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The proliferation of deepfake technologies presents serious challenges for
forensic speech authentication. We propose a deep learning framework
combining Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks to improve detection of manipulated audio. Leveraging
the spectral feature extraction of CNNs and the temporal modeling of
LSTMs, the model demonstrates superior accuracy and generalization across
the ASVspoof2019 LA and WaveFake datasets. Linear Frequency Cepstral
Coefficients (LFCCs) were employed as acoustic features and outperformed
MFCC and GFCC representations. To enhance transparency and trustworthiness,
explainable artificial intelligence (XAl) techniques, including Grad-CAM and SHAP,
were applied, revealing that the model focuses on high-frequency artifacts
and temporal inconsistencies. These interpretable analyses validate both the
models design and the forensic relevance of LFCC features. The proposed
approach thus provides a robust, interpretable, and XAl-driven solution for
forensic authentic detection.

KEYWORDS

multimedia forensics, digital speech processing, authentic detection, explainable
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1 Introduction

The development of digital speech technologies has greatly advanced daily applications,
yet it also introduces new challenges, particularly in the context of forensic evidence
collection. Digital audio data is increasingly vulnerable to sophisticated manipulation
attacks, making it difficult to ensure the integrity of evidence (Reis and Ribeiro, 2024). In
response, researchers have proposed passive audio evidence collection techniques, which
analyze original audio to detect signs of tampering, assess the extent of manipulation,
and ensure the fairness of digital evidence (Gibb et al, 2018). However, as digital
speech manipulation technologies continue to evolve, they present new obstacles to these
traditional techniques, necessitating ongoing innovation in forensic practices to maintain
the credibility of digital evidence (Jiang et al., 2024).

Early attempts at audio manipulation were limited and often resulted in poor-quality
audio that could be identified through traditional forensic analysis. These methods
included editing audio segments using simple audio editors and altering audio hashes or
device metadata to obscure the source (Nye et al., 1975; Furui, 2018; Gold et al., 2011).
Although these early techniques were rudimentary, they helped establish initial standards
for identifying manipulated audio, which have since been refined with advancements in
forensic technology (Jiang et al., 2025a,b). As digital manipulation techniques become
more sophisticated, it is essential to continuously improve forensic methods to counteract
emerging threats, ensuring the reliability and fairness of digital evidence.
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Recent advancements in deep learning have enabled the
creation of highly realistic synthetic speech, posing significant
challenges to systems like automatic speaker verification (ASV),
which are widely used in finance, authentication, and security (Liu
et al,, 2019, 2025a). Malicious deepfakes, if used improperly, can
easily deceive ASV or human auditory systems (HAS), leading to
severe consequences such as fraud and financial losses (Poddar
etal., 2017; Kemp, 1978; Voloshynovskiy et al., 2001). For example,
in 2019, a deepfake of a German executive was used to defraud
a UK subsidiary of a major company (Stupp, 2019). In 2024,
a multinational firm lost millions due to deepfake fraud (Drew
todd, 2024). As telecom fraud continues to rise, the application of
deepfakes by criminals becomes more prevalent, highlighting the
need for advanced detection methods to combat this growing threat
(Aziz and Andriansyah, 2023).

In this paper, we focus on the use of spectral features in
forensic digital audio analysis, applying time-frequency techniques
to detect manipulated speech. We propose a CNN-LSTM
neural network model to automatically screen audio clips from
the ASVspoof2019-LA benchmark dataset. By analyzing the
spectrogram representation of the audio, we jointly evaluate
temporal and spectral properties to distinguish manipulated signals
from natural ones. Preliminary results show the potential of our
approach for forensic audio examination, with further optimization
of network architectures and inclusion of auxiliary modal cues
likely to enhance robustness. Our findings support the use of
deep learning methods for passive evidence evaluation and call for
further exploration in this area.

2 Related work

In traditional forensic voice comparison, passive evidence
collection is often employed due to stringent legal procedural
requirements (Broeders, 2001; Martinovic and Tripalo, 2017;
Frumarova, 2022; Koenig and Lacey, 2015; Maher, 2009). After
client engagement, forensic experts conduct spectral analysis,
comparing questioned audio with known reference samples
to identify similarities and differences. This process requires
significant forensic expertise and time to yield scientifically
valid conclusions. However, the rise of digital audio deepfakes,
which can now be synthesized with low barriers to entry
and disseminated widely, complicates forensic analysis. The
adaptability of passive courtroom audio analysis necessitates
the development of proactive defenses, such as automated
identification algorithms, to address the growing threat of deepfake
misuse. As fraudulent synthetic vocal media risks undermining
institutional trust and causing public harm through deceptive
misinformation, there is a clear need to advance evidence
evaluation standards and technical solutions.

Deep learning-based fake audio detection algorithms focus
on the core binary classification problem of distinguishing
between natural and manipulated speech (Liu et al., 2025b, 2024).
These algorithms typically use downstream classifiers that process
acoustic features extracted by front-end models. Traditional
systems rely on machine learning methods applied directly to these
representations. Common techniques include Gaussian Mixture
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Models (GMMs) (Masood et al., 2022), Support Vector Machines
(SVMs) (Kawa et al., 2022), and Probabilistic Linear Discriminant
Analysis (PLDA) (Agarwal et al.,, 2021). GMMs, which combine
multiple Gaussian classifiers through linear weighting, remain
popular due to their fast training speed, high accuracy, and broad
applicability. They ranked first in the ASVspoof 2015 Challenge
for countermeasures against presentation attacks. SVMs are also
widely used for their strong generalization and fast training
capabilities, ranking second in ASVspoof 2015 (Rahman et al,
2022; Wu et al., 2014).

Recently, neural networks have become increasingly popular
for fake audio detection, as they can learn higher-level features from
acoustic representations. For example, Lavrentyeva et al. (2017)
improved a Lightweight Convolutional Neural Network (LCNN)
with softmax edge activations for logical access attack detection
in ASVspoof 2019. Ravanelli and Yoshua (2018) combined Deep
Convolutional and SincNet architectures to perform well on LA
attacks, though their generalization to unknown methods was
weaker. Yang et al. (2024) proposed a dual-branch structure
for detecting forgery information. Despite these advancements,
challenges remain in achieving robust fake audio detection across
diverse and evolving manipulation techniques.

