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Epilepsy is a common chronic neurological disorder caused by abnormal discharges 
of brain neurons, characterized by transient disturbances in consciousness, motor 
function, behavior, or sensation. Recurrent seizures severely impair patients’ 
cognitive and physiological functions and increase the risk of accidental injury 
and premature death. Currently, clinical diagnosis of epilepsy mainly relies on 
manual interpretation of electroencephalogram (EEG) recordings, but traditional 
methods are time-consuming, labor-intensive, and susceptible to noise interference, 
highlighting the urgent need for efficient and accurate automated detection models. 
To address this, a novel Channel-Partitioned Resolution Spatial-Channel Attention 
(CPRSCA) mechanism was proposed in this study, and a CPRSCA-ResNet automatic 
seizure detection model was developed based on the ResNet-34 architecture. By 
incorporating fine-grained channel partitioning, multi-scale feature fusion, and 
multi-dimensional attention mechanisms, the proposed approach significantly 
enhances the precise representation of complex EEG features. Patient-dependent 
and patient-independent seizure detection experiments were conducted on the 
public CHB-MIT dataset and two local hospital datasets (JHCH and JHMCHH). 
The results show that, in patient-dependent experiments, the proposed model 
achieved accuracies of 99.12 ± 2.09%, 96.88 ± 4.64%, and 98.84 ± 1.75% on the 
three datasets, while in patient-independent experiments, accuracies reached 
78.71 ± 13.06%, 87.15 ± 15.32%, and 89.23 ± 7.87%, respectively. These metrics 
consistently outperform state-of-the-art baselines, confirming the effectiveness 
and generalizability of the CPRSCA mechanism for automatic seizure detection. 
In summary, the proposed method provides an efficient, robust, and highly 
generalizable technical solution for auxiliary clinical diagnosis of epilepsy, with 
the potential to substantially reduce the burden of manual EEG interpretation 
and improve the diagnostic efficiency for patients with epilepsy.
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1 Introduction

Epilepsy is recognized as a common chronic neurological disorder, caused by abnormal 
neuronal discharges that lead to transient dysfunction of the brain, manifesting as sudden 
disturbances in consciousness, behavior, sensation, or movement (Tieng et al., 2017). The 
disease primarily affects adults, who account for approximately 70% of cases, while children 
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represent about 30% of the patient population (Prasanna et al., 2021). 
Recurrent epileptic seizures have been shown to induce long-term 
adverse effects on mental and cognitive functions, and may also result 
in loss of consciousness, injury, or even sudden death (Xiao et al., 
2024; Roshan Zamir, 2016; Zhong et al., 2023; Zhang et al., 2024a). 
Moreover, the premature mortality rate among people with epilepsy 
is two to three times higher than that of the general population (Wong 
et al., 2023). In addition to physiological issues, patients frequently 
experience embarrassment and discrimination in social and 
psychological contexts, leading to substantial psychological distress 
(Zarei and Asl, 2021; Zhang X. et  al., 2024). Given the profound 
impact of epilepsy on affected individuals, it is therefore essential that 
seizures are detected promptly and accurately through advanced 
detection schemes (Zhang et al., 2024c), which can improve patients’ 
quality of life, reduce the risks associated with seizures, and provide a 
basis for physicians to formulate personalized treatment plans 
(Shoeibi et al., 2021).

Electroencephalography (EEG) is widely regarded as one of the 
most important diagnostic tools for the evaluation of epilepsy (Supriya 
et  al., 2023; Zarei et  al., 2019). Compared with other diagnostic 
techniques such as computed tomography, magnetic resonance 
imaging, and functional magnetic resonance imaging, EEG offers 
lower cost, higher tolerance to patient movement, and no radiation 
risk, while providing high temporal resolution data (Song et al., 2022; 
Hosseini et  al., 2021). During epileptic seizures, EEG signals are 
typically characterized by significant abnormal electrical activity, such 
as persistent spikes and spike-and-wave complexes (Patnaik and 
Manyam, 2008; Qiu S. et al., 2023; Qiu X. J. et al., 2023). Traditionally, 
neurologists have relied primarily on visual inspection of EEG 
waveforms and amplitudes to identify seizure events (Hu et al., 2024). 
However, due to the high sampling frequency and large data volume 
of EEG signals, considerable time and effort are required for manual 
analysis in clinical practice, resulting in low efficiency; in addition, the 
accuracy of detection can be compromised by environmental noise 
and other interference factors (Qiu X. J. et  al., 2023; Hassan and 
Subasi, 2016; Shyu et al., 2023; Yuan et al., 2023; Tang et al., 2024; 
Wang B. et  al., 2023; Zhu and Wang, 2023). Therefore, achieving 
efficient and accurate automatic seizure detection using EEG signals 
has become a critical issue that urgently needs to be addressed. Such 
advances not only help to alleviate the workload of clinicians and 
improve diagnostic efficiency, but also provide a solid foundation for 
timely and precise medical services for patients.

