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Neuromuscular genetic disorders (NMGDs) are genetically and clinically diverse 
group of inherited diseases that affect approximately 1 in 1,000 people worldwide 
with a calculated prevalence of 37 per 10,000 in the general population. These 
disorders arise from a variety of genetic changes such as insertions, deletions, 
duplications and expansions of repeats in more than 747 nuclear and mitochondrial 
genes critical for the function of peripheral nerves, motor neurons, neuromuscular 
junctions or skeletal muscles, leading to progressive weakness and degeneration 
of muscles. Major subtypes include muscular dystrophies, congenital myopathies, 
motor neuron diseases, peripheral neuropathies, and mitochondrial myopathies. 
Clinical presentation of NMGDs is highly variable in the age of onset, severity and 
pattern of muscle involvement, often leading to prolonged and complex diagnostic 
process. Conventional diagnostic methods have relied on clinical history, physical 
examination and invasive procedures like muscle biopsy. But the development 
of next-generation sequencing (NGS) has transformed diagnostics by enabling 
comprehensive analysis of NMGD-related genes. Despite this advancement, 
interpreting the numerous variants identified by NGS remains challenging. The 
guidelines of the American College of Medical Genetics and Genomics (ACMG) offer 
a standardized approach to variant classification as pathogenic, likely pathogenic, 
variant of uncertain significance, likely benign and benign. However, this requires the 
integration of complex evidence from population data, computational predictions, 
and functional assays. The major challenge is the robust correlation of genotypic 
information with the huge phenotypic range of NMGDs which is a task complicated 
by the unavailability of population-specific genetic databases. To address these 
issues, we have developed NMPhenogen (https://gi-lab-tigs.github.io/Homepage/), 
a new database designed to enhance the diagnosis and understanding of NMGDs. 
NMPhenogen is a centralized repository for data related to NMGD-associated 
genes and variants along with their clinical presentations. It includes two primary 
modules: NMPhenoscore, which enhances disease-phenotype correlations, and 
a Variant classifier, which facilitates standardized variant classification based on 
published guidelines. This combined resource aims to streamline the diagnostic 
process, support clinical decision-making, and eventually contribute to improving 
patient care and genetic counseling.
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Introduction

Neuromuscular genetic disorders (NMGDs) are a heterogeneous 
group of genetic disorders that affect around 1 in 1,000 individuals 
worldwide (Zatz et al., 2016). Although each condition is rare, they are 
collectively common with an overall prevalence estimated to be 37 per 
10,000 in the general population (Rosenberg et al., 2023). NMGDs 
result from genetic variants including insertions, deletions, 
duplications, or repeat expansions that disrupt the function of 
peripheral nerves, motor neurons, neuromuscular junctions, or 
skeletal muscles, leading to progressive muscle weakness and 
degeneration (Zatz et al., 2016; Rosenberg et al., 2023; Laing, 2012). 
There are around 747 different genes including both nuclear and 
mitochondrial genes, resulting in 1240 NMGDs (Benarroch et al., 
2025; Baig et al., 2019). These genes code for proteins that are involved 
in muscle structure and function (DMD, SGCA, LMNA), 
neuromuscular junction transmission (CHRNE, RAPSYN), 
mitochondrial energy metabolism (POLG, TK2), peripheral nerve 
functions (PMP22, MFN2, GJB1) etc. NMGDs are mostly monogenic, 
inherited as autosomal dominant (Myotonic dystrophy, 
LGMD1A-1H), autosomal recessive (LGMD 2A-2 T), X-linked 
(DMD), mitochondrial (MERRF, MELAS) or can be  de novo 
(Nemaline Myopathy- ACTA1 gene) (Zatz et al., 2016; Laing, 2012; 
Arakawa et al., 2018; Malfatti and Romero, 2016). Major subtypes of NMGDs include-

	 1.	 Muscle dystrophies: Duchenne muscular dystrophy (most 
common muscular dystrophy with childhood onset), Becker 
muscular dystrophy, Limb girdle muscular dystrophy, 
congenital muscular dystrophy, Facioscapulohumeral muscular 
dystrophy (FSHD), Emery-Dreifuss muscular dystrophy, 
Oculopharyngeal muscular dystrophy (OPMD), Myotonic 
dystrophy (DM1 being the most common muscular dystrophy 
with adult onset and the estimated prevalence of about 
1:20,000) (Bird, 2019).

	 2.	 Congenital myopathies: Nemaline myopathy
	 3.	 Motor neuron disorders: 5q spinal muscular atrophy, 

Amyotrophic lateral sclerosis
	 4.	 Hereditary peripheral neuropathies: Charcot–Marie–Tooth 

disease, Hereditary motor neuropathies, Hereditary sensory 
and autonomic neuropathies

	 5.	 Neuromuscular junction disorders: Congenital 
myasthenic syndromes

	 6.	 Metabolic myopathies: Glycogen storage disorders, Fatty acid 
oxidation disorders

	 7.	 Mitochondrial myopathies: Leigh syndrome (infant/childhood 
onset), Mitochondrial encephalopathy lactic acidosis and 
stroke like episodes (MELAS), Myoclonic epilepsy with ragged 
red fibers (MERRF) (childhood/adult onset), Chronic 
Progressive External Ophthalmoplegia (CPEO) (representing 
20% of adult onset mitochondrial disorders) (Arakawa et al., 
2018; Mary et al., 2018; Chin et al., 2024).

The onset, severity and clinical presentation of NMGDs vary 
widely. Disorders, such as congenital myopathies and congenital 
muscular dystrophies (CMDs), manifest at birth or in early infancy 
with hypotonia, delayed milestones, or respiratory insufficiency, while 
others, such as Limb girdle muscular dystrophy (LGMD) or 
Facioscapulohumeral muscular dystrophy (FSHD), present during 

