& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY
Zhiliang Wei,
Johns Hopkins Medicine, United States

REVIEWED BY
Xiaogian Mao,

Qingdao University of Science and
Technology, China

Yuanda Zhu,

Independent Researcher, Atlanta, GA,
United States

A. Sathya Sofia,

PSNA College of Engineering and
Technology, India

*CORRESPONDENCE

Gang Li
ligang@zjnu.cn

Xuegian Shen
s033121@163.com

These authors have contributed equally to
this work

RECEIVED 28 August 2025
ACCEPTED 15 October 2025
PUBLISHED 29 October 2025

CITATION

Ye S, Chen G, Li G and Shen X (2025)
CPRSCA-ResNet: a novel ResNet-based
model with Channel-Partitioned Resolution
Spatial-Channel Attention for EEG-based
seizure detection.

Front. Neurosci. 19:1693079.

doi: 10.3389/fnins.2025.1693079

COPYRIGHT

© 2025 Ye, Chen, Liand Shen. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Neuroscience

Frontiers in Neuroscience

TYPE Original Research
PUBLISHED 29 October 2025
pol 10.3389/fnins.2025.1693079

CPRSCA-ResNet: a novel
ResNet-based model with
Channel-Partitioned Resolution
Spatial-Channel Attention for
EEG-based seizure detection

Suhong Ye!, Guibin Chen?!, Gang Li** and Xuegian Shen'*

!Psychiatry Department, The Second Hospital of Jinhua, Jinhua, China, 2College of Mathematical
Medicine, Zhejiang Normal University, Jinhua, China

Epilepsy is a common chronic neurological disorder caused by abnormal discharges
of brain neurons, characterized by transient disturbances in consciousness, motor
function, behavior, or sensation. Recurrent seizures severely impair patients’
cognitive and physiological functions and increase the risk of accidental injury
and premature death. Currently, clinical diagnosis of epilepsy mainly relies on
manual interpretation of electroencephalogram (EEG) recordings, but traditional
methods are time-consuming, labor-intensive, and susceptible to noise interference,
highlighting the urgent need for efficient and accurate automated detection models.
To address this, a novel Channel-Partitioned Resolution Spatial-Channel Attention
(CPRSCA) mechanism was proposed in this study, and a CPRSCA-ResNet automatic
seizure detection model was developed based on the ResNet-34 architecture. By
incorporating fine-grained channel partitioning, multi-scale feature fusion, and
multi-dimensional attention mechanisms, the proposed approach significantly
enhances the precise representation of complex EEG features. Patient-dependent
and patient-independent seizure detection experiments were conducted on the
public CHB-MIT dataset and two local hospital datasets (JHCH and JHMCHH).
The results show that, in patient-dependent experiments, the proposed model
achieved accuracies of 99.12 + 2.09%, 96.88 + 4.64%, and 98.84 + 1.75% on the
three datasets, while in patient-independent experiments, accuracies reached
78.71 + 13.06%, 87.15 + 15.32%, and 89.23 + 7.87%, respectively. These metrics
consistently outperform state-of-the-art baselines, confirming the effectiveness
and generalizability of the CPRSCA mechanism for automatic seizure detection.
In summary, the proposed method provides an efficient, robust, and highly
generalizable technical solution for auxiliary clinical diagnosis of epilepsy, with
the potential to substantially reduce the burden of manual EEG interpretation
and improve the diagnostic efficiency for patients with epilepsy.

KEYWORDS

epilepsy, seizure detection, electroencephalogram (EEG), convolutional neural
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1 Introduction

Epilepsy is recognized as a common chronic neurological disorder, caused by abnormal
neuronal discharges that lead to transient dysfunction of the brain, manifesting as sudden
disturbances in consciousness, behavior, sensation, or movement (Tieng et al., 2017). The
disease primarily affects adults, who account for approximately 70% of cases, while children
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represent about 30% of the patient population (Prasanna et al., 2021).
Recurrent epileptic seizures have been shown to induce long-term
adverse effects on mental and cognitive functions, and may also result
in loss of consciousness, injury, or even sudden death (Xiao et al,,
2024; Roshan Zamir, 2016; Zhong et al., 2023; Zhang et al., 2024a).
Moreover, the premature mortality rate among people with epilepsy
is two to three times higher than that of the general population (Wong
et al,, 2023). In addition to physiological issues, patients frequently
experience embarrassment and discrimination in social and
psychological contexts, leading to substantial psychological distress
(Zarei and Asl, 2021; Zhang X. et al., 2024). Given the profound
impact of epilepsy on affected individuals, it is therefore essential that
seizures are detected promptly and accurately through advanced
detection schemes (Zhang et al., 2024c), which can improve patients’
quality of life, reduce the risks associated with seizures, and provide a
basis for physicians to formulate personalized treatment plans
(Shoeibi et al., 2021).