3 Method

3.1 Speech spectral analysis

Based on principles of synthetic audio generation, deepfake
methods relying on text-to-speech and voice conversion require
character-to-phoneme or phoneme-to-phoneme conversion prior
to waveform reconstruction via concatenation of synthesized
phonemes. However, concatenation inevitably introduces
perturbations, distortions and misalignments, hindering deepfakes
from accurately modeling natural audio temporal features. In the
frequency domain, where deepfakes are commonly modeled with
inverted filter coefficients (Liu et al.,, 2023, 2025¢), interrupted
fundamental frequencies, lack of smoothness, missing high
frequency content and background noise are easily exhibited.

To examine manipulated regions, wideband, and narrowband
spectrograms were used to analyze deepfake audio (Fan et al,
2023). Wideband spectrograms offer excellent temporal resolution
for observing temporal characteristics, while narrowband
spectrograms provide favorable frequency resolution of frequency
characteristics. In the Figure 1 spectrograms Figures la, b show
wideband and narrowband representations of a female deepfake;
Figures lc, d show wideband and narrowband representations of a
male deepfake. Overall, deepfake spectrograms appear blurred with
dispersed energy, disconnected harmonics and unnatural patterns.
In Figure la, the left red arrow clearly indicates concatenation
artifacts; the right arrow denotes non-continuous formant
misalignment. Figure 1b’s left red box depicts noise interference;
the right box is missing high frequencies. Figure Ic exhibits short,
disconnected formants and multiple perturbations as indicated
by the right red arrow. Figure 1d’s red lines signify discontinuous
fundamental frequencies; the red arrow denotes noise interference;

the red box is missing high frequencies in several regions.
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FIGURE 1

deepfake speech, (d) narrowband of a male deepfake speech.

2.203

Spectrograms of deepfake speech, (a) wideband of a female deepfake speech, (b) narrowband of a female deepfake speech, (c) wideband of a male
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3.2 Linear frequency cepstral coefficient
feature extraction

Certain characteristics of deepfake audio can be observed in
both the temporal and frequency domains, as analyzed above.
To bet-ter represent the distinguishing features of manipulated
audio, acoustic features extracted for speech authentic detection
should encode information from both domains. Among various
acoustic representations, the LFCC features (Salim et al., 2024)
of audio signals consider both temporal and spectral properties.
LFCCs reflect the pattern of frequency change over time, effectively
capturing characteristics of deepfakes in both the temporal and
frequency domains. Compared to real speech, these features
are thus capable of effectively distinguishing synthetic from
natural signals for the purpose of deepfake audio detection.
Encoding both temporal and spectral properties, LECCs provide a
suitable front-end representation conveying the manifestations of
manipulation for downstream classification. Their joint temporal-
spectral modeling facilitates capturing anomalies introduced
during the deepfake generation process, offering advantageous
representation for the binary classification task.

LFCC have achieved in Voice
Authenticity Verification, serving as the baseline system features
in the ASVspoof2019 Challenge. The extraction process of LFCC
is shown in Figure 2, the audio signal is first converted from the

standout performance

time domain to the frequency domain by signal processing to
obtain the spectrum, and the spectrogram implying the time-
frequency feature is obtained by Fast Fourier Transform, and
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then LFCC is obtained by LFCC filter bank. The computation
of these linear coeflicients utilizes a linear filterbank that offers
improved frequency resolution at higher bands. The LFCC filter
bank expression is as follows:

N—-1 R
Fe =Y X(mhy (1)
n=0

Where p is the order. This LFCC representation captures
both temporal and spectral characteristics of audio, facilitating the
extraction of meaningful features revealing anomalies introduced
during spoofing for robust fake audio detection. As evidenced by its
role as the baseline system for the ASVspoof 2019 Challenge, LFCC
has proven highly effective at this critical task. In this study, LFCCs
demonstrably outperform both MFCCs and GFCCs (Wu et al,
2014). By employing uniformly spaced linear filter banks instead of
Mel’s nonlinear scale, LFCCs achieve superior spectral resolution
at high frequencies, sensitively capturing the artifacts characteristic
of deepfake synthesis. Moreover, the cepstral transform at the
heart of LFCCs not only preserves the full short-term energy
distribution but, through framewise sliding windows, precisely
tracks dynamic spectral changes over time thereby revealing
temporal discontinuities that GFCCs, which focus primarily on
spectral-envelope energy, fail to detect. Crucially, LFCCs inherently
fuse spectral-envelope and cepstral-phase information, enabling
downstream classifiers to harness complementary temporal and
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spectral cues for enhanced detection performance (Lavrentyeva
etal., 2017).

3.3 Proposed model

In Voice Authenticity Verification tasks, CNN networks
demonstrate strong spectral learning ability through extracting
manipulation cues from synthesized speech, but lack the ability
to mine temporal speech information. Long Short Term Memory
(LSTM) networks can capture speech temporal patterns but have
weak spectral learning for acoustic signals. A hybrid CNN-LSTM
architecture that leverages their complementary strengths can
alleviate individual limitations and boost detection performance.
A single network often struggles to capture global characteristics
of target objects in complex detection systems. Model integrates
multiple neural network types into a unified model to enhance both
prediction accuracy and generalization of the detector. To achieve
optimal detection performance, each constituent neural network
in an ensemble ideally possesses some level of capability while
also exhibiting diversity and complementary strengths. Networks
with differing architectures, optimizations, or input domains are
commonly combined to leverage their respective advantages. The
detail of proposed model is shown in Table 1.

For example, a convolutional network may extract spatial
features, while recurrent network models temporal dynamics.
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By fusing varied but correlated decision perspectives, ensemble
methods can distill more comprehensive representations than
any independent component, mitigating their individual blind
spots and noise to realize emergent synergistic effects greater
than the sum of parts. This multipronged modeling approach
has proven effective for various audio and visual analysis
challenges by aggregating diverse learned abstractions into a
robust integrated system. The proposed model structure is shown
in Figure 3.

The proposed model contains 18 layers. The input feature
sequence dimension is (X,50,20,1), where X represents the
number of feature maps. The first layer is a convolutional layer
with 32 neurons, accepting inputs of size 50 x 20 x 1 via 3 x
3 filters and using ReLU activation. The second convolutional
layer has 64 neurons and 3 x 3 filters with ReLU activation.
After two convolutional operations, the third layer applies 2 x 2
max pooling, followed by 50% dropout for regularization. The
fifth layer adds another convolutional layer with 64 neurons and
3 x 3 filters, activated by ReLU. The sixth layer performs max
pooling. After batch normalization in the seventh layer, the data
is flattened and reshaped before dense layers. The reshaped data
then enters the LSTM part of the hybrid network, containing
two recurrent layers with 64 and 128 hidden units respectively,
each using ReLU activation. Dropout and batch normalization
are applied. The 15th layer contains two dense blocks, with the
first having 256 neurons and ReLU activation, while the second
performs softmax classification for the target variable. Dropout and
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TABLE 1 The detail of proposed model.

