (mPFC) was more active during MD, consistent with
higher demands on executive control and sustained attention. The
elevated PPC and occipital activation during AD-replay suggests a
shift toward passive visual monitoring and spatial estimation when
participants were not actively engaged in control.

As a complementary validation, we trained a binary classifier
on MD epochs and tested it on AD-replay. The model
failed to generalize, achieving 58.4% accuracy—-a marginal gain
over the 50% chance level that was not statistically reliable
(permutation/binomial test, n.s.). This failure supports the
conclusion that mode-specific neural differences hinder cross-
mode transfer. Consistent with this, we observed high within-
subject reliability (r = 0.88 & 0.065) but substantial between-subject
variability (CV > 17%), which can also obscure group-level effects.

Together, these source-level findings, supported by both
group-level and individual data, robustly validate Hypothesis 1
and establish that manual and automated driving modes elicit
distinct and spatially distributed patterns of neural activity.
Driving mode modulates brain engagement even when external
conditions are held constant. Manual driving elicited stronger
engagement of mPFC and visual cortices, consistent with increased
cognitive demand, while automated driving was characterized
by elevated activity in PPC and medial motor areas, indicating
a shift toward passive sensory-motor monitoring. It should be
noted that these anatomical attributions are treated as putative
given the 29-channel template-based source model; importantly,
converging sensor-space topographies (Supplementary Figure 3,
Sensor-space topographies for all contrasts.) exhibited consistent
frontal/occipital increases during MD and posterior/parietal
increases during AD, corroborating the source-level contrasts.

3.1.2 ROl activation differences

To further examine how driving mode influences localized
cortical engagement, region-of-interest (ROI) analyses were
conducted across five functionally relevant brain areas: the medial
motor areas (M1 and SMA), medial prefrontal cortex (mPFC),
anterior cingulate cortex (ACC), visual cortex (V1-V3), and
posterior parietal cortex (PPC). These ROIs were selected based
on established functional relevance and are illustrated in Figure 2c¢
(ROI schematic of left lateral and medial views). Distinct and
consistent mode-dependent differences in neural activity were
observed across these ROIs (Figure 3a, ROI bar plots, MD —
AD contrasts under easy and hard conditions). Detailed statistical
outcomes, including original tests and bootstrap resampling with
FDR correction, are reported in Supplementary Table 3.

The medial motor areas exhibited greater activation during
AD-replay compared to MD, reflected in negative differences (MD
— AD-replay < 0) for both easy (M = —0.0017) and hard conditions
(M = —0.0018). While not reaching statistical significance, this
consistent negative trend likely indicates compensatory motor
prediction or anticipatory processes associated with passive driving
control, alongside possible muscle-related activations (Pfurtscheller
and Lopes da Silva, 1999; Pfurtscheller and Neuper, 1997).
Consistent with this interpretation, recent studies have shown
that motor regions can display anticipatory activity even without
overt movement, including mu suppression during passive action
observation (Krol and Jellema, 2022; Syrov et al., 2023), as well as
predictive EEG components preceding steering actions in driving
simulations (Di Liberto et al., 2021). Bootstrap resampling (5,000
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FIGURE 3

dimensionless correlation or coherence coefficients.

Neural activation and functional connectivity differences across driving modes and task complexity levels. (a) Mean activation differences (MD minus
AD-replay) across five functionally defined brain regions under easy and hard conditions, computed from source-localized dSPM values. (b)
Frequency-domain power (top) and ERD/ERS (bottom) comparisons across selected ROIs and frequency bands. Bar and violin plots show MD minus
AD-replay differences across easy and hard conditions. (c) 3D stacked heatmap of ROI-to-ROI functional connectivity (coherence and correlation)
across manual vs. automated driving (MD/AD-replay) and easy vs. hard task conditions. Each layer represents one connectivity type under a specific
condition. (d) Layered 3D matrix showing connectivity differences between hard and easy conditions (HARD - EASY) for both MD and AD-replay
groups, revealing task complexity modulation of large-scale brain networks. (e) Complexity-induced activation changes (HARD - EASY) for MD and
AD-replay separately, showing region-specific effects of task demand on cortical engagement. (f) Frequency power (top) and ERD/ERS (bottom)
differences between hard and easy conditions across selected ROls, separately for MD and AD-replay. Combined bar and violin plots illustrate both
magnitude and inter-subject variability. Error bars represent standard error of the mean (SEM); asterisks indicate statistically significant differences

(p < 0.05). ROIs include the medial motor area (M1/SMA), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), visual cortex (V1-V3),
posterior parietal cortex (PPC), and dorsolateral prefrontal cortex (DLPFC). All activation and frequency power values are reported in arbitrary units
(a.u., z-scored SNR or normalized power), ERD/ERS values are expressed as % change from baseline, and connectivity measures represent

iterations) further indicated uncorrected effects in the AD > MD
direction for both Easy (p = 0.0164, 95% CI [—0.0016, —0.0001])
and Hard (p = 0.018, 95% CI [—0.0016, —0.0002]) conditions (see
Supplementary Table 3). However, because Motor ROI activation
analyses were exploratory within family 2, these effects did not
survive FDR correction and are therefore reported as trends.

In contrast, the mPFC showed an opposite trend, displaying
increased activation during manual driving (MD — AD-
replay > 0), with modest statistical significance particularly
evident under hard conditions (e.g., right hemisphere rostral
middle frontal ROI: M = 0.0065, p < 0.001; bootstrap FDR-
adjusted p = 0.77, not significant after correction, descriptive
only). Given the established role of mPFC in executive control and
sustained attention (Miller and Cohen, 2001), this finding supports
the interpretation that active vehicle control demands greater
cognitive effort under challenging conditions.

The ACC also exhibited greater activation during MD
compared to AD-replay, especially under high task complexity
(Hard condition mean: 0.0041). Notably, caudal anterior cingulate
regions showed significant differences in favor of manual driving
under both conditions, particularly pronounced in the hard
condition (left hemisphere ROI: M = 0.0120, p < 0.001; right
hemisphere ROI: M = 0.0083, p < 0.001). This aligns well with

the ACC’s known involvement in cognitive control and attentional
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resource allocation, further highlighting the cognitive demands
associated with manual driving under heightened task complexity.

The visual cortex demonstrated greater activation during
automated driving (negative MD — AD-replay differences),
suggesting a shift toward enhanced visual monitoring when active
manual engagement is absent (Corbetta and Shulman, 2002).
Detailed analyses confirmed this effect, as evidenced by consistent
negative differences across multiple visual cortex ROIs, particularly
within fusiform regions (left hemisphere, hard: M = —0.0098;
uncorrected p < 0.05, but not significant on the one-sided test
because the effect was opposite to the a priori direction) and
lingual regions.

In the PPC, increased activation during manual driving
relative to automated driving was observed, particularly notable
in the inferior parietal regions bilaterally (left hemisphere inferior
parietal: hard M = 0.0035, p < 0.001; easy M = 0.0036, p = 0.001;
right hemisphere inferior parietal: hard M = 0.0035, p < 0.001;
easy M = 0.0035, p < 0.001). Given the PPC’s established role
in spatial attention and sensorimotor integration, this finding
is consistent with increased cognitive and attentional demands
associated with manual control. Although superior parietal and
supramarginal regions demonstrated variability and mostly non-
significant differences, the robust findings in inferior parietal areas

strongly support enhanced spatial attentional processes during
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manual driving. These differences did not remain significant after
FDR correction and are reported descriptively.

Statistical tests largely supported these observations. Despite
certain individual ROI results showing variability, the overall
pattern clearly favored increased cognitive and attentional
processing during manual driving in mPFC, ACC, and PPC
regions. These ROI-level findings collectively reinforce Hypothesis
1, highlighting distinct regional neural activation profiles elicited
by manual versus automated driving, with manual control
preferentially engaging cognitive and attentional networks, and
automated driving prompting compensatory motor and visual
monitoring processes.

3.1.3 Frequency-domain modulation

To investigate how driving mode influences frequency-specific
neural dynamics, we conducted analyses of frequency band power
and event-related desynchronization/synchronization (ERD/ERS)
across five functionally relevant brain regions: medial motor areas
(Motor), medial prefrontal cortex (mPFC), anterior cingulate
cortex (ACC), visual cortex (Visual), and posterior parietal
cortex (PPC). These analyses targeted physiologically meaningful
frequency bands, specifically beta (13-30 Hz) and mu (8-13 Hz)
for motor areas, theta (4-8 Hz) for frontal midline regions (mPFC
and ACC), and alpha (8-12 Hz) for visual and parietal cortices
The corresponding results are shown in Figure 3b (top row: power
spectra across ROIs; bottom row: ERD/ERS violin and bar plots).

The analysis revealed significant modulation of neural spectral
activity by driving mode, differing distinctly across brain regions. In
frontal midline regions, theta-band power significantly increased
during manual driving (MD) relative to Automated Driving -
Passive Replay (AD-replay), particularly within the mPFC (easy:
p = 0.011; hard: p = 0.004) and ACC (easy: p = 0.004; hard:
p < 0.001). Bootstrap resampling (5,000 iterations) confirmed
these effects with FDR-adjusted p < 0.001 across all conditions,
indicating highly robust increases in frontal theta power during
manual control. This elevated theta activity likely reflects
enhanced cognitive control, which supports conflict monitoring
and executive regulation (Cavanagh and Frank, 2014; Eisma et al,
2021), together with sustained attention demands required to
maintain task engagement (McFerren et al., 2021) during manual
control under both easy and complex driving conditions.

In the visual cortex, alpha-band power during manual
driving (MD) significantly exceeded that of automated driving-
passive replay (AD-replay) for both easy (p = 0.001) and hard
(p < 0.001) conditions. This was further evidenced by significant
alpha synchronization (ERS: +97.9%, p = 0.039) in the MD-
easy condition relative to baseline. Bootstrap analysis confirmed
consistent uncorrected trends (p < 0.001) in the MD > AD
direction, but as visual alpha was treated as exploratory, these
results did not undergo FDR correction and are reported trend.
A similar MD-related increase in alpha power was observed in
the PPC (easy: p = 0.018; hard: p = 0.004). Bootstrap resampling
also showed consistent uncorrected trends (p < 0.001) but as
exploratory findings they are presented descriptively. Because
visual input was held constant across modes, these alpha effects
likely reflect mode-dependent top-down modulation rather than
differences in sensory stimulation.

