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NMPhenogen: a comprehensive
database for genotype—
phenotype correlation in
neuromuscular genetic disorders
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Harshatha N. Reddy, Anupama Anil, Rakesh Kumar Mishra and
Gayatri Rangarajan lyer*

Tata Institute for Genetics and Society, Gandhi Krishi Vignana Kendra Campus, Bengaluru, Karnataka,
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Neuromuscular genetic disorders (NMGDs) are genetically and clinically diverse
group of inherited diseases that affect approximately 1 in 1,000 people worldwide
with a calculated prevalence of 37 per 10,000 in the general population. These
disorders arise from a variety of genetic changes such as insertions, deletions,
duplications and expansions of repeats in more than 747 nuclear and mitochondrial
genes critical for the function of peripheral nerves, motor neurons, neuromuscular
junctions or skeletal muscles, leading to progressive weakness and degeneration
of muscles. Major subtypes include muscular dystrophies, congenital myopathies,
motor neuron diseases, peripheral neuropathies, and mitochondrial myopathies.
Clinical presentation of NMGDs is highly variable in the age of onset, severity and
pattern of muscle involvement, often leading to prolonged and complex diagnostic
process. Conventional diagnostic methods have relied on clinical history, physical
examination and invasive procedures like muscle biopsy. But the development
of next-generation sequencing (NGS) has transformed diagnostics by enabling
comprehensive analysis of NMGD-related genes. Despite this advancement,
interpreting the numerous variants identified by NGS remains challenging. The
guidelines of the American College of Medical Genetics and Genomics (ACMG) offer
a standardized approach to variant classification as pathogenic, likely pathogenic,
variant of uncertain significance, likely benign and benign. However, this requires the
integration of complex evidence from population data, computational predictions,
and functional assays. The major challenge is the robust correlation of genotypic
information with the huge phenotypic range of NMGDs which is a task complicated
by the unavailability of population-specific genetic databases. To address these
issues, we have developed NMPhenogen (https://gi-lab-tigs.github.io/Homepage/),
a new database designed to enhance the diagnosis and understanding of NMGDs.
NMPhenogen is a centralized repository for data related to NMGD-associated
genes and variants along with their clinical presentations. It includes two primary
modules: NMPhenoscore, which enhances disease-phenotype correlations, and
a Variant classifier, which facilitates standardized variant classification based on
published guidelines. This combined resource aims to streamline the diagnostic
process, support clinical decision-making, and eventually contribute to improving
patient care and genetic counseling.
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Introduction

Neuromuscular genetic disorders (NMGDs) are a heterogeneous
group of genetic disorders that affect around 1 in 1,000 individuals
worldwide (Zatz et al., 2016). Although each condition is rare, they are
collectively common with an overall prevalence estimated to be 37 per
10,000 in the general population (Rosenberg et al., 2023). NMGDs
result from genetic variants including insertions, deletions,
duplications, or repeat expansions that disrupt the function of
peripheral nerves, motor neurons, neuromuscular junctions, or
skeletal muscles, leading to progressive muscle weakness and
degeneration (Zatz et al., 2016; Rosenberg et al., 2023; Laing, 2012).
There are around 747 different genes including both nuclear and
mitochondrial genes, resulting in 1240 NMGDs (Benarroch et al,,
2025; Baig et al., 2019). These genes code for proteins that are involved
in muscle structure and function (DMD, SGCA, LMNA),
(CHRNE, RAPSYN),
mitochondrial energy metabolism (POLG, TK2), peripheral nerve
functions (PMP22, MFN2, GJBI) etc. NMGDs are mostly monogenic,
inherited as autosomal dominant (Myotonic dystrophy,
LGMDI1A-1H), autosomal recessive (LGMD 2A-2T), X-linked
(DMD), mitochondrial (MERRE, MELAS) or can be de novo
(Nemaline Myopathy- ACTAI gene) (Zatz et al., 2016; Laing, 2012;
Arakawaetal.,2018;MalfattiandRomero,2016).MajorsubtypesofNMGDsinclude-

neuromuscular junction transmission

1. Muscle dystrophies: Duchenne muscular dystrophy (most
common muscular dystrophy with childhood onset), Becker
muscular dystrophy, Limb girdle muscular dystrophy,
congenital muscular dystrophy, Facioscapulohumeral muscular
dystrophy (FSHD), Emery-Dreifuss muscular dystrophy,
Oculopharyngeal muscular dystrophy (OPMD), Myotonic
dystrophy (DM1 being the most common muscular dystrophy
with adult onset and the estimated prevalence of about
1:20,000) (Bird, 2019).

2. Congenital myopathies: Nemaline myopathy

3. Motor neuron disorders: 5q spinal muscular atrophy,
Amyotrophic lateral sclerosis

4. Hereditary peripheral neuropathies: Charcot-Marie-Tooth
disease, Hereditary motor neuropathies, Hereditary sensory
and autonomic neuropathies

5. Neuromuscular junction disorders: Congenital
myasthenic syndromes

6. Metabolic myopathies: Glycogen storage disorders, Fatty acid
oxidation disorders

7. Mitochondrial myopathies: Leigh syndrome (infant/childhood
onset), Mitochondrial encephalopathy lactic acidosis and
stroke like episodes (MELAS), Myoclonic epilepsy with ragged
red fibers (MERRF) (childhood/adult onset), Chronic
Progressive External Ophthalmoplegia (CPEO) (representing
20% of adult onset mitochondrial disorders) (Arakawa et al.,

2018; Mary et al., 2018; Chin et al., 2024).