Epileptic seizure detection techniques are generally divided into 
two major categories: traditional machine learning methods and deep 
learning approaches. In conventional machine learning frameworks, 
the detection process typically consists of four key steps: signal 
acquisition, data preprocessing, feature extraction, and classification 
(Wang Z. W. et al., 2023), with feature extraction regarded as the core 
stage of the entire process (Qiu et al., 2023). However, traditional 
machine learning methods often face limitations in generalization 
when dealing with high-dimensional and complex EEG signals 
(Huang et  al., 2023). These methods heavily rely on professional 
understanding of the pathophysiological mechanisms and clinical 
manifestations of epilepsy and require manual feature engineering and 
selection, thereby increasing dependence on domain expertise and 
posing significant challenges in capturing deep pathological features 
(Huang et al., 2023). As data dimensionality and sample size increase, 
excessive features may lead to increased computational costs and 

information redundancy, whereas too few features may prevent the 
model from capturing critical seizure patterns, thus reducing detection 
accuracy (Xiao et al., 2024). In contrast, end-to-end deep learning has 
demonstrated superior accuracy and generalization capability in 
seizure detection tasks due to its automatic feature learning capability 
(Tang et al., 2024; LeCun et al., 2015; He et al., 2025). Such networks 
can directly learn high-level, abstract representations from raw EEG 
signals, avoiding the subjectivity and limitations of traditional manual 
feature engineering (Thuwajit et  al., 2022), and enabling more 
comprehensive characterization of complex spatiotemporal features. 
In recent years, convolutional neural networks (CNNs) and their 
variants have become mainstream solutions for automated seizure 
detection (Zhang et al., 2020). On this basis, residual connections have 
been utilized to effectively alleviate gradient vanishing in deep 
networks through skip connections, thereby improving feature 
propagation efficiency, while multi-scale structures employ parallel 
receptive fields to extract multilevel spatiotemporal information, 
allowing the model to simultaneously capture both local spikes and 
global rhythms associated with various seizure patterns (Shyu et al., 
2023). Many seizure detection studies have achieved improved 
classification performance by adopting multi-scale feature extraction 
and residual structures (Hu et  al., 2024; Shyu et  al., 2023; Wang 
Z. W. et al., 2023). Additionally, to further eliminate redundancy and 
extract salient features, numerous studies have integrated attention 
mechanisms of various dimensions into seizure detection models. By 
dynamically assigning spatial or channel weights, these mechanisms 
enable the network to focus on spatiotemporal segments most relevant 
to seizures, thereby achieving new gains in sensitivity and accuracy 
(Hu et al., 2024; Tang et al., 2024; Alharthi et al., 2022; Zhao et al., 
2021b). Furthermore, the synergy between multi-scale structures and 
multi-dimensional attention mechanisms provides the model with 
cross-scale and cross-dimensional information integration 
capabilities, markedly enhancing detection accuracy and robustness, 
and driving the ongoing advancement of automatic seizure 
detection technology.

In the field of epileptic seizure detection, research has mainly 
focused on two detection paradigms: patient-dependent (Xiao 
et al., 2024; Dash et al., 2020; Tang et al., 2024; Zhao et al., 2021a) 
and patient-independent approaches (Zhang et al., 2024a; Thuwajit 
et  al., 2022; Liu et  al., 2021; Zhao et  al., 2022). On one hand, 
patient-dependent detection trains models on individualized EEG 
data, allowing the capture of unique neurophysiological patterns 
for each patient and thereby achieving higher detection accuracy 
(Thuwajit et al., 2022). This approach is often employed in long-
term monitoring and personalized treatment of refractory epilepsy 
patients, and plays an important role in reducing missed and false 
detections. However, patient-dependent models require custom 
training data and model design for each subject, leading to high 
clinical deployment and large-scale application costs (Thuwajit 
et al., 2022). Furthermore, the performance of such models can 
be  affected by changes in electrode placement, anatomical 
variability among individuals, and other factors, resulting in limited 
scalability and generalizability (Si et al., 2023). In contrast, patient-
independent detection aims to build universal models that can 
be applied across individuals (Zhang et al., 2024a), with a central 
challenge of enhancing the model’s adaptability to inter-patient 
differences in EEG data distributions. While such models have 
greater universality and clinical applicability, their sensitivity and 
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specificity are generally lower than those of patient-dependent 
models due to significant neurophysiological variability between 
subjects—particularly differences between age groups (e.g., 
children vs. adults) and epilepsy subtypes, which are reflected in 
the EEG patterns (Zhao et al., 2023). Overall, patient-dependent 
detection offers superior accuracy and individual adaptability, but 
high customization costs and limited scalability restrict its 
widespread clinical application. Patient-independent detection, 
though offering greater generalization potential and clinical value, 
still faces the challenge of handling inter-individual EEG variability 
to improve robustness and universality. Achieving a balance 
between these two approaches is expected to be a key direction for 
promoting the clinical translation of seizure detection technologies 
in the future.

Accordingly, a Channel-Partitioned Resolution Spatial-Channel 
Attention (CPRSCA) mechanism was proposed in this study as a core 
module based on the ResNet-34 backbone, resulting in the 
development of the CPRSCA-ResNet model for the purpose of 
capturing critical features in seizure detection and thereby improving 
detection accuracy. The CPRSCA mechanism adopts a refined channel 
partitioning strategy, wherein the input feature map is evenly divided 
into N mutually exclusive subsets. Each subset is independently 
modeled at a different spatial resolution using depthwise separable 
convolutions (DSC), enabling the full extraction of discriminative 
features across various resolutions. In addition, the model incorporates 
two distinct attention modules—Coordinate Attention (CA) and 
Squeeze-and-Excitation (SE)—to dynamically enhance salient 
information in both spatial and channel dimensions. To validate the 
effectiveness of the proposed method, patient-dependent and patient-
independent seizure detection experiments were conducted on the 
public CHB-MIT dataset as well as two local hospital datasets, JHCH 
and JHMCHH.