Electroencephalography (EEG) is widely regarded as one of the
most important diagnostic tools for the evaluation of epilepsy (Supriya
et al.,, 2023; Zarei et al, 2019). Compared with other diagnostic
techniques such as computed tomography, magnetic resonance
imaging, and functional magnetic resonance imaging, EEG offers
lower cost, higher tolerance to patient movement, and no radiation
risk, while providing high temporal resolution data (Song et al., 2022;
Hosseini et al.,, 2021). During epileptic seizures, EEG signals are
typically characterized by significant abnormal electrical activity, such
as persistent spikes and spike-and-wave complexes (Patnaik and
Manyam, 2008; Qiu S. et al., 2023; Qiu X. J. et al., 2023). Traditionally,
neurologists have relied primarily on visual inspection of EEG
waveforms and amplitudes to identify seizure events (Hu et al., 2024).
However, due to the high sampling frequency and large data volume
of EEG signals, considerable time and effort are required for manual
analysis in clinical practice, resulting in low efficiency; in addition, the
accuracy of detection can be compromised by environmental noise
and other interference factors (Qiu X. J. et al., 2023; Hassan and
Subasi, 2016; Shyu et al., 2023; Yuan et al., 2023; Tang et al., 2024;
Wang B. et al,, 2023; Zhu and Wang, 2023). Therefore, achieving
efficient and accurate automatic seizure detection using EEG signals
has become a critical issue that urgently needs to be addressed. Such
advances not only help to alleviate the workload of clinicians and
improve diagnostic efficiency, but also provide a solid foundation for
timely and precise medical services for patients.

Epileptic seizure detection techniques are generally divided into
two major categories: traditional machine learning methods and deep
learning approaches. In conventional machine learning frameworks,
the detection process typically consists of four key steps: signal
acquisition, data preprocessing, feature extraction, and classification
(Wang Z. W. et al., 2023), with feature extraction regarded as the core
stage of the entire process (Qiu et al., 2023). However, traditional
machine learning methods often face limitations in generalization
when dealing with high-dimensional and complex EEG signals
(Huang et al., 2023). These methods heavily rely on professional
understanding of the pathophysiological mechanisms and clinical
manifestations of epilepsy and require manual feature engineering and
selection, thereby increasing dependence on domain expertise and
posing significant challenges in capturing deep pathological features
(Huang et al., 2023). As data dimensionality and sample size increase,
excessive features may lead to increased computational costs and
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information redundancy, whereas too few features may prevent the
model from capturing critical seizure patterns, thus reducing detection
accuracy (Xiao et al., 2024). In contrast, end-to-end deep learning has
demonstrated superior accuracy and generalization capability in
seizure detection tasks due to its automatic feature learning capability
(Tang et al., 2024; LeCun et al., 2015; He et al., 2025). Such networks
can directly learn high-level, abstract representations from raw EEG
signals, avoiding the subjectivity and limitations of traditional manual
feature engineering (Thuwajit et al., 2022), and enabling more
comprehensive characterization of complex spatiotemporal features.
In recent years, convolutional neural networks (CNNs) and their
variants have become mainstream solutions for automated seizure
detection (Zhang et al., 2020). On this basis, residual connections have
been utilized to effectively alleviate gradient vanishing in deep
networks through skip connections, thereby improving feature
propagation efficiency, while multi-scale structures employ parallel
receptive fields to extract multilevel spatiotemporal information,
allowing the model to simultaneously capture both local spikes and
global rhythms associated with various seizure patterns (Shyu et al.,
2023). Many seizure detection studies have achieved improved
classification performance by adopting multi-scale feature extraction
and residual structures (Hu et al., 2024; Shyu et al., 2023; Wang
7. W. et al,, 2023). Additionally, to further eliminate redundancy and
extract salient features, numerous studies have integrated attention
mechanisms of various dimensions into seizure detection models. By
dynamically assigning spatial or channel weights, these mechanisms
enable the network to focus on spatiotemporal segments most relevant
to seizures, thereby achieving new gains in sensitivity and accuracy
(Hu et al.,, 2024; Tang et al., 2024; Alharthi et al., 2022; Zhao et al.,
2021b). Furthermore, the synergy between multi-scale structures and
multi-dimensional attention mechanisms provides the model with
cross-scale and  cross-dimensional information integration
capabilities, markedly enhancing detection accuracy and robustness,
and driving the ongoing advancement of automatic seizure
detection technology.

In the field of epileptic seizure detection, research has mainly
focused on two detection paradigms: patient-dependent (Xiao
et al., 2024; Dash et al., 2020; Tang et al., 2024; Zhao et al., 2021a)
and patient-independent approaches (Zhang et al., 2024a; Thuwajit
et al,, 2022; Liu et al., 2021; Zhao et al., 2022). On one hand,
patient-dependent detection trains models on individualized EEG
data, allowing the capture of unique neurophysiological patterns
for each patient and thereby achieving higher detection accuracy
(Thuwajit et al., 2022). This approach is often employed in long-
term monitoring and personalized treatment of refractory epilepsy
patients, and plays an important role in reducing missed and false
detections. However, patient-dependent models require custom
training data and model design for each subject, leading to high
clinical deployment and large-scale application costs (Thuwajit
et al., 2022). Furthermore, the performance of such models can
be affected by changes in electrode placement, anatomical
variability among individuals, and other factors, resulting in limited
scalability and generalizability (Si et al., 2023). In contrast, patient-
independent detection aims to build universal models that can
be applied across individuals (Zhang et al., 2024a), with a central
challenge of enhancing the model’s adaptability to inter-patient
differences in EEG data distributions. While such models have
greater universality and clinical applicability, their sensitivity and

frontiersin.org


https://doi.org/10.3389/fnins.2025.1693079
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Ye et al.

specificity are generally lower than those of patient-dependent
models due to significant neurophysiological variability between
subjects—particularly differences between age groups (e.g.,
children vs. adults) and epilepsy subtypes, which are reflected in
the EEG patterns (Zhao et al., 2023). Overall, patient-dependent
detection offers superior accuracy and individual adaptability, but
high customization costs and limited scalability restrict its
widespread clinical application. Patient-independent detection,
though offering greater generalization potential and clinical value,
still faces the challenge of handling inter-individual EEG variability
to improve robustness and universality. Achieving a balance
between these two approaches is expected to be a key direction for
promoting the clinical translation of seizure detection technologies
in the future.