The onset, severity and clinical presentation of NMGDs vary
widely. Disorders, such as congenital myopathies and congenital
muscular dystrophies (CMDs), manifest at birth or in early infancy
with hypotonia, delayed milestones, or respiratory insufficiency, while
others, such as Limb girdle muscular dystrophy (LGMD) or
Facioscapulohumeral muscular dystrophy (FSHD), present during
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adolescence or adulthood (Arakawa et al., 2018). Duchenne muscular
dystrophy (DMD), the most prevalent and severe form affects
approximately 1 in 3,500 male children and typically presents before
the age of five with progressive proximal muscle weakness, calf
hypertrophy, and elevated creatinine phosphokinase (CPK) levels
(Kashyap et al., 2019). CMDs, though less common (0.6-0.9 per
100,000), present with central nervous system (CNS), ocular and
cardiac involvement (Sindhav et al., 2025). Mitochondrial disorders
affect multiple systems with a wide variety of neurological, muscular,
hepatic, and gastrointestinal symptoms. Mitochondrial myopathies,
with the estimated prevalence of 1 in 5,000, are linked to defects in
oxidative phosphorylation, presenting with exercise intolerance,
cramps, fatigue, myalgias, or metabolic decompensation during illness
or fasting. Individuals with childhood onset have more generalized
muscle and systemic involvement while those with adult onset have
milder phenotypes confined to specific muscles (Chin et al., 2024;
Ahmed et al., 2018). Similarly, hereditary spastic paraplegias (HSPs)
occur in about 1-9 per 100,000 individuals and are characterized by
progressive spastic paraplegias due to distal axonal degeneration
(Arakawa et al., 2018; Mahesan et al., 2024). Despite this diversity,
muscle weakness- whether proximal, distal, axial, facial, or respiratory-
remains the unifying clinical hallmark of NMGDs. Patterns of
weakness, in combination with examination findings, provide crucial
diagnostic clues. Waddling gait, for instance, is indicative of the
proximal and axial involvement majorly seen in LGMD, while steppage
or foot drop denotes distal weakness, which is present in inclusion
body myositis, distal myopathies, or myotonic dystrophy (Dubrovsky,
2018). Peculiar clinical signs, such as calf hypertrophy in DMD and
sarcoglycanopathies, Tumpy-bumpy’ quadriceps in dysferlinopathy,
scapular winging in LGMD, facial weakness with scapulo-peroneal
distribution in FSHD, and tongue fasciculations in SMA are valuable
in narrowing the diagnostic possibilities (Arakawa et al, 2018;
Dubrovsky, 2018). Systemic involvement also aids recognition and
early intervention, for example cardiac manifestations in DMD and
myotonic dystrophy, hepatomegaly in metabolic storage disorders,
early respiratory failure in nemaline myopathy, and contractures in
Emery-Dreifuss muscular dystrophy (Mahesan et al., 2024).
Traditionally, diagnosis of NMGDs has relied on clinical history,
neuromuscular examination, family pedigree analysis, and invasive
investigations such as muscle biopsy for dystrophies, myopathy and to
assess nervous involvement, electromyography (EMG) for categorizing
myopathies, Magnetic Resonance Imaging (MRI) for muscle
involvement patterns and targeted enzyme assays such as acid maltase
testing for Pompe Disease. NMGDs present with non-specific
symptoms such as hypotonia, weak cry, poor feeding, or respiratory
distress which might be mistaken with other prenatal disorders.
Disorders like myotonic dystrophy caused due to repeat expansion
and FSHD, involving 3.2 kb contraction as well as methylation
complicates the diagnosis since non-conventional tests are required,
further delaying the diagnosis. Families frequently endure a prolonged
diagnostic odyssey due to overlapping clinical symptom, genetic
heterogeneity, lack of awareness and access to diagnostics that includes
multiple tests, consultations, invasive procedures before reaching a
molecular diagnosis. This can result in missed treatment opportunities
and preventable mortality (Rosenberg et al., 2023). Patients experience
pain, exhaustion, low mood, poor coping, and increased unfavorable
perceptions of their illness in addition to physical disability (Graham
etal, 2011). About 34% of all the childhood deaths, and over 51% of

frontiersin.org


https://doi.org/10.3389/fnins.2025.1696899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Manjunath et al.

those under one year of age, are attributed to congenital malformations
or genetic disorders, including severe NMGDs such as fetal akinesia,
congenital myopathies and CMDs (Stevenson and Carey, 2004). As
the conditions are heritable in nature, often times they recur in the
same family. Delayed molecular diagnosis also poses a barrier for
timely and informed reproductive planning. The missed window can
lead to recurrence and add to the burden of neonatal morbidity and
mortality of NMGDs. The advent of next generation sequencing
(NGS), particularly whole exome sequencing, has revolutionized the
diagnostic picture of NMGDs by enabling rapid, comprehensive
identification of causative variants. Variant analysis and reporting are
significant to understand the etiology of the disorder, nature of
progression, employ targeted therapy if any, or facilitate early
intervention and aid in prevention in subsequent pregnancies by
prenatal diagnosis and extended family screening. Variant analysis,
however, is often not straightforward and has several layered steps of
annotating sequence data, analyzing population frequencies, in silico
computational predictions, in vitro and model system generated
functional assays, segregation analysis, thorough genotype-phenotype
correlation and ranking of variants accordingly. Lack of population
specific databases can hinder optimum utility of sequence data as
several ethnicity and community specific variants remain
underrecognized and unknown.