Motor areas showed significant beta-band power increases
0.047),

during manual driving under hard conditions (p
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suggesting heightened motor preparation during active driving
while bootstrap resampling confirmed this effect as highly robust
(FDR-adjusted p < 0.001). Moreover, mu-band ERD analyses
revealed significant desynchronization under easy conditions
(=50.11%, p
bootstrap correction (FDR-adjusted p < 0.001), confirming

0.019), which also remained significant after

robust sensorimotor integration during manual control. further
supporting enhanced sensorimotor integration during manual
control (Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller
and Neuper, 1997). This interpretation aligns with recent
findings showing that beta oscillations are now recognized as
key contributors to motor prediction and the stabilization of
sensorimotor states (Barone and Rossiter, 2021), while the phase
dynamics of mu and beta rhythms have been directly linked
to corticospinal excitability and integrative motor processes
(Wischnewski et al, 2022). In naturalistic driving contexts,
predictive EEG components preceding steering actions further
demonstrate that both w and B rhythms support anticipatory
and integrative mechanisms that are strengthened during manual
control (Di Liberto et al, 2021). This pattern highlights
that sensorimotor integration-linking visual inputs with motor
planning-is a key neural substrate of active driving engagement,
and its attenuation under AD-replay reflects the reduced coupling
between perception and action in passive observation states.

Collectively, these frequency-domain results align closely with
findings from source-space and ROI-level activation analyses,
collectively supporting the interpretation that manual driving
uniquely engages cognitive control mechanisms (theta-band in
mPFC and ACC), intensified visual attention (visual cortex alpha
synchronization), and motor preparation processes (motor cortex
beta modulation), underscoring distinct neural dynamics between
manual and automated driving modes.

3.1.4 Functional connectivity patterns between
brain regions

Pairwise functional connectivity between selected brain regions
was analyzed using correlation and coherence measures to
further elucidate how driving mode modulates large-scale neural
coordination. Functional connectivity heatmaps (Figure 3c,

correlation-based

3D-stacked matrices; bottom two layers
connectivity under Easy and Hard, top two layers = coherence-
based connectivity under Easy and Hard) were generated to
illustrate inter-regional coupling patterns across motor, medial
prefrontal cortex (mPFC), anterior cingulate cortex (ACC), visual
cortex, and posterior parietal cortex (PPC) under both easy and
hard driving conditions.

The correlation-based analysis highlighted distinct driving
mode-dependent connectivity profiles. During manual driving,
the motor and visual cortices displayed moderate positive
correlations under easy conditions (r = 0.220), reflecting integrated
sensorimotor processing during relatively low-demand driving
scenarios. Additionally, connectivity between the PPC and mPFC
was notably stronger (r = 0.354 under easy; r = 0.355 under hard
conditions), suggesting enhanced coordination between spatial
attention and executive control regions during active driving.

Interestingly, motor-mPFC connectivity revealed a moderate
positive correlation that strengthened under easy conditions
(r = 0.340), potentially indicative of a synchronized integration
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Group average brain complexity effects. Group-level cortical activation contrasts between Hard and Easy segments (Hard - Easy) under different
driving modes (N = 11). Surface maps illustrate average source-level activity differences for manual driving (MD, top row) and automated driving (AD,
bottom row), rendered from four standard FreeSurfer views (left lateral, left medial, right lateral, right medial). Warmer colors indicate increased
activation during hard segments, while cooler colors denote decreased activation. Under MD, focal increases were observed in medial frontal,
occipital, and parietal cortices, including the supplementary motor area (SMA), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC),
reflecting elevated cognitive and visuospatial processing demands. In contrast, AD produced more diffuse and widespread activation across posterior
cortices, particularly in the occipital and temporal—-parietal regions, suggesting less selective cortical engagement during increased complexity.

between motor control and executive functions when attentional
resources are readily available. Conversely, correlations between
the ACC and other regions remained low across both complexity
conditions (e.g., motor-ACC under hard conditions, r = 0.067),
implying that ACC activation during driving tasks might function
somewhat independently from these other networks, or reflect
highly state-specific engagements.

The coherence analysis, complementary to the correlation-
based assessment, further validated these observations. Functional
coherence between visual and parietal regions was moderately
robust under both easy (coherence = 0.327) and hard conditions

(coherence = 0.365), reflecting stable visual-spatial processing

coordination regardless of task complexity. Connectivity between
motor and mPFC areas demonstrated lower coherence (e.g., hard
condition coherence = 0.215), suggesting limited direct frequency-
based interaction between motor execution and higher cognitive
processes during heightened task demands.

In conclusion, these functional connectivity patterns reinforce
Hypothesis 1, demonstrating clear neural differentiation between
manual and automated driving modes, not only in individual
region activation intensities but also in their inter-regional
communication patterns. Manual driving elicited more integrated
sensorimotor and cognitive coordination, particularly evident
between motor and frontal regions under low task complexity, and
robust parietal-prefrontal connectivity across complexity levels.
Conversely, automated driving appeared associated with reduced
fronto-motor integration and comparatively stable visual-spatial
network interactions, supporting a shift toward passive visual
monitoring, and decreased cognitive-motor integration. These
mode-specific connectivity distinctions highlight the profound
impact driving mode exerts on large-scale brain network
organization, independent of external road condition demands.

Together, the results from source-level mapping, ROI analyses,
spectral dynamics, functional connectivity, and cross-condition
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classification consistently support Hypothesis 1: manual and
automated driving engage the brain in fundamentally distinct
ways. Manual driving elicited increased activation in frontal
and parietal regions, elevated theta and alpha synchronization,
and tighter fronto-motor connectivity, reflecting heightened
demands on executive control, visual processing, and spatial
attention. In contrast, automated driving was characterized
by enhanced occipital activation and weakened inter-regional
coupling, suggesting a shift toward passive visual monitoring with
reduced cognitive engagement. These mode-specific differences
were consistently observed across matched road conditions,
indicating that control state alone robustly shapes neural dynamics.
I next examined whether task complexity (easy vs. hard) further
modulates these patterns, and whether such effects interact with
the driving mode.

3.2 Effects of task complexity and
interaction with mode (Hypothesis 2)

3.2.1 Source-level contrasts of hard vs. easy

Cortical activation difference maps (Hard — Easy) separately
for manual driving (MD) and Automated Driving - Passive Replay
(AD-replay) were computed in this part to investigate how task
complexity modulates cortical activation. These maps revealed
distinct spatial patterns that varied depending on the control mode,
as illustrated in Figure 4 (top row: MD, bottom row: AD; four
cortical views each).

Under MD, increased task complexity led to localized activation
increases in the medial frontal cortex, notably within the
supplementary motor area (SMA) and anterior cingulate cortex
(ACCQC), as well as in parietal and occipital regions. These areas are
broadly associated with cognitive control, error monitoring, and
visuospatial integration (Pfurtscheller and Neuper, 1997). The focal
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recruitment of frontal and parietal regions is consistent with their
established roles in maintaining executive function and attentional
allocation during demanding tasks (Wascher et al., 2018).

Automated Driving - Passive Replay, by contrast, exhibited
more spatially diffuse activation increases under hard conditions,
with prominent changes observed in the occipital cortex and
temporal-parietal junction. The absence of frontal specificity
suggests a less efficient, potentially compensatory, pattern of
neural engagement. This broader activation profile aligns with
findings frequently observed during passive monitoring or reduced
cognitive involvement when control is delegated to automation
(McDonnell et al., 2023; McWilliams and Ward, 2021; Merat et al.,
2014; Parasuraman and Manzey, 2010).

Although both conditions exhibited elevated cortical activity
in response to increasing complexity, their topographical profiles
differed. MD elicited more anatomically selective activation in task-
relevant areas, whereas AD-replay was associated with widespread
but less targeted cortical changes. This suggests that effective
cortical switching between task-relevant and diffuse networks
may be contingent on the level of volitional engagement: when
drivers are actively in control, adaptive recruitment is localized
to frontal and parietal circuits that support conflict monitoring
and attentional allocation (Botvinick et al., 2001; Wascher et al.,
2018), whereas passive observation under automation elicits a more
diffuse, less efficient activation profile consistent with reduced
cognitive involvement (McDonnell et al., 2023; McWilliams and
Ward, 2021; Merat et al., 2014). Such switching is consistent with
broader accounts of adaptive cortical network dynamics (Aston-
Jones and Cohen, 2005; Raichle, 2015), which posit that task-
related reorganization is contingent on motivational state and
active engagement. Again, these regional inferences are reported as
putative, but the observed Hard-Easy topographies at the sensor
level (Supplementary Figure 3) were spatially consistent with the
source-localized effects, reinforcing the robustness of the observed
mode x complexity differences.

Overall, these results support Hypothesis 2 by demonstrating
that task complexity interacts with control mode to shape neural
engagement in terms of both magnitude and spatial specificity.

3.2.2 ROI-specific complexity effects and
mode x complexity interaction

We next examined activation differences (Hard — Easy) across
six predefined ROIs under both MD and AD-replay, as shown in
Figure 3e (bar plots of Hard-Easy contrasts; red = MD, blue = AD
across Motor, mPFC, ACC, Visual, PPC, and DLPFC) to further
explore the modulatory effect of task complexity. The pattern of
results varied notably by both brain region and control mode.

In the dorsolateral prefrontal cortex (DLPFC), task complexity
elicited reduced activation in both MD and AD-replay, with
the suppression more pronounced in the automated mode. This
pattern may suggest a downregulation of working memory or
executive switching demands when task control is offloaded.
A similar mode-specific divergence emerged in the anterior
cingulate cortex (ACC): while MD showed a slight increase
in activation, consistent with demand monitoring, AD-replay
instead exhibited a robust decrease. Such reductions may
reflect diminished engagement of conflict monitoring systems in
passive control states.
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The posterior parietal cortex (PPC) displayed weak and
divergent responses across modes, with marginal increases under
AD-replay and nearly flat differences under MD. This finding
contrasts with prior expectations of enhanced spatial attention
under high complexity, suggesting that PPC engagement may
depend more on task type than on visual scene complexity alone.

In the visual cortex, task complexity led to slight activation
increases under MD, aligning with increased visual vigilance.
However, the opposite trend was observed under AD-replay, where
activity decreased, potentially indicating a reduced need for active
visual tracking during automation.

Interestingly, the medial prefrontal cortex (mPFC) showed
little modulation under either mode, in contrast to its typically
hypothesized role in demand-dependent executive control. The
motor cortex (M1/SMA) also exhibited small decreases across both
MD and AD-replay, suggesting that increased complexity might
not translate to heightened motor planning in the absence of
explicit motoric challenge.