Accordingly, a Channel-Partitioned Resolution Spatial-Channel
Attention (CPRSCA) mechanism was proposed in this study as a core
module based on the ResNet-34 backbone, resulting in the
development of the CPRSCA-ResNet model for the purpose of
capturing critical features in seizure detection and thereby improving
detection accuracy. The CPRSCA mechanism adopts a refined channel
partitioning strategy, wherein the input feature map is evenly divided
into N mutually exclusive subsets. Each subset is independently
modeled at a different spatial resolution using depthwise separable
convolutions (DSC), enabling the full extraction of discriminative
features across various resolutions. In addition, the model incorporates
two distinct attention modules—Coordinate Attention (CA) and
Squeeze-and-Excitation (SE)—to dynamically enhance salient
information in both spatial and channel dimensions. To validate the
effectiveness of the proposed method, patient-dependent and patient-
independent seizure detection experiments were conducted on the
public CHB-MIT dataset as well as two local hospital datasets, JHCH
and JHMCHH.

2 Materials and methods
2.1 Dataset and preprocessing

2.1.1 Dataset |

The CHB-MIT public dataset was obtained from Boston
Children’s Hospital (Goldberger et al., 2000), comprising 23 EEG
recordings from 22 patients with refractory epilepsy (5 males, aged
3-22 years; 17 females, aged 1.5-19 years). A total of 916 h of data
were recorded, documenting 198 seizure events. The signals were
acquired using the international 10-20 electrode placement system,
sampled at 256 Hz with 16-bit resolution. Following the
recommendations of Tsiouris et al., 18 channels consistently present
across all cases were selected for analysis to reduce heterogeneity
(Tsiouris et al., 2018): FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3,
C3-P3, P3-O1, FZ-CZ, CZ-PZ, FP2-F4, F4-C4, C4-P4, P4-02,
FP2-F8, F8-T8, P8-02, and T8-P8. Details of the patients are
summarized in Table 1.

2.1.2 Dataset Il

The JHCH dataset was newly collected at Jinhua Central Hospital,
consisting of 24-h EEG recordings from six pediatric and neurology
department patients with epilepsy. Of these, four were from the
pediatric department and two from neurology, with a total of 87
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TABLE 1 Patient information of the CHB-MIT dataset.

Case Age Gender # of # of Seizure
Seizures duration

1 11 Female 7 442
2 11 Male 3 172
3 14 Female 7 402
4 22 Male 4 378
5 7 Female 5 558
6 1.5 Female 10 138
7 14.5 Female 3 325
8 3.5 Male 5 919
9 10 Female 4 276
10 3 Male 7 447
11 12 Female 3 806
12 2 Female 27 1,475
13 3 Female 12 535
14 9 Female 8 109
15 16 Male 20 1992
16 7 Female 10 84
17 12 Female 3 293
18 18 Female 6 317
19 19 Female 3 236
20 6 Female 8 294
21 13 Female 4 199
22 9 Female 3 204
23 6 Female 7 424

recorded seizures. Patient ages ranged from 6 to 55 years. Patient
details are summarized in Table 2.

2.1.3 Dataset IlI

The JHMCHH dataset was newly collected at Jinhua Maternal and
Child Health Hospital, including 24-h EEG recordings from 11 pediatric
epilepsy patients, documenting a total of 57 seizures. Patient ages ranged
from 2 months to 9 years. Patient details are summarized in Table 3.

For both private datasets (JHCH and JHMCHH), EEG signals
were acquired using a Nihon Kohden video-EEG system model
1200C, with a sampling rate of 500 Hz. Fifteen single-channel
electrodes, identical to those in the public CHB-MIT dataset, were
selected: Fpl, F7, F3, C3, P3, O1, Fz, Cz, Pz, Fp2, F4, C4, P4, 02, and
F8. Bipolar montage processing was performed by computing the
differential voltage between pairs of electrodes, resulting in 12 bipolar
channels (FP1-F7, FP1-F3, F3-C3, C3-P3, P3-01, FZ-CZ, CZ-PZ,
FP2-F4, F4-C4, C4-P4, P4-02, and FP2-F8), following the standards
of the CHB-MIT dataset. To ensure sampling rate consistency across
all datasets, the data were downsampled to 256 Hz, with a window
length of 3 s. Finally, both interictal and ictal signals were selected as
the two categories for patient-dependent seizure detection: interictal
segments were labeled as negative samples, and ictal segments as
positive samples. The studies involving humans were approved by
Ethics Committee of Jinhua Central Hospital. The studies were
conducted in accordance with the local legislation and institutional
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TABLE 2 Patient information of the JHMCHH dataset.