The American College of Medical Genetics (ACMG) guidelines
are the standard recommendations for the interpretation and
reporting the sequence variations identified to provide an
educational resource for medical geneticists and other health care
professionals to provide quality medical genetic services (Richards
et al, 2015). It provides a framework for interpretation and
reporting of the test results and to aid clinicians by educating them
to possible testing outcomes so that they can inform their patients
and families appropriately (Richards et al., 2015; Richards et al.,
2008). A workgroup was established in 2013 by ACMG, Association
for Molecular Pathology (AMP), and College of American
Pathologists (CAP) with the objective of creating a recommendation
for the use of standard terminologies for categorizing sequence
variants based on the evidence that is currently available and
weighted in accordance with a system that was created using
community input, workgroup consensus, and expert opinion. These
recommendations involve the five classes namely pathogenic (P),
likely pathogenic (LP), benign (B), likely benign (LB) and variant
of uncertain significance (VUS). Each classification is based on the
studies done and supporting evidence available, which describe
each variant with respect to different characteristics and degrees of
pathogenicity (Richards et al., 2015; Nicora et al., 2022). Pathogenic
criterion is scored as very strong with one criterion (PVS1), four
strong parameters (PS1-4), six moderate parameters (PM1-6), and
about five supporting parameters (PP1-5), Benign criterion as
standalone (BA1), about four strong parameters (BS1-4), and seven
supporting parameters (BP1-7). According to ACMG guidelines
2015, the classification requires evidence ranging from molecular
and population data to clinical and familial correlations. One needs
to consider the variants effect on the protein activity whether it is a
nonsense, frameshift, splice site or missense leading to loss of
function, if the variant is present in the conserved sites as
substitutions at these sites are often pathogenic, if the variant allele
frequency in the population is <1%, segregation analysis with the
family also provides strong evidence with the disease if present in
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multiple affected family members. Genotype-Phenotype correlation
plays a major role in explaining the clinical features observed,
inheritance pattern (eg. Hemizygous mutation in DMD gene
explains affected males and carrier females), allelic heterogeneity
(missense variants in LMNA gene cause cardiomyopathy while
truncating variants cause muscular dystrophy), Each of this
evidence contribute to different strengths (very strong, strong,
moderate and supporting) resulting in the final classification.
Evidence for a particular variant from each criterion is combined
to classify it into one of the five classes (Richards et al., 2015). It is
important to make sure that the variants are reported precisely,
especially while reporting pathogenic and likely pathogenic
variants, as it can lead to alterations in the treatment or surveillance
of the patient. As the research field grows functional and clinical
validations are carried out enabling more evidence, variant
reclassification becomes indispensable. With the advancement of
NGS technologies, thousands of variants are identified for an
individual, of these only few might be disease causing. However,
VUS may have a conflicting interpretation due to lack of
information. In such scenarios, clinical geneticists and clinical-
laboratory geneticists healthcare providers depend on in silico tools
that assess protein variant tolerance, splicing or gene regulatory
alterations by assigning quantitative measures (Nicora et al., 2022).
ClinVar' is a freely accessible, public archive of reports of human
variations classified for diseases and facilitates access to human
variation and asserted relationships observed conditions with
interdatabase operability. Currently, tools like Varsome,” Franklin,’
LOVD* InterVar’ and GeneBe®
interpretation based on ACMG guidelines.

We have developed a database—NMPhenogen, to aid and
improve genotype-phenotype correlation in neuromuscular genetic

are available for variant

disorders. It incorporates the NMPhenoscore feature which assesses
the likelihood of NMGDs based on the presence of 24 clinically
relevant features used as a clinical domain (Kashyap et al., 2019;
Mancuso et al., 2025; Mcdonald, 2012; Semplicini and Angelini, 2013;
Version, 2002) during the initial screening phase and then gives the
top recommendations for probable NMGDs diagnosis based on the
relevant clinical data provided by the user. The database also assist in
variant classification according to ACMG guidelines using the variant
calculator feature. Additionally, the database provides information
about different genes and their inheritance patterns associated with
neuromuscular disorder subtypes along with their clinical features.

Objectives

To develop an integrated platform for genotype-phenotype

spectrum and variant classification for neuromuscular

genetic disorders.

https://www.ncbi.nlm.nih.gov/clinvar/
https://varsome.com/
https://franklin.genoox.com/clinical-db/home
https://www.lovd.nl/
https://wintervar.wglab.org/

O U1 A NN

https://genebe.net/
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1. NMPhenoscore: To assist clinicians, genetic counselors,
laboratory and clinical scientists in genotype-phenotype
correlation and selecting gene panels, as well as

2. Variant classifier: A tool to classify variants in a user friendly
intuitive prompt based format according to ACMG guidelines.