Layers Output Paramenters
Conv2D (None, 48, 18, 32) 320
Conv2D (None, 46, 16, 64) 18,496
MaxPooling (None, 23, 8, 64) 0
Dropout (None, 23, 8, 64) 0
Conv2D (None, 21, 6, 64) 36,928
MaxPooling (None, 9, 2, 128) 0
Batch Normalization (None,9,2,128) 512
Flatten (None, 2,304) 0
Reshape (None, 9, 256) 0
Dense (None, 9, 64) 16,448
LSTM (None, 9, 64) 33,024
LSTM (None, 128) 98,816
Dropout (None, 128) 0
Batch Normalization (None, 128) 512
Dense (None, 256) 33,024
Dropout (None, 256) 0
Batch normalization (None, 256) 1,024
Dense (None, 2) 514

batch normalization layers are inserted between the dense blocks.
This CNN-LSTM architecture effectively leverages both spectral
and temporal modeling capabilities.

3.3.1 CNN

Convolutional neural networks (CNNs) are a class of
feedforward neural networks widely used in domains such as
face detection, speech recognition, and activity recognition (Jin
et al,, 2022, 2024). Standard CNNs consist of convolutional layers,
pooling layers, fully connected layers and activation functions.
Convolutional layers contain trainable filters to extract features
from input data. Pooling layers enhance translation invariance by
reducing the spatial resolution of feature maps. Fully connected
layers act as classifiers, while common activation functions include
Sigmoid, Tanh, and ReLU. Figure 4 depicts the basic architecture
of our CNN structure, which computations can be expressed
as equation:

N
Vi :f<hi+2kij*xi> (3)
i=0

Where * denotes the convolutional operation, f represents
activate function, b denotes the bias term and x; is the input vector.

This convolutional filtering enables the model to automatically
learn high-level audio representations directly from input acoustic
sequences. Through successive convolutional layers interspersed
with activation and pooling operations, insights into temporal
patterns indicative of manipulation vs. natural speech signals can be
distilled for final classification or regression. The end-to-end CNN
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framework is wellsuited for this domain thanks to its support of
sequential data.

3.3.2 LSTM
LSTM networks
Schmidhuber in 1997 to address the issue of vanishing gradients
in traditional RNNs (Sundermeyer et al., 2012). LSTMs introduce
a gating mechanism that controls the flow of information and

were Hochreiter and

developed by

a memory cell that stores state, preventing early signals from
decaying during processing. While LSTMs alleviate the gradient
problem of RNNs to some extent, individual neural units handling
four linear layers means increased parameters and computation as
network depth grows, easily leading to overfitting.

LSTMs comprise a series of memory cells that typically contain
a self-connected memory cell to store the network’s temporal state
information. LSTMs have three gates input, output and forget—that
regulate the flow of information. The input gate deter-mines what
new information is stored in the cell; the output gate determines
what cell state values are output; and the forget gate determines
what should be forgotten from the cell state.

As shown in Figure 5, an LSTM memory cell at time step t can
be represented by the following equations:

o= Wy D]+ by @
ir = s (Wi [he—1, %] + be) (5)
Cr = tanh (W, [he—1, %] + be) (6)
Ci=fi % Co1 +ir % Cy (7)

0 =s (W0 [ht_l,xt] + ho) (8)
h; = oy * tanh (Cy) %)

In this equation, where s is the state vector, where C;_j, h;_;
are the internal state of the previous LSTM memory cell and the
external state of the hidden layer, respectively. x; is the input
speech signal feature sequence, o is the activation function sigmoid,
it, 01 f» Ct, C; are denote as input gate, output gate, forgetting
gate, content of memory cell and content of new memory cell,
respectively. Wy, Wi, We, Wy denote the weight matrices of the
forgetting gate, the input gate, the content of memory cell, and
the output gate, respectively and by, b, b, denote the bias vectors
of the forgetting gate, the content of memory cell, and the output
gate, respectively.

4 Experiments

4.1 Dataset and pre-processing

The experiments were conducted utilizing the ASVspoof 2019
database (Nautsch et al, 2021), which is an English speech
corpus constructed upon the VCTK library comprising natural and
synthetic speech samples, organized into LA and PA subsets. The
study investigated speech synthesis and voice conversion attacks
using the LA subset. This dataset is partitioned into training,
development, and evaluation sets for structural coherence, with the
training set containing 25,380 speech samples, the development set
24,844, and evaluation set 71,237, as detailed in Table 2, and there
is no speaker overlap between subsets.
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FIGURE 3
The proposed model structure.
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FIGURE 4
The basic architecture of our CNN structure.

The experimental environment involved an Ubuntu 18.04.4

LTS system within the Jupyter Notebook development
environment, configuring Python version 3.6 coupled
with the TensorFlow 2.0 deep learning framework.

Hardware-wise, an Intel Xeon(R) Gold 6,132 processor was
NVIDIA Tesla P4 graphics
processing units and 125.3 GiB of memory to facilitate deep

leveraged alongside multiple

learning experimentation and kernel deployment over the
GPU cluster.
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For any individual speech signal within the database, a frame-
based method was adopted to extract multiple acoustic feature
sequences, with each sequence composed of 50 frames and 20-
dimensional features. Redundant sequences were discarded, and
labels were sequentially assigned to the remaining multisegment
feature sequences. This preprocessing scheme aimed to strike
a balance between granularity and computational feasibility
for the ensuing recurrent classification task, segmenting the
variable-length into  fixed-size windows

in-puts temporal
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FIGURE 5
LSTM memory cell structure.

TABLE 2 Detail of the ASVspoof2019LA dataset.

Dataset Sex of speaker Phonetic character
Male Female Authentic  Synthetic
Train 8 12 25,800 22,800
Development 4 6 22,480 22,296
Evaluation 21 27 63,550 63,882

matching the network architecture while retaining necessary
identity information distributed across the sequential and
multi-channel inputs.