2 Materials and methods

2.1 Dataset and preprocessing

2.1.1 Dataset I
The CHB-MIT public dataset was obtained from Boston 

Children’s Hospital (Goldberger et al., 2000), comprising 23 EEG 
recordings from 22 patients with refractory epilepsy (5 males, aged 
3–22 years; 17 females, aged 1.5–19 years). A total of 916 h of data 
were recorded, documenting 198 seizure events. The signals were 
acquired using the international 10–20 electrode placement system, 
sampled at 256 Hz with 16-bit resolution. Following the 
recommendations of Tsiouris et al., 18 channels consistently present 
across all cases were selected for analysis to reduce heterogeneity 
(Tsiouris et al., 2018): FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, 
C3-P3, P3-O1, FZ-CZ, CZ-PZ, FP2-F4, F4-C4, C4-P4, P4-O2, 
FP2-F8, F8-T8, P8-O2, and T8-P8. Details of the patients are 
summarized in Table 1.

2.1.2 Dataset II
The JHCH dataset was newly collected at Jinhua Central Hospital, 

consisting of 24-h EEG recordings from six pediatric and neurology 
department patients with epilepsy. Of these, four were from the 
pediatric department and two from neurology, with a total of 87 

recorded seizures. Patient ages ranged from 6 to 55 years. Patient 
details are summarized in Table 2.

2.1.3 Dataset III
The JHMCHH dataset was newly collected at Jinhua Maternal and 

Child Health Hospital, including 24-h EEG recordings from 11 pediatric 
epilepsy patients, documenting a total of 57 seizures. Patient ages ranged 
from 2 months to 9 years. Patient details are summarized in Table 3.

For both private datasets (JHCH and JHMCHH), EEG signals 
were acquired using a Nihon Kohden video-EEG system model 
1200C, with a sampling rate of 500 Hz. Fifteen single-channel 
electrodes, identical to those in the public CHB-MIT dataset, were 
selected: Fp1, F7, F3, C3, P3, O1, Fz, Cz, Pz, Fp2, F4, C4, P4, O2, and 
F8. Bipolar montage processing was performed by computing the 
differential voltage between pairs of electrodes, resulting in 12 bipolar 
channels (FP1-F7, FP1-F3, F3-C3, C3-P3, P3-O1, FZ-CZ, CZ-PZ, 
FP2-F4, F4-C4, C4-P4, P4-O2, and FP2-F8), following the standards 
of the CHB-MIT dataset. To ensure sampling rate consistency across 
all datasets, the data were downsampled to 256 Hz, with a window 
length of 3 s. Finally, both interictal and ictal signals were selected as 
the two categories for patient-dependent seizure detection: interictal 
segments were labeled as negative samples, and ictal segments as 
positive samples. The studies involving humans were approved by 
Ethics Committee of Jinhua Central Hospital. The studies were 
conducted in accordance with the local legislation and institutional 

TABLE 1  Patient information of the CHB-MIT dataset.

Case Age Gender # of 
Seizures

# of Seizure 
duration

1 11 Female 7 442

2 11 Male 3 172

3 14 Female 7 402

4 22 Male 4 378

5 7 Female 5 558

6 1.5 Female 10 138

7 14.5 Female 3 325

8 3.5 Male 5 919

9 10 Female 4 276

10 3 Male 7 447

11 12 Female 3 806

12 2 Female 27 1,475

13 3 Female 12 535

14 9 Female 8 109

15 16 Male 20 1992

16 7 Female 10 84

17 12 Female 3 293

18 18 Female 6 317

19 19 Female 3 236

20 6 Female 8 294

21 13 Female 4 199

22 9 Female 3 204

23 6 Female 7 424
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requirements. Written informed consent for participation in this 
study was provided by the participants’ legal guardians/next of kin.

2.2 Channel-Partitioned Resolution 
Spatial-Channel Attention

In this study, a novel attention mechanism termed CPRSCA was 
proposed based on the ResNet architecture, with ResNet-34 adopted as 
an illustrative example. CPRSCA was integrated as the core module of 
the ResNet-34 model, resulting in the CPRSCA-ResNet model, as 
depicted in Figure  1. The structure of the CPRSCA mechanism is 
illustrated in Figure 2. The code is publicly available at https://github.
com/biomedicalWarehouse/CPRSCA-ResNet. In this mechanism, a fine-
grained channel partitioning strategy was employed, where the input 
feature map was evenly divided into N mutually exclusive subsets. Each 
subset was independently processed at a different spatial resolution via 
DSCs. This hierarchical information extraction strategy enabled the 
model to capture features ranging from fine details to broad contextual 
information. After processing with DSCs, Group Normalization and the 
Sigmoid function were utilized for feature normalization, thereby 
optimizing the stability and efficiency of feature representation. In 
addition, CA and SE modules were incorporated to dynamically enhance 
salient features in both spatial and channel dimensions. This integrated 
attention modulation further improved the model’s ability to discriminate 

among complex feature networks and significantly enhanced its 
performance in advanced biomedical raw signal classification tasks.