Together, these ROI-level findings illustrate that brain
responses to complexity are highly contingent on the mode of
control. Manual driving recruits frontal and posterior regions in
ways consistent with adaptive increases in cognitive and visual
engagement, while automation appears to either blunt or reverse
these effects across multiple systems.

3.2.3 Frequency-domain complexity modulation

Spectral analyses confirmed the interaction between task
complexity and control mode. The results revealed that neural
modulation patterns varied substantially depending on both brain
region and control mode (Figure 3f, top panel: frequency power
differences across ROIs; bottom panel: ERD/ERS dynamics). In
the frontal midline and DLPFC, theta-band power increased
significantly during hard segments under manual driving (MD),
consistent with enhanced executive demand and adaptive control
allocation. In contrast, no such increase was observed under AD-
replay, suggesting that the cognitive control network remained
largely disengaged when drivers were not actively involved in
vehicle control. This differential pattern was also reflected in the
ACC, where theta power was elevated in MD but less consistently
modulated in AD-replay, indicating diminished recruitment of
conflict monitoring processes during automation, particularly a
striking decrease in activation under hard conditions in AD-replay.

In the visual cortex, alpha-band power decreased under MD-
hard, consistent with intensified visual information processing
under increased task load. Interestingly, the same region showed
increased alpha power in AD-replay-Hard, possibly reflecting
visual disengagement or a shift toward passive sensory gating
under automated control. A similar pattern emerged in the
posterior parietal cortex (PPC): alpha desynchronization was more
pronounced under MD than AD-replay, implying that spatial
attention and sensorimotor integration were selectively enhanced
during active driving.

The motor cortex presented a more complex picture. Neither
beta nor mu power increased with task complexity under MD;
rather, slight decreases were observed. Given the concurrent
elevation of prefrontal theta activity, this may reflect a strategic
reallocation of cognitive resources—favoring executive control
over motor readiness-as task difficulty increases. Furthermore,
ERD/ERS patterns in the motor cortex were variable across
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individuals and showed no consistent trend, while in regions like
DLPFC and ACC, ERS responses were more prominent in AD-
replay than in MD, possibly indicating altered or compensatory
recruitment of higher-order networks during passive monitoring.
Collectively, these frequency-domain analyses demonstrate
that task complexity elicits structured, region-specific neural
modulations primarily under manual control, whereas the
same task demands evoke attenuated, inconsistent, or even
paradoxical responses under automation. These findings reinforce
the view that driver engagement acts as a critical modulator of
cortical adaptation to environmental complexity, whereby active
control facilitates targeted neural reorganization while passive
monitoring yields broader but less effective responses. Because
task difficulty was manipulated in an interleaved manner within
fixed engagement modes, these effects can be interpreted as
reflecting the brain’s engagement-dependent adaptation to varying
environmental demands. This interpretation is further supported
by recent work showing that adaptive recruitment of prefrontal
and cingulate systems scales with task demand (Tang et al,
2022), that cortical responsiveness is state-dependent (Perera
et al., 2024), and that anticipatory neural signatures in naturalistic
driving (Di Liberto et al., 2021) as well as diminished frontal
activation during automation (McDonnell et al., 2023) highlight
how volitional involvement shapes the brain’s adaptive capacity.
Bootstrap analyses provided strong confirmation of theta power
increases in both mPFC and ACC during MD-hard segments,
highlighting the robustness of frontal control network engagement
under demanding conditions as reported in Supplementary Table 3.

3.2.4 Functional connectivity modulation

Functional connectivity changes (Hard — Easy) across six task-
relevant brain areas were evaluated using both correlation- and
coherence-based metrics. The results are illustrated in Figure 3d

(3D-stacked matrices; bottom two layers correlation-based
connectivity for MD and AD, top two layers = coherence-based
connectivity for MD and AD). This representation delineates how
task complexity influences inter-regional coordination under each
control mode.

Generally, coherence-based connectivity demonstrated greater
sensitivity to task complexity compared to simple correlation.
Under manual driving (MD), hard segments elicited widespread
increases in coherence, notably across fronto-parietal and fronto-
motor pathways (e.g., mPFC-PPC, ACC-Motor, DLPFC-PPC).
The most prominent enhancements were observed in mPFC-
PPC (A coherence +0.276) and ACC-PPC (A +0.450).

These patterns align with the heightened cognitive and spatial

coordination demands prevalent in active control conditions.
Conversely, during AD-replay, the coherence increases were

distributed

and occipital-parietal

more uniformly across regions, encompassing

While these
connections also exhibited moderate enhancement (e.g., ACC-
DLPFC: A = +0.340), the absence of clear functional clustering
suggests a less targeted network adaptation. This might indicate

occipital-frontal pairs.

a more passive or compensatory monitoring state when control
authority is externally assigned.

Correlation-based results yielded a different picture. Under
MD, several connections—particularly those involving the visual
(e.g., Visual-mPFC, Visual-PPC)-exhibited marked
decreases, pointing toward a shift toward more decoupled

cortex
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processing streams under high complexity. This decoupling
became even more apparent under AD-replay, where negative
changes were observed between core executive and sensory nodes
(e.g., mPFC-PPC: Ar = —0.460; ACC-Visual: Ar = —0.132).
Such reductions in zero-lag correlations could signify diminished
synchronous activation or increased variability in regional timing
during automated control.

These illuminate that task complexity modulates functional
integration in a mode-specific fashion. Manual driving is associated
with increased coherence within executive—sensorimotor networks,
supporting the engagement of dynamic, top-down regulatory loops.
Conversely, connectivity changes under AD-replay appear more
diffuse and less specialized, consistent with the broader pattern
of attenuated or redistributed engagement observed in prior
activation and frequency-based results.

Overall, findings from these 3 aspects provide strong support
for Hypothesis 2: task complexity significantly modulates brain
activation, and this modulation is shaped by the level of driver
engagement. Under manual control, increasing difficulty enhances
engagement of cognitive, visual, and spatial networks in a
structured and localized manner, with robust, region-specific
enhancements in neural activity. This included elevated theta
power in the dorsolateral prefrontal cortex (DLPFC) and frontal
midline-indicative of enhanced executive control-and pronounced
alpha desynchronization in the posterior parietal cortex (PPC),
reflecting heightened visuospatial attention. Mild increases in
anterior cingulate cortex (ACC) activation were also observed,
consistent with greater conflict monitoring demands. However,
contrary to initial expectations, motor cortex activity decreased
under high-complexity conditions, potentially reflecting cognitive
overload or resource reallocation.

In contrast, AD-replay exhibited minimal or paradoxical
changes in control-related regions. The only region exhibiting
robust task-related modulation in AD-replay was the occipital
cortex, suggesting either compensatory visual processing or a
shift toward passive sensory monitoring. Whole-brain activation
maps (Figure 4) further illustrated this pattern: MD elicited
spatially focused activation in frontal and parietal regions, while
AD produced widespread, less localized responses concentrated in
posterior cortices.

Taken together, these results validate Hypothesis 2 and
reinforce Hypothesis 1 by demonstrating that not only do MD and
AD-replay differ in baseline neural activity, but they also exhibit
fundamentally different neural adaptations to increasing task
demands. Active control facilitates structured, functionally aligned
cortical modulation in response to complexity, whereas passive
driving induces attenuated or diffuse responses, underscoring
the role of volitional engagement in shaping brain dynamics
during complex tasks.

3.3 Classification analysis

3.3.1 Classification performance and confusion
matrix

To rigorously test whether EEG features could reliably
differentiate the cognitive states induced by varying driving modes
and road complexities, we trained a four-class Random Forest
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FIGURE 5

Electroencephalography-based classification pipeline and feature analysis results. (a) Overview of the classification pipeline. Raw EEG signals from
31 channels were preprocessed via re-referencing, bandpass filtering (2—36 Hz), and independent component analysis (ICA) for artifact removal.
Driving condition labels (MD-HARD, MD-EASY, AD-REPLAY-HARD, AD-REPLAY-EASY) were assigned based on event markers. Feature extraction
included wavelet-based time-frequency features and inter-channel wavelet coherence metrics across spatial and spectral dimensions. Feature
selection was performed using F-statistics (ANOVA), and a Random Forest classifier was trained to distinguish between four conditions. (b) The
classification outcomes and key discriminative features. All transformations that rely on dataset statistics—z-scoring (applied to wavelet-power and
wavelet-coherence features) and ANOVA-F feature selection—were fit only within the training fold (nested preprocessing). Cross-validation used
5-fold GroupKFold with segment/lap-level grouping, ensuring temporally adjacent epochs from the same sequence were never split across folds.
Shown are ranked feature importance (left), the held-out confusion matrix (center; accuracy = 0.8986 + 0.0204, macro-F1 = 0.8956,

chance = 0.25), and summary reliability/calibration (right), confirming the model's robustness and interpretability. (c) Interpretation of key EEG
features contributing to driving condition classification. The left radar plot highlights top-ranking EEG features from the classification model,
grouped by feature type (wavelet power and wavelet coherence), frequency band, and involved electrode pairs. These include occipital alpha power,
frontal theta, and fronto-parietal beta coherence, which align with prior ROI-based and frequency-domain findings. The right schematic maps these
features onto corresponding brain regions, illustrating their involvement in functional networks related to executive control (mPFC, DLPFC),
sensorimotor planning (M1/SMA), visuospatial integration (PPC), and visual processing (V1-V3). Together, this visualization links model-derived
features to established neurocognitive substrates of manual and automated driving.

classifier. This within-subject analysis is intended to identify
discriminative EEG features and assess their neurophysiological
plausibility under a leakage-safe evaluation, rather than to build
a cross-subject model; cross-subject generalization is evaluated
separately in Section “3.3.3 Generalization across subjects (LOSO

»

performance).” This model leveraged a rich set of wavelet-
based EEG spectral and coherence features (Figure 5a, feature
extraction and classification pipeline) to discriminate between
the MD-Easy, MD-Hard, AD-replay-Easy, and AD-replay-Hard
conditions. To preclude information leakage, all transformations
that rely on dataset statistics (z-scoring for wavelet-power and
wavelet-coherence features and ANOVA-F feature selection) were
fit only within the training fold (nested preprocessing), and
cross-validation used a 5-fold GroupKFold with segment/lap-level
grouping; in addition, epochs temporally adjacent to the held-out
segments were excluded from the training portion within each fold
(a purged-gap scheme). The classifier demonstrated remarkable
predictive power, achieving a cross-validated test accuracy of
89.86% = 2.04%, significantly outperforming the 25% chance level.
This performance was mirrored by a macro-averaged F1 score of
0.8956 (Figure 5b, right panels, model evaluation metrics). Per-
fold confusion matrices and calibration curves are provided in
Supplementary Figure 2.
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A closer inspection of the confusion matrix (Figure 5b,
center panel) reveals a highly accurate classification profile across
conditions. Notably, both manual driving states showed strong
discriminability, with MD-Hard achieving a recall of 90.5% and
precision of 93.5%, and MD-Easy attaining a recall of 92.2%
and precision of 86.5%. The AD-replay-Hard condition was also
classified with high fidelity (recall = 90.3%, precision = 91.5%),
while AD-replay-Easy exhibited slightly lower but still robust
performance (recall = 86.1%, precision = 86.5%). These patterns
are consistent with the updated leakage-safe evaluation, with fold-
wise results detailed in the Supplementary Figure 2. The classifier’s
high overall performance, supported by confidence-level analyses
and balanced metrics, underscores the distinct neural signatures
elicited by manual versus automated control under varying task
complexities.