To further validate the model’s generalization ability,
we conducted additional experiments on the WaveFake
dataset (Frank and Schonherr, 2021). This dataset consists
of approximately 93,000 utterances of 16 kHz single-channel
speech, including genuine samples from LibriSpeech and forged
samples generated by six mainstream neural vocoders: WaveNet,
WaveGlow, MelGAN, Parallel WaveGAN, MB-MelGAN, and
LPCNet. However, the experimental protocol does not clearly
distinguish between in-domain and cross-domain test-ing,
which may lead to an inadequate interpretation of the model’s
generalization performance.

To address this, we trained the model on the ASVspoof2019 LA
dataset and validated it on the WaveFake dataset without any fine-
tuning, aiming to test the model’s robustness against unseen forgery
attacks. This cross-dataset training and testing approach simulates
the model’s performance when encountering novel vocoders and
synthesis methods in real-world scenarios. Future work will focus
on clearly defining in-domain vs. cross-domain testing to provide a
more accurate evaluation of model generalization.

4.2 Evaluation metrics and implementation
details

In this paper we use F1 score, EER, and AUC as evaluation
metrics. For binary classification algorithms, the detection results
of the algorithm are categorized into four classes based on the
combination of predicted values and actual values: true positives
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TABLE 3 Confusion matrix of possible outcomes.

Authentic Synthetic

Authentic TP FN

Synthetic FP TN

TABLE 4 Hyperparameters.

Config Value

Optimizer Adam

Learning rate le—4

epoch 100

Batch size 16

Scheduler CosineAnnealingLR

(TP), false positives (FP), true negatives (TN), and false negatives
(FN). All possible outcomes are presented in the form of a
confusion matrix, as shown in Table 3.

F1 score is a commonly used metric in binary classification
algorithms to comprehensively evaluate the robustness of a model.
The essence of the F1 score is the harmonic mean of precision
and recall, ranging from 0 to 1. A value closer to 1 indicates
better performance of the model, while a value closer to 0 indicates
poorer performance. The mathematical expression of the F1 score
is shown below:

Recall

Precision + Recall

2 - Precision -

F = (10)

Precision refers to the proportion of correctly predicted natural
speech samples among all samples predicted as natural speech,
while Recall refers to the proportion of correctly predicted natural
speech samples among all samples that are actually natural speech.
The mathematical formulas for both are as follows.

. TP
Precision = ——— (11)
TP + FP
P
Recall = —— (12)
TP + FN

Speech authentic detection algorithm usually uses equal error
rate as an evaluation metric. Equal error rate is a metric used to
predetermine the thresholds of False Acceptance Rate (FAR) and
False Rejection Rate (FRR). In speech attack detection, FAR refers
to the probability of synthetic speech being incorrectly accepted
as natural speech and FRR refers to the probability of natural
speech being incorrectly rejected as synthetic speech. When FAR
and FRR are equal, this equal value is called equal error rate, which
is mathematically defined as follows:

FP
FAR(f) = ——— 13
©) TP + FP (13)
FN
FRR(0) = ———— (14)
TN + EN
EER = FAR (0ggr) = FRR (Oggr) (15)

0 is used as the determination threshold of the detection system,
when the prediction value of the input speech is greater than 0,
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TABLE 5 The result of comparative analysis.

10.3389/fnins.2025.1692122

ASVspoof2019LA Wavefake
Accuracy(%) AUC(%) EER(%) Accuracy(%) AUC(%) EER(%)
CNN 93.57 92.57 7.41 92.56 91.01 8.46
LSTM 90.94 89.70 10.29 88.72 88.02 11.73
Bi-LSTM 91.45 92.07 7.91 90.56 90.11 9.42
GRU 91.53 91.00 8.99 91.12 90.75 8.91
ASSERT (Lai et al., 94.00 93.13 6.70 93.20 92.51 7.98
2019)
RawNet2 (Tak et al., 91.24 90.56 9.50 89.87 89.51 9.67
2021)
CNN-LSTM 98.05 95.20 4.80 95.46 93.82 6.41
Bold indicates the best value.
CNN-LSTM CNN-LSTM CNN-LSTM
95.20
98.05
X 4.80
GRU A CNN GRU CNN GRU CNN
91.53 D %327 91.45 #77 N M
91.45 90.94 89.7
92.07 791 10.29
Bi-LSTM LSTM Bi-LSTM LSTM Bi-LSTM LSTM
(a) (b) (©
CNN-LSTM CNN-LSTM CNN-LSTM
6.41
GRU CNN GRU CNN GRU CNN
92.56
91.12 9145 7101 891 8.46
88.72 iy
90.56 942
g i 1173
Bi-LSTM LSTM Bi-LSTM LSTM Bi-LSTM LSTM
() ©) ®
FIGURE 6
Radar chart of results. (a) Results of five models on Accuracy using ASVspoof2019LA, (b) results of five models on AUC using ASVspoof2019LA, (c)
results of five models on EER using ASVspoof2019LA, (d) results of five models on Accuracy using Wavefake, (e) results of five models on AUC using
Wavefake, (f) results of five models on EER using Wavefake.

the test speech is determined as authentic speech, and conversely
when the prediction value of the input speech is less than 6, the test
speech is determined as synthetic speech. The higher the threshold
0, the stricter the acceptance conditions of the system, the lower the
value of the corresponding FAR, and the higher the value of FRR.
the smaller the value of EER, the stronger the detection algorithm
distinguishes between natural and synthetic speech, and the better
the performance of the detection system. The Detection Error
Trade-offs Curve (DET) is usually used to reflect the relationship
between FAR and FRR, with FAR as the horizontal coordinate
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value and FRR as the vertical coordinate value, and the threshold
is adjusted to determine the relationship between the two to form
the DET curve, while the intersection of the DET curve with the
diagonal of the first quadrant is the value of EER.

Area under the Curve of ROC (AUC) is an evaluation metric
often used in binary classification tasks, which refers to the area
under the ROC curve (Koenig and Lacey, 2015). The ROC curve
can be used to evaluate the performance of a classification model
by means of two metrics, namely the true case rate and the false
positive rate, and the closer the AUC is to 1 means the better the
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model is. The formula for calculating the AUC is as follows:

. MQA+M)
_ Zie positiveClass rank; -~ 2

AUC
M-N

(16)

Where rank; represents the serial number of the ith sample, M
is the number of positive samples and N is the number of negative
samples.