Age  Gender # of # of
Seizures Seizure
duration
1 6-y Male 12 75
2 2-y Male 7 160
3 2-m Female 7 203
4 2-m Female 1 98
5 3-m Male 6 291
6 8-y Male 2 20
7 4-y Male 3 30
8 4-y Male 2 30
9 3-y Male 3 338
10 6-y Female 8 144
11 9-y Male 6 139

TABLE 3 Patient information of the JHCH dataset.

Age  Gender # of # of
Seizures Seizure
duration
1 27-y Female 17 909
2 55-y Male 9 171
3 13-y Male 6 122
4 6-y Female 25 325
5 9-y Female 4 224
6 8-y Male 26 326

requirements. Written informed consent for participation in this
study was provided by the participants’ legal guardians/next of kin.

2.2 Channel-Partitioned Resolution
Spatial-Channel Attention

In this study, a novel attention mechanism termed CPRSCA was
proposed based on the ResNet architecture, with ResNet-34 adopted as
an illustrative example. CPRSCA was integrated as the core module of
the ResNet-34 model, resulting in the CPRSCA-ResNet model, as
depicted in Figure 1. The structure of the CPRSCA mechanism is
illustrated in Figure 2. The code is publicly available at https://github.
com/biomedical Warehouse/CPRSCA-ResNet. In this mechanism, a fine-
grained channel partitioning strategy was employed, where the input
feature map was evenly divided into N mutually exclusive subsets. Each
subset was independently processed at a different spatial resolution via
DSCs. This hierarchical information extraction strategy enabled the
model to capture features ranging from fine details to broad contextual
information. After processing with DSCs, Group Normalization and the
Sigmoid function were utilized for feature normalization, thereby
optimizing the stability and efficiency of feature representation. In
addition, CA and SE modules were incorporated to dynamically enhance
salient features in both spatial and channel dimensions. This integrated
attention modulation further improved the model’s ability to discriminate
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among complex feature networks and significantly enhanced its
performance in advanced biomedical raw signal classification tasks.

2.2.1 Channel-partitioned resolution module

To enable convolutional neural networks to efficiently and in
parallel process convolution kernels of different sizes for capturing
multi-scale information ranging from local details to broader regions
and to improve computational efficiency, the proposed module first

uniformly divides the input feature map X € ROADW

along the channel

£><
dimension into N mutually exclusive subsets X; € RN , where
ie (l, ...N ) In this study, the value of N was set to 4. Furthermore, to
reduce the number of parameters and enhance computational efficiency,
depthwise separable convolutions were adopted in place of conventional
convolutions, and feature maps at different scales were extracted using
convolutional kernels of sizes 3, 5, 7, and 9. After the convolutional
operations, the four feature map subsets were merged to form a unified

c RCXHXW

feature map X' , as shown in Equation 1. Subsequently,

Group Normalization was employed to normalize the merged feature

map, resulting in X" e RH*W

, as presented in Equation 2. This step
was designed to stabilize the feature distribution during training and
enhance the generalization capability of the model. GroupNorm
normalizes data by computing the mean and standard deviation within
each group, independent of the batch size, and is particularly suitable
for small-batch training. Finally, the Softmax function was applied to
map the normalized feature values into the range [0, 1], resulting in the

output feature map Y e R&HW

,as shown in Equation 3. This process
enhances the models ability to discriminate the importance of features,
enabling the network to focus more on those regions that are most
critical for the final task. In this way, the network is able to extract and
utilize information from the feature maps more effectively, while
adapting to different visual patterns and structures through the use of
convolutional kernels of varying sizes, thereby improving overall

recognition and processing capability.

X'= concat({DWConde(Xi okernel = (ix2+ 1))}ilj M

Where DWConv2d denotes a 2D depthwise separable
E>< xW
convolution, X; e RN , and the value of N is set to 4.

X' -
X" = H

xy+p )

where £ denotes the mean of each group of features, o represents
the standard deviation, and y and £ are learnable scaling and
shifting parameters.

X
eXenw
Y —

~C (3)
Zxc,h,w
k=1
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The architecture of the proposed CPRSCA-ResNet network, illustrated using 18-channel EEG signals from the CHB-MIT dataset as an example. The
input EEG signals have a dimension of (18 x 768). After the Unsqueeze operation, the data are reshaped to (1 X 18 x 768), corresponding to
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where X;h,w denotes the feature value at channel ¢, height /, and
width w.

2.2.2 Coordinate attention

Coordinate Attention (Hou et al., 2021) enhances the spatial
perception and performance of the model by encoding spatial
relationships within the feature map in a precise manner through the
introduction of coordinate information. This mechanism comprises
two main steps: coordinate information embedding and coordinate
attention generation.

2.2.2.1 Coordinate information embedding

To enable the capture of long-range contextual information in the
spatial domain, the input Y is subjected to average pooling along the
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horizontal and vertical directions for each channel, resulting in feature
maps Z " and 7", respectively. Accordingly, the output at height / for
channel ¢ can be expressed as:

Y, (ki) (4)

where Z? (h) denotes the output feature for channel c at height h,
W is the width of the input feature map, and Y, (h,i ) represents the
feature value at position (h,i ) for channel c.
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Similarly, the output at width w for channel ¢ can be written as:

z¢ (W)= 3 Ye(jm) ©

0<i<H

w
where Z¢ (W) indicates the output feature for channel ¢ at width
w, H is the height of the input feature map, and Y, ( j,w) denotes the
feature value at position ( j,w) for channel c.