adolescence or adulthood (Arakawa et al., 2018). Duchenne muscular 
dystrophy (DMD), the most prevalent and severe form affects 
approximately 1 in 3,500 male children and typically presents before 
the age of five with progressive proximal muscle weakness, calf 
hypertrophy, and elevated creatinine phosphokinase (CPK) levels 
(Kashyap et  al., 2019). CMDs, though less common (0.6–0.9 per 
100,000), present with central nervous system (CNS), ocular and 
cardiac involvement (Sindhav et al., 2025). Mitochondrial disorders 
affect multiple systems with a wide variety of neurological, muscular, 
hepatic, and gastrointestinal symptoms. Mitochondrial myopathies, 
with the estimated prevalence of 1 in 5,000, are linked to defects in 
oxidative phosphorylation, presenting with exercise intolerance, 
cramps, fatigue, myalgias, or metabolic decompensation during illness 
or fasting. Individuals with childhood onset have more generalized 
muscle and systemic involvement while those with adult onset have 
milder phenotypes confined to specific muscles (Chin et al., 2024; 
Ahmed et al., 2018). Similarly, hereditary spastic paraplegias (HSPs) 
occur in about 1–9 per 100,000 individuals and are characterized by 
progressive spastic paraplegias due to distal axonal degeneration 
(Arakawa et al., 2018; Mahesan et al., 2024). Despite this diversity, 
muscle weakness- whether proximal, distal, axial, facial, or respiratory- 
remains the unifying clinical hallmark of NMGDs. Patterns of 
weakness, in combination with examination findings, provide crucial 
diagnostic clues. Waddling gait, for instance, is indicative of the 
proximal and axial involvement majorly seen in LGMD, while steppage 
or foot drop denotes distal weakness, which is present in inclusion 
body myositis, distal myopathies, or myotonic dystrophy (Dubrovsky, 
2018). Peculiar clinical signs, such as calf hypertrophy in DMD and 
sarcoglycanopathies, ‘lumpy-bumpy’ quadriceps in dysferlinopathy, 
scapular winging in LGMD, facial weakness with scapulo-peroneal 
distribution in FSHD, and tongue fasciculations in SMA are valuable 
in narrowing the diagnostic possibilities (Arakawa et  al., 2018; 
Dubrovsky, 2018). Systemic involvement also aids recognition and 
early intervention, for example cardiac manifestations in DMD and 
myotonic dystrophy, hepatomegaly in metabolic storage disorders, 
early respiratory failure in nemaline myopathy, and contractures in 
Emery-Dreifuss muscular dystrophy (Mahesan et al., 2024).

Traditionally, diagnosis of NMGDs has relied on clinical history, 
neuromuscular examination, family pedigree analysis, and invasive 
investigations such as muscle biopsy for dystrophies, myopathy and to 
assess nervous involvement, electromyography (EMG) for categorizing 
myopathies, Magnetic Resonance Imaging (MRI) for muscle 
involvement patterns and targeted enzyme assays such as acid maltase 
testing for Pompe Disease. NMGDs present with non-specific 
symptoms such as hypotonia, weak cry, poor feeding, or respiratory 
distress which might be  mistaken with other prenatal disorders. 
Disorders like myotonic dystrophy caused due to repeat expansion 
and FSHD, involving 3.2 kb contraction as well as methylation 
complicates the diagnosis since non-conventional tests are required, 
further delaying the diagnosis. Families frequently endure a prolonged 
diagnostic odyssey due to overlapping clinical symptom, genetic 
heterogeneity, lack of awareness and access to diagnostics that includes 
multiple tests, consultations, invasive procedures before reaching a 
molecular diagnosis. This can result in missed treatment opportunities 
and preventable mortality (Rosenberg et al., 2023). Patients experience 
pain, exhaustion, low mood, poor coping, and increased unfavorable 
perceptions of their illness in addition to physical disability (Graham 
et al., 2011). About 34% of all the childhood deaths, and over 51% of 
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those under one year of age, are attributed to congenital malformations 
or genetic disorders, including severe NMGDs such as fetal akinesia, 
congenital myopathies and CMDs (Stevenson and Carey, 2004). As 
the conditions are heritable in nature, often times they recur in the 
same family. Delayed molecular diagnosis also poses a barrier for 
timely and informed reproductive planning. The missed window can 
lead to recurrence and add to the burden of neonatal morbidity and 
mortality of NMGDs. The advent of next generation sequencing 
(NGS), particularly whole exome sequencing, has revolutionized the 
diagnostic picture of NMGDs by enabling rapid, comprehensive 
identification of causative variants. Variant analysis and reporting are 
significant to understand the etiology of the disorder, nature of 
progression, employ targeted therapy if any, or facilitate early 
intervention and aid in prevention in subsequent pregnancies by 
prenatal diagnosis and extended family screening. Variant analysis, 
however, is often not straightforward and has several layered steps of 
annotating sequence data, analyzing population frequencies, in silico 
computational predictions, in  vitro and model system generated 
functional assays, segregation analysis, thorough genotype–phenotype 
correlation and ranking of variants accordingly. Lack of population 
specific databases can hinder optimum utility of sequence data as 
several ethnicity and community specific variants remain 
underrecognized and unknown.

The American College of Medical Genetics (ACMG) guidelines 
are the standard recommendations for the interpretation and 
reporting the sequence variations identified to provide an 
educational resource for medical geneticists and other health care 
professionals to provide quality medical genetic services (Richards 
et  al., 2015). It provides a framework for interpretation and 
reporting of the test results and to aid clinicians by educating them 
to possible testing outcomes so that they can inform their patients 
and families appropriately (Richards et al., 2015; Richards et al., 
2008). A workgroup was established in 2013 by ACMG, Association 
for Molecular Pathology (AMP), and College of American 
Pathologists (CAP) with the objective of creating a recommendation 
for the use of standard terminologies for categorizing sequence 
variants based on the evidence that is currently available and 
weighted in accordance with a system that was created using 
community input, workgroup consensus, and expert opinion. These 
recommendations involve the five classes namely pathogenic (P), 
likely pathogenic (LP), benign (B), likely benign (LB) and variant 
of uncertain significance (VUS). Each classification is based on the 
studies done and supporting evidence available, which describe 
each variant with respect to different characteristics and degrees of 
pathogenicity (Richards et al., 2015; Nicora et al., 2022). Pathogenic 
criterion is scored as very strong with one criterion (PVS1), four 
strong parameters (PS1-4), six moderate parameters (PM1-6), and 
about five supporting parameters (PP1-5), Benign criterion as 
standalone (BA1), about four strong parameters (BS1-4), and seven 
supporting parameters (BP1-7). According to ACMG guidelines 
2015, the classification requires evidence ranging from molecular 
and population data to clinical and familial correlations. One needs 
to consider the variants effect on the protein activity whether it is a 
nonsense, frameshift, splice site or missense leading to loss of 
function, if the variant is present in the conserved sites as 
substitutions at these sites are often pathogenic, if the variant allele 
frequency in the population is <1%, segregation analysis with the 
family also provides strong evidence with the disease if present in 