To further ensure that classification performance was not
driven by residual ocular or muscle artifacts, we quantified
ICA/ICLabel component classifications across conditions and
tested robustness to sensor-space exclusions and stricter thresholds.
Supplementary Table 1 summarizes the distribution of artifactual
components (eye, muscle, cardiac, line noise, other) across MD
and AD-replay, revealing no significant differences and in fact
numerically fewer artifacts in MD. Supplementary Table 2 reports
classifier accuracies when excluding peripheral (ocular-prone) and
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FIGURE 6
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Cross-subject generalization performance using Leave-One-Subject-Out (LOSO) cross-validation. Results are shown for four distinct binary
classification tasks: (a) engagement mode (Manual Driving vs. AD-replay), (b) overall task complexity (Easy vs. Hard), (c) complexity within Manual
Driving only (MD-Easy vs. MD-Hard), and (d) complexity within AD-replay only (AD-Easy vs. AD-Hard). For each task, the left panel displays the
group-averaged confusion matrix, normalized by the true label (values on the diagonal represent recall). The right panel shows the distribution of
individual subject accuracies from each LOSO fold, presented as a violin and strip plot. The dashed horizontal line indicates the theoretical chance
level (50%). Inset text boxes provide the mean accuracy + standard deviation, and the results of one-sample t-tests against chance level, including

the t-statistic (t), p-value (p), and Cohen's d effect size.

central motor channels, as well as when varying ICLabel thresholds
from 0.5 to 0.9. In all cases, classification performance remained
substantially above chance and comparable to the full-sensor 0.8-
threshold pipeline, demonstrating that results are not dependent
on artifact-prone components or channels.

3.3.2 Feature importance and neurophysiological
correlates

An analysis of the features driving the classifier’s performance
provided powerful neurophysiological validation for our earlier
findings (Figure 5b, left panel: feature importance ranking;
Figure 5c¢, radar plot of feature groups and cortical schematic of
contributing regions). At the local level, alpha-band power from
the occipital cortex (electrodes O1 and O2) and theta-band power
from the frontal midline (AF3, Fz, AF4) and dorsolateral prefrontal
cortex (DLPFC) regions (F3, F4) emerged as highly influential. This
highlights a key dynamic: the brain’s regulation of visual processing
via occipital alpha-characterized by suppressed activity during MD
conditions and elevated levels during AD-replay-Hard scenarios—
and its management of executive control via frontal theta serve as a
primary basis for distinguishing between the passive monitoring of
automated driving and the active engagement of manual control.

Beyond local activity, the model drew heavily on network-level
coherence metrics, underscoring that interregional communication
is crucial for differentiating these cognitive states. Specifically,
wavelet coherence within the theta and beta bands, predominantly
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linking frontal and parietal electrodes (e.g., Fz-Pz, F4-P4, C4-
P4), were among the most discriminative features. This finding
demonstrates that the synchronized activity within the fronto-
parietal network, a substrate for top-down executive control, spatial
attention, visuomotor integration, and sensorimotor coordination,
forms a robust signature of the heightened cognitive demands
inherent to manual driving.

In essence, the features that enabled successful classification
were not random but were the very same neurophysiological
markers identified in our preceding analyses. This powerful
convergence between traditional statistical validation and
a predictive machine learning framework offers a holistic
confirmation: the differences between driving modes are not
just statistically significant but are robust and patterned enough
to allow for accurate, single-trial-level prediction of a driver’s

cognitive state.

3.3.3 Generalization across subjects (LOSO
performance)

To rigorously assess the generalizability of the neural
signatures, we employed a stringent Leave-One-Subject-Out
(LOSO)
classification tasks. In all tasks, mean classification accuracy

cross-validation strategy on four distinct binary

was significantly above the 50% chance level. The results, detailed
in Figure 6a-d (confusion matrices, left panels, and violin plots
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of LOSO accuracy, right panels), revealed a clear hierarchy in
generalization performance.

Generalization was most effective when distinguishing task
difficulty within a given engagement mode. The classifier achieved
a mean accuracy of 82.8% (SD = 18.4%; 95% CI = [0.704, 0.951];
t(10) = 5.92, p = 0.0001, d = 1.79) for classifying difficulty within
the AD-replay mode (Figure 6d) and 78.5% (SD = 22.4%; 95%
CI=1[0.635,0.935]; £(10) = 4.22, p = 0.0018, d = 1.27) within the MD
mode (Figure 6¢). Performance was more moderate, though still
robust, for the other two tasks: distinguishing between engagement
modes (MD vs. AD-replay) yielded a mean accuracy of 69.2%
(SD = 21.0%; 95% CI = [0.550, 0.833]; £(10) = 3.02, p = 0.0129,
d = 091; Figure 6a), and classifying the overall task difficulty
across modes yielded a mean accuracy of 66.7% (SD = 10.9%; 95%
CI = [0.594, 0.740]; t(10) = 5.08, p = 0.0005, d = 1.53; Figure 6b).
Macro-F1 mirrored these patterns (Mode = 0.642 =+ 0.307; pooled
Difficulty = 0.731 £ 0.105; within-MD = 0.807 £ 0.270; within-
AD =0.846 £ 0.222).

This pattern of results indicates that while the neural signatures
of task complexity are relatively consistent across individuals,
the signatures differentiating active engagement from passive
observation are subject to greater inter-individual variability.

The results of this study delineate the profound reorganization
of neural resources that distinguishes active control from passive
observation. This distinction was evident across multiple levels
of analysis—including source-level activation, spectral dynamics,
and large-scale network connectivity—and was further amplified
by increasing task complexity. We propose that this multi-level
neural reorganization provides a quantitative signature of the
cognitive cost of engagement. The robustness of these signatures
was underscored by a machine learning model that decoded the
operator’s state from single trials with high within-subject accuracy.
While the challenge of generalizing across individuals highlights
a key avenue for future work, these findings provide a robust
empirical foundation for the subsequent discussion, which will
unpack their implications for neurocognitive theory and human-
machine interaction.

4 Discussion

4.1 General summary

This study reveals the distinct neurophysiological signatures
of active, goal-directed control versus passive observation
under complex, matched sensory conditions. Our multi-method
EEG analysis demonstrates that active engagement requires a
profound reorganization of neural resources, characterized by
the recruitment of fronto-parietal executive and attentional
networks. This neural distinction, which was amplified by task
complexity, was robust enough for machine-learning classification
with high within-subject accuracy. We argue that the magnitude
of this neural reorganization reflects the inherent cognitive
cost of active engagement. Understanding this cost is critical,
as it provides a foundational baseline for interpreting the
challenges of transitioning between passive and active modes
of interaction in complex systems. The following sections will
interpret these findings through the lens of neurocognitive
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theory, examine the study’s methodological contributions, and
explore the broader implications of this “cost of engagement” for
human-machine interaction.

4.2 Functional neuroanatomy: EEG
correlates of active control vs. passive
observation

The neuroanatomical dissociation we observed between active
control and passive observation is consistent with contemporary
neurocognitive theories of control, most notably the predictive
coding framework (Friston, 2010). Within this framework, active
environmental interaction instantiates a process of active inference,
where the brain continuously refines its internal models of
the world. Our findings of heightened activation in the medial
prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and
posterior parietal cortex (PPC) during the active state, alongside
amplified frontal midline theta, directly map onto the neural
substrates of this cognitively demanding process: top-down
prediction, error monitoring, and attentional allocation in the face
of uncertainty (Cavanagh and Frank, 2014; Corbetta and Shulman,
2002; Klimesch, 1999; Ridderinkhof et al., 2004).

The passive observation condition, by contrast, induced a
neural state consistent with predictive quiescence. The observed
shift toward altered activity in occipital and medial motor regions,
combined with weakened fronto-parietal coupling, suggests the
brain defaulted to a passive surveillance mode. This disengagement
from active model updating, characterized by diminished executive
control signals, closely parallels the neural dynamics seen in
other passive observation paradigms (Corbetta and Shulman, 2002;
Raichle et al., 2001). Together, these findings highlight that active
control and passive observation recruit distinct neuroanatomical
systems aligned with divergent computational strategies: goal-
directed active control versus prediction-based passive oversight.