Methodology

We have developed NMPhenogen database using JavaScript, which
is the collection of 747 genes that are associated with neuro muscular
genetic disorders (Supplementary file 1). These 747 genes, including
the ones from mitochondrial genome were collected from various
literature and publicly available NMGD databases namely GeneTable
and NeuroMuscleDB (Benarroch et al., 2025; Baig et al., 2019). This
database contains the comprehensive information of these genes which
includes chromosome number, position, associated diseases,
inheritance pattern, along with Online Mendelian Inheritance in Man
(OMIM)’ and phenotype links related to Mendelian Inheritance in
Man (MIM) (see the text footnote 7), Orphanet,® MalaCards,’ Entrez
Gene Identifier (Entrez ID)' and links Ensembl Gene Identifier
(Ensembl ID)." Inheritance pattern and disease information were
collected from OMIM along with the corresponding OMIM and
phenotype MIM links. The database includes NMPhenoscore a tool to
prioritize NMGDs based on the clinical features given by the users, and
Variant classifier, a variant interpretation tool which classifies variants
based on the ACMG guidelines. Figure 1 summarizes the overall
picture of the database.

7 https://www.omim.org/

8 https://www.orpha.net/

9 https://www.malacards.org/

10 https://www.ncbi.nlm.nih.gov/search/

11 https://asia.ensembl.org/Homo_sapiens/Info/Index
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The NMPhenoscore

NMPhenoscore is a web-based tool that prioritizes neuromuscular
genetic disorders related to medical conditions based on their clinical
symptoms. NMPhenoscore functions in two parts. First part is where
users input symptoms that are considered to be the broad clinical
domains affected for evaluating the patients. Second part of the tool
involves predicting most likely specific conditions of NMGDs. The
main purpose of this tool is to serve as a clinical decision support
system (CDSS). It helps the medical professionals, geneticists, and
clinicians in diagnosing rare NMGDs by comparing the patients’
symptoms to a well-structured knowledgebase to narrow down the
large number of differential diagnoses for these rare diseases,
improving the efficacy of the diagnostic process. This cuts down the
time of the initial diagnostic stage and offers a methodical, fact-based
foundation for additional research. Additionally, it helps clinical
researchers find patient cohorts for studies and acts as an educational
aid for medical students learning about rare diseases.

The tool is developed using JavaScript and HTML. It is structured
into three core phases such as data acquisition and preprocessing,
algorithm design and user interaction and output generation.

A) Data acquisition and preprocessing: The first part of the
NMPhenoscore tool involves evaluating patients for potential
NMGDs using approximately 24 clinical symptoms that were
curated through a comprehensive review of the literature (listed
in Supplementary file 2-sheet 2). The foundation for the second
part of the tool is a structured knowledgebase of disease-
symptoms which were curated manually from the literature
available. This knowledgebase contains 141 symptoms

distributed among 34 clinical conditions (given in

Supplementary Figure 1 and the data in Supplementary file 2).

A data frame is developed where rows represent symptoms and

columns represent medical conditions related to NMGD. Within

this data frame, the presence of prominent association between

symptom and condition is represented as ‘+’ whereas the
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absence or rarity of the association is represented as empty cells.
To make the data computationally operable, two tasks have been
performed. First, indexing has been done for the first column,
which contains symptoms, to create a structured lookup table.
Second is the binary encoding where all the ‘+’ symbols are
replaced with 1 and empty cells with 0.
B) Algorithm design: The first part of the tool aggregates 24 binary
clinical indicators, with each symptom representing equally to
1 point. The algorithm calculates a percentage score by dividing
the number of selected symptoms by the total possible
symptoms and multiplying by 100. A critical diagnostic
threshold is established at 30% scores at or above this threshold
to classify the patient as “NMGD likely Positive,” while scores
below 30% are classified as “NMGD likely Negative” The visual
interface employs a circular gauge that dynamically updates to
reflect the calculated percentage, with color-coding which has
green for positive, amber for negative providing immediate
visual feedback. The core of the second part of the tool is a
prioritization algorithm that is based on a simple and yet
effective scoring method which quantifies the presence of
symptoms and the conditions in the data frame. The tool
accepts a user-provided list of symptoms and validates it
against the index of the symptoms present in the preprocessed
data frame. Validated symptoms are retained and filtered,
whereas unrecognized ones are excluded for further processing.
The data frame now contains the validated symptoms to which
a conditional score is calculated for each disease by summing
the binary values (1 and 0) across all provided symptoms. The
score effectively represents the total number of symptoms the
user provided that are known to be associated with each
condition. The conditions are then ranked in descending order
based on their calculated scores. This results in a prioritized list
of conditions with the maximum number of matching
symptoms getting the highest rank.
User Interaction and Output Generation: The tool features the
user-friendly interface where the user is prompted to enter the
list of symptoms one by one. The output gets generated in two
parts. One part gives the list of the conditions along with the
number of matched symptoms in descending order. The
second part gives the top recommended condition with the
absolute highest score. Figure 2 depicts the workflow of
NMPhenoscore tool.

10.3389/fnins.2025.1696899

Variant classifier

Variant classifier is a user-friendly interface designed to assist
clinicians, researchers, geneticists, genetic counsellors, and
molecular laboratories to categorize genetic sequence variants
according to the widely adopted the American College of Medical
Genetics and Genomics (ACMG) and the Association for Molecular
Pathology (AMP) guidelines. With the increase in gene testing and
discovery of new variants, there is a critical need for an open,
standardized, and user-friendly system to support variant
interpretation. The tool uses the five-tier classification system
namely pathogenic, likely pathogenic, variant of uncertain
significance, likely benign, and benign according to the established
ACMG criteria in a systematic way. This tool supports consistency
and accuracy in variant assessment by guiding the users through
consideration of evidence present and the criteria leading to the
final classification.