multiple affected family members. Genotype–Phenotype correlation 
plays a major role in explaining the clinical features observed, 
inheritance pattern (eg. Hemizygous mutation in DMD gene 
explains affected males and carrier females), allelic heterogeneity 
(missense variants in LMNA gene cause cardiomyopathy while 
truncating variants cause muscular dystrophy), Each of this 
evidence contribute to different strengths (very strong, strong, 
moderate and supporting) resulting in the final classification. 
Evidence for a particular variant from each criterion is combined 
to classify it into one of the five classes (Richards et al., 2015). It is 
important to make sure that the variants are reported precisely, 
especially while reporting pathogenic and likely pathogenic 
variants, as it can lead to alterations in the treatment or surveillance 
of the patient. As the research field grows functional and clinical 
validations are carried out enabling more evidence, variant 
reclassification becomes indispensable. With the advancement of 
NGS technologies, thousands of variants are identified for an 
individual, of these only few might be disease causing. However, 
VUS may have a conflicting interpretation due to lack of 
information. In such scenarios, clinical geneticists and clinical-
laboratory geneticists healthcare providers depend on in silico tools 
that assess protein variant tolerance, splicing or gene regulatory 
alterations by assigning quantitative measures (Nicora et al., 2022). 
ClinVar1 is a freely accessible, public archive of reports of human 
variations classified for diseases and facilitates access to human 
variation and asserted relationships observed conditions with 
interdatabase operability. Currently, tools like Varsome,2 Franklin,3 
LOVD4 InterVar5 and GeneBe6 are available for variant 
interpretation based on ACMG guidelines.

We have developed a database—NMPhenogen, to aid and 
improve genotype–phenotype correlation in neuromuscular genetic 
disorders. It incorporates the NMPhenoscore feature which assesses 
the likelihood of NMGDs based on the presence of 24 clinically 
relevant features used as a clinical domain (Kashyap et  al., 2019; 
Mancuso et al., 2025; Mcdonald, 2012; Semplicini and Angelini, 2013; 
Version, 2002) during the initial screening phase and then gives the 
top recommendations for probable NMGDs diagnosis based on the 
relevant clinical data provided by the user. The database also assist in 
variant classification according to ACMG guidelines using the variant 
calculator feature. Additionally, the database provides information 
about different genes and their inheritance patterns associated with 
neuromuscular disorder subtypes along with their clinical features.

Objectives

To develop an integrated platform for genotype–phenotype 
spectrum and variant classification for neuromuscular 
genetic disorders.

1  https://www.ncbi.nlm.nih.gov/clinvar/

2  https://varsome.com/

3  https://franklin.genoox.com/clinical-db/home

4  https://www.lovd.nl/

5  https://wintervar.wglab.org/

6  https://genebe.net/
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	 1.	 NMPhenoscore: To assist clinicians, genetic counselors, 
laboratory and clinical scientists in genotype–phenotype 
correlation and selecting gene panels, as well as

	 2.	 Variant classifier: A tool to classify variants in a user friendly 
intuitive prompt based format according to ACMG guidelines.

Methodology

We have developed NMPhenogen database using JavaScript, which 
is the collection of 747 genes that are associated with neuro muscular 
genetic disorders (Supplementary file 1). These 747 genes, including 
the ones from mitochondrial genome were collected from various 
literature and publicly available NMGD databases namely GeneTable 
and NeuroMuscleDB (Benarroch et al., 2025; Baig et al., 2019). This 
database contains the comprehensive information of these genes which 
includes chromosome number, position, associated diseases, 
inheritance pattern, along with Online Mendelian Inheritance in Man 
(OMIM)7 and phenotype links related to Mendelian Inheritance in 
Man (MIM) (see the text footnote 7), Orphanet,8 MalaCards,9 Entrez 
Gene Identifier (Entrez ID)10 and links Ensembl Gene Identifier 
(Ensembl ID).11 Inheritance pattern and disease information were 
collected from OMIM along with the corresponding OMIM and 
phenotype MIM links. The database includes NMPhenoscore a tool to 
prioritize NMGDs based on the clinical features given by the users, and 
Variant classifier, a variant interpretation tool which classifies variants 
based on the ACMG guidelines. Figure  1 summarizes the overall 
picture of the database.

7  https://www.omim.org/

8  https://www.orpha.net/

9  https://www.malacards.org/

10  https://www.ncbi.nlm.nih.gov/search/

11  https://asia.ensembl.org/Homo_sapiens/Info/Index

The NMPhenoscore

NMPhenoscore is a web-based tool that prioritizes neuromuscular 
genetic disorders related to medical conditions based on their clinical 
symptoms. NMPhenoscore functions in two parts. First part is where 
users input symptoms that are considered to be the broad clinical 
domains affected for evaluating the patients. Second part of the tool 
involves predicting most likely specific conditions of NMGDs. The 
main purpose of this tool is to serve as a clinical decision support 
system (CDSS). It helps the medical professionals, geneticists, and 
clinicians in diagnosing rare NMGDs by comparing the patients’ 
symptoms to a well-structured knowledgebase to narrow down the 
large number of differential diagnoses for these rare diseases, 
improving the efficacy of the diagnostic process. This cuts down the 
time of the initial diagnostic stage and offers a methodical, fact-based 
foundation for additional research. Additionally, it helps clinical 
researchers find patient cohorts for studies and acts as an educational 
aid for medical students learning about rare diseases.

The tool is developed using JavaScript and HTML. It is structured 
into three core phases such as data acquisition and preprocessing, 
algorithm design and user interaction and output generation.

	A)	 Data acquisition and preprocessing: The first part of the 
NMPhenoscore tool involves evaluating patients for potential 
NMGDs using approximately 24 clinical symptoms that were 
curated through a comprehensive review of the literature (listed 
in Supplementary file 2-sheet 2). The foundation for the second 
part of the tool is a structured knowledgebase of disease-
symptoms which were curated manually from the literature 
available. This knowledgebase contains 141 symptoms 
distributed among 34 clinical conditions (given in 
Supplementary Figure 1 and the data in Supplementary file 2). 
A data frame is developed where rows represent symptoms and 
columns represent medical conditions related to NMGD. Within 
this data frame, the presence of prominent association between 
symptom and condition is represented as ‘+’ whereas the 

FIGURE 1

Overview of the database.
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absence or rarity of the association is represented as empty cells. 
To make the data computationally operable, two tasks have been 
performed. First, indexing has been done for the first column, 
which contains symptoms, to create a structured lookup table. 
Second is the binary encoding where all the ‘+’ symbols are 
replaced with 1 and empty cells with 0.