While predictive coding explains the underlying computational
strategy, Cognitive Load Theory provides a framework for
understanding the downstream effects on engagement (Gevins
et al., 1998; Wascher et al., 2018). The high workload inherent
in active control necessitates the recruitment of executive control
networks to manage the cognitive burden-a finding consistent
with prior EEG studies reporting elevated frontal theta power
under increasing cognitive load (Cavanagh and Frank, 2014; Gevins
et al.,, 1998). Our passive observation condition represents a state
of mitigated cognitive load. However, the observed deactivation
of the mPFC and ACC in this state may signify a cognitively
“hollowed-out” state of engagement — not implying a cessation
of processing, but rather a condition in which sensory input is
still encoded while higher-order evaluative and error-monitoring
functions that normally sustain active control are substantially
attenuated. Understanding the neural markers of such a disengaged
state is a critical first step for characterizing the cognitive gap that
must be overcome during a transition to active control in any
high-stakes human-machine system. This challenge is particularly
acute in domains like semi-automated driving, where our findings
provide a potential framework for understanding the neural basis
of safe and effective takeover performance.
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FIGURE 7
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Distribution of frequency-specific EEG differences across brain regions and condition comparisons. (a) Heatmap showing the total number of EEG
channels exhibiting statistically significant differences across four frequency bands (Alpha, Beta-Low: 13-20 Hz, Beta-High: 20—-36 Hz, Delta-Theta:
2-8 Hz) and six functionally defined brain regions (ACC, DLPFC, M1/SMA, PPC, V1-V3, mPFC). The posterior parietal cortex (PPC) exhibited the
highest overall count, particularly in the high-beta band. (b) Stacked bar plot illustrating the same distribution as panel (a), highlighting the dominant
contribution of high-beta and delta-theta differences in PPC and V1-V3, and the multi-band involvement of motor and prefrontal regions. (c)
Condition-specific bar charts showing the number of significant channels by region and frequency band for each of the four key pairwise
comparisons: MD-HARD vs. AD-REPLAY-HARD, AD-REPLAY-EASY vs. AD-REPLAY-HARD, MD-EASY vs. AD-REPLAY-EASY, and MD-EASY vs.
MD-HARD. Results demonstrate that high-beta effects dominate PPC during mode-related contrasts (especially MD-HARD vs. AD-REPLAY-HARD),
while delta-theta differences are most prominent in mPFC and M1/SMA during complexity-related comparisons (e.g., MD-EASY vs. MD-HARD).
These findings support the role of distinct neural oscillatory dynamics in differentiating both task complexity and driving mode.

And it is also important to distinguish the broadband source
activation reported here from the narrowband oscillatory dynamics
discussed below. Our finding of greater overall activation in the
visual cortex during passive observation (as measured by dSPM)
is not in conflict with our finding of greater alpha power during
active control. The former likely reflects robust, bottom-up sensory
processing of the rich visual stream, while the latter reflects a
specific, top-down inhibitory rhythm used to filter that stream
for goal-directed action. Together, they paint a more complete
picture of the distinct computational strategies employed in each
engagement mode.

Several methodological considerations warrant mention.
First, the 29-channel montage necessarily provides lower spatial
resolution compared with high-density EEG systems. Second,
reliance on template anatomy (fsaverage) without individual
MRIs introduces co-registration uncertainty on the order of
several millimeters. Third, the EEG inverse problem is inherently
ill-posed, and thus precise localization cannot be guaranteed.
For these reasons, the reported source activations should be
interpreted as putative regional estimates rather than definitive
topographies
(Supplementary Figure 3) revealed spatial patterns consistent

loci. Importantly, however, the sensor-space
with the source-level contrasts-frontal/occipital enhancements
during manual driving, posterior/parietal enhancements during
automated replay, and diffuse posterior recruitment under higher
task complexity-providing converging evidence independent of

inverse modeling assumptions.

4.3 Spectral dynamics: the oscillatory
fingerprints of engagement

Our spectral analysis reveals that each engagement state is

defined by a unique and interpretable “oscillatory fingerprint,”
providing a granular, physiologically grounded explanation for
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the global differences observed between active control and
passive observation.

The signature of top-down executive control was unequivocally
marked by frontal midline theta (4-8 Hz). Its pronounced
enhancement during the active control state, particularly under
high cognitive load, aligns perfectly with its established role
in conflict monitoring and adaptive regulation in dynamic
environments (Botvinick et al., 2001; Cavanagh and Frank, 2014).

Concurrently, the state of attentional gating was indexed by
occipital alpha power (8-13 Hz). Interestingly, and in contrast to
a simple interpretation of visual load, our results indicated greater
alpha power (synchronization) during the active control state.
This dynamic was most pronounced in the contrast between MD-
HARD and AD-REPLAY-HARD within visual and parietal areas
(Figure 7c, condition-specific bar plots; see also Figure 7b, stacked
bar distribution highlighting alpha contributions in PPC and
V1-V3), cleanly separating active visual processing from passive
sensory intake. This seemingly paradoxical finding is consistent
with the inhibitory gating hypothesis (Jensen and Mazaheri, 2010).
Rather than simply reflecting lower visual processing, elevated
alpha power can represent an active, top-down neural mechanism
for filtering out irrelevant sensory information to prioritize task-
relevant cues. In the context of driving, this may reflect a form
of “tunnel vision,” where the brain actively suppresses processing
of non-essential visual details to focus resources on the road
ahead. The concurrent increase in PPC alpha is consistent with
strengthened dorsal attention/sensorimotor integration required
for steering. Together with elevated frontal-midline theta and
motor B/ modulation, the overall spectral profile aligns with
heightened engagement, robustly arguing against a drowsiness
or under-arousal account. Although we did not record ocular
metrics, matched visual input, artifact-reduced EEG after ICA, and
the concurrent, anatomically distributed theta/beta modulations
and connectivity changes argue against ocular or illumination
factors as the primary driver of the occipito-parietal alpha
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effect. Still, residual influences cannot be fully excluded. Prior
studies show that ocular artifacts typically manifest as frontal
topographies with broadband low-frequency activity rather than
posterior alpha-band synchronization (Croft and Barry, 2000; Jung
et al., 2000). In contrast, our findings of occipito-parietal alpha
increases accompanied by frontal-midline theta and motor B/
dynamics are more consistent with network-level mechanisms of
attentional control and inhibitory gating (Cavanagh and Frank,
2014; Engel and Fries, 2010; Jensen and Mazaheri, 2010; Klimesch,
2012). Future work will therefore incorporate eye-tracking and
pupillometry to provide direct verification.

The most intriguing findings emerged from the beta band
(13-30 Hz), which appeared to track sensorimotor and predictive
processes. Its prominent involvement in PPC (19 significant
channels in the high-beta range, Figure 7a, heatmap) points to
its integral role in spatial processing. Intriguingly, beta’s function
appeared to diverge by mode: its desynchronization in motor areas
during active control signaled active motor planning (Pfurtscheller
and Lopes da Silva, 1999; Pfurtscheller and Neuper, 1997), while its
paradoxical increase during high-complexity passive observation
may reflect a compensatory state of vigilance or predictive
modeling in the absence of physical control. Finally, low-frequency
delta (<4 Hz) power increases under the most demanding active-
control epochs, consistent with sustained effort in our paradigm.

Collectively, this decomposition reveals a symphony of neural
oscillations where each band provides a distinct voice. This rich,
multi-band dissociation serves as a detailed neurophysiological
accounting of the cognitive cost of engagement, powerfully
validating the interpretability of our findings.

4.4 Functional connectivity:
network-level signatures of engagement

Our analysis of functional connectivity moves beyond regional
activity to reveal how large-scale brain networks dynamically
reconfigure in response to engagement mode, providing a system-
level perspective on the neurocognitive dichotomy between
active control and passive observation. The defining feature
of active control was a robust increase in long-range fronto-
parietal coherence, predominantly in the theta and low-beta
bands. This synchronized dialogue between medial frontal and
posterior parietal sites is the hallmark of integrated top-down
control, aligning with established accounts of fronto-parietal
control networks (Corbetta and Shulman, 2002; Miller and Cohen,
2001). The amplification of theta coherence under high cognitive
load underscores its role in error monitoring and adaptive
control (Cavanagh and Frank, 2014; Cohen, 2011), while low-beta
synchrony likely orchestrates the continuous interplay between
sensorimotor planning and spatial attention (Engel and Fries, 2010;
Kilavik et al., 2013; Spitzer and Haegens, 2017).

Conversely, passive observation was characterized by a state of
network segregation. The attenuation of fronto-parietal coherence
signified a decoupling of executive and attentional systems. In its
place, connectivity became more localized within a posterior visual-
parietal network-a neural architecture seemingly optimized for
passive visual surveillance rather than active intervention. This shift
toward a more modular, less integrated state finds strong parallels
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with findings on passive vigilance and the dynamics of the Default
Mode Network during periods of low cognitive demand (Raichle
et al,, 2001; Sadaghiani and D’Esposito, 2015).

Significantly, this network-level narrative was not merely a
statistical observation but also a key element in the decodability
of the operator’s state. The remarkable convergence between
our coherence maps and the feature importance topographies
from the machine learning model provides powerful, data-
driven validation. The prioritization of these exact fronto-parietal
connectivity metrics by the classifier corroborates that the temporal
synchronization between distributed cortical hubs is a definitive
signature of an actively engaged state.

In essence, our findings indicate that the transition from
active control to passive observation is not merely a change in
local brain activity, but a fundamental reorganization of the
brain’s functional architecture. This architectural shift from a
segregated, monitoring-oriented state to a highly integrated
network for adaptive regulation represents the systems-level
manifestation of the cognitive cost of engagement. This insight
that
for creating truly comprehensive and reliable models of

emphasizes network-based metrics are indispensable

cognitive state.

4.5 Inter-individual variability,
generalizability, and limitations

While our study revealed robust group-level neural effects,
translating these findings into reliable monitoring systems
hinges on addressing the challenge of inter-individual variability.
Our Leave-One-Subject-Out (LOSO) cross-validation results
quantitatively illustrate this point. Generalization was strongest
for task complexity within a given engagement mode-AD: 0.828
and MD: 0.785 accuracy on average (Figure 6¢, d). When difficulty

~
~

was pooled across modes, performance was moderate (mean
0.667) (Figure 6b). Discriminating engagement mode (MD vs. AD)
generalized less well than the within-mode difficulty contrasts, but
remained clearly above chance (mean & 0.692) (Figure 6a). This
pattern suggests that while complexity-related neural signatures
are comparatively stable across individuals, the expression of
volitional engagement is more subject-specific. Such variability-
well documented in the EEG literature-likely reflects differences
in cognitive capacity, task expertise, vigilance, and neuroanatomy,
and may be further compounded by the sparse spatial resolution of
our EEG system.