Table 4 summarizes the main training hyperparameters for our
proposed methods.

TABLE 6 Out of domain experiment.

Model Accuracy EER (%)
CNN 62.55 42.14
LSTM 59.89 45.00
Bi-LSTM 61.46 4331
GRU 60.87 4452
CNN-LSTM 69.87 38.85

The training set is ASVspoof2019, the testing set is Wavefake; Bold indicates the best value.

10.3389/fnins.2025.1692122

5 Results

5.1 Model comparison

To better evaluate the effectiveness of the proposed CNN-
LSTM method for forensic speech authentic detection, a controlled
experiment was designed with a comparison group. Four neural
network models were selected for comparative analysis. Each
network model was configured with identical parameters, and the
input acoustic features were uniformly LFCC. The experimental
process rigorously controlled for singular variables, and the results
are presented in the Table 5, and we also use radar chart to visualize
the results and is shown in Figure 6.

The CNN-LSTM architecture demonstrates clear superiority
over all baseline models across both datasets. On ASVspoof2019-
LA, it achieves an impressive accuracy of 98.05%, AUC of 95.20%,
and a low EER of 4.80%. Its performance remains strong on the
more challenging WaveFake dataset, with 95.46% accuracy, 93.82%
AUGC, and 6.41% EER. In comparison, the standalone CNN model,
although maintaining decent accuracy (93.57% on ASVspoof2019-
LA and 92.56% on WaveFake), exhibits higher error rates (7.41%
and 8.46%, respectively), indicating its limitations in capturing the
temporal dependencies required for deepfake detection. Similarly,

Original LSTM

Bonafide

FIGURE 7
Grad-CAM map for the CNN, LSTM and CNN-LSTM models.

CNN

QOurs
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TABLE 7 The result of acoustics comparative experiments.

10.3389/fnins.2025.1692122

Feature Accuracy% F1-Score
Authentic Synthetic
MFCC 5.79 97.42 93.21 0.88 0.9
GFCC 7.54 97.24 92.45 0.86 0.98
Fbank 633 97.32 92.64 0.87 0.98
Spectrogram 8.62 96.23 91.15 0.85 0.96
LECC 4.80 98.05 95.20 0.89 0.99
Bold indicates the best value.
LSTM, Bi-LSTM, and GRU models show lower performance, with
accuracy around 90%-91.5% and higher EERs ranging from 8.99% ROC curve
to 11.73%, reflecting the inadequacy of sequence-based models 1.0
in capturing the complex spectro-temporal patterns of deepfake F,//
audio. ASSERT shows competitive results, with 94.00% accuracy on 0.8
ASVspoof2019-LA and 93.20% on WaveFake, but its EER values are 2
relatively higher (6.70% and 7.98%). RawNet2, while demonstrating 2 06
91.24% accuracy on ASVspoof2019-LA and 89.87% on WaveFake, "é
has EERs of 9.50% and 9.67%, respectively, indicating its slightly o 0.4
less efficient performance compared to CNN-LSTM. & e Atcomao
Although all models experience a small decline in performance 0.2 —MFCC AUC=93.21%
when transitioning from ASVspoof2019-LA to WaveFake (for in- ;,;;; Cni :Egzjzj;/:
stance, CNN-LSTM’s accuracy decreases by 2.6%, and its EER 0.0 4 Spec. AUC=91.15%
rises by 1.6%), the relative rankings remain stable, underlining 0.0 0.2 0.4 0.6 0.8 1.0
the robustness and adaptability of the CNN-LSTM model across False positive rate
datasets. These results confirm that integrating convolutional FIGURE 8
feature extraction with recurrent temporal modeling is crucial The ROC curves of the three types of features.

for achieving both high detection accuracy and resilience across
different deepfake audio scenarios.

The cross-domain validation experiment results shown in
Table 6, all models exhibited varying degrees of performance
degradation compared to their results on single-dataset evaluations,
highlighting the challenges posed by unseen spoofing types to
model generalization. Specifically, the CNN-LSTM model achieved
the highest accuracy (69.87%) and the lowest EER (38.85%),
significantly outperforming the other models. This indicates that
the hybrid architecture, which combines convolutional feature
extraction with recurrent temporal modeling, effectively captures
cross-dataset commonalities in deepfake audio and offers strong
transferability. In contrast, standalone CNN and recurrent neural
networks (LSTM, Bi-LSTM, GRU) showed similar performance,
with accuracies ranging from 59.89% to 62.55% and relatively
high EERs (42.14% to 45.00%), suggesting that single-mode feature
extraction is insufficient for complex cross-domain detection tasks.
Moreover, while the Bi-LSTM demonstrated slight improvements
over the unidirectional LSTM in both accuracy and EER, the
gains were limited. These findings further validate the importance
of composite feature modeling strategies in enhancing the
robustness of speech authentic detection systems. Overall, the
results demonstrate that the CNN-LSTM architecture provides
superior generalization when confronted with previously unseen
spoofing types, making it a strong candidate for complex audio
forgery detection tasks.

To further examine the decision-making basis of the models
and the impact of different architectures, we applied Grad-CAM
to visualize the regions of input features that contributed the most

Frontiersin Neuroscience

to the classification outcomes shown in Figure 7. The top and
bottom rows correspond to genuine and deepfake speech samples,
respectively, while each column presents the original input features
alongside Grad-CAM heatmaps for the CNN, LSTM, and CNN-
LSTM models.

The CNN model primarily targets low-frequency regions where
energy concentrations are strongest, effectively capturing basic
spectral patterns but showing limited sensitivity to temporal
dynamics. In contrast, the LSTM model focuses on temporal
anomalies within the sequence but lacks responsiveness to spatial
features such as high-frequency artifacts. Notably, the CNN-LSTM
model, by integrating convolutional spatial feature extraction with
recurrent temporal modeling, exhibits a balanced attention pattern:
it highlights stable mid-to-low frequency regions in genuine speech,
while accurately identifying high-frequency anomalies and spectral
discontinuities in deepfake samples.

The CNN-LSTM attention maps align closely with the high-
frequency and temporal variation regions encoded by the LFCC
features, confirming the model’s superior capacity to jointly
capture both spectral and temporal characteristics. These findings
indicate that the CNN-LSTM model not only detects static
spectral irregularities but also effectively captures disruptions to
temporal continuity introduced during synthesis—demonstrating
clear advantages in both detection accuracy and generalization over
the standalone CNN and LSTM architectures.
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FIGURE 9
The SHAP plot of the three types of features.
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FIGURE 10
Confusion matrix of F1-score.