	B)	 Algorithm design: The first part of the tool aggregates 24 binary 
clinical indicators, with each symptom representing equally to 
1 point. The algorithm calculates a percentage score by dividing 
the number of selected symptoms by the total possible 
symptoms and multiplying by 100. A critical diagnostic 
threshold is established at 30% scores at or above this threshold 
to classify the patient as “NMGD likely Positive,” while scores 
below 30% are classified as “NMGD likely Negative.” The visual 
interface employs a circular gauge that dynamically updates to 
reflect the calculated percentage, with color-coding which has 
green for positive, amber for negative providing immediate 
visual feedback. The core of the second part of the tool is a 
prioritization algorithm that is based on a simple and yet 
effective scoring method which quantifies the presence of 
symptoms and the conditions in the data frame. The tool 
accepts a user-provided list of symptoms and validates it 
against the index of the symptoms present in the preprocessed 
data frame. Validated symptoms are retained and filtered, 
whereas unrecognized ones are excluded for further processing. 
The data frame now contains the validated symptoms to which 
a conditional score is calculated for each disease by summing 
the binary values (1 and 0) across all provided symptoms. The 
score effectively represents the total number of symptoms the 
user provided that are known to be  associated with each 
condition. The conditions are then ranked in descending order 
based on their calculated scores. This results in a prioritized list 
of conditions with the maximum number of matching 
symptoms getting the highest rank.

	C)	 User Interaction and Output Generation: The tool features the 
user-friendly interface where the user is prompted to enter the 
list of symptoms one by one. The output gets generated in two 
parts. One part gives the list of the conditions along with the 
number of matched symptoms in descending order. The 
second part gives the top recommended condition with the 
absolute highest score. Figure  2 depicts the workflow of 
NMPhenoscore tool.

Variant classifier

Variant classifier is a user-friendly interface designed to assist 
clinicians, researchers, geneticists, genetic counsellors, and 
molecular laboratories to categorize genetic sequence variants 
according to the widely adopted the American College of Medical 
Genetics and Genomics (ACMG) and the Association for Molecular 
Pathology (AMP) guidelines. With the increase in gene testing and 
discovery of new variants, there is a critical need for an open, 
standardized, and user-friendly system to support variant 
interpretation. The tool uses the five-tier classification system 
namely pathogenic, likely pathogenic, variant of uncertain 
significance, likely benign, and benign according to the established 
ACMG criteria in a systematic way. This tool supports consistency 
and accuracy in variant assessment by guiding the users through 
consideration of evidence present and the criteria leading to the 
final classification.

Variant classifier is a questionnaire-based web application designed 
for variant interpretation according to ACMG-AMP guidelines. The 
tool implements a hybrid decision-support system that applies the 
canonical ACMG combination rules followed by a series of conditional 
overrides and a quantitative scoring system for unresolved cases. The 
complete workflow of Variant classifiers is shown in Figure 3.

	A)	 Data Collection and User Interaction: The tool interactively 
collects the answers for the evidence through a structured 
questionnaire-based interface. The user is asked to supply:

	(i)	 Variant and disease context: The condition associated with the 
variant nomenclature.

	(ii)	 Inheritance pattern: zygosity (homozygous, heterozygous, 
hemizygous) and inheritance pattern (autosomal dominant, 
autosomal recessive, X-linked).

	(iii)	Evidence evaluation: A set of yes/no and multiple-choice 
questions across all ACMG evidence categories, including:

	 a)	 Variant type (e.g., null, missense)
	b)	 Population frequency data
	 c)	 Computational prediction data
	d)	 Functional assay results
	 e)	 Segregation analysis (e.g., de novo status, carrier status in 

parents for recessive disorders)

FIGURE 2

Workflow of NMPhenoscore tool.
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	 f)	 Cis/trans analysis
	 g)	 Previous reports from reputable sources

The tool is implemented in JavaScript and follows a hierarchical 
decision to assign the final classification such as Pathogenic (P), Likely 
Pathogenic (LP), Benign (B), Likely Benign (LB) and Variant of 
Uncertain Significance (VUS). The classification logic follows through 
four sections:

	 a)	 Primary classification through ACMG combination rules: The 
core of the tool is the application of ACMG/AMP evidence 
combination rules. These combination rules are based on the 
28 evidence that are in the ACMG guidelines which are 
divided into 1 Pathogenic Very Strong (PVS), 4Pathogenic 
Strong (PS), 6 Pathogenic Moderate (PM), 5 Pathogenic 
Supporting (PP), 1 Benign Stand-Alone (BA), 4 Benign Strong 
(BS) and 7 Benign Supporting (BP). The user-answers are 
aggregated, and the algorithm checks against the predefined 
set of ACMG combination rules. This section outputs a 
classification only if any of the rules are satisfied.

	b)	 Conflict resolution: Conflict interpretations are those where 
evidence satisfies combination rules for both a pathogenic and a 
benign classification. In this case, the algorithm compares the 
strength of evidence from each side using the following hierarchy:

	(i)	 Pathogenic evidence containing PVS or any PS criteria 
outweighs benign evidence and vice-versa

	(ii)	 Multiple PM evidence outweighs benign evidence lacking 
BS criteria

	(iii)	BS evidence outweighs pathogenic evidence lacking PS criteria

If the strength of conflicting evidence is comparable, the variant 
is defaulted to VUS.

	 c)	 Conditional VUS overrides for incomplete evidence: If no 
ACMG combination rule is satisfied, the tool checks for specific 
cases leading to a VUS classification. This logic section is 
activated only if no other strong or very strong evidence exists. 
The overrises check for:

	(i)	 Functional studies have not been done
	(ii)	 The variant is not located in a known mutational hotspot or 

critical domain

	(iii)	The variant is assumed de novo without confirmed parentage
	(iv)	The variant is observed in healthy individuals in a genotype 

inconsistent with the disease
	(v)	 Variant found in a case with an alternate molecular basis 

for disease

	d)	 Quantitative score-based classification: If the variant remains 
unclassified after the steps a or c, a quantitative score is 
calculated. Each ACMG criteria is assigned a predefined weight 
such as BA1 = 1, BS = 2, BP = 3 PP = 4, PM = 8, PS = 16 and, 
PVS1 = 32. The weights of all applied criteria are added to 
determine the final score. The pre-established thresholds, 
which are calculated based on ACMG combination rules used 
that defines the evidence gradient, are used to determine the 
final classification:

	(i)	 Score towards 96: Pathogenic (P)
	(ii)	 Score till 48: Likely Pathogenic (LP)
	(iii)	Score 17–25: VUS
	(iv)	Score till 2: Likely Benign (LB)
	(v)	 Score till 8: Benign (B)

The VUS range (17–25) is designed to capture variants with 
moderate evidence that falls short of a definitive ACMG 
rule combination.

Output: The tool offers a complete report containing:

	(i)	 The final variant class and rationale for it (e.g., “PVS1 + PM2” 
or “Score-based VUS”).

	(ii)	 Summary count of criteria applied by evidence strength (PVS, 
PS, PM, PP, BA1, BS, BP).