It is important, however, to contextualize these generalization
challenges within the primary aims of our study. In this research,
our focus was not to develop a universally generalizable classifier,
but rather to uncover consistent, interpretable neural signatures
of distinct engagement states. Nevertheless, to demonstrate
the potential for overcoming this variability, we conducted a
preliminary model optimization focused on the most challenging
task: mode classification. This procedure followed a systematic
three-stage approach: (1) domain-driven feature engineering
emphasized task-relevant EEG markers such as p/p rhythms over
motor cortex, frontal theta—alpha ratios, and motor asymmetry
indices; (2) feature selection and preprocessing employed robust

scaling and mutual-information-based selection to reduce
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FIGURE 8
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Enhancement of LOSO classification performance for engagement mode. Confusion matrices show improved accuracy from baseline (left:
accuracy = 69.2%) to optimized feature configuration (right: accuracy = 72.8%), demonstrating the practical potential for methodologically-driven

generalizability enhancement.

dimensionality while mitigating subject variability; and (3) sample-
adaptive model selection adjusted classifier complexity across
LOSO folds depending on training set size, balancing robustness
and flexibility. As illustrated in Figure 8 (left: baseline model, right:
optimized model), this resulted in a modest increase in overall
mean LOSO accuracy from 69.2% to 72.8%. However, a closer
inspection of the confusion matrices reveals a crucial performance
trade-off. The optimized model’s ability to correctly identify the
AD-replay state improved dramatically [Figure 8, right; recall
increased from 69.0% in the baseline (Figure 8, left) to 87.3%],
largely by reducing instances where it was mistaken for the MD
state. This gain came at the cost of reduced accuracy for identifying
the MD state (recall decreased from 72.5% in Figure 8, left to 54.6%
in Figure 8, right). This suggests our theory-driven features are
highly effective at capturing the consistent neural markers of the
passive state across individuals. Ultimately, this result serves as
a crucial proof-of-concept, demonstrating that targeted feature
engineering can reshape and improve model generalizability, even
while highlighting the distinct challenges of classifying different
cognitive states.

Crucially, beyond the issue of generalizability, our findings
must be interpreted within the context of several other
methodological limitations. First and foremost, we must emphasize
that the AD-replay condition was designed as a low-engagement
baseline and is not a direct simulation of the supervisory control
found in real-world automated systems (e.g., SAE Level 2/3). This
distinction necessarily limits the immediate applicability of our
findings to interactive driving scenarios. However, this trade-
off between ecological validity and experimental control was a
deliberate methodological choice. By creating a “zero-engagement”
state with matched visual input, our design allowed us to isolate
the fundamental neural signatures of active engagement with high
precision. This rigorously established baseline is therefore not an
endpoint, but a crucial first step, providing a solid foundation upon
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which future studies can build to investigate more complex and
realistic supervisory states.

The remaining limitations, such as the fixed experimental
order, the modest sample size, and the use of a simulator, also
call for caution when generalizing our findings, given the known
influence of real-world factors such as perceived risk and situational
urgency (Greenlee et al., 2018; McDonnell et al., 2023; Parasuraman
and Riley, 1997). Specifically, the manual driving session always
preceded the replay condition, since individualized replay stimuli
could only be generated after active driving and track familiarity
was necessary for participants to adopt a supervisory stance. To
reduce potential order-related confounds, we incorporated a 10-
min rest between sessions and focused our analyses on within-
subject contrasts with identical visual input.

Nevertheless, residual influences of time-on-task, vigilance
decline, or expectancy cannot be entirely excluded, and our
conclusions are therefore framed conservatively as differences
between active manual control and a passive replay baseline.
Although participants were instructed to adopt a supervisory
stance during replay to maintain attentional engagement, this
framing served only as an experimental instruction. The AD-
replay condition does not replicate real-world automated driving,
which entails supervisory authority and the possibility of takeover.
Accordingly, we interpret AD-replay strictly as a passive replay
baseline, while broader implications for supervisory automation
are reserved for future research. In future work, we also plan
to incorporate subjective fatigue questionnaires (and potentially
complementary physiological indices) to more directly assess
vigilance changes across conditions, thereby further mitigating this
potential confound. Nevertheless, we acknowledge that without
direct ocular or pupillometric recordings, residual influences
of eye dynamics or vigilance cannot be fully excluded. Future
work will therefore incorporate eye-tracking and pupillometry
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alongside subjective fatigue measures to provide stronger control
over these factors.

In addition, given the potential concern that differences
in motor output and posture could introduce residual EMG
and ocular artifacts, we conducted quantitative ICA/ICLabel
checks. As
Supplementary Table 1, the number of eye- and muscle-related

evaluations and robustness summarized in
independent components was comparable between MD and
AD-replay sessions, with MD in fact showing numerically fewer
artifacts. Supplementary Table 2 further demonstrates that
excluding peripheral and motor-related electrodes or adopting
stricter ICLabel thresholds (0.5-0.9), did not alter the classification
results in any substantive way. These analyses indicate that the
observed neural differences are unlikely to be explained by artifact
contamination alone. Nevertheless, without concurrent EMG or
eye-tracking data, residual influences cannot be entirely ruled
out, and our conclusions should therefore be interpreted with
this caveat in mind.

4.6 Implications and future directions

The
neurophysiological characterization of the cognitive cost of

primary contribution of this research is the
active engagement. By demonstrating the profound differences in
neural dynamics between active control and passive observation
under matched sensory input, we provide a foundational baseline
for understanding why transitioning between these states is
non-trivial. This “cost of engagement” has critical implications
for any domain where humans are required to shift from a role
of passive monitoring to one of active intervention, including
aviation, industrial process control, and medical supervision.

Building on this baseline, future research can formulate
more precise hypotheses. For instance, we hypothesize that an
interactive, supervisory task-requiring intermittent monitoring
and potential intervention-would elicit neural signatures falling
between the two poles we have established. Quantifying how
different system designs or interfaces modulate this “engagement
gap” is a critical next step.

However, translating these findings into reliable real-world
applications requires overcoming the challenge of inter-
subject variability, particularly in the neural signatures of
engagement mode, which our LOSO results identified as being
highly subject-specific in contrast to the more generalizable
signatures of task complexity. Future work should therefore
explore subject-invariant modeling approaches, such as
advanced deep learning architectures and domain adaptation
techniques, which represent a critical step toward creating robust,

neuroadaptive interfaces.

5 Conclusion

In conclusion, by methodologically isolating the mode of
engagement, employing a matched-stimulus replay paradigm in
a complex driving task, this study delineated the profound
reorganization of neural resources that distinguishes active
control from passive observation. These findings establish a
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rigorous neurophysiological baseline for the cognitive cost of
engagement, providing essential groundwork for understanding
and designing effective human-machine systems where the
seamless transition between observation and action is critical for
safety and performance.

Data availability statement

The raw data supporting the conclusions of this article

will be made available by the authors, without undue

reservation.

Ethics statement

The studies involving humans were approved by Institutional
Review Board of the Institute of Science Tokyo. The studies
were conducted in accordance with the local legislation and
institutional requirements. The participants provided their
written informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data included
in this article.

Author contributions

ZL: Methodology, Data
curation, Writing - review & editing, Writing - original

Formal analysis, Software,
draft, Funding acquisition, Conceptualization, Investigation,
Visualization, Validation. HK: Resources, Conceptualization,
Methodology.

Investigation,

Writing - review & editing, Software,
YK: Project Methodology,

Conceptualization, Funding acquisition, Writing - review &

administration,

editing, Supervision, Resources.

Funding

The author(s) declare financial support was received for
the research and/or publication of this article. This work was
supported by JSPS KAKENHI (Grant No. JP23H03433), the
Japan Agency for Medical Research and Development (AMED)
(Grant No. JP24wm0625403), and JST SPRING (Grant No.
JPMJSP2180).

Acknowledgments

We thank all participants for their time and cooperation
during the experiment.

frontiersin.org


https://doi.org/10.3389/fnins.2025.1698625
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Li et al.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

References

Aston-Jones, G., and Cohen, J. D. (2005). An integrative theory of locus coeruleus-
norepinephrine function: Adaptive gain and optimal performance. Annu. Rev.
Neurosci. 28, 403-450. doi: 10.1146/annurev.neuro.28.061604.135709

Barone, J., and Rossiter, H. E. (2021). Understanding the role of sensorimotor beta
oscillations. Front. Syst. Neurosci. 15:655886. doi: 10.3389/fnsys.2021.655886

Bastos, A. M., Vezoli, J., and Fries, P. (2015). Communication through coherence
with inter-areal delays. Curr. Opin. Neurobiol. 31, 173-180. doi: 10.1016/j.conb.2014.
11.001

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., and Robbins, K. A. (2015).
The PREP pipeline: Standardized preprocessing for large-scale EEG analysis. Front.
Neuroinform. 9:16. doi: 10.3389/fninf.2015.00016

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., and Babiloni, F. (2014).
Measuring neurophysiological signals in aircraft pilots and car drivers for the
assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44,
58-75. doi: 10.1016/j.neubiorev.2012.10.003

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., and Cohen, J. D. (2001).
Conflict monitoring and cognitive control. Psychol. Rev. 108, 624-652. doi: 10.1037/
0033-295x.108.3.624

Cavanagh, J. F., and Frank, M. J. (2014). Frontal theta as a mechanism for cognitive
control. Trends Cogn. Sci. 18, 414-421. doi: 10.1016/j.tics.2014.04.012

Chi, Y. M., Wang, Y.-T., Wang, Y., Maier, C,, Jung, T.-P., and Cauwenberghs,
G. (2012). Dry and noncontact EEG sensors for mobile brain-computer interfaces.
IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 20, 228-235.
doi: 10.1109/TNSRE.2011.2174652

Clayton, M. S., Yeung, N., and Cohen Kadosh, R. (2015). The roles of cortical
oscillations in sustained attention. Trends Cogn. Sci. 19, 188-195. doi: 10.1016/j.tics.
2015.02.004

Cohen, M. X. (2011). Error-related medial frontal theta activity predicts cingulate-
related structural connectivity. Neurolmage 55, 1373-1383. doi: 10.1016/j.neuroimage.
2010.12.072

Cooper, P. S, Wong, A. S. W., Fulham, W. R,, Thienel, R., Mansfield, E., Michie,
P. T, et al. (2015). Theta frontoparietal connectivity associated with proactive
and reactive cognitive control processes. Neurolmage 108, 354-363. doi: 10.1016/j.
neuroimage.2014.12.028

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-
driven attention in the brain. Nat. Rev. Neurosci. 3, 201-215. doi: 10.1038/nr
n755

Croft, R. J., and Barry, R. J. (2000). Removal of ocular artifact from the EEG: A
review. Neurophysiol. Clin. Clin. Neurophysiol. 30, 5-19. doi: 10.1016/S0987-7053(00)
00055-1

Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia, PA: STAM.