5.2 Acoustic

To assess the effectiveness of various acoustic features in
the proposed model, we selected five prominent features: Mel-
frequency cepstral coefficients (MFCC), Gammatone-frequency
cepstral (GFCQ), (Fbank),
Spectrogram, and Liftered Mel-frequency cepstral coefficients
(LFCC). While MFCC and GFCC share similarities with LFCC
in their signal pro-cessing approaches, they differ primarily in

coefficients Filterbank features

filterbank design, leading to distinct applications.

MECC is widely used in speaker recognition tasks due to
its strong ability to capture speaker-specific characteristics.
On the other hand, GFCC is known for its robustness and
suitability for acoustic tasks in complex environments, owing to
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its ability to handle a wide range of acoustic conditions. Fbank
and Spectrogram are often used in speech recognition due to
their ability to represent temporal and spectral information.
Specifically, Fbank is effective at capturing spectral features
in a more compact form, while Spectrogram provides a
detailed time-frequency representation. LFCC, with its focus
on the high-frequency band of audio signals, is recognized
for its anti-spoofing capabilities, making it particularly useful
in deepfake speech detection, where verifying authenticity
is essential.

In the experimental setup, we varied the acoustic features
while keeping all other variables constant to ensure a fair
comparison. The results, Table 7,
evaluated using key performance metrics such as EER%,
Accuracy%, AUC%, and Fl-Score for both authentic and
synthetic speech data.

as summarized in are

From the table above, LFCC outperforms other features,
achieving the lowest EER% of 4.80% and the highest accuracy
of 98.05%, AUC% of 95.20%, and F1-Score of 0.99, making it
highly effective for deepfake speech detection. MFCC follows
closely with strong performance, particularly in accuracy of
97.42% and AUC% of 93.21%. GFCC shows solid robustness,
with an EER% of 7.54% and accuracy of 97.24%. Fbank and
Spectrogram perform comparatively lower, with Spectrogram
showing the highest EER% of 8.62% and the lowest accuracy
0f 96.23%.

Figure 8 depicts the ROC curves for five types of features
on the CNN-LSTM model, providing a visual representation of
their respective AUC values. It is observed that the area under
the ROC curve is largest for LECC features, followed by MFCC,
Fbank, GFCC, and Spectrogram, indicating their descending order
of performance in terms of AUC. This visual representation
reaffirms that LFCC features exhibit the highest discrimination
ability between authentic and synthetic speech, making them the
most effective for tasks requiring precise authenticity verification
in audio signals.

To further elucidate the contributions of different acoustic
features to model decisions, we conducted a SHAP (SHapley
Additive Explanations) analysis for MFCC, LFCC, and GFCC
features shown in Figure 9.

frontiersin.org


https://doi.org/10.3389/fnins.2025.1692122
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cheng et al.

The results reveal that LFCC features exhibit a distinct
and interpretable SHAP pattern, with significant positive
(indicated by red
the high-frequency and spectral variation areas of spoofed

contributions regions) concentrated in
samples. In contrast, SHAP values for genuine samples are
more uniformly distributed and predominantly negative,
suggesting that LFCC effectively highlights the anomalies
inherent in manipulated audio and serves as the primary
basis for the model’s predictions. By comparison, MFCC and
GFCC features display more scattered SHAP distributions with
mixed positive and negative contributions, particularly for fake
samples, where SHAP values largely hover around zero. This
indicates their limited utility in revealing artifacts associated with
deep-fake generation.

Furthermore, the clear divergence in SHAP distributions
between genuine and fake samples underscores LFCC’s role in
providing stable and interpretable decision cues. These findings
further validate LFCC as the preferred acoustic representation
for speech authentic detection and explain why the CNN-
LSTM model consistently outperforms standalone CNN or LSTM
architectures—its decision process effectively leverages the time-
frequency anomaly information encoded within LECC features,
enhancing both accuracy and generalization.

We used a confusion matrix Figure 10 to provide a more
intuitive view of the F1-Score metrics. It is observed that when
using LFCC features, the F1 Score for detecting authentic speech is
0.89, and for detecting synthetic speech is 0.99, which is the highest
among the three types of features.

This demonstrates that LFCC features excel in both precision
and recall for identifying both authentic and synthetic speech
instances, making them the most effective choice among the
evaluated acoustic features for this task.

6 Conclusions

In this study, we developed and validated an explainable
CNN-LSTM fusion model for forensic speech authentication,
leveraging LFCC features to jointly capture spectral and
temporal properties of audio. Experimental results on
ASVspoof2019 LA and WaveFake confirm that the proposed
model surpasses conventional CNN, LSTM, and recurrent
variants in accuracy, AUC, and EER, while demonstrating
robust cross-dataset generalization. Beyond performance,
explainable AI techniques such as Grad-CAM and SHAP
revealed interpretable decision bases, showing that the model’s
focus on high-frequency artifacts and temporal inconsistencies
parallels cognitive auditory mechanisms underlying human
speech perception.

By embedding model interpretability = within a
cognitive neuroscience perspective, this work advances
the development of trustworthy forensic tools that

not only detect deepfakes but

reasoning for expert evaluation in legal proceedings. Future

also provide transparent

research will explore tighter integration of psychoacoustic

sensitivity ~ profiles, multimodal cues, and neuro-inspired
front ends to further enhance robustness and cognitive
plausibility. These findings highlight the potential of
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explainable and cognitively grounded AI methods as a bridge

between computational neuroscience and forensic audio
analysis, contributing to both scientific understanding and

evidentiary practice.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

ZC: Visualization, Investigation, Data curation, Methodology,
Conceptualization, Writing - original draft, Supervision, Software.
HY: Writing - original draft, Data curation, Formal analysis,
Methodology. YX: Writing - original draft, Investigation,
Visualization. XH: Project administration, Validation, Writing -
review & editing, Writing - original draft.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org


https://doi.org/10.3389/fnins.2025.1692122
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Cheng et al.

References

Agarwal, H., Singh, A., and D, R. (2021). “Deepfake detection using SVM,” in
2021 Second International Conference on Electronics and Sustainable Communication
Systems (ICESC), 1245-1249. doi: 10.1109/ICESC51422.2021.9532627

Aziz, L. A. R, and Andriansyah, Y. (2023). The role artificial intelligence in modern
banking: an exploration of Al-driven approaches for enhanced fraud prevention, risk
management, and regulatory compliance. Rev. Contemp. Bus. Anal. 6, 110-132.