Variant classifier is a questionnaire-based web application designed
for variant interpretation according to ACMG-AMP guidelines. The
tool implements a hybrid decision-support system that applies the
canonical ACMG combination rules followed by a series of conditional
overrides and a quantitative scoring system for unresolved cases. The
complete workflow of Variant classifiers is shown in Figure 3.

A) Data Collection and User Interaction: The tool interactively
collects the answers for the evidence through a structured
questionnaire-based interface. The user is asked to supply:

(i) Variant and disease context: The condition associated with the
variant nomenclature.

(ii) Inheritance pattern: zygosity (homozygous, heterozygous,
hemizygous) and inheritance pattern (autosomal dominant,
autosomal recessive, X-linked).

(iii) Evidence evaluation: A set of yes/no and multiple-choice
questions across all ACMG evidence categories, including:

Variant type (e.g., null, missense)

Population frequency data

Computational prediction data

Functional assay results

Segregation analysis (e.g., de novo status, carrier status in
parents for recessive disorders)

User Input

NMPhenoscore

Genotype -Phenotype

NMPhenoscore Workflow

Top disease

correlation recommendation
FIGURE 2
Workflow of NMPhenoscore tool.
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User Input

ACMG Variant

Interpretation
Tool

FIGURE 3
Workflow of variant classifier.

ACMG criteria

(PVS1, PSA......BP7)

Variant Classifier Workflow

= Final Classification

f) Cis/trans analysis
g) Previous reports from reputable sources

The tool is implemented in JavaScript and follows a hierarchical
decision to assign the final classification such as Pathogenic (P), Likely
Pathogenic (LP), Benign (B), Likely Benign (LB) and Variant of
Uncertain Significance (VUS). The classification logic follows through
four sections:

a) Primary classification through ACMG combination rules: The
core of the tool is the application of ACMG/AMP evidence
combination rules. These combination rules are based on the
28 evidence that are in the ACMG guidelines which are
divided into 1 Pathogenic Very Strong (PVS), 4Pathogenic
Strong (PS), 6 Pathogenic Moderate (PM), 5 Pathogenic
Supporting (PP), 1 Benign Stand-Alone (BA), 4 Benign Strong
(BS) and 7 Benign Supporting (BP). The user-answers are
aggregated, and the algorithm checks against the predefined
set of ACMG combination rules. This section outputs a
classification only if any of the rules are satisfied.

b) Conflict resolution: Conflict interpretations are those where
evidence satisfies combination rules for both a pathogenic and a
benign classification. In this case, the algorithm compares the
strength of evidence from each side using the following hierarchy:

(i) Pathogenic evidence containing PVS or any PS criteria
outweighs benign evidence and vice-versa

(ii) Multiple PM evidence outweighs benign evidence lacking
BS criteria

(iii) BS evidence outweighs pathogenic evidence lacking PS criteria

If the strength of conflicting evidence is comparable, the variant
is defaulted to VUS.

¢) Conditional VUS overrides for incomplete evidence: If no
ACMG combination rule is satisfied, the tool checks for specific
cases leading to a VUS classification. This logic section is
activated only if no other strong or very strong evidence exists.
The overrises check for:

(i) Functional studies have not been done

(ii) The variant is not located in a known mutational hotspot or
critical domain

Frontiers in Neuroscience

(iii) The variant is assumed de novo without confirmed parentage

(iv) The variant is observed in healthy individuals in a genotype
inconsistent with the disease

(v) Variant found in a case with an alternate molecular basis
for disease

d) Quantitative score-based classification: If the variant remains
unclassified after the steps a or ¢, a quantitative score is
calculated. Each ACMG criteria is assigned a predefined weight
suchas BA1=1,BS=2,BP=3PP=4,PM =8, PS=16and,
PVS1 = 32. The weights of all applied criteria are added to
determine the final score. The pre-established thresholds,
which are calculated based on ACMG combination rules used
that defines the evidence gradient, are used to determine the
final classification:

(i) Score towards 96: Pathogenic (P)
ii) Score till 48: Likely Pathogenic (LP)
iii) Score 17-25: VUS

iv) Score till 2: Likely Benign (LB)

v) Score till 8: Benign (B)

The VUS range (17-25) is designed to capture variants with
moderate evidence that falls short of a definitive ACMG
rule combination.

Output: The tool offers a complete report containing:

(i) The final variant class and rationale for it (e.g., “PVS1 + PM2”
or “Score-based VUS”).

(ii) Summary count of criteria applied by evidence strength (PVS,
PS, PM, PP, BA1, BS, BP).

(iii) Quantitative total score.

(iv) Annotated list of all activated criteria and informative notes,
organized by evidence of strength.