2.2.2.2 Coordinate attention generation

As described above, Equations 4, 5 encode precise positional
information via global receptive fields. To leverage these
representations, a second transformation—coordinate attention
generation—is introduced. Specifically, the aggregated feature maps
obtained in Equations 4, 5 are concatenated and passed through a
shared 1 x 1 convolutional transformation F, yielding:

r-ofn22"]) ©

where, in Equation 6, ['» ] denotes concatenation along the spatial

gx(Her)
dimension, ¢ is a nonlinear activation function, and< f e R”

is the intermediate feature map encoding both horizontal and vertical
spatial information. Here, r is a reduction ratio to control the block
size. The tensor f is then split along the spatial dimension into two

h —xH w —xW
separate tensors, § f e R” and{ f" eR" . Subsequently,

two 1 x 1 convolutional transformations, F, and F,,, are applied to f h
and f", respectively, to obtain tensors with the same number of
channels as the input X, resulting in Equations 7, 8:

=olnls")

ool (1)

where o denotes the sigmoid function. To reduce model
complexity, an appropriate reduction ratio  (such as 16) is typically
used to decrease the channel number of f. Finally, the outputs gh and
g" are broadcast and used as attention weights. The final output of the
coordinate attention module Y can be formulated as Equation 9:

Yo (i) = X (i) < gk (1)< g2 (j) ©)

Through this approach, the coordinate attention module not only
captures inter-channel relationships but also enhances the model’s
ability to recognize target locations by encoding spatial information.

2.2.3 Squeeze-and-excitation attention
Squeeze-and-Excitation (Hu et al., 2020) is a channel attention

mechanism designed to dynamically recalibrate channel-wise feature

responses by learning inter-channel dependencies, thereby enhancing
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the model’s representational capacity while preserving the original
spatial dimensions of the input feature map. This mechanism consists
of two main steps: Squeeze and Excitation.

2.2.3.1 Squeeze

To model the dependencies between channels, channel-wise
statistics must first be obtained. The squeeze step achieves this by
applying global average pooling to generate channel descriptors:

H i w i%& (1)

i=1j=1

Z = (10)

where, in Equation 10, Y, (i,j) denotes the input feature value at
position (i,j) in channel c. The input feature map Y has spatial
dimensions HxW and C channels. Z, represents the statistic for
channel c.

2.2.3.2 Excitation

The obtained channel descriptors are then passed through two fully
connected (FC) layers and a sigmoid activation function to model the
nonlinear inter-channel relationships and generate channel-wise weights:

S=c(Wy*5(W*Z+b1)+b2) (11)

where, in Equation 11, o denotes the sigmoid function, ¢ is the
g><C E><C
ReLU activation function, {W; e R" by » and \Wh, eR" b,

represent the two fully connected layers. The reduction ratio r is
employed to balance model capacity and computational complexity.

Finally, the output Y' is obtained by channel-wise multiplication
of the original input Y and the channel-wise weight vector S:

Y'=Y-S (12)

where, in Equation 12, - denotes element-wise multiplication
along the channel dimension. When the values in S fall within the
range [0,1], the SE block is able to preserve informative features while
suppressing irrelevant ones, thereby improving the overall
network performance.

2.2.4 Model training and evaluation

The proposed algorithm was implemented using the PyTorch
deep learning framework (version 1.12). Experiments were
conducted on a platform equipped with an NVIDIA GeForce RTX
3080Ti GPU (12GB VRAM) and running Windows 11. During
training, a batch size of 4 was employed, and the total number of
epochs was set to 50. The cross-entropy loss function was utilized,
and parameter optimization was carried out using the AdamW
optimizer. To enhance the training process, a dynamic learning rate
adjustment strategy was adopted: the learning rate was initially set to
5 x 107" with a warm-up phase, wherein the learning rate was rapidly
increased to its target value at the beginning of training, followed by
a gradual decay according to a predetermined schedule. This adaptive
adjustment facilitated faster convergence of model parameters
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toward an optimal solution in the early stages while ensuring training
stability through refined learning rate decay in later stages. In terms
of data partitioning, two experimental schemes were designed,
namely patient-dependent and patient-independent. In the patient-
dependent setting, the data of each patient were randomly divided
into training and testing sets according to a 4:1 ratio, with
approximately 80% of the data used for training and the remaining
20% used for testing, so as to evaluate the detection performance
within the same patient. In the patient-independent setting, patient
identities were strictly separated, and the Leave-One-Subject-Out
strategy was adopted. Specifically, in each experiment, the entire data
of one patient were designated as the testing set, while the data of all
other patients were used as the training set. This procedure was
iteratively rotated until every patient had served once as the testing
subject, thereby providing a comprehensive evaluation of the
robustness and generalization ability of the model in cross-patient
scenarios. Model performance was assessed using several evaluation
metrics, including accuracy, sensitivity, F1 score, and specificity, with
the calculation formulas provided as Equations 13-16:

Accurac = &

Y TP+TN+FP+FN (13

Sensitivity = l
Y TP +FN (14

2TP
F1Score=—————
2TP+FP+FN (15)
™™

Specificity = —

P Y TN + FP (16)

10.3389/fnins.2025.1693079

3 Result
3.1 Patient-dependent seizure detection

In this study, ResNet-34 was employed as the backbone
network, and a series of systematic ablation experiments were
conducted to assess the performance of each component within the
CPRSCA attention mechanism, as summarized in Table 4. Initially,
baseline models were established by integrating multi-scale
convolutional modules with SE and CA attention mechanisms,
respectively. Subsequently, the proposed CPRM module was
substituted for the multi-scale convolutional module, with the same
attention mechanism configurations maintained for comparative
analysis. The experimental results demonstrated that, under
identical attention settings, the CPRM module achieved higher
classification accuracy compared to the multi-scale convolutional
module. These findings validate the superiority of the CPRM
module in cross-scale feature fusion and highlight the synergistic
enhancement effect when combined with joint spatial-channel
attention mechanisms.