Broeders, T. (2001). "Forensic speech and audio analysis Forensic Linguistics 1998-
2001," in Proceedings 13th INTERPOL Forensic Science Symposium (Lyon, France).

Drew todd (2024). Hong Kong Clerk Defrauded of $25 Million in Sophisticated
Deepfake Scam. SecureWorld. Available online at: https://www.secureworld.io/
industry- news/hong-kong-deepfake- cybercrime (Accessed August 1, 2025).

Fan, C., Xue, J., Dong, S., Ding, M., Yi, J., Li, J., et al. (2023). Subband fusion
of complex spectrogram for fake speech detection. Speech Commun. 155:102988.
doi: 10.1016/j.specom.2023.102988

Frank, J., and Schénherr, L. (2021). Wavefake: a data set to facilitate audio deepfake
detection. arXiv preprint arXiv:2111.02813.

Frumarova, K. (2022). Evidence in administrative proceedings - proof by audio-
visual record, proof by the content of the website and other means of proof lacking
explicit regulation in the Code of Administrative Procedure. Instit. Admin. 2, 132-143.
doi: 10.54201/iajas.v2i1.31

Furui, S. (2018). Digital Speech Processing, Synthesis, and Recognition. New York:
CRC Press. doi: 10.1201/9781482270648

Gibb, R., Browning, E., GloverKapfer, P., and Jones, K. E. (2018). Emerging
opportunities and challenges for passive acoustics in ecological assessment and
monitoring. Methods Ecol. Evol. 10, 169-185. doi: 10.1111/2041-210X.13101

Gold, B., Morgan, N., and Ellis, D. (2011). Speech and Audio Signal Processing:
Processing and Perception of Speech and Music. London: John Wiley & Sons.
doi: 10.1002/9781118142882

Jiang, Z., Ma, Y., Shi, B, Lu, X,, Xing, J., Gonalves, N., et al. (2024). Social
NSTransformers: low-quality pedestrian trajectory prediction. IEEE Trans. Artif. Intell.
5, 5575-5588. doi: 10.1109/TAL.2024.3421175

Jiang, Z., Qin, C., Yang, R, Shi, B., Alsaadi, F. E., and Wang, Z. (2025a).
Social entropy informer: a multi-scale model-data dual-driven approach for
pedestrian trajectory prediction. IEEE Trans. Intell. Transport. Syst. 2025, 1-16.
doi: 10.1109/T1TS.2025.3572254

Jiang, Z., Yang, R., Ma, Y., Qin, C., Chen, X., and Wang, Z. (2025b). Social informer:
pedestrian trajectory prediction by informer with adaptive trajectory probability region
optimization. IEEE Trans. Cybern. 2025, 1-14. doi: 10.1109/TCYB.2025.3613498

Jin, B, Cruz, L., and Gonalves, N. (2022). Pseudo RGB-D face recognition. IEEE
Sens. J. 22,21780-21794. doi: 10.1109/JSEN.2022.3197235

Jin, B., Gonalves, N., Cruz, L, Medvedev, I, Yu, Y., and Wang, J. (2024).
Simulated multimodal deep facial diagnosis. Expert Syst. Appl. 252:123881.
doi: 10.1016/j.eswa.2024.123881

Kawa, P., Plata, M., and Syga, P. (2022). Attack agnostic dataset: towards
generalization and stabilization of audio DeepFake detection. Interspeech 2022,
4023-4027. doi: 10.21437/Interspeech.2022-10078

Kemp, D. T. (1978). Stimulated acoustic emissions from within the human auditory
system. J. Acoust. Soc. Am. 64, 1386-1391. doi: 10.1121/1.382104

Koenig, B. E., and Lacey, D. S. (2015). “Forensic authentication of digital audio and
video files,” in Handbook of Digital Forensics of Multimedia Data and Devices, 133-181.
doi: 10.1002/9781118705773.ch4

Lai, C.-I, Chen, N., Villalba, J., and Dehak, N. (2019). ASSERT: anti-spoofing with
squeeze-excitation and residual networks. arXiv preprint arXiv:1904.01120.

Lavrentyeva, G., Novoselov, S., Malykh, E., Kozlov, A., Kudashev, O., and
Shchemelinin, V. (2017). “Audio replay attack detection with deep learning
frameworks,” in Interspeech 2017. doi: 10.21437/Interspeech.2017-360

Liu, G, Ren, S, Wang, J., and Zhou, W. (2025a). Efficient group cosine

convolutional neural network for EEG-based seizure identification. IEEE Trans.
Instrum. Meas. 74, 1-14. doi: 10.1109/TIM.2025.3569362

Liu, G., Wen, Y., Hsiao, J. H., Zhang, D., Tian, L., and Zhou, W. (2023). EEG-based
familiar and unfamiliar face classification using filter-bank differential entropy features.
IEEE Trans. Hum.-Mach. Syst. 54, 44-55. doi: 10.1109/THMS.2023.3332209

Frontiersin Neuroscience

13

10.3389/fnins.2025.1692122

Liu, G, Zhang, J., Chan, A. B,, and Hsiao, J. H. (2024). Human attention guided
explainable artificial intelligence for computer vision models. Neural Netw. 177:106392.
doi: 10.1016/j.neunet.2024.106392

Liu, G., Zhang, R,, Tian, L., and Zhou, W. (2025b). Fine-grained spatial-frequency-
time framework for motor imagery braincomputer interface. IEEE ]. Biomed. Health
Inf. 29, 4121-4133. doi: 10.1109/JBHI.2025.3536212

Liu, G., Zheng, Y., Tsang, M. H. L, Zhao, Y, and Hsiao, J. H.
(2025¢). Understanding the role of eye movement pattern and consistency
during face recognition through EEG decoding. NPJ Sci. Learn. 10:28.
doi: 10.1038/541539-025-00316-3

Liu, G., Zhou, W., and Geng, M. (2019). Automatic seizure detection based on
s-transform and deep convolutional neural network. Int. J. Neural Syst. 30:1950024.
doi: 10.1142/50129065719500242

Maher, R. (2009). Audio forensic examination. IEEE Signal Process. Mag. 26, 84-94.
doi: 10.1109/MSP.2008.931080

Martinovic, I, and Tripalo, D. (2017). Audio and video recording in criminal
substantive and procedural law: theoretical and practical challenges arising
from new technologies and legislative solutions. Croatian Ann. Crim. Sci. Prac.
24:499.