	(iii)	Quantitative total score.
	(iv)	Annotated list of all activated criteria and informative notes, 

organized by evidence of strength.

Graphical user interface development

The NMPhenogen database is accessible through a web-based 
graphical user interface (GUI) developed using HTML, CSS, and 
JavaScript, hosted on GitHub Pages. GUI provides a comprehensive 
platform for clinicians, researchers, and geneticists to interact with the 
NMPhenogen database, enabling seamless access to the NMPhenoscore 

FIGURE 3

Workflow of variant classifier.
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tool including for disease prioritization and the Variant classifier for 
variant classification. The interface is designed to facilitate user-friendly 
navigation, ensuring that users can input clinical symptoms, query the 
genetic variants, and retrieve the results without requiring extensive 
technical expertise. The GUI leverages HTML5 for structured content, 
CSS3 for responsive and visually appealing styling, and JavaScript for 
dynamic interactivity. Responsive design principles ensure 
compatibility across devices, including desktops, tablets, and 
smartphones, making the tools accessible across clinical and research. 
JavaScript enables real-time processing of user inputs, such as symptom 
lists for NMPhenoscore or evidence responses for the Variant classifier, 
and displays outputs, such as prioritized disease lists or variant 
classification reports, in a clear and organized format. For instance, 
NMPhenoscore results are visualized using interactive virtual sunburst 
plots to enhance the interpretability of genotype–phenotype 
associations. The SQLite3 database, containing comprehensive data on 
747 genes associated with neuromuscular genetic disorders, is 
integrated into the backend, allowing efficient querying and retrieval 
of gene, variant, and phenotype information.

The GUI, along with the NMPhenogen database and tools, is 
publicly available via the project’s GitHub Pages repository. 
Comprehensive documentation, including implementation details, 
usage instructions, and example workflows, is provided within the 
repository to support users in effectively utilizing the platform. This 
open-access approach promotes transparency, reproducibility, and 
collaboration in the study of neuromuscular genetic disorders.

Results

The database has 747 genes associated with NMGDs. Figure 4 
gives detailed information regarding the chromosome and gene 
association along with inheritance.

The NMPhenoscore

The performance of the NMPhenoscore tool was evaluated 
for initial screening for NMGD by selecting symptoms 
such as muscle weakness, frequent falls, breathing difficulties, 
cardiac involvement, difficulty in swallowing, difficulty in 
climbing stairs, toe walking, join contractions, cognitive 
impairment, and impaired vision. The assessment indicates a 
41.7% score, with 10 out of 24 symptoms selected, 
suggesting a likely NMGD Positive result (Figure  5A). These 
findings point toward possible neuromuscular involvement. To 
evaluate the second part of the tool that is to check the specific 
condition of NMGD, symptoms like ophthalmoplegia, facial 
muscles, hypotonia, white matter signal abnormalities, 
dysmorphism, growth failure, spasticity and spastic paralysis of 
legs were selected in an unbiased manner from Human 
Phenotype Ontology (HPO). All these features aligned 
with the knowledgebase, leading the tool to recommend 
Dystroglycanopathy as the top condition. This prediction was 
concordant with HPO, where these symptoms were found to 
be associated with Dystroglycanopathy. Alongside, the tool will 
provide visualizable results in the form of a sunburst for a better 
understanding of associations (Figure 5B).

Variant classifier

To evaluate the variant classifier, 100 gene variants 
(variants, data is given in Supplementary file 3) were 
taken from ClinVar in an indiscriminate manner. These variants 
were distributed evenly across the five classifications, namely VUS, 
P, LP, LB and B, with 20 variants in each group. Each variant was 
classified by three sources such as ClinVar (see text footnote 1), 

FIGURE 4

Gene distribution per chromosome by inheritance pattern.
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Franklin12 and the variant classifier to compare the final 
classification from all three sources. The observations are as follows:

	(i)	 Out of 20 VUS variants, one variant was classified as LB in 
variant classifier by answering the questions based on the 
evidence available indicating 95% concordance with ClinVar. 

12  https://franklin.genoox.com/clinical-db/home

But, in the case of Franklin, two were classified as B, one was 
classified as LB and one variant was classified as LP indicating 
a slightly shifted distribution with 80% concordance with 
ClinVar. The discrepancy in Franklin classification can 
be  attributed to misannotated null variant and incorrect 
citation of source (described in supplementary file 3).

	(ii)	 Out of 20 P and 20 LP variants, one was classified as LP and 
nine were classified as P, respectively in variant classifier 
indicating 97.5% concordance with ClinVar whereas Franklin 
showed six LP, two VUS and one unknown variant for P and 

FIGURE 5 (Continued)
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seven P, and one unknown variant for LP indicating 90% 
concordance with ClinVar.

	(iii)	Out of 20 B and 20 LB variants, five variants were classified as 
LB for B, two B and one VUS for LB in Variant classifier 
indicating 97.5% concordance with ClinVar whereas two were 
classified as LB for B and five B and one VUS for LB in Franklin 
indicating 97.5% concordance with ClinVar.

With these results, the variant classifier classified variants 
consistently with these reference sources, though minor differences 
were observed in borderline cases. The comparison is given in the 
heatmap (Figure 6). It is important to note that ClinVar submissions 
are time-sensitive and classifications change as new evidence like 
segregation data, de novo results, functional assays and population 
frequency becomes available. Several ClinVar entries, especially older 
ones, may not include these data at the time of submission. Since our 
assessment defaulted segregation and de-novo requirements to “No,” 
discrepancies in the results likely reflect missing evidence that affected 
the classification of ClinVar and Franklin. Franklin, specifically, 
updates its database with more recent evidence on a regular basis, 
which can possibly account for observed changes versus ClinVar and 
our Variant classifier tool. As compared to Franklin, which prompts 
for phenotype association, ethnicity, zygosity statuses as optional 
entries, variant classifier makes the enquiries for zygosity, segregation, 
allele frequency, genotype–phenotype correlation, functional studies 
along with references/databases to gather the information 
and processes.