Patient-dependent seizure detection results on the CHB-MIT,
JHMCHH, and JHCH datasets are presented in Figures 3-5,
respectively. On the CHB-MIT dataset, the performance for
Accuracy, Sensitivity, F1 Score, and Specificity was observed to
be 99.12 +2.09%, 99.12 + 2.18%, 99.10 + 2.14%, and 98.55 + 4.34%,
respectively. On the JHMCHH dataset, the corresponding metrics
were  96.88 £ 4.64%, 97.23 £4.07%, 96.86+4.67%, and
96.28 + 6.84%. On the JHCH dataset, the performance for these
four metrics reached 98.84 + 1.75%, 98.93 + 1.61%, 98.83 + 1.76%,
and 99.24 £ 1.69%, respectively. It should be noted that lower scores
in some patients may be attributed to relatively short seizure
durations in EEG recordings and the presence of considerable noise
in the data.

TABLE 4 Ablation study results for patient-dependent experiments on the three datasets.

Dataset Methods Accuracy (%) Sensitivity (%) F1 Score (%) Specificity (%)
Mean + std Mean + std Mean + std Mean + std
Baseline 98.09 +2.88 98.07 + 3.00 98.05 + 2.96 97.10 + 4.89
CPRM 98.22+2.87 98.21+2.96 98.18 +2.96 97.61+4.78
CHB-MIT CPRM+CA 98.62 +2.77 98.65 + 2.86 98.59 + 2.86 97.84+ 5.68
CPRM+SE 93.95 +5.95 93.80 +6.10 93.77 + 6.21 89.57 + 11.81
CPRM+CA + SE (CPRSCA) 99.12 +2.09 99.12+2.18 99.10 + 2.14 98.55 + 4.34
Baseline 94.01 +8.38 95.17 + 6.31 93.84+8.75 90.34 + 12.62
CPRM 9632 +5.29 96.24 +5.68 96.19 +5.62 93.39 + 11.52
JHMCHH CPRM+CA 96.35+ 4.32 96.66 + 3.68 96.32+4.35 94,23 +7.50
CPRM+SE 96.18 +6.75 96.66 + 5.72 96.17 + 6.76 96.05 + 8.83
CPRM+CA + SE (CPRSCA) 96.88 + 4.64 97.23 + 4.07 96.86 + 4.67 96.28 + 6.84
Baseline 94.63 + 6.26 94.94 + 5.74 94,59 + 6.31 96.32+ 3.82
CPRM 96.78 + 4.97 96.97 + 4.58 96.76 + 4.98 98.99 + 1.67
JHCH CPRM+SE 96.58 + 4.29 96.51 + 4.4 96.53 + 4.36 93.90 + 7.87
CPRM+CA 97.01 +2.90 96.97 + 3.07 96.97 +2.96 96.22 + 5.98
CPRM+CA + SE (CPRSCA) 98.84 + 1.75 98.93 + 1.61 98.83+ 1.76 99.24 + 1.69

Bold value indicates the optimal result.
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3.2 Patient-independent seizure detection

Ablation experiments for patient-independent seizure detection
were first conducted to assess the performance of the CPRSCA
model, as presented in Table 5. The multi-scale module was initially
adopted as the baseline model, followed by an evaluation of the
classification performance when combined with CA, SE, and their
combination. Further assessments were carried out by integrating
the CPRM module with CA and SE individually, as well as by
incorporating multi-scale techniques together with CA and SE, and
the results were compared with those of the multi-scale module. As
observed in Table 5, the integration of the CPRM module with the
two distinct attention mechanisms resulted in a further
improvement in accuracy, indicating that the complementary
effects among these modules collectively enhance patient-
independent seizure detection performance.

Frontiers in Neuroscience

Patient-independent seizure detection results on the CHB-MIT,
JHMCHH, and JHCH datasets are illustrated in Figures 6-8,
respectively. On the CHB-MIT dataset, Accuracy, Sensitivity, F1 Score,
and Specificity were observed to be 78.71 + 13.06%, 78.70 + 13.04%,
77.75 + 14.53%, and 79.16 + 16.80%, respectively. On the JHMCHH
dataset, these metrics were recorded as 87.15+ 15.32%,
87.03 + 15.48%, 85.32 + 18.65%, and 79.10 * 30.27%. On the JHCH
dataset, the results for the four metrics were 89.23 +7.87%,
89.18 £ 7.92%, 88.99 + 8.11%, and 81.39 + 15.53%, respectively.

4 Discussion

A novel CPRSCA attention mechanism was proposed in this
study and integrated as the core module of the ResNet-34 model,
demonstrating successful application to EEG-based seizure detection
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Patient-dependent seizure detection results on the JHCH dataset.