Masood, M., Nawaz, M., Malik, K. M., Javed, A., Irtaza, A., and Malik,
H. (2022). Deepfakes generation and detection: state-of-the-art, open
challenges, countermeasures, and way forward. Appl. Intell. 53, 3974-4026.
doi: 10.1007/s10489-022-03766-z

Nautsch, A., Wang, X., Evans, N., Kinnunen, T. H., Vestman, V., Todisco, M., et al.
(2021). ASVspoof 2019: spoofing countermeasures for the detection of synthesized,
converted and replayed speech. IEEE Trans. Biometr. Behav. Identity Sci. 3, 252-265.
doi: 10.1109/TBIOM.2021.3059479

Nye, P. W., Reiss, L. ]., Cooper, F. S., McGuire, R. M., Mermelstein, P., and Montlick,
T. (1975). A digital pattern playback for the analysis and manipulation of speech
signals. Haskins Lab. Status Rep. Speech Res. 44, 95-107.

Poddar, A., Sahidullah, M., and Saha, G. (2017). Speaker verification with short
utterances: a review of challenges, trends and opportunities. IET Biometr. 7, 91-101.
doi: 10.1049/iet-bmt.2017.0065

Rahman, M. H., Graciarena, M., Castan, D., Cobo-Kroenke, C., McLaren, M., and
Lawson, A. (2022). “Detecting synthetic speech manipulation in real audio recordings,”
in 2022 IEEE International Workshop on Information Forensics and Security (WIFS)
(IEEE), 1-6. doi: 10.1109/WIFS55849.2022.9975381

Ravanelli, M., and Yoshua, B. (2018). Interpretable convolutional filters with
sincnet. arXiv preprint arXiv:1811.09725.

Reis, P. M. G. 1, and Ribeiro, R. O. (2024). A forensic evaluation method for
DeepFake detection using DCNN-based facial similarity scores. Forensic Sci. Int.
358:111747. doi: 10.1016/j.forsciint.2023.111747

Salim, S., Shahnawazuddin, S., and Ahmad, W. (2024). Combined approach to
dysarthric speaker verification using data augmentation and feature fusion. Speech
Commun. 160:103070. doi: 10.1016/j.specom.2024.103070

Stupp, C. (2019). Fraudsters used Al to mimic CEOs voice in unusual cybercrime
case. Wall Street J. 30.

Sundermeyer, M., Schliter, R., and Ney, H. (2012). “LSTM neural networks
for language modeling” in Interspeech 2012. doi: 10.21437/Interspeech.
2012-65

Tak, H., Patino, J., Todisco, M., Nautsch, A., Evans, N., and Larcher, A.
(2021). “End-to-End anti-spoofing with RawNet2,” in ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
6369-6373. doi: 10.1109/ICASSP39728.2021.9414234

Voloshynovskiy, S., Pereira, S., Pun, T., Eggers, J. J., and Su, J. K. (2001). Attacks
on digital watermarks: classification, estimation based attacks, and benchmarks. IEEE
Commun. Magaz. 39, 118-126. doi: 10.1109/35.940053

Wu, Z.,, Kinnunen, T., Evans, N., and Yamagishi, J. (2014). ASVspoof 2015:
Automatic speaker verification spoofing and countermeasures challenge evaluation
plan. Training 10:3750. doi: 10.21437/Interspeech.2015-462

Yang, H., Yan, X., and Wang, H. (2024). Dual-branch network with fused
Mel features for logic-manipulated speech detection. Appl. Acoust. 222:110047.
doi: 10.1016/j.apacoust.2024.110047

frontiersin.org


https://doi.org/10.3389/fnins.2025.1692122
https://doi.org/10.1109/ICESC51422.2021.9532627
https://www.secureworld.io/industry-news/hong-kong-deepfake-cybercrime
https://www.secureworld.io/industry-news/hong-kong-deepfake-cybercrime
https://doi.org/10.1016/j.specom.2023.102988
https://doi.org/10.54201/iajas.v2i1.31
https://doi.org/10.1201/9781482270648
https://doi.org/10.1111/2041-210X.13101
https://doi.org/10.1002/9781118142882
https://doi.org/10.1109/TAI.2024.3421175
https://doi.org/10.1109/TITS.2025.3572254
https://doi.org/10.1109/TCYB.2025.3613498
https://doi.org/10.1109/JSEN.2022.3197235
https://doi.org/10.1016/j.eswa.2024.123881
https://doi.org/10.21437/Interspeech.2022-10078
https://doi.org/10.1121/1.382104
https://doi.org/10.1002/9781118705773.ch4
https://doi.org/10.21437/Interspeech.2017-360
https://doi.org/10.1109/TIM.2025.3569362
https://doi.org/10.1109/THMS.2023.3332209
https://doi.org/10.1016/j.neunet.2024.106392
https://doi.org/10.1109/JBHI.2025.3536212
https://doi.org/10.1038/s41539-025-00316-3
https://doi.org/10.1142/S0129065719500242
https://doi.org/10.1109/MSP.2008.931080
https://doi.org/10.1007/s10489-022-03766-z
https://doi.org/10.1109/TBIOM.2021.3059479
https://doi.org/10.1049/iet-bmt.2017.0065
https://doi.org/10.1109/WIFS55849.2022.9975381
https://doi.org/10.1016/j.forsciint.2023.111747
https://doi.org/10.1016/j.specom.2024.103070
https://doi.org/10.21437/Interspeech.2012-65
https://doi.org/10.1109/ICASSP39728.2021.9414234
https://doi.org/10.1109/35.940053
https://doi.org/10.21437/Interspeech.2015-462
https://doi.org/10.1016/j.apacoust.2024.110047
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Explainable AI for forensic speech authentication within cognitive and computational neuroscience
	1 Introduction
	2 Related work
	3 Method
	3.1 Speech spectral analysis
	3.2 Linear frequency cepstral coefficient feature extraction
	3.3 Proposed model
	3.3.1 CNN
	3.3.2 LSTM


	4 Experiments
	4.1 Dataset and pre-processing
	4.2 Evaluation metrics and implementation details

	5 Results
	5.1 Model comparison
	5.2 Acoustic

	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