Discussion

Neuromuscular genetic disorders are a broad group of inherited 
conditions marked by progressive muscle weakness, degeneration, and 
impaired motor function. A major challenge in diagnosing these 
disorders is their significant genetic diversity. Around 747 genes are 
associated with NMGDs and variations in different genes often lead 
to similar clinical symptoms. Moreover, different variants within the 

same gene lead to distinct traits and at the same time, similar 
symptoms may come from variants in unrelated genes. This 
heterogeneity makes the diagnosis complicated, especially when the 
patients show variable symptoms and age of onset. Barriers such as 
cost, availability, and limited awareness of NGS delay testing, 
particularly in resource limited settings. High neonatal mortality is 
common due to early respiratory failure, feeding issues, and infections 
in conditions like SMA type 0/I, congenital myotonic dystrophy, and 
mitochondrial myopathies. Early detection through newborn 
screening (NBS) or rapid genomic sequencing of symptomatic 
individuals can dramatically improve outcomes, with therapies 
preventing disease progression. The reliable prioritization of diseases 
based on phenotypic characteristics and precise interpretation of 
genetic variants are essential parts of diagnosis and treatment. 
However, these tasks are challenging due to the variability in available 
evidence and clinical heterogeneity observed. In our study, 
we developed two computational tools- one for disease prioritization 
(NMPhenoscore) and another for variant classification (Variant 
classifier) to support genetic diagnosis. The ability to intuitively 
correlate phenotypes to potential disease is essential for both research 
and clinical utility, especially in multidisciplinary contexts where 
non-specialists may require understandable representation of 
genotype–phenotype relationships. NMPhenoscore integrates manual 
literature curation with computational preprocessing, ensuring that 
both common and disease defining features are systematically 
captured. It is linked to HPO which allows the mapping of user-
entered clinical features to standardized phenotypic terms, ensuring 
consistency in phenotype annotation. It evaluates the likelihood of 
having NMGDs in the first step based on the presence of most 
common clinical features. Later, the diseases are prioritized based on 
the algorithm that quantifies matches between user provided 
symptoms with curated disease symptom associations. When 
we evaluated NMPhenoscore with 10 common clinical features from 
a set of 24, associated with NMGDs, the tool calculated the likelihood 
of being affected with NMGD. For the second part we gave symptoms 
from HPO, and it accurately prioritized dystroglycanopathy as the top 
predicted condition. The result in the form of sunburst plots to 
facilitate clearer communication between computational outputs and 
clinicians make NMPhenoscore a useful phenotype driven 
prioritization tool.

The classification of genetic variants is important in clinical 
genomics, as it determines if a sequence change is pathogenic, benign or 
of unknown significance. Accurate classification is essential for guiding 
patient management, including diagnosis, prognosis, reproductive 
advice, and treatment options. Misclassification can lead to improper 
clinical handling resulting in unnecessary procedures for benign variants 
or missed treatment opportunities and monitoring for pathogenic 
variants. The variant classifier developed in our study considers these 
sensitive points. We compared 100 variants in an unbiased manner to 
evaluate the performance of the Variant classifier against ClinVar and 
Franklin. The results were in high concordance with ClinVar, particularly 
for pathogenic and benign variants (97.5 and 97.5%), and slightly lower 
concordance for VUS (95%) variants. However, with Franklin, the 
variant classification was observed to be slightly shifted due to its more 
conservative thresholds, resulting in more variants falling under 
pathogenic or benign categories. The findings from our study highlight 
that the Variant classifier shows strong concordance for variants at the 
extremes of classification (Benign and Pathogenic), but the borderline 

FIGURE 5

(A) Visual representation of initial screening for NMGD. (B) Sunburst 
visualization of gene-phenotype associations.
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categories (LB, VUS, and LP) are prone to reclassification. This is 
expected because the distinction between definitive and likely mainly 
depends on the strength and weight of supporting evidence considered 
while classifying. The differences observed between our tool, ClinVar 
and Franklin suggest that variant classification tools may vary in 
sensitivity to specific types of evidence. For example, the classification of 
some LP variants to P by our tool reflects a stricter interpretation of 
strong/ very strong criteria. Similarly, the slight shift in VUS towards LB 
or B indicates that uncertain variants may often be benign but lack 

sufficient evidence to support. These observations align with earlier 
reports that variant classification is not fully reproducible across different 
labs, especially for the gray zones (LB/LP). It is important to note that the 
discrepancies in our results do not involve major reclassifications, 
supporting the overall reliability of the tool, except for eight variants that 
exhibited significant changes in their classification (highlighted in yellow 
in supplementary file 3). This underscores the need for manual curation 
and expert judgement for accurate and meaningful variant interpretation, 
especially for clinically actionable variants. Accurate reclassification of 

FIGURE 6

Heatmap showing comparison of variant classifications between variant classifier, ClinVar and Franklin. Y axis- variants (numbers given instead of 
variant ID) and X axis- tools for comparison.
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variants, especially VUS, LB, and LP, require functional and clinical 
validation. Experimental assays, segregation studies, and longitudinal 
clinical follow up are necessary to determine the biological impact of 
variants and confirm their association with specific disease phenotypes. 
In the absence of such evidence, the risk of misclassification increases 
adversely affecting the patient. Therefore, integrating computational 
predictions with functional data and clinical observations is essential for 
clinically meaningful variant classification. A relatively small number of 
variants sampled and focus on a single disease limits the evaluation of 
the tool. However, our tool is user defined and therefore classifies the 
variants based on the data provided by the user (e.g., research findings, 
functional analysis, supporting evidence). This offers great potential for 
accurate classification and reclassification of the variants. While most 
variant classifying tools rely on predefined algorithms or submissions 
from researchers as evidence for scoring. For example, ClinVar assigns a 
star system to the submitted variant interpretations to indicate the level 
of review and consensus supporting each classification. This system is 
largely subjective and unsupervised, as it reflects the extent of agreement 
among submitters rather than independent validation. For instance, a 
single submission from a recognized laboratory may still receive a star, 
while conflicting interpretations from multiple submitters get lower 
ratings regardless of the strength of underlying evidence. Thus, ClinVar 
can be a preliminary guide but cannot be considered as an absolute 
indicator of variant pathogenicity as ACMG classification is not 
mandatory to submit variants to Clinvar. In comparison with Franklin, 
our tool demonstrates a more evidence-driven approach by combining 
multiple layers of evidence such as functional, computational and clinical 
data for precise classification. For instance, Franklin interprets a VUS 
variant NM_007289.4(MME):c.-10-1G > T as LP, by considering it as 
null variant(PVS1). However, our tool and ClinVar classify this variant 
as VUS due to no evidence for the variant of being null variant as RNA/
functional studies are absent. Similarly, the VUS variants NM_0011272
22.2(CACNA1A):c.7266_7271del (p.Ser2423_Gly2424del) and 
NM_053025.4(MYLK):c.*1,302 T > C is interpreted as B by Franklin 
based on gnomAD allele frequency (BA1 and BS2), although the 
reported frequency does not align with gnomAD data. Likewise, 
NM_000335.5(SCN5A):c.6045G > A (p.Val2015=) is classified as LB by 
Franklin based on the evidences BP6, BP7 and PM4 but there is no 
evidence supporting BP6. Another example is NM_022072.5(NSUN
3):c.123-615_466 + 2155del, which is classified as VUS by Franklin 
despite the presence of the strong pathogenic evidences (PS3, PS4, PM1, 
PM4, PP3, PP4, PP5). Likewise, NM_003280.3(TNNC1):c.12C > G 
(p.Ile4Met) is classified as VUS by Franklin even though it meets multiple 
pathogenic evidences (PS1, PS3, PS4, PP2, PP3, PP4, PP5). These 
discrepancies highlight the strength of the Variant Classifier, which 
systematically applies ACMG guidelines and considers the available 
evidence. This results in more accurate and clinically relevant 
classifications, particularly in cases where borderline or conflicting 
interpretations exist.

