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Motor imagery EEG classification 
via wavelet-packet synthetic 
augmentation and entropy-based 
channel selection
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College of Intelligent Manufacturing, Putian University, Putian, China

Introduction: Motor-imagery (MI) brain–computer interfaces often suffer 
from limited EEG datasets and redundant channels, hampering both accuracy 
and clinical usability. We  address these bottlenecks by presenting a unified 
framework that simultaneously boosts classification performance, reduces the 
number of required sensors, and eliminates the need for extra recordings.
Methods: A three-stage pipeline is proposed. (1) Wavelet-packet decomposition 
(WPD) partitions each MI class into low-variance “stable” and high-variance 
“variant” trials; sub-band swapping between matched pairs generates synthetic 
trials that preserve event-related desynchronization/synchronization signatures. 
(2) Channel selection uses wavelet-packet energy entropy (WPEE) to quantify 
both spectral-energy complexity and class-separability; the top-ranked leads are 
retained. (3) A lightweight multi-branch network extracts multi-scale temporal 
features through parallel dilated convolutions, refines spatial patterns via depth-
wise convolutions, and feeds the fused spatiotemporal tensor to a Transformer 
encoder with multi-head self-attention; soft-voted fully-connected layers 
deliver robust class labels.
Results: On BCI Competition IV 2a and PhysioNet MI datasets the proposed 
method achieves 86.81 and 86.64% mean accuracies, respectively, while 
removing 27% of sensors. These results outperform the same network trained on 
all 22 channels, and paired t-tests confirm significant improvements (p < 0.01).
Discussion: Integrating WPD-based augmentation with WPEE-driven channel 
selection yields higher MI decoding accuracy with fewer channels and without 
extra recordings. The framework offers a computationally efficient, clinically 
viable paradigm for enhanced EEG classification in resource-constrained 
settings.
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1 Introduction

The brain–computer interface (BCI) system establishes a communication pathway 
between the human brain and external devices, enabling the translation of users’ intentions 
into actions without relying on peripheral nerves or muscles (Xiong et al., 2021). Motor 
Imagery (MI), a prominent BCI paradigm, involves users actively imagining limb movements 
to activate corresponding brain regions and generate electroencephalogram (EEG) signals. 
Distinct motor imagery tasks produce differentiable EEG patterns, thereby facilitating the 
linkage between mental commands and external devices (Keutayeva et al., 2024). Accurate 
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recognition and classification of MI-EEG signals are critical for 
advancing BCI systems toward practical daily applications. While 
EEG is convenient and inexpensive, practical MI decoding is hindered 
by three intertwined limitations. First, single-session recordings rarely 
exceed a few 100 trials, yielding a severely under-sampled condition. 
Second, the low signal-to-noise ratio of scalp measurements makes 
the relevant α/β components easily obscured by physiological or 
environmental artifacts. Third, high-density montages (64–128 
electrodes) improve spatial resolution but prolong preparation and 
computation, conflicting with the portability and low-latency 
demands of mobile or home-use systems.

Motor-imagery (MI) EEG decoding has long been hampered by 
small sample sizes, high noise levels, and redundant channels. Data 
augmentation (DA) and channel selection (CS) are therefore 
routinely exploited to mitigate these problems. Early studies relied 
on hand-crafted features combined with digital filtering: the 
common spatial pattern (CSP) family—e.g., FBCSP (Chin et al., 
2008), RCSP (Lotte and Guan, 2011), and TR-CSP (Samek et al., 
2014)—decomposes the signal into multiple frequency bands or 
introduces regularization terms to derive spatial filters that 
simultaneously perform channel selection. To reduce filter leakage, 
CSP-based pipelines usually incorporate cross-validation on the 
training set together with symmetric subset selection, establishing 
the classical CS paradigm. With the advent of deep learning, both 
DA and CS have been integrated into end-to-end architectures. 
Representative DA techniques include CSGAN (Song et al., 2021), 
CovMix (Zoumpourlis and Patras, 2022) and OT-FMixup (Chen et 
al., 2022) augment motor-imagery EEG by interpolating or 
adversarially generating new samples along the time–frequency–
spatial dimensions, enhancing cross-subject decoding without extra 
recordings. For CS, EEGNet (Lawhern et  al., 2018) and 
ShallowConvNet (Schirrmeister et al., 2017) learn channel weights 
through the first 1-D convolutional layer, whereas TCNet-Fusion 
(Musallam et  al., 2021) and M-FANet (Fu et  al., 2024) attach 
attention gates; conformer (Song et al., 2023) and C2CM (Sakhavi 
et al., 2018) impose implicit pruning via grouped or sparse self-
attention. Recent work further infuses neurophysiological priors 
into model training. Physics-informed Attention-TCN (Altaheri 
et al., 2022), for instance, constructs a frequency-domain loss term 
that aligns the network’s internal representations with the well-
established μ/β rhythms of EEG, and jointly optimizes this loss with 
the data-driven objective to enhance interpretability. The Fine-
Grained Spatial-Frequency-Time (SFT) (Liu et al., 2025) framework 
partitions 22 scalp channels into several region-of-interest groups 
guided by neuroanatomy, enabling multi-scale spatial feature 
extraction. Building on these advances, the present study aims to 
unify data augmentation and channel selection under a common 
neurophysiological prior.