Delorme, A., and Makeig, S. (2004). EEGLAB: An open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis. J. Neurosci.
Methods 134, 9-21. doi: 10.1016/j.jneumeth.2003.10.009

Di Liberto, G. M., Barsotti, M., Vecchiato, G., Ambeck-Madsen, J., Del Vecchio,
M., Avanzini, P., et al. (2021). Robust anticipation of continuous steering actions

Frontiers in Neuroscience

21

10.3389/fnins.2025.1698625

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.2025.
1698625/full#supplementary- material

from electroencephalographic data during simulated driving. Sci. Rep. 11:23383. doi:
10.1038/541598-021-02750-w

Eisma, J., Rawls, E., Long, S., Mach, R., and Lamm, C. (2021). Frontal midline theta
differentiates separate cognitive control strategies while still generalizing the need for
cognitive control. Sci. Rep. 11:14641. doi: 10.1038/s41598-021-94162-z

Engel, A. K,, and Fries, P. (2010). Beta-band oscillations-signalling the status quo?
Curr. Opin. Neurobiol. 20, 156-165. doi: 10.1016/j.conb.2010.02.015

Friston, K. (2010). The free-energy principle: A unified brain theory? Nat. Rev.
Neurosci. 11, 127-138. doi: 10.1038/nrn2787

Gevins, A., Smith, M. E., Leong, H., McEvoy, L., Whitfield, S., Du, R, et al. (1998).
Monitoring working memory load during computer-based tasks with EEG pattern
recognition methods. Hum. Factors 40, 79-91. doi: 10.1518/001872098779480578

Gevins, A., Smith, M. E., McEvoy, L., and Yu, D. (1997). High-resolution EEG
mapping of cortical activation related to working memory: Effects of task difficulty,
type of processing, and practice. Cereb. Cortex 7, 374-385. doi: 10.1093/cercor/7.4.374

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,
et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7:267.
doi: 10.3389/fnins.2013.00267

Greenlee, E. T., DeLucia, P. R,, and Newton, D. C. (2018). Driver vigilance in
automated vehicles: Hazard detection failures are a matter of time. Hum. Factors 60,
465-476. doi: 10.1177/0018720818761711

Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross
wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process.
Geophys. 11, 561-566. doi: 10.5194/npg-11-561-2004

Hedrich, T., Pellegrino, G., Kobayashi, E., Lina, J. M., and Grova, C. (2017).
Comparison of the spatial resolution of source imaging techniques in high-density
EEG and MEG. Neurolmage 157, 531-544. doi: 10.1016/j.neuroimage.2017.06.022

Huang, H., Li, R., and Zhang, J. (2023). A review of visual sustained attention: Neural
mechanisms and computational models. Peer/ 11:¢15351. doi: 10.7717/peer;j.15351

Jensen, O. (2024). Distractor inhibition by alpha oscillations is controlled by an
indirect mechanism governed by goal-relevant information. Commun. Psychol. 2:36.
doi: 10.1038/s44271-024-00081-w

Jensen, O., and Mazaheri, A. (2010). Shaping functional architecture by oscillatory
alpha activity: Gating by inhibition. Front. Hum. Neurosci. 4:186. doi: 10.3389/fnhum.
2010.00186

Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V.,
et al. (2000). Removing electroencephalographic artifacts by blind source separation.
Psychophysiology 37, 163-178. doi: 10.1111/1469-8986.3720163

Kilavik, B. E., Zaepffel, M., Brovelli, A., MacKay, W. A., and Riehle, A. (2013).
The ups and downs of f oscillations in sensorimotor cortex. Exp. Neurol. 245, 15-26.
doi: 10.1016/j.expneurol.2012.09.014

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory
performance: A review and analysis. Brain Res. Rev. 29, 169-195. doi: 10.1016/S0165-
0173(98)00056-3

Klimesch, W. (2012). a-band oscillations, attention, and controlled access to stored
information. Trends Cogn. Sci. 16, 606-617. doi: 10.1016/j.tics.2012.10.007

frontiersin.org


https://doi.org/10.3389/fnins.2025.1698625
https://www.frontiersin.org/articles/10.3389/fnins.2025.1698625/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2025.1698625/full#supplementary-material
https://doi.org/10.1146/annurev.neuro.28.061604.135709
https://doi.org/10.3389/fnsys.2021.655886
https://doi.org/10.1016/j.conb.2014.11.001
https://doi.org/10.1016/j.conb.2014.11.001
https://doi.org/10.3389/fninf.2015.00016
https://doi.org/10.1016/j.neubiorev.2012.10.003
https://doi.org/10.1037/0033-295x.108.3.624
https://doi.org/10.1037/0033-295x.108.3.624
https://doi.org/10.1016/j.tics.2014.04.012
https://doi.org/10.1109/TNSRE.2011.2174652
https://doi.org/10.1016/j.tics.2015.02.004
https://doi.org/10.1016/j.tics.2015.02.004
https://doi.org/10.1016/j.neuroimage.2010.12.072
https://doi.org/10.1016/j.neuroimage.2010.12.072
https://doi.org/10.1016/j.neuroimage.2014.12.028
https://doi.org/10.1016/j.neuroimage.2014.12.028
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nrn755
https://doi.org/10.1016/S0987-7053(00)00055-1
https://doi.org/10.1016/S0987-7053(00)00055-1
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1038/s41598-021-02750-w
https://doi.org/10.1038/s41598-021-02750-w
https://doi.org/10.1038/s41598-021-94162-z
https://doi.org/10.1016/j.conb.2010.02.015
https://doi.org/10.1038/nrn2787
https://doi.org/10.1518/001872098779480578
https://doi.org/10.1093/cercor/7.4.374
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1177/0018720818761711
https://doi.org/10.5194/npg-11-561-2004
https://doi.org/10.1016/j.neuroimage.2017.06.022
https://doi.org/10.7717/peerj.15351
https://doi.org/10.1038/s44271-024-00081-w
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1016/j.expneurol.2012.09.014
https://doi.org/10.1016/S0165-0173(98)00056-3
https://doi.org/10.1016/S0165-0173(98)00056-3
https://doi.org/10.1016/j.tics.2012.10.007
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Lietal.

Koessler, L., Maillard, L., Benhadid, A., Vignal, J. P., Felblinger, J., Vespignani, H.,
et al. (2009). Automated cortical projection of EEG sensors: Anatomical correlation
via the international 10-10 system. NeuroImage 46, 64-72. doi: 10.1016/j.neuroimage.
2009.02.006

Krol, M. A, and Jellema, T. (2022). Sensorimotor anticipation of others’ actions in
real-world and video settings: Modulation by level of engagement? Soc. Neurosci. 17,
293-304. doi: 10.1080/17470919.2022.2083229

Lantz, G., Grave de Peralta, R., Spinelli, L., Seeck, M., and Michel, C. M. (2003).
Epileptic source localization with high density EEG: How many electrodes are needed?
Clin. Neurophysiol. Off. . Int. Fed. Clin. Neurophysiol. 114, 63-69. doi: 10.1016/s1388-
2457(02)00337- 1

Lin, C.-T., Lin, K-L, Ko, L.-W., Liang, S.-F.,, Kuo, B.-C., and Chung, I.-F.
(2008). Nonparametric single-trial EEG feature extraction and classification of driver’s
cognitive responses. EURASIP J. Adv. Signal Process. 2008:849040. doi: 10.1155/2008/
849040

Lopez-Gordo, M. A., Sanchez-Morillo, D., and Valle, F. P. (2014). Dry EEG
electrodes. Sensors 14, 12847-12870. doi: 10.3390/s140712847

Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review
of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4,
RI1-R13. doi: 10.1088/1741-2560/4/2/R01

Luck, S.J. (2014). An introduction to the event-related potential technique, 2nd Edn.
Cambridge, MA: MIT Press.

Luck, S. J., and Vogel, E. K. (1997). The capacity of visual working memory for
features and conjunctions. Nature 390, 279-281. doi: 10.1038/36846

Mahjoory, K., Nikulin, V. V., Botrel, L., Linkenkaer-Hansen, K., Fato, M. M., and
Haufe, S. (2017). Consistency of EEG source localization and connectivity estimates.
Neurolmage 152, 590-601. doi: 10.1016/j.neuroimage.2017.02.076

McDonnell, A. S., Simmons, T. G., Erickson, G. G., Lohani, M., Cooper, J. M., and
Strayer, D. L. (2023). This is your brain on autopilot: Neural indices of driver workload
and engagement during partial vehicle automation. Hum. Factors 65, 1435-1450.
doi: 10.1177/00187208211039091

McFerren, A., Riddle, J., Walker, C., Buse, J. B., and Frohlich, F. (2021). Causal role of
frontal-midline theta in cognitive effort: A pilot study. J. Neurophysiol. 126,1221-1233.
doi: 10.1152/jn.00068.2021

McWilliams, T., and Ward, N. (2021). Underload on the road: Measuring vigilance
decrements during partially automated driving. Front. Psychol. 12:631364. doi: 10.
3389/fpsyg.2021.631364

Mecheri, S., Mars, F., and Lobjois, R. (2022). Gaze and steering strategies while
driving around bends with shoulders. Appl. Ergon. 103:103798. doi: 10.1016/j.apergo.
2022.103798

Merat, N, Jamson, A. H., Lai, F. C. H,, Daly, M., and Carsten, O. M. J. (2014).
Transition to manual: Driver behaviour when resuming control from a highly
automated vehicle. Transp. Res. Part F Traffic Psychol. Behav. 27, 274-282. doi: 10.
1016/j.trf.2014.09.005

Miller, E. K., and Cohen, J. D. (2001). An integrative theory of prefrontal
cortex function. Annu. Rev. Neurosci. 24, 167-202. doi: 10.1146/annurev.neuro.24.
1.167

Neubauer, C., Matthews, G., Langheim, L., and Saxby, D. (2012). Fatigue and
voluntary utilization of automation in simulated driving. Hum. Factors 54, 734-746.
doi: 10.1177/0018720811423261

Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., et al.
(2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via
the international 10-20 system oriented for transcranial functional brain mapping.
Neurolmage 21, 99-111. doi: 10.1016/j.neuroimage.2003.08.026

Overmeyer, R., Berghduser, J., Dieterich, R., Wolff, M., Goschke, T., and Endrass,
T. (2021). The error-related negativity predicts self-control failures in daily life. Front.
Hum. Neurosci. 14:614979. doi: 10.3389/fnhum.2020.614979

Parasuraman, R., and Manzey, D. H. (2010). Complacency and bias in human use
of automation: An attentional integration. Hum. Factors 52, 381-410. doi: 10.1177/
0018720810376055

Parasuraman, R., and Riley, V. (1997). Humans and automation: Use, misuse, disuse,
abuse. Hum. Factors 39, 230-253. doi: 10.1518/001872097778543886

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2018). Scikit-learn: Machine learning in python. arXiv [Preprint] doi: 10.48550/arXiv.
1201.0490