2.2.1 Channel-partitioned resolution module
To enable convolutional neural networks to efficiently and in 

parallel process convolution kernels of different sizes for capturing 
multi-scale information ranging from local details to broader regions 
and to improve computational efficiency, the proposed module first 
uniformly divides the input feature map × ×∈ C H WX   along the channel 

dimension into N mutually exclusive subsets 
× ×

∈
C H W
NiX  , where 

( )∈ …1, ,i N . In this study, the value of N was set to 4. Furthermore, to 
reduce the number of parameters and enhance computational efficiency, 
depthwise separable convolutions were adopted in place of conventional 
convolutions, and feature maps at different scales were extracted using 
convolutional kernels of sizes 3, 5, 7, and 9. After the convolutional 
operations, the four feature map subsets were merged to form a unified 
feature map × ×′∈ C H WX  , as shown in Equation 1. Subsequently, 
Group Normalization was employed to normalize the merged feature 
map, resulting in × ×′′∈ C H WX  , as presented in Equation 2. This step 
was designed to stabilize the feature distribution during training and 
enhance the generalization capability of the model. GroupNorm 
normalizes data by computing the mean and standard deviation within 
each group, independent of the batch size, and is particularly suitable 
for small-batch training. Finally, the Softmax function was applied to 
map the normalized feature values into the range [0, 1], resulting in the 
output feature map × ×∈ C H WY  , as shown in Equation 3. This process 
enhances the model’s ability to discriminate the importance of features, 
enabling the network to focus more on those regions that are most 
critical for the final task. In this way, the network is able to extract and 
utilize information from the feature maps more effectively, while 
adapting to different visual patterns and structures through the use of 
convolutional kernels of varying sizes, thereby improving overall 
recognition and processing capability.

	
( )( ){ }i 1

2 , 2 1
N

i
X concat DWConv d X kernel i

=
 = = × + 
 

′
	

(1)

Where DWConv2d denotes a 2D depthwise separable 

convolution, 
× ×

∈
C H W
NiX  , and the value of N is set to 4.

	

XX µ γ β
σ
−′

= ×′ +′
	

(2)

where µ  denotes the mean of each group of features, σ  represents 
the standard deviation, and γ  and β  are learnable scaling and 
shifting parameters.
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TABLE 2  Patient information of the JHMCHH dataset.

Case Age Gender # of 
Seizures

# of 
Seizure 

duration

1 6-y Male 12 75

2 2-y Male 7 160

3 2-m Female 7 203

4 2-m Female 1 98

5 3-m Male 6 291

6 8-y Male 2 20

7 4-y Male 3 30

8 4-y Male 2 30

9 3-y Male 3 338

10 6-y Female 8 144

11 9-y Male 6 139

TABLE 3  Patient information of the JHCH dataset.

Case Age Gender # of 
Seizures

# of 
Seizure 

duration

1 27-y Female 17 909

2 55-y Male 9 171

3 13-y Male 6 122

4 6-y Female 25 325

5 9-y Female 4 224

6 8-y Male 26 326
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where ′′
, ,c h wX denotes the feature value at channel c, height h, and 

width w.

2.2.2 Coordinate attention
Coordinate Attention (Hou et  al., 2021) enhances the spatial 

perception and performance of the model by encoding spatial 
relationships within the feature map in a precise manner through the 
introduction of coordinate information. This mechanism comprises 
two main steps: coordinate information embedding and coordinate 
attention generation.

2.2.2.1 Coordinate information embedding
To enable the capture of long-range contextual information in the 

spatial domain, the input Y  is subjected to average pooling along the 

horizontal and vertical directions for each channel, resulting in feature 
maps hZ  and wZ , respectively. Accordingly, the output at height h for 
channel c can be expressed as:

	
( ) ( )

0

1 ,h
c c

i W
Z h Y h i

W ≤ ≤
= ∑

	
(4)

where ( )h
cZ h  denotes the output feature for channel c at height h, 

W  is the width of the input feature map, and ( ),cY h i  represents the 
feature value at position ( ),h i  for channel c.

FIGURE 1

The architecture of the proposed CPRSCA-ResNet network, illustrated using 18-channel EEG signals from the CHB-MIT dataset as an example. The 
input EEG signals have a dimension of (18 × 768). After the Unsqueeze operation, the data are reshaped to (1 × 18 × 768), corresponding to 
(C × H × W). Subsequent convolutional operations are then applied, where (1, 5) and (1, 2) denote the kernel size and stride, respectively. The notation 
‘L1 × 3’ indicates that the module named L1 is repeated three times, with similar conventions applied to the other layers.

FIGURE 2

The architecture diagram of the proposed Channel-Partitioned Resolution Spatial-Channel Attention.
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Similarly, the output at width w for channel c can be written as:

	
( ) ( )c

0

1 ,w
c

i H
Z w Y j w

H ≤ ≤
= ∑

	
(5)

where ( )w
cZ w  indicates the output feature for channel c at width 

w, H  is the height of the input feature map, and ( ),cY j w  denotes the 
feature value at position ( ),j w  for channel c.

2.2.2.2 Coordinate attention generation
As described above, Equations 4, 5 encode precise positional 

information via global receptive fields. To leverage these 
representations, a second transformation—coordinate attention 
generation—is introduced. Specifically, the aggregated feature maps 
obtained in Equations 4, 5 are concatenated and passed through a 
shared 1 × 1 convolutional transformation 1F , yielding:

	
( )( )1 ,h wf F Z Zδ  =   	

(6)

where, in Equation 6, ,⋅ ⋅    denotes concatenation along the spatial 

dimension, δ  is a nonlinear activation function, and 
( )× +  ∈ 

  

C H W
rf   

is the intermediate feature map encoding both horizontal and vertical 
spatial information. Here, r  is a reduction ratio to control the block 
size. The tensor f  is then split along the spatial dimension into two 

separate tensors, 
×  ∈ 

  

C Hh rf   and 
×  ∈ 

  

C Ww rf  . Subsequently, 

two 1 × 1 convolutional transformations, hF  and wF , are applied to hf  
and wf , respectively, to obtain tensors with the same number of 
channels as the input X , resulting in Equations 7, 8:

	
( )( )h h

hg F fσ=
	

(7)

	
( )( )w w

wg F fσ=
	

(8)

where σ  denotes the sigmoid function. To reduce model 
complexity, an appropriate reduction ratio r  (such as 16) is typically 
used to decrease the channel number of f . Finally, the outputs hg  and 

wg  are broadcast and used as attention weights. The final output of the 
coordinate attention module Y  can be formulated as Equation 9:

	 ( ) ( ) ( ) ( ), , h w
c c c cY i j X i j g i g j′ = × ×

	 (9)

Through this approach, the coordinate attention module not only 
captures inter-channel relationships but also enhances the model’s 
ability to recognize target locations by encoding spatial information.