To address these limitations, this paper proposes: a hybrid EEG 
data augmentation method integrating time-domain and frequency-
domain techniques; a channel selection approach based on wavelet 
packet energy entropy difference for eliminating redundant 
channels; a multi-branch spatio-temporal convolutional 
Transformer network that effectively leverages the complementary 
advantages of multi-scale feature extraction across subjects, with 
final classification determined through a voting mechanism. First, 
we  augment the EEG dataset by generating synthetic EEG data 
through our hybrid time-frequency augmentation method. 

Combining original and synthetic data effectively mitigates model 
overfitting. Subsequently, redundant channels are eliminated using 
our wavelet packet energy entropy difference-based selection 
method. For the model architecture, three parallel branches with 
distinct temporal convolutional scales extract local temporal 
features, followed by spatial convolution to capture spatial patterns. 
The resulting spatio-temporal features are processed by Transformer 
encoder modules, where multi-head self-attention mechanisms 
learn global temporal dependencies in EEG signals. Each branch 
produces independent outputs through separate fully connected 
layers, with final classification determined by majority voting. 
Experimental validation on public datasets confirms the effectiveness 
of our method in enhancing classification performance.

The principal contributions of this study are as follows:

	 1.	 EEG data augmentation method: A hybrid time-domain and 
frequency-domain EEG data augmentation approach designed 
to expand datasets and alleviate model overfitting.

	 2.	 EEG channel selection method: A wavelet packet energy 
entropy difference-based channel selection algorithm that 
eliminates redundant channels. This approach achieves 
comparable or superior classification performance to full-
channel methods using fewer EEG channels. Evaluations of 
different channel group configurations demonstrate that 
symmetrically distributed channel groups yield optimal results.

	 3.	 Multi-branch spatio-temporal feature extraction architecture: 
A network design featuring three parallel temporal 
convolutional branches for multi-scale temporal feature 
extraction. Spatial convolution is subsequently applied to each 
branch. The spatio-temporal features are fed into Transformer 
networks where multi-head attention mechanisms dynamically 
assign weights. Final decisions are integrated via voting across 
fully connected layers.

2 Related work

Section 2 surveys the three computational pillars of modern 
MI-EEG decoding: data augmentation, channel selection, and deep 
representation learning. For each pillar we trace the evolution from 
heuristic or handcrafted solutions to recent learning-based strategies, 
highlight residual bottlenecks, and thereby motivate the integrated 
framework proposed in this work.

2.1 Data augmentation

Early EEG augmentation relies on geometric transforms—
rotation, flipping, and electrode swapping—to enlarge datasets. 
Shovon et al. (2019) rotate and flip MI-EEG trials in a multi-input 
CNN, though these operations risk discarding fine temporal–spectral 
information. Zhang et  al. (2019) first convert EEG to STFT 
spectrograms, then apply rotation and noise injection, enhancing 
geometric augmentation for image-based pipelines. Roy et al. (2019) 
swap left–right electrodes within the same class, yielding modest 
benefits. Roy et al. (2020) employ GANs for subject-specific synthesis, 
requiring heavy adversarial training. Qin et al. (2023) use Static-Var 
Generation (SVG) to model electrode displacements and spatial brain 
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patterns, densifying samples near the original manifold; the impact of 
exact electrode positioning needs further study.

Decomposition–fusion strategies exploit deeper EEG structure. 
Yu and Stefan (2023) exchange time segments between same-class 
trials and swap matched frequency bands, achieving joint 
temporal–spectral augmentation. Xia et  al. (2024) apply DCT, 
randomly recombine six selected frequency bands, and reconstruct 
plausible synthetic trials. EEG augmentation has thus progressed 
from simple geometric manipulations to sophisticated 
decomposition–fusion schemes respecting spatio-temporal–
spectral properties. Motivated by these advances, we propose an 