To conclude, NMPhenoscore aids in narrowing down the 
candidate diseases from clinical features and Variant classifier 
systematically classifies underlying genetic alterations. Integration of 
both approaches will substantially improve diagnostic yield, 
particularly in complex conditions where either phenotype or 
genotype information alone is not sufficient. However, broader 
validation using larger and more diverse phenotype sets and 
systematic comparison with established platforms is required to 
determine the robustness of NMPhenoscore in diagnostic workflows. 

Expanding the knowledgebase to include additional clinical features 
and conditions and refining the scoring algorithm to capture symptom 
specificity and progression will strengthen its performance. The 
Variant classifier also requires larger studies across diverse genes and 
variants associated with different disease conditions to assess its 
generalizability beyond neuromuscular disorders. Integration of 
emerging genomic and functional evidence, as well as population 
specific data, along with enhancing interoperability with existing 
genomic resources represents a key future direction for both tools to 
improve classification accuracy. The combined use of both the tools 
validated through larger clinical datasets and real-world case studies, 
has the potential to streamline diagnostics and contribute to more 
accurate, consistent, and meaningful patient care. We  invite 
researchers, genetic counselors, clinical geneticists, clinicians and 
genome analysts to use our database and tools in their genotype–
phenotype correlation activity and give us feedback to improve the 
accuracy of the database.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving humans 
in accordance with the local legislation and institutional 
requirements. Written informed consent to participate in this study 
was not required from the participants or the participants’ legal 
guardians/next of kin in accordance with the national legislation and 
the institutional requirements.

Author contributions

UM: Software, Visualization, Writing  – original draft, Data 
curation, Methodology, Conceptualization, Validation, Writing  – 
review & editing. RV: Methodology, Visualization, Data curation, 
Validation, Conceptualization, Software, Writing  – original draft, 
Writing – review & editing. SK: Writing – original draft, Data curation, 
Formal analysis, Writing – review & editing. HR: Writing – review & 
editing, Formal analysis, Data curation. AA: Data curation, Writing – 
review & editing, Formal analysis. RM: Writing – review & editing, 
Supervision, Resources. GI: Supervision, Data curation, Formal 
analysis, Writing – review & editing, Conceptualization, Validation.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. The work is part of the 
Indian Council of Medical Research- Centre for Advanced Research 
for neuromuscular disorders work. (ICMR-CAR) No. Dev/
CAR/0040/2024–25. Author VR receives fellowship, GRI is a 
co-investigator and RKM is principal investigator of the project.

https://doi.org/10.3389/fnins.2025.1696899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Manjunath et al.� 10.3389/fnins.2025.1696899

Frontiers in Neuroscience 12 frontiersin.org

Acknowledgments

We would like to acknowledge Tata Institute for Genetics and 
Society and Tata Trusts for providing the infrastructure and support 
necessary to conduct this study.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2025.1696899/
full#supplementary-material

SUPPLEMENTARY FIGURE 1

Chord diagram for NMGD knowledgebase with symptoms and conditions

SUPPLEMENTARY FILE 1

Excel sheet with list of 747 genes (nuclear and mitochondrial) associated 
with NMGD

SUPPLEMENTARY FILE 2

Excel sheet with list of 141 symptoms and 34 conditions (sheet 1) and 
potential clinical features (sheet 2) for NMGDs

SUPPLEMENTARY FILE 3

Excel sheet with list of variants used for evaluating the Variant classifier

References
Ahmed, S. T., Craven, L., Russell, O. M., Turnbull, D. M., and Vincent, A. E. (2018). 

Diagnosis and treatment of mitochondrial myopathies. Neurotherapeutics 15, 943–953. 
doi: 10.1007/S13311-018-00674-4

Arakawa, R., Hino, K., Kitamura, Y., and Saito, K. (2018). Genetic testing for 
neuromuscular disorders. No To Hattatsu 50, 192–196. doi: 10.11251/ojjscn.50.192

Baig, M. H., Rashid, I., Srivastava, P., Ahmad, K., Jan, A. T., Rabbani, G., et al. (2019). 
NeuroMuscleDB: a database of genes associated with muscle development, 
neuromuscular diseases, ageing, and neurodegeneration. Mol. Neurobiol. 56, 5835–5843. 
doi: 10.1007/s12035-019-1478-5

Benarroch, L., Bonne, G., Rivier, F., Procaccio, V., and Hamroun, D. (2025). The 2025 
version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul. 
Disord. 46:105261. doi: 10.1016/J.NMD.2024.105261

Bird, T. D. (2019) Myotonic dystrophy type 1 summary genetic Counseling suggestive 
findings. GeneReviews®. Seattle, Washington: Seattle VA Medical Center; Departments 
of Neurology and Medicine University of Washington. Available online at: https://www.
ncbi.nlm.nih.gov/books/NBK1165/pdf/Bookshelf_NBK1165.pdf (Accessed October 
17, 2025).