2.2.3 Squeeze-and-excitation attention
Squeeze-and-Excitation (Hu et al., 2020) is a channel attention 

mechanism designed to dynamically recalibrate channel-wise feature 
responses by learning inter-channel dependencies, thereby enhancing 

the model’s representational capacity while preserving the original 
spatial dimensions of the input feature map. This mechanism consists 
of two main steps: Squeeze and Excitation.

2.2.3.1 Squeeze
To model the dependencies between channels, channel-wise 

statistics must first be obtained. The squeeze step achieves this by 
applying global average pooling to generate channel descriptors:

	
( )

1 1

1 ,
H W

c c
i j

Z Y i j
H W = =

=
× ∑∑

	
(10)

where, in Equation 10, ( ),cY i j  denotes the input feature value at 
position ( ),i j  in channel c. The input feature map Y  has spatial 
dimensions ×H W  and C  channels. cZ  represents the statistic for 
channel c.

2.2.3.2 Excitation
The obtained channel descriptors are then passed through two fully 

connected (FC) layers and a sigmoid activation function to model the 
nonlinear inter-channel relationships and generate channel-wise weights:

	 ( )( )2 1 1 2S W W Z b bσ δ= ∗ ∗ + +
	 (11)

where, in Equation 11, σ  denotes the sigmoid function, δ  is the 

ReLU activation function, 
×  ∈ 

  
1 1,

C C
rW b  and 

×  ∈ 
  

2 2,
C C
rW b  

represent the two fully connected layers. The reduction ratio r  is 
employed to balance model capacity and computational complexity.

Finally, the output ′Y  is obtained by channel-wise multiplication 
of the original input Y  and the channel-wise weight vector S:

	
Y Y S′ = ⋅

	 (12)

where, in Equation 12, ⋅  denotes element-wise multiplication 
along the channel dimension. When the values in S fall within the 
range [0,1], the SE block is able to preserve informative features while 
suppressing irrelevant ones, thereby improving the overall 
network performance.

2.2.4 Model training and evaluation
The proposed algorithm was implemented using the PyTorch 

deep learning framework (version 1.12). Experiments were 
conducted on a platform equipped with an NVIDIA GeForce RTX 
3080Ti GPU (12GB VRAM) and running Windows 11. During 
training, a batch size of 4 was employed, and the total number of 
epochs was set to 50. The cross-entropy loss function was utilized, 
and parameter optimization was carried out using the AdamW 
optimizer. To enhance the training process, a dynamic learning rate 
adjustment strategy was adopted: the learning rate was initially set to 
5 × 10−4 with a warm-up phase, wherein the learning rate was rapidly 
increased to its target value at the beginning of training, followed by 
a gradual decay according to a predetermined schedule. This adaptive 
adjustment facilitated faster convergence of model parameters 
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toward an optimal solution in the early stages while ensuring training 
stability through refined learning rate decay in later stages. In terms 
of data partitioning, two experimental schemes were designed, 
namely patient-dependent and patient-independent. In the patient-
dependent setting, the data of each patient were randomly divided 
into training and testing sets according to a 4:1 ratio, with 
approximately 80% of the data used for training and the remaining 
20% used for testing, so as to evaluate the detection performance 
within the same patient. In the patient-independent setting, patient 
identities were strictly separated, and the Leave-One-Subject-Out 
strategy was adopted. Specifically, in each experiment, the entire data 
of one patient were designated as the testing set, while the data of all 
other patients were used as the training set. This procedure was 
iteratively rotated until every patient had served once as the testing 
subject, thereby providing a comprehensive evaluation of the 
robustness and generalization ability of the model in cross-patient 
scenarios. Model performance was assessed using several evaluation 
metrics, including accuracy, sensitivity, F1 score, and specificity, with 
the calculation formulas provided as Equations 13–16:

	

TP TNAccuracy
TP TN FP FN

+
=

+ + + 	
(13)

	

TPSensitivity
TP FN

=
+ 	

(14)

	

2TPF1Score
2TP FP FN

=
+ + 	

(15)

	

TNSpecificity
TN FP

=
+ 	

(16)

3 Result

3.1 Patient-dependent seizure detection

In this study, ResNet-34 was employed as the backbone 
network, and a series of systematic ablation experiments were 
conducted to assess the performance of each component within the 
CPRSCA attention mechanism, as summarized in Table 4. Initially, 
baseline models were established by integrating multi-scale 
convolutional modules with SE and CA attention mechanisms, 
respectively. Subsequently, the proposed CPRM module was 
substituted for the multi-scale convolutional module, with the same 
attention mechanism configurations maintained for comparative 
analysis. The experimental results demonstrated that, under 
identical attention settings, the CPRM module achieved higher 
classification accuracy compared to the multi-scale convolutional 
module. These findings validate the superiority of the CPRM 
module in cross-scale feature fusion and highlight the synergistic 
enhancement effect when combined with joint spatial-channel 
attention mechanisms.