TABLE 5 Ablation study results for patient-independent experiments on the three datasets.

Dataset Methods Accuracy (%) Sensitivity (%) F1 Score (%) Specificity (%)
Mean + std Mean + std Mean + std Mean + std
Baseline 76.26 + 17.24 76.26 +17.21 74.36 +19.91 77.18 +23.24
CPRM 76.48 + 16.89 76.46 + 16.89 75.07 + 18.81 7432 +23.11
CHB-MIT CPRM+CA 77.38 +15.05 77.36 + 15.07 75.54 + 17.62 79.00 +21.26
CPRM+SE 77.20 + 13.00 77.17 % 13.01 75.06 + 16.79 76.64 % 23.20
CPRM+CA + SE (CPRSCA) 78.71 + 13.06 78.70 + 13.04 77.75 + 14.53 79.16 + 16.80
Baseline 84.83 + 14.57 84.63 + 1471 82.68 + 18.82 74.49 +29.28
CPRM 86.06 + 15.41 85.92 + 15.59 83.91 + 19.69 77.07 +30.57
JHMCHH CPRM+CA 86.82 + 13.73 86.64 + 13.86 85.27 + 16.74 78.89 + 26.48
CPRM+SE 86.84 £ 13.52 86.73 + 13.72 85.19 + 17.02 78.96 +29.17
CPRM+CA + SE (CPRSCA) 87.15 +15.32 87.03 +15.48 85.32 + 18.65 79.10 + 30.27
Baseline 85.81 +7.30 85.74 +7.38 85.40 + 7.58 76.29 + 16.80
CPRM 88.93 + 6.89 88.87 + 6.95 88.60 + 7.23 82.83 + 15.44
JHCH CPRM+CA 89.09 + 8.28 89.02 +8.35 88.74 + 8.63 79.78 + 17.19
CPRM+SE 89.06 + 6.64 89.04 + 6.65 89.04 + 6.65 84.87 + 15.03
CPRM+CA + SE (CPRSCA) 89.23 +7.87 89.18 +7.92 88.99 +8.11 81.39 + 15.53

Bold value indicates the optimal result.

tasks. The principal innovation of the CPRSCA mechanism lies in its
CPRM module, which adopts a channel-partitioned multi-scale
feature extraction strategy to effectively integrate salient EEG
information across different spatial resolutions. Furthermore, by
combining channel attention (SE) and spatial attention (CA)
mechanisms, the model is able to dynamically enhance its focus on
features relevant to epileptic seizures. Experimental validation was
conducted on both the public CHB-MIT dataset and two local
hospital datasets JHCH and JHMCHH) under patient-dependent
and patient-independent protocols, where the proposed approach
consistently exhibited superior detection performance.

Compared with conventional single-scale or single-dimension
the proposed CPRSCA mechanism
significantly improved the model’s sensitivity and robustness in

attention mechanisms,

Frontiers in Neuroscience

recognizing seizure patterns. Specifically, the ablation studies
presented in Tables 4, 5 revealed that the CPRM module played a
critical role in enhancing feature representation, effectively reducing
redundant information and noise through multi-scale channel
partitioning, and substantially improving generalization across
different patients and acquisition devices. Moreover, when either
channel or spatial attention was used in isolation, model performance
declined to varying degrees, further demonstrating the clear advantage
of multidimensional attention fusion strategies in improving model
robustness. Previous studies have reported that the fusion of channel
and spatial attention mechanisms in seizure detection leads to certain
performance improvements (Wang Z. W. et al., 2023; Zhong et al.,
2025; He et al., 2022; Zhang et al., 2023; Li et al., 2020). In the present
study, a multi-scale channel partitioning strategy was further
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introduced, allowing for a more thorough extraction of discriminative
EEG features at different scales (Thuwajit et al.,, 2022), thereby
enabling further performance gains atop multidimensional attention
mechanisms. In addition, DSCs were employed in place of
conventional convolutions, resulting in a reduction in model
parameters while maintaining performance (Si et al., 2023). The
collective design of these architectural elements highlights the
advancement of the CPRSCA mechanism and offers new theoretical
perspectives and technical pathways for EEG analysis and
seizure detection.

Moreover, the practical potential of the CPRSCA mechanism was
demonstrated under both patient-dependent and patient-independent
experimental settings. In the patient-dependent seizure detection
experiments, the proposed method exhibited high levels of accuracy,
sensitivity, and specificity across all three datasets, particularly
adapting well to individual neurophysiological differences in the

Frontiers in Neuroscience

locally collected clinical datasets. This indicates the strong practical
value of the CPRSCA mechanism in clinical practice, with promise for
supporting personalized and precise monitoring and treatment of
refractory epilepsy patients. Additionally, an in-depth comparison was
performed on the public CHB-MIT dataset with recent related studies,
as shown in Table 6. Compared with these advanced seizure detection
methods, the proposed approach achieved clear advantages in all
performance metrics, especially in terms of accuracy and sensitivity,
highlighting the unique capability of the CPRSCA mechanism to
capture individualized EEG features. Furthermore, in the more
challenging patient-independent experiments (see Table 7 for
comparison with other advanced methods), superior performance
was achieved across all evaluation metrics compared to current
mainstream detection models, further confirming the effectiveness of
the model in addressing inter-individual variability and enhancing
generalizability. The patient-independent approach, by training a
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TABLE 6 Comparison of patient-dependent seizure detection results between the proposed method and other research methods on the CHB-MIT
dataset.