Perera, N. D., Wischnewski, M., Alekseichuk, I, Shirinpour, S., and Opitz, A.
(2024). State-dependent motor cortex stimulation reveals distinct mechanisms for
corticospinal excitability and cortical responses. eNeuro 11:ENEURO.0450-24.2024.
doi: 10.1523/ENEURO.0450-24.2024

Pfurtscheller, G., and Lopes da Silva, F. H. (1999). Event-related EEG/MEG
synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 110,
1842-1857. doi: 10.1016/s1388-2457(99)00141-8

Frontiers in Neuroscience

10.3389/fnins.2025.1698625

Pfurtscheller, G., and Neuper, C. (1997). Motor imagery activates primary
sensorimotor area in humans. Neurosci. Lett. 239, 65-68. doi: 10.1016/s0304-3940(97)
00889-6

Pion-Tonachini, L., Kreutz-Delgado, K., and Makeig, S. (2019). ICLabel:
An automated electroencephalographic independent component classifier,
dataset, and website. Neurolmage 198, 181-197. doi: 10.1016/j.neuroimage.2019.
05.026

Raichle, M. E. (2015). The brain’s default mode network. Annu. Rev. Neurosci. 38,
433-447. doi: 10.1146/annurev-neuro-071013-014030

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and
Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A.
98, 676-682. doi: 10.1073/pnas.98.2.676

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., and Nieuwenhuis, S. (2004).
The role of the medial frontal cortex in cognitive control. Science 306, 443-447.
doi: 10.1126/science.1100301

Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schiirmann, M.,
et al. (2001). Wavelet entropy: A new tool for analysis of short duration brain
electrical signals. J. Neurosci. Methods 105, 65-75. doi: 10.1016/50165-0270(00)00
356-3

Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., and Faubert, J.
(2019). Deep learning-based electroencephalography analysis: A systematic review.
J. Neural Eng. 16:051001. doi: 10.1088/1741-2552/ab260c

Sadaghiani, S., and D’Esposito, M. (2015). Functional characterization of the
cingulo-opercular network in the maintenance of tonic alertness. Cereb. Cortex 25,
2763-2773. doi: 10.1093/cercor/bhu072

Sauseng, P., and Klimesch, W. (2008). What does phase information of oscillatory
brain activity tell us about cognitive processes? Neurosci. Biobehav. Rev. 32,1001-1013.
doi: 10.1016/j.neubiorev.2008.03.014

Schoffelen, J.-M., and Gross, J. (2009). Source connectivity analysis with MEG and
EEG. Hum. Brain Mapp. 30, 1857-1865. doi: 10.1002/hbm.20745

Song, J., Davey, C., Poulsen, C., Luu, P, Turovets, S., Anderson, E., et al. (2015). EEG
source localization: Sensor density and head surface coverage. J. Neurosci. Methods
256, 9-21. doi: 10.1016/j.jneumeth.2015.08.015

Spitzer, B., and Haegens, S. (2017). Beyond the status quo: A role for beta oscillations
in endogenous content (Re)activation. eNeuro 4 ENEURO.0170-17.2017. doi: 10.1523/
ENEURO.0170-17.2017.

Syrov, N., Yakovlev, L., Miroshnikov, A., and Kaplan, A. (2023). Beyond passive
observation: Feedback anticipation and observation activate the mirror system in
virtual finger movement control via P300-BCIL. Front. Hum. Neurosci. 17:1180056.
doi: 10.3389/fnhum.2023.1180056

Tang, H., Riley, M. R, Singh, B., Qi, X.-L., Blake, D. T., and Constantinidis, C.,
(2022). Prefrontal cortical plasticity during learning of cognitive tasks. Nat. Commun.
13:90. doi: 10.1038/541467-021-27695-6

Torrence, C., and Compo, G. P. (1998). A practical guide to wavelet analysis.
Bull. Am. Meteorol. Soc. 79, 61-78. doi: 10.1175/1520-04771998079%253C0061:
APGTWA%253E2.0.CO;2

Tosoni, A., Capotosto, P., Baldassarre, A., Spadone, S., and Sestieri, C. (2023).
Neuroimaging evidence supporting a dual-network architecture for the control of
visuospatial attention in the human brain: A mini review. Front. Hum. Neurosci.
17:1250096. doi: 10.3389/fnhum.2023.1250096

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neurolmage 15, 273-289. doi: 10.1006/nimg.2001.0978

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., etal. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261-272. doi: 10.1038/s41592-019-0686-2

Vos, J., de Winter, J., Farah, H., and Hagenzieker, M. (2023). Which visual cues do
drivers use to anticipate and slow down in freeway curve approach? An eye-tracking,
think-aloud on-road study. Transp. Res. Part F Traffic Psychol. Behav. 94, 190-211.
doi: 10.1016/j.trf.2023.01.021

Walshe, E. A., Roberts, T. P. L., Ward, McIntosh, C., Winston, F. K., Romer,
D., et al. (2023). An event-based magnetoencephalography study of simulated
driving: Establishing a novel paradigm to probe the dynamic interplay of
executive and motor function. Hum. Brain Mapp. 44, 2109-2121. doi: 10.1002/hbm.
26197

Wascher, E., Arnau, S., Gutberlet, 1., Karthaus, M., and Getzmann, S. (2018).
Evaluating pro- and re-active driving behavior by means of the EEG. Front. Hum.
Neurosci. 12:205. doi: 10.3389/fnhum.2018.00205

Wischnewski, M., Haigh, Z. J., Shirinpour, S., Alekseichuk, L., and Opitz, A. (2022).
The phase of sensorimotor mu and beta oscillations has the opposite effect on

corticospinal excitability. Brain Stimulat. 15, 1093-1100. doi: 10.1016/j.brs.2022.08.
005

frontiersin.org


https://doi.org/10.3389/fnins.2025.1698625
https://doi.org/10.1016/j.neuroimage.2009.02.006
https://doi.org/10.1016/j.neuroimage.2009.02.006
https://doi.org/10.1080/17470919.2022.2083229
https://doi.org/10.1016/s1388-2457(02)00337-1
https://doi.org/10.1016/s1388-2457(02)00337-1
https://doi.org/10.1155/2008/849040
https://doi.org/10.1155/2008/849040
https://doi.org/10.3390/s140712847
https://doi.org/10.1088/1741-2560/4/2/R01
https://doi.org/10.1038/36846
https://doi.org/10.1016/j.neuroimage.2017.02.076
https://doi.org/10.1177/00187208211039091
https://doi.org/10.1152/jn.00068.2021
https://doi.org/10.3389/fpsyg.2021.631364
https://doi.org/10.3389/fpsyg.2021.631364
https://doi.org/10.1016/j.apergo.2022.103798
https://doi.org/10.1016/j.apergo.2022.103798
https://doi.org/10.1016/j.trf.2014.09.005
https://doi.org/10.1016/j.trf.2014.09.005
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1146/annurev.neuro.24.1.167
https://doi.org/10.1177/0018720811423261
https://doi.org/10.1016/j.neuroimage.2003.08.026
https://doi.org/10.3389/fnhum.2020.614979
https://doi.org/10.1177/0018720810376055
https://doi.org/10.1177/0018720810376055
https://doi.org/10.1518/001872097778543886
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1523/ENEURO.0450-24.2024
https://doi.org/10.1016/s1388-2457(99)00141-8
https://doi.org/10.1016/s0304-3940(97)00889-6
https://doi.org/10.1016/s0304-3940(97)00889-6
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1126/science.1100301
https://doi.org/10.1016/s0165-0270(00)00356-3
https://doi.org/10.1016/s0165-0270(00)00356-3
https://doi.org/10.1088/1741-2552/ab260c
https://doi.org/10.1093/cercor/bhu072
https://doi.org/10.1016/j.neubiorev.2008.03.014
https://doi.org/10.1002/hbm.20745
https://doi.org/10.1016/j.jneumeth.2015.08.015
https://doi.org/10.1523/ENEURO.0170-17.2017.
https://doi.org/10.1523/ENEURO.0170-17.2017.
https://doi.org/10.3389/fnhum.2023.1180056
https://doi.org/10.1038/s41467-021-27695-6
https://doi.org/10.1175/1520-04771998079%253C0061:APGTWA%253E2.0.CO;2
https://doi.org/10.1175/1520-04771998079%253C0061:APGTWA%253E2.0.CO;2
https://doi.org/10.3389/fnhum.2023.1250096
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.trf.2023.01.021
https://doi.org/10.1002/hbm.26197
https://doi.org/10.1002/hbm.26197
https://doi.org/10.3389/fnhum.2018.00205
https://doi.org/10.1016/j.brs.2022.08.005
https://doi.org/10.1016/j.brs.2022.08.005
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Neural signatures of engagement in driving: comparing active control and passive observation
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Experimental design and procedure
	2.2.1 Driving simulator setup
	2.2.2 Experimental conditions
	2.2.3 Experimental task and procedure

	2.3 EEG data acquisition
	2.4 EEG data preprocessing
	2.5 EEG data analysis
	2.5.1 Source localization analysis
	2.5.2 Group-level source activity and region of interest (ROI) analysis
	2.5.3 Frequency domain analysis (power and ERD/ERS)
	2.5.4 Functional connectivity analysis
	2.5.5 Feature extraction for classification
	2.5.6 Classification analysis

	2.6 Statistical analysis

	3 Results
	3.1 Effects of driving mode (Hypothesis 1)
	3.1.1 Source-level contrasts between active control and passive observation
	3.1.2 ROI activation differences
	3.1.3 Frequency-domain modulation
	3.1.4 Functional connectivity patterns between brain regions

	3.2 Effects of task complexity and interaction with mode (Hypothesis 2)
	3.2.1 Source-level contrasts of hard vs. easy
	3.2.2 ROI-specific complexity effects and mode  complexity interaction
	3.2.3 Frequency-domain complexity modulation
	3.2.4 Functional connectivity modulation

	3.3 Classification analysis
	3.3.1 Classification performance and confusion matrix
	3.3.2 Feature importance and neurophysiological correlates
	3.3.3 Generalization across subjects (LOSO performance)


	4 Discussion
	4.1 General summary
	4.2 Functional neuroanatomy: EEG correlates of active control vs. passive observation
	4.3 Spectral dynamics: the oscillatory fingerprints of engagement
	4.4 Functional connectivity: network-level signatures of engagement
	4.5 Inter-individual variability, generalizability, and limitations
	4.6 Implications and future directions

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References