Patient-dependent seizure detection results on the CHB-MIT, 
JHMCHH, and JHCH datasets are presented in Figures  3–5, 
respectively. On the CHB-MIT dataset, the performance for 
Accuracy, Sensitivity, F1 Score, and Specificity was observed to 
be 99.12 ± 2.09%, 99.12 ± 2.18%, 99.10 ± 2.14%, and 98.55 ± 4.34%, 
respectively. On the JHMCHH dataset, the corresponding metrics 
were 96.88 ± 4.64%, 97.23 ± 4.07%, 96.86 ± 4.67%, and 
96.28 ± 6.84%. On the JHCH dataset, the performance for these 
four metrics reached 98.84 ± 1.75%, 98.93 ± 1.61%, 98.83 ± 1.76%, 
and 99.24 ± 1.69%, respectively. It should be noted that lower scores 
in some patients may be  attributed to relatively short seizure 
durations in EEG recordings and the presence of considerable noise 
in the data.

TABLE 4  Ablation study results for patient-dependent experiments on the three datasets.

Dataset Methods Accuracy (%) 
Mean ± std

Sensitivity (%) 
Mean ± std

F1 Score (%) 
Mean ± std

Specificity (%)
Mean ± std

CHB-MIT

Baseline 98.09 ± 2.88 98.07 ± 3.00 98.05 ± 2.96 97.10 ± 4.89

CPRM 98.22 ± 2.87 98.21 ± 2.96 98.18 ± 2.96 97.61 ± 4.78

CPRM+CA 98.62 ± 2.77 98.65 ± 2.86 98.59 ± 2.86 97.84 ± 5.68

CPRM+SE 93.95 ± 5.95 93.80 ± 6.10 93.77 ± 6.21 89.57 ± 11.81

CPRM+CA + SE (CPRSCA) 99.12 ± 2.09 99.12 ± 2.18 99.10 ± 2.14 98.55 ± 4.34

JHMCHH

Baseline 94.01 ± 8.38 95.17 ± 6.31 93.84 ± 8.75 90.34 ± 12.62

CPRM 96.32 ± 5.29 96.24 ± 5.68 96.19 ± 5.62 93.39 ± 11.52

CPRM+CA 96.35 ± 4.32 96.66 ± 3.68 96.32 ± 4.35 94.23 ± 7.50

CPRM+SE 96.18 ± 6.75 96.66 ± 5.72 96.17 ± 6.76 96.05 ± 8.83

CPRM+CA + SE (CPRSCA) 96.88 ± 4.64 97.23 ± 4.07 96.86 ± 4.67 96.28 ± 6.84

JHCH

Baseline 94.63 ± 6.26 94.94 ± 5.74 94.59 ± 6.31 96.32 ± 3.82

CPRM 96.78 ± 4.97 96.97 ± 4.58 96.76 ± 4.98 98.99 ± 1.67

CPRM+SE 96.58 ± 4.29 96.51 ± 4.44 96.53 ± 4.36 93.90 ± 7.87

CPRM+CA 97.01 ± 2.90 96.97 ± 3.07 96.97 ± 2.96 96.22 ± 5.98

CPRM+CA + SE (CPRSCA) 98.84 ± 1.75 98.93 ± 1.61 98.83 ± 1.76 99.24 ± 1.69

Bold value indicates the optimal result.
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3.2 Patient-independent seizure detection

Ablation experiments for patient-independent seizure detection 
were first conducted to assess the performance of the CPRSCA 
model, as presented in Table 5. The multi-scale module was initially 
adopted as the baseline model, followed by an evaluation of the 
classification performance when combined with CA, SE, and their 
combination. Further assessments were carried out by integrating 
the CPRM module with CA and SE individually, as well as by 
incorporating multi-scale techniques together with CA and SE, and 
the results were compared with those of the multi-scale module. As 
observed in Table 5, the integration of the CPRM module with the 
two distinct attention mechanisms resulted in a further 
improvement in accuracy, indicating that the complementary 
effects among these modules collectively enhance patient-
independent seizure detection performance.

Patient-independent seizure detection results on the CHB-MIT, 
JHMCHH, and JHCH datasets are illustrated in Figures  6–8, 
respectively. On the CHB-MIT dataset, Accuracy, Sensitivity, F1 Score, 
and Specificity were observed to be 78.71 ± 13.06%, 78.70 ± 13.04%, 
77.75 ± 14.53%, and 79.16 ± 16.80%, respectively. On the JHMCHH 
dataset, these metrics were recorded as 87.15 ± 15.32%, 
87.03 ± 15.48%, 85.32 ± 18.65%, and 79.10 ± 30.27%. On the JHCH 
dataset, the results for the four metrics were 89.23 ± 7.87%, 
89.18 ± 7.92%, 88.99 ± 8.11%, and 81.39 ± 15.53%, respectively.

4 Discussion

A novel CPRSCA attention mechanism was proposed in this 
study and integrated as the core module of the ResNet-34 model, 
demonstrating successful application to EEG-based seizure detection 

FIGURE 3

Patient-dependent seizure detection results on the CHB-MIT dataset.

FIGURE 4

Patient-dependent seizure detection results on the JHMCHH dataset.
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tasks. The principal innovation of the CPRSCA mechanism lies in its 
CPRM module, which adopts a channel-partitioned multi-scale 
feature extraction strategy to effectively integrate salient EEG 
information across different spatial resolutions. Furthermore, by 
combining channel attention (SE) and spatial attention (CA) 
mechanisms, the model is able to dynamically enhance its focus on 
features relevant to epileptic seizures. Experimental validation was 
conducted on both the public CHB-MIT dataset and two local 
hospital datasets (JHCH and JHMCHH) under patient-dependent 
and patient-independent protocols, where the proposed approach 
consistently exhibited superior detection performance.