Chin, H. L., Lai, P. S., and Tay, S. K. H. (2024). A clinical approach to diagnosis and 
management of mitochondrial myopathies. Neurotherapeutics 21, e00304–e00328. doi: 
10.1016/j.neurot.2023.11.001

Dubrovsky, A. L. (2018). Diagnosing neuromuscular diseases. EMJ Neurol. 2018, 
64–67. doi: 10.33590/emjneurol/10313878

Graham, C. D., Rose, M. R., Grunfeld, E. A., Kyle, S. D., and Weinman, J. (2011). A 
systematic review of quality of life in adults with muscle disease. J. Neurol. 258, 
1581–1592. doi: 10.1007/s00415-011-6062-5

Kashyap, M., Rai, N. K., Singh, R., Joshi, A., Rozatkar, A. R., Kashyap, P. V., et al. 
(2019). Prevalence of epilepsy and its association with exposure to toxocara canis: a 
community-based, case-control study from Rural Northern India. Ann. Indian Acad. 
Neurol. 22:533. doi: 10.4103/aian.AIAN_32_19

Laing, N. G. (2012). Genetics of neuromuscular disorders. Crit. Rev. Clin. Lab. Sci. 49, 
33–48. doi: 10.3109/10408363.2012.658906

Mahesan, A., Kamila, G., and Gulati, S. (2024). Rare paediatric disorders in Indian 
healthcare settings with focus on neuromuscular disorders: diagnostic and management 
challenges. J. Biosci. 49:403. doi: 10.1007/s12038-023-00403-w

Malfatti, E., and Romero, N. B. (2016). Nemaline myopathies: state of the art. Rev. 
Neurol. 172, 614–619. doi: 10.1016/j.neurol.2016.08.004

Mancuso, M., Colitta, A., Lavorato, M., Van den Bergh, P., Kirschner, J., 
Kornblum, C., et al. (2025). The most bothersome symptoms in neuromuscular 
diseases: the ERN EURO NMD survey. Orphanet J. Rare Dis. 20, 221–210. doi: 
10.1186/s13023-025-03742-z

Mary, P., Servais, L., and Vialle, R. (2018). Neuromuscular diseases: diagnosis and 
management. Orthop. Traumatol. Surg. Res. 104, S89–S95. doi: 10.1016/j.otsr.2017.04.019

Mcdonald, C. (2012). Clinical approach to the diagnostic evaluation of herditary. Phys. 
Med. Rehabil. Clin. N. Am. 23, 495–563. doi: 10.1016/j.pmr.2012.06.011

Nicora, G., Zucca, S., Limongelli, I., Bellazzi, R., and Magni, P. (2022). A machine 
learning approach based on ACMG/AMP guidelines for genomic variant classification 
and prioritization. Sci. Rep. 12, 1–12. doi: 10.1038/s41598-022-06547-3

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015). 
Standards and guidelines for the interpretation of sequence variants: a joint 
consensus recommendation of the American College of Medical Genetics and 
Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424. 
doi: 10.1038/gim.2015.30

Richards, C. S., Bale, S., Bellissimo, D. B., Das, S., Grody, W. W., Hegde, M. R., et al. (2008). 
ACMG recommendations for standards for interpretation and reporting of sequence 
variations: revisions 2007. Genet. Med. 10, 294–300. doi: 10.1097/GIM.0b013e31816b5cae

Rosenberg, A., Tian, C., He, H., Ulm, E., Ruff, K. C., and Nagaraj, C. B. (2023). An 
evaluation of clinical presentation and genetic testing approaches for patients with 
neuromuscular disorders. Am. J. Med. Genet. A 191, 2679–2692. doi: 
10.1002/ajmg.a.63356

Semplicini, C., and Angelini, C. (2013). “Clinical scales for the evaluation of 
neuromuscular patients” in Muscular dystrophy: causes and management. ed. C. 
Angelini (Nova Science Publishers, Inc. 2013) 55–66.

Sindhav, G., Trivedi, P., Patel, K., Prajapati, D., Shah, A., and Gupta, S. (2025). Centre-
based landscape of muscular dystrophies in Gujarat: insight into genetic diagnosis and 
management. J. Rare Dis. 4:88. doi: 10.1007/s44162-025-00088-9

Stevenson, D. A., and Carey, J. C. (2004). Contribution of malformations and genetic 
disorders to mortality in a children’s hospital. Am. J. Med. Genet. 126A, 393–397. doi: 
10.1002/ajmg.a.20409

Version, T. I. S. (2002). The three component individualism scale (English Version) 
0.2. France: MFM-NMD organization.

Zatz, M., Passos-bueno, M. R., and Vainzof, M. (2016). Genetics in neuromuscular 
disorders. Crit. Rev. Clin. Lab. Sci. 348, 339–348. doi: 10.1590/1678-4685-gmb-2016-0019

https://doi.org/10.3389/fnins.2025.1696899
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2025.1696899/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2025.1696899/full#supplementary-material
https://doi.org/10.1007/S13311-018-00674-4
https://doi.org/10.11251/ojjscn.50.192
https://doi.org/10.1007/s12035-019-1478-5
https://doi.org/10.1016/J.NMD.2024.105261
https://www.ncbi.nlm.nih.gov/books/NBK1165/pdf/Bookshelf_NBK1165.pdf
https://www.ncbi.nlm.nih.gov/books/NBK1165/pdf/Bookshelf_NBK1165.pdf
https://doi.org/10.1016/j.neurot.2023.11.001
https://doi.org/10.33590/emjneurol/10313878
https://doi.org/10.1007/s00415-011-6062-5
https://doi.org/10.4103/aian.AIAN_32_19
https://doi.org/10.3109/10408363.2012.658906
https://doi.org/10.1007/s12038-023-00403-w
https://doi.org/10.1016/j.neurol.2016.08.004
https://doi.org/10.1186/s13023-025-03742-z
https://doi.org/10.1016/j.otsr.2017.04.019
https://doi.org/10.1016/j.pmr.2012.06.011
https://doi.org/10.1038/s41598-022-06547-3
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1097/GIM.0b013e31816b5cae
https://doi.org/10.1002/ajmg.a.63356
https://doi.org/10.1007/s44162-025-00088-9
https://doi.org/10.1002/ajmg.a.20409
https://doi.org/10.1590/1678-4685-gmb-2016-0019


Manjunath et al.� 10.3389/fnins.2025.1696899

Frontiers in Neuroscience 13 frontiersin.org

Glossary

NMGDs - Neuromuscular genetic disorders

LGMD - Limb Girdle Muscular Dystrophy

DMD - Duchenne Muscular Dystrophy

DM1 - Myotonic Dystrophy 1

MERRF - Myoclonic epilepsy with ragged red fibers

MELAS - Mitochondrial encephalopathy, lactic acidosis and stroke 
like episodes

CMDs - Congenital Muscular Dystrophy

FSHD - Facioscapulohumeral muscular Dystrophy

CPK - Creatinine Phosphokinase

CNS - Central Nervous System

HSPs - Hereditary Spastic Paraplegias

SMA - Spinal Muscular Atrophy

NGS - Next Generation Sequencing

ACMG - American College of Medical Genetics

AMP - Association for Molecular Pathology

CAP - College of American Pathologists

OMIM - Online Mendelian Inheritance in Man

VUS - Variant of Uncertain Significance

HPO - Human Phenotype Ontology

OMIM - Online Mendelian Inheritance in Man

MIM - Mendelian Inheritance in Man

EMG- Electromyography

MRI - Magnetic Resonance Imaging

CDSS - Clinical Decision Support System
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