Graphical user interface development

The NMPhenogen database is accessible through a web-based
graphical user interface (GUI) developed using HTML, CSS, and
JavaScript, hosted on GitHub Pages. GUI provides a comprehensive
platform for clinicians, researchers, and geneticists to interact with the
NMPhenogen database, enabling seamless access to the NMPhenoscore
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tool including for disease prioritization and the Variant classifier for
variant classification. The interface is designed to facilitate user-friendly
navigation, ensuring that users can input clinical symptoms, query the
genetic variants, and retrieve the results without requiring extensive
technical expertise. The GUI leverages HTMLS5 for structured content,
CSS3 for responsive and visually appealing styling, and JavaScript for
dynamic interactivity. Responsive design principles ensure
compatibility across devices, including desktops, tablets, and
smartphones, making the tools accessible across clinical and research.
JavaScript enables real-time processing of user inputs, such as symptom
lists for NMPhenoscore or evidence responses for the Variant classifier,
and displays outputs, such as prioritized disease lists or variant
classification reports, in a clear and organized format. For instance,
NMPhenoscore results are visualized using interactive virtual sunburst
plots to enhance the interpretability of genotype-phenotype
associations. The SQLite3 database, containing comprehensive data on
747 genes associated with neuromuscular genetic disorders, is
integrated into the backend, allowing efficient querying and retrieval
of gene, variant, and phenotype information.

The GUI, along with the NMPhenogen database and tools, is
publicly available via the projects GitHub Pages repository.
Comprehensive documentation, including implementation details,
usage instructions, and example workflows, is provided within the
repository to support users in effectively utilizing the platform. This
open-access approach promotes transparency, reproducibility, and
collaboration in the study of neuromuscular genetic disorders.

Results

The database has 747 genes associated with NMGDs. Figure 4
gives detailed information regarding the chromosome and gene
association along with inheritance.

10.3389/fnins.2025.1696899

The NMPhenoscore

The performance of the NMPhenoscore tool was evaluated
for initial screening for NMGD by selecting symptoms
such as muscle weakness, frequent falls, breathing difficulties,
cardiac involvement, difficulty in swallowing, difficulty in
climbing stairs, toe walking, join contractions, cognitive
impairment, and impaired vision. The assessment indicates a
41.7% score, with 10 out of 24 symptoms selected,
suggesting a likely NMGD Positive result (Figure 5A). These
findings point toward possible neuromuscular involvement. To
evaluate the second part of the tool that is to check the specific
condition of NMGD, symptoms like ophthalmoplegia, facial
muscles, hypotonia, white matter signal abnormalities,
dysmorphism, growth failure, spasticity and spastic paralysis of
legs were selected in an unbiased manner from Human
Phenotype Ontology (HPO). All these features aligned
with the knowledgebase, leading the tool to recommend
Dystroglycanopathy as the top condition. This prediction was
concordant with HPO, where these symptoms were found to
be associated with Dystroglycanopathy. Alongside, the tool will
provide visualizable results in the form of a sunburst for a better
understanding of associations (Figure 5B).

Variant classifier

To evaluate the variant classifier, 100 gene variants
(variants, data is given in Supplementary file 3) were
taken from ClinVar in an indiscriminate manner. These variants
were distributed evenly across the five classifications, namely VUS,
P, LP, LB and B, with 20 variants in each group. Each variant was
classified by three sources such as ClinVar (see text footnote 1),

Gene Distribution per Chromosome by Inheritance Pattern
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FIGURE 4
Gene distribution per chromosome by inheritance pattern.
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Franklin'? and the variant classifier to compare the final
classification from all three sources. The observations are as follows:

(i) Out of 20 VUS variants, one variant was classified as LB in
variant classifier by answering the questions based on the
evidence available indicating 95% concordance with ClinVar.

12 https://franklin.genoox.com/clinical-db/home
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(ii)

But, in the case of Franklin, two were classified as B, one was
classified as LB and one variant was classified as LP indicating
a slightly shifted distribution with 80% concordance with
ClinVar. The discrepancy in Franklin classification can
be attributed to misannotated null variant and incorrect
citation of source (described in supplementary file 3).

Out of 20 P and 20 LP variants, one was classified as LP and
nine were classified as P, respectively in variant classifier
indicating 97.5% concordance with ClinVar whereas Franklin
showed six LP, two VUS and one unknown variant for P and
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(A) Visual representation of initial screening for NMGD. (B) Sunburst
visualization of gene-phenotype associations.

seven P, and one unknown variant for LP indicating 90%
concordance with ClinVar.

(iii) Out of 20 B and 20 LB variants, five variants were classified as
LB for B, two B and one VUS for LB in Variant classifier
indicating 97.5% concordance with ClinVar whereas two were
classified as LB for B and five B and one VUS for LB in Franklin
indicating 97.5% concordance with ClinVar.

With these results, the variant classifier classified variants
consistently with these reference sources, though minor differences
were observed in borderline cases. The comparison is given in the
heatmap (Figure 6). It is important to note that ClinVar submissions
are time-sensitive and classifications change as new evidence like
segregation data, de novo results, functional assays and population
frequency becomes available. Several ClinVar entries, especially older
ones, may not include these data at the time of submission. Since our
assessment defaulted segregation and de-novo requirements to “No,”
discrepancies in the results likely reflect missing evidence that affected
the classification of ClinVar and Franklin. Franklin, specifically,
updates its database with more recent evidence on a regular basis,
which can possibly account for observed changes versus ClinVar and
our Variant classifier tool. As compared to Franklin, which prompts
for phenotype association, ethnicity, zygosity statuses as optional
entries, variant classifier makes the enquiries for zygosity, segregation,
allele frequency, genotype-phenotype correlation, functional studies
along with references/databases to gather the information
and processes.