Compared with conventional single-scale or single-dimension 
attention mechanisms, the proposed CPRSCA mechanism 
significantly improved the model’s sensitivity and robustness in 

recognizing seizure patterns. Specifically, the ablation studies 
presented in Tables 4, 5 revealed that the CPRM module played a 
critical role in enhancing feature representation, effectively reducing 
redundant information and noise through multi-scale channel 
partitioning, and substantially improving generalization across 
different patients and acquisition devices. Moreover, when either 
channel or spatial attention was used in isolation, model performance 
declined to varying degrees, further demonstrating the clear advantage 
of multidimensional attention fusion strategies in improving model 
robustness. Previous studies have reported that the fusion of channel 
and spatial attention mechanisms in seizure detection leads to certain 
performance improvements (Wang Z. W. et al., 2023; Zhong et al., 
2025; He et al., 2022; Zhang et al., 2023; Li et al., 2020). In the present 
study, a multi-scale channel partitioning strategy was further 

FIGURE 5

Patient-dependent seizure detection results on the JHCH dataset.

TABLE 5  Ablation study results for patient-independent experiments on the three datasets.

Dataset Methods Accuracy (%) 
Mean ± std

Sensitivity (%) 
Mean ± std

F1 Score (%) 
Mean ± std

Specificity (%) 
Mean ± std

CHB-MIT

Baseline 76.26 ± 17.24 76.26 ± 17.21 74.36 ± 19.91 77.18 ± 23.24

CPRM 76.48 ± 16.89 76.46 ± 16.89 75.07 ± 18.81 74.32 ± 23.11

CPRM+CA 77.38 ± 15.05 77.36 ± 15.07 75.54 ± 17.62 79.00 ± 21.26

CPRM+SE 77.20 ± 13.00 77.17 ± 13.01 75.06 ± 16.79 76.64 ± 23.20

CPRM+CA + SE (CPRSCA) 78.71 ± 13.06 78.70 ± 13.04 77.75 ± 14.53 79.16 ± 16.80

JHMCHH

Baseline 84.83 ± 14.57 84.63 ± 14.71 82.68 ± 18.82 74.49 ± 29.28

CPRM 86.06 ± 15.41 85.92 ± 15.59 83.91 ± 19.69 77.07 ± 30.57

CPRM+CA 86.82 ± 13.73 86.64 ± 13.86 85.27 ± 16.74 78.89 ± 26.48

CPRM+SE 86.84 ± 13.52 86.73 ± 13.72 85.19 ± 17.02 78.96 ± 29.17

CPRM+CA + SE (CPRSCA) 87.15 ± 15.32 87.03 ± 15.48 85.32 ± 18.65 79.10 ± 30.27

JHCH

Baseline 85.81 ± 7.30 85.74 ± 7.38 85.40 ± 7.58 76.29 ± 16.80

CPRM 88.93 ± 6.89 88.87 ± 6.95 88.60 ± 7.23 82.83 ± 15.44

CPRM+CA 89.09 ± 8.28 89.02 ± 8.35 88.74 ± 8.63 79.78 ± 17.19

CPRM+SE 89.06 ± 6.64 89.04 ± 6.65 89.04 ± 6.65 84.87 ± 15.03

CPRM+CA + SE (CPRSCA) 89.23 ± 7.87 89.18 ± 7.92 88.99 ± 8.11 81.39 ± 15.53

Bold value indicates the optimal result.
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introduced, allowing for a more thorough extraction of discriminative 
EEG features at different scales (Thuwajit et  al., 2022), thereby 
enabling further performance gains atop multidimensional attention 
mechanisms. In addition, DSCs were employed in place of 
conventional convolutions, resulting in a reduction in model 
parameters while maintaining performance (Si et  al., 2023). The 
collective design of these architectural elements highlights the 
advancement of the CPRSCA mechanism and offers new theoretical 
perspectives and technical pathways for EEG analysis and 
seizure detection.

Moreover, the practical potential of the CPRSCA mechanism was 
demonstrated under both patient-dependent and patient-independent 
experimental settings. In the patient-dependent seizure detection 
experiments, the proposed method exhibited high levels of accuracy, 
sensitivity, and specificity across all three datasets, particularly 
adapting well to individual neurophysiological differences in the 

locally collected clinical datasets. This indicates the strong practical 
value of the CPRSCA mechanism in clinical practice, with promise for 
supporting personalized and precise monitoring and treatment of 
refractory epilepsy patients. Additionally, an in-depth comparison was 
performed on the public CHB-MIT dataset with recent related studies, 
as shown in Table 6. Compared with these advanced seizure detection 
methods, the proposed approach achieved clear advantages in all 
performance metrics, especially in terms of accuracy and sensitivity, 
highlighting the unique capability of the CPRSCA mechanism to 
capture individualized EEG features. Furthermore, in the more 
challenging patient-independent experiments (see Table  7 for 
comparison with other advanced methods), superior performance 
was achieved across all evaluation metrics compared to current 
mainstream detection models, further confirming the effectiveness of 
the model in addressing inter-individual variability and enhancing 
generalizability. The patient-independent approach, by training a 

FIGURE 6

Patient-independent seizure detection results on the CHB-MIT dataset.

FIGURE 7

Patient-independent seizure detection results on the JHMCHH dataset.
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FIGURE 8

Patient-independent seizure detection results on the JHCH dataset.