Authors Accuracy (%) Sensitivity (%) F1 Score Specificity (%)
(%)
Zhang et al. (2024b) DLFE 98.63 98.06 99.00 99.19
Machine
Wang et al. (2024) Decision Tree 96.00 92.7 - 97.6
Learning
Zabihi et al. (2016) LDA 94.69 89.10 - 94.80
Zhang et al. (2022) Bi-GRU 98.49 93.89 - 98.49
PS + Bi-LSTM +
Tang et al. (2024) Deep Learning 99.09 99.28 98.89 98.95
Attentions
Sun et al. (2024) MDFLN+BLSTM 97.08 97.53 - 96.63
Thuwajit et al., 2022 EEGWaveNet 98.39 68.94 98.01 99.25
Inception and Residual
Shyu et al. (2023) 98.34 73.08 69.34 98.79
model
Zhao et al. (2023) HAN 98.30 97.34 96.46 96.07
End-to-E
Liu et al. (2025) nd-to-End group CosCNN 97.54 97.70 - 97.54
Deep Learning
Zhao et al. (2021b) GAT 98.89 97.10 - 99.63
Hu et al. (2024) Inresformer 98.03 95.65 - 98.01
Wang et al. (2025) CNN-ViT 98.00 99.34 - 98.01
Our method CPRSCA-ResNet 99.12 99.12 99.10 98.55

TABLE 7 Comparison of patient-independent seizure detection results between the proposed method and other research methods on the CHB-MIT
dataset.

Authors Accuracy (%) Sensitivity (%) F1 Score (%) Specificity (%)
Zhao et al. (2023) HAN 73.15 72.75 73.77 75.70
Xiao et al. (2024) SSL 74.67 77.10 76.61 78.36
Zhao et al. (2022) MVCO&IBA 76.36 76.42 76.11 76.32
Zhang et al. (2022) Bi-GRU 79.79 58.25 - 79.97
This Work CPRSCA-ResNet 78.71 81.49 79.56 83.88
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unified model for all subjects, is designed to capture generalized
seizure characteristics across individuals, which offers greater
applicability for real clinical scenarios and can further improve the
work efficiency of clinicians (Zhang et al., 2024a). However, due to
significant EEG variability among subjects, the overall performance of
patient-independent detection typically remains lower than that of
patient-dependent approaches (Hu et al., 2024; Zhao et al., 2023). This
discrepancy is primarily attributed to the brevity of individual seizure
patterns, the high heterogeneity of neurophysiological features, and
the prevalence of noise in the data (Shyu et al., 2023). Therefore, future
research should focus on further reducing the impact of inter-
individual differences on detection performance and enhancing the
robustness and practicality of the model in complex clinical
environments. In summary, the proposed CPRSCA attention model
not only exhibited outstanding performance in seizure detection tasks
across diverse data sources, but also demonstrated broad prospects for
application in both personalized and generalized seizure monitoring
and auxiliary diagnosis in real clinical environments. This capability
has the potential to reduce clinicians’ workload and improve the
efficiency of auxiliary diagnosis.

Despite the promising performance achieved by the proposed
CPRSCA mechanism in seizure detection tasks, several limitations
remain. First, due to substantial heterogeneity introduced by patient-
dependent characteristics, age groups, and seizure types, the detection
accuracy for certain patients requires further improvement, which places
higher demands on the model's generalization and robustness. Second,
although the integration of the CPRSCA mechanism with the ResNet-34
backbone—along with the adoption of DSCs—effectively reduces the
number of parameters, the overall model architecture remains relatively
complex, and computational efficiency in resource-constrained clinical
settings still needs enhancement. Finally, experimental validation in this
study was primarily conducted on offline data, and prospective bedside
monitoring studies have not yet been performed in real clinical
environments. In future work, it is suggested that the dataset be expanded
to cover a wider range of age groups and epilepsy types, the model
architecture be further optimized and simplified, and the capability for
automatic extraction of critical features and real-time detection
be improved. Moreover, prospective validation should be conducted in
actual clinical settings to comprehensively assess the clinical applicability
and value of the proposed model.

5 Conclusion

In this study, a novel CPRSCA multidimensional attention
mechanism was designed, and a CPRSCA-ResNet model for seizure
detection was developed based on the ResNet-34 architecture. By
employing fine-grained channel partitioning and multi-scale feature
fusion strategies, the model enabled accurate capture and enhancement
of key seizure-related features in EEG signals, resulting in significant
improvements in detection performance and generalization capability.
Patient-dependent and patient-independent seizure detection
experiments were conducted on the public CHB-MIT dataset and two
local hospital datasets (JHCH and JHMCHH), all of which yielded
excellent detection results and further validated the effectiveness of the
CPRSCA mechanism. Owing to its efficient and robust detection
performance, the CPRSCA-ResNet model is expected to substantially
reduce the burden of manual EEG interpretation by clinicians,
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effectively lower the risk of missed detections, and provide real-time,
accurate, and individualized diagnostic support for epilepsy patients in
clinical practice. Overall, this approach offers an efficient and reliable
technical solution for clinical seizure monitoring and auxiliary
diagnosis, demonstrating high practical value and broad prospects for
clinical application, with the potential to significantly improve the
efficiency and quality of epilepsy management.
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