Discussion

Neuromuscular genetic disorders are a broad group of inherited
conditions marked by progressive muscle weakness, degeneration, and
impaired motor function. A major challenge in diagnosing these
disorders is their significant genetic diversity. Around 747 genes are
associated with NMGDs and variations in different genes often lead
to similar clinical symptoms. Moreover, different variants within the
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same gene lead to distinct traits and at the same time, similar
symptoms may come from variants in unrelated genes. This
heterogeneity makes the diagnosis complicated, especially when the
patients show variable symptoms and age of onset. Barriers such as
cost, availability, and limited awareness of NGS delay testing,
particularly in resource limited settings. High neonatal mortality is
common due to early respiratory failure, feeding issues, and infections
in conditions like SMA type 0/I, congenital myotonic dystrophy, and
mitochondrial myopathies. Early detection through newborn
screening (NBS) or rapid genomic sequencing of symptomatic
individuals can dramatically improve outcomes, with therapies
preventing disease progression. The reliable prioritization of diseases
based on phenotypic characteristics and precise interpretation of
genetic variants are essential parts of diagnosis and treatment.
However, these tasks are challenging due to the variability in available
evidence and clinical heterogeneity observed. In our study,
we developed two computational tools- one for disease prioritization
(NMPhenoscore) and another for variant classification (Variant
classifier) to support genetic diagnosis. The ability to intuitively
correlate phenotypes to potential disease is essential for both research
and clinical utility, especially in multidisciplinary contexts where
non-specialists may require understandable representation of
genotype-phenotype relationships. NMPhenoscore integrates manual
literature curation with computational preprocessing, ensuring that
both common and disease defining features are systematically
captured. It is linked to HPO which allows the mapping of user-
entered clinical features to standardized phenotypic terms, ensuring
consistency in phenotype annotation. It evaluates the likelihood of
having NMGDs in the first step based on the presence of most
common clinical features. Later, the diseases are prioritized based on
the algorithm that quantifies matches between user provided
symptoms with curated disease symptom associations. When
we evaluated NMPhenoscore with 10 common clinical features from
a set of 24, associated with NMGDs, the tool calculated the likelihood
of being affected with NMGD. For the second part we gave symptoms
from HPO, and it accurately prioritized dystroglycanopathy as the top
predicted condition. The result in the form of sunburst plots to
facilitate clearer communication between computational outputs and
clinicians make NMPhenoscore a useful phenotype driven
prioritization tool.

The classification of genetic variants is important in clinical
genomics, as it determines if a sequence change is pathogenic, benign or
of unknown significance. Accurate classification is essential for guiding
patient management, including diagnosis, prognosis, reproductive
advice, and treatment options. Misclassification can lead to improper
clinical handling resulting in unnecessary procedures for benign variants
or missed treatment opportunities and monitoring for pathogenic
variants. The variant classifier developed in our study considers these
sensitive points. We compared 100 variants in an unbiased manner to
evaluate the performance of the Variant classifier against ClinVar and
Franklin. The results were in high concordance with ClinVar, particularly
for pathogenic and benign variants (97.5 and 97.5%), and slightly lower
concordance for VUS (95%) variants. However, with Franklin, the
variant classification was observed to be slightly shifted due to its more
conservative thresholds, resulting in more variants falling under
pathogenic or benign categories. The findings from our study highlight
that the Variant classifier shows strong concordance for variants at the
extremes of classification (Benign and Pathogenic), but the borderline

frontiersin.org


https://doi.org/10.3389/fnins.2025.1696899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Manjunath et al.

10.3389/fnins.2025.1696899

N
(=1

B 60 GO LI LI LI LI I LI LW NI NN NN
O WOONOUNARWN2OWONO TR WN

Variants

00 000000

OCWONONAWN=OWRNDUTAWN

=
oW

ClinVar Variant_classifier

FIGURE 6

variant ID) and X axis- tools for comparison.

=
= —~
—
sS

Tools

Heatmap showing comparison of variant classifications between variant classifier, ClinVar and Franklin. Y axis- variants (numbers given instead of