TABLE 6  Comparison of patient-dependent seizure detection results between the proposed method and other research methods on the CHB-MIT 
dataset.

Authors Type Method Accuracy (%) Sensitivity (%) F1 Score 
(%)

Specificity (%)

Zhang et al. (2024b)
Machine 

Learning

DLFE 98.63 98.06 99.00 99.19

Wang et al. (2024) Decision Tree 96.00 92.7 – 97.6

Zabihi et al. (2016) LDA 94.69 89.10 – 94.80

Zhang et al. (2022)

Deep Learning

Bi-GRU 98.49 93.89 – 98.49

Tang et al. (2024)
PS + Bi-LSTM + 

Attentions
99.09 99.28 98.89 98.95

Sun et al. (2024) MDFLN+BLSTM 97.08 97.53 – 96.63

Thuwajit et al., 2022

End-to-End 

Deep Learning

EEGWaveNet 98.39 68.94 98.01 99.25

Shyu et al. (2023)
Inception and Residual 

model
98.34 73.08 69.34 98.79

Zhao et al. (2023) HAN 98.30 97.34 96.46 96.07

Liu et al. (2025) group CosCNN 97.54 97.70 – 97.54

Zhao et al. (2021b) GAT 98.89 97.10 – 99.63

Hu et al. (2024) Inresformer 98.03 95.65 – 98.01

Wang et al. (2025) CNN-ViT 98.00 99.34 – 98.01

Our method CPRSCA-ResNet 99.12 99.12 99.10 98.55

TABLE 7  Comparison of patient-independent seizure detection results between the proposed method and other research methods on the CHB-MIT 
dataset.

Authors Method Accuracy (%) Sensitivity (%) F1 Score (%) Specificity (%)

Zhao et al. (2023) HAN 73.15 72.75 73.77 75.70

Xiao et al. (2024) SSL 74.67 77.10 76.61 78.36

Zhao et al. (2022) MVCO&IBA 76.36 76.42 76.11 76.32

Zhang et al. (2022) Bi-GRU 79.79 58.25 – 79.97

This Work CPRSCA-ResNet 78.71 81.49 79.56 83.88
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unified model for all subjects, is designed to capture generalized 
seizure characteristics across individuals, which offers greater 
applicability for real clinical scenarios and can further improve the 
work efficiency of clinicians (Zhang et al., 2024a). However, due to 
significant EEG variability among subjects, the overall performance of 
patient-independent detection typically remains lower than that of 
patient-dependent approaches (Hu et al., 2024; Zhao et al., 2023). This 
discrepancy is primarily attributed to the brevity of individual seizure 
patterns, the high heterogeneity of neurophysiological features, and 
the prevalence of noise in the data (Shyu et al., 2023). Therefore, future 
research should focus on further reducing the impact of inter-
individual differences on detection performance and enhancing the 
robustness and practicality of the model in complex clinical 
environments. In summary, the proposed CPRSCA attention model 
not only exhibited outstanding performance in seizure detection tasks 
across diverse data sources, but also demonstrated broad prospects for 
application in both personalized and generalized seizure monitoring 
and auxiliary diagnosis in real clinical environments. This capability 
has the potential to reduce clinicians’ workload and improve the 
efficiency of auxiliary diagnosis.

Despite the promising performance achieved by the proposed 
CPRSCA mechanism in seizure detection tasks, several limitations 
remain. First, due to substantial heterogeneity introduced by patient-
dependent characteristics, age groups, and seizure types, the detection 
accuracy for certain patients requires further improvement, which places 
higher demands on the model’s generalization and robustness. Second, 
although the integration of the CPRSCA mechanism with the ResNet-34 
backbone—along with the adoption of DSCs—effectively reduces the 
number of parameters, the overall model architecture remains relatively 
complex, and computational efficiency in resource-constrained clinical 
settings still needs enhancement. Finally, experimental validation in this 
study was primarily conducted on offline data, and prospective bedside 
monitoring studies have not yet been performed in real clinical 
environments. In future work, it is suggested that the dataset be expanded 
to cover a wider range of age groups and epilepsy types, the model 
architecture be further optimized and simplified, and the capability for 
automatic extraction of critical features and real-time detection 
be improved. Moreover, prospective validation should be conducted in 
actual clinical settings to comprehensively assess the clinical applicability 
and value of the proposed model.

5 Conclusion

In this study, a novel CPRSCA multidimensional attention 
mechanism was designed, and a CPRSCA-ResNet model for seizure 
detection was developed based on the ResNet-34 architecture. By 
employing fine-grained channel partitioning and multi-scale feature 
fusion strategies, the model enabled accurate capture and enhancement 
of key seizure-related features in EEG signals, resulting in significant 
improvements in detection performance and generalization capability. 
Patient-dependent and patient-independent seizure detection 
experiments were conducted on the public CHB-MIT dataset and two 
local hospital datasets (JHCH and JHMCHH), all of which yielded 
excellent detection results and further validated the effectiveness of the 
CPRSCA mechanism. Owing to its efficient and robust detection 
performance, the CPRSCA-ResNet model is expected to substantially 
reduce the burden of manual EEG interpretation by clinicians, 

effectively lower the risk of missed detections, and provide real-time, 
accurate, and individualized diagnostic support for epilepsy patients in 
clinical practice. Overall, this approach offers an efficient and reliable 
technical solution for clinical seizure monitoring and auxiliary 
diagnosis, demonstrating high practical value and broad prospects for 
clinical application, with the potential to significantly improve the 
efficiency and quality of epilepsy management.
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