Classification

P
LP
| B

Ms
. vus
NA

Franklin

categories (LB, VUS, and LP) are prone to reclassification. This is
expected because the distinction between definitive and likely mainly
depends on the strength and weight of supporting evidence considered
while classifying. The differences observed between our tool, ClinVar
and Franklin suggest that variant classification tools may vary in
sensitivity to specific types of evidence. For example, the classification of
some LP variants to P by our tool reflects a stricter interpretation of
strong/ very strong criteria. Similarly, the slight shift in VUS towards LB
or B indicates that uncertain variants may often be benign but lack
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sufficient evidence to support. These observations align with earlier
reports that variant classification is not fully reproducible across different
labs, especially for the gray zones (LB/LP). It is important to note that the
discrepancies in our results do not involve major reclassifications,
supporting the overall reliability of the tool, except for eight variants that
exhibited significant changes in their classification (highlighted in yellow
in supplementary file 3). This underscores the need for manual curation
and expert judgement for accurate and meaningful variant interpretation,
especially for clinically actionable variants. Accurate reclassification of
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variants, especially VUS, LB, and LP, require functional and clinical
validation. Experimental assays, segregation studies, and longitudinal
clinical follow up are necessary to determine the biological impact of
variants and confirm their association with specific disease phenotypes.
In the absence of such evidence, the risk of misclassification increases
adversely affecting the patient. Therefore, integrating computational
predictions with functional data and clinical observations is essential for
clinically meaningful variant classification. A relatively small number of
variants sampled and focus on a single disease limits the evaluation of
the tool. However, our tool is user defined and therefore classifies the
variants based on the data provided by the user (e.g., research findings,
functional analysis, supporting evidence). This offers great potential for
accurate classification and reclassification of the variants. While most
variant classifying tools rely on predefined algorithms or submissions
from researchers as evidence for scoring. For example, ClinVar assigns a
star system to the submitted variant interpretations to indicate the level
of review and consensus supporting each classification. This system is
largely subjective and unsupervised, as it reflects the extent of agreement
among submitters rather than independent validation. For instance, a
single submission from a recognized laboratory may still receive a star,
while conflicting interpretations from multiple submitters get lower
ratings regardless of the strength of underlying evidence. Thus, ClinVar
can be a preliminary guide but cannot be considered as an absolute
indicator of variant pathogenicity as ACMG classification is not
mandatory to submit variants to Clinvar. In comparison with Franklin,
our tool demonstrates a more evidence-driven approach by combining
multiple layers of evidence such as functional, computational and clinical
data for precise classification. For instance, Franklin interprets a VUS
variant NM_007289.4(MME):c.-10-1G > T as LP, by considering it as
null variant(PVS1). However, our tool and ClinVar classify this variant
as VUS due to no evidence for the variant of being null variant as RNA/
functional studies are absent. Similarly, the VUS variants NM_0011272
22.2(CACNA1A):c.7266_7271del ~ (p.Ser2423_Gly2424del)  and
NM_053025.4(MYLK):c.*1,302 T > C is interpreted as B by Franklin
based on gnomAD allele frequency (BA1 and BS2), although the
reported frequency does not align with gnomAD data. Likewise,
NM_000335.5(SCN5A):c.6045G > A (p.Val2015=) is classified as LB by
Franklin based on the evidences BP6, BP7 and PM4 but there is no
evidence supporting BP6. Another example is NM_022072.5(NSUN
3):c.123-615_466 + 2155del, which is classified as VUS by Franklin
despite the presence of the strong pathogenic evidences (PS3, PS4, PM1,
PM4, PP3, PP4, PP5). Likewise, NM_003280.3(TNNC1):c.12C > G
(p.Ile4Met) is classified as VUS by Franklin even though it meets multiple
pathogenic evidences (PS1, PS3, PS4, PP2, PP3, PP4, PP5). These
discrepancies highlight the strength of the Variant Classifier, which
systematically applies ACMG guidelines and considers the available
evidence. This results in more accurate and clinically relevant
classifications, particularly in cases where borderline or conflicting
interpretations exist.

To conclude, NMPhenoscore aids in narrowing down the
candidate diseases from clinical features and Variant classifier
systematically classifies underlying genetic alterations. Integration of
both approaches will substantially improve diagnostic yield,
particularly in complex conditions where either phenotype or
genotype information alone is not sufficient. However, broader
validation using larger and more diverse phenotype sets and
systematic comparison with established platforms is required to
determine the robustness of NMPhenoscore in diagnostic workflows.
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Expanding the knowledgebase to include additional clinical features
and conditions and refining the scoring algorithm to capture symptom
specificity and progression will strengthen its performance. The
Variant classifier also requires larger studies across diverse genes and
variants associated with different disease conditions to assess its
generalizability beyond neuromuscular disorders. Integration of
emerging genomic and functional evidence, as well as population
specific data, along with enhancing interoperability with existing
genomic resources represents a key future direction for both tools to
improve classification accuracy. The combined use of both the tools
validated through larger clinical datasets and real-world case studies,
has the potential to streamline diagnostics and contribute to more
accurate, consistent, and meaningful patient care. We invite
researchers, genetic counselors, clinical geneticists, clinicians and
genome analysts to use our database and tools in their genotype-
phenotype correlation activity and give us feedback to improve the
accuracy of the database.
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Glossary

NMGD:s - Neuromuscular genetic disorders
LGMD - Limb Girdle Muscular Dystrophy

DMD - Duchenne Muscular Dystrophy

DM1 - Myotonic Dystrophy 1

MERREF - Myoclonic epilepsy with ragged red fibers

MELAS - Mitochondrial encephalopathy, lactic acidosis and stroke
like episodes

CMDs - Congenital Muscular Dystrophy

FSHD - Facioscapulohumeral muscular Dystrophy
CPK - Creatinine Phosphokinase

CNS - Central Nervous System

HSPs - Hereditary Spastic Paraplegias
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SMA - Spinal Muscular Atrophy

NGS - Next Generation Sequencing

ACMBG - American College of Medical Genetics
AMP - Association for Molecular Pathology
CAP - College of American Pathologists
OMIM - Online Mendelian Inheritance in Man
VUS - Variant of Uncertain Significance

HPO - Human Phenotype Ontology

OMIM - Online Mendelian Inheritance in Man
MIM - Mendelian Inheritance in Man

EMG- Electromyography

MRI - Magnetic Resonance Imaging

CDSS - Clinical Decision Support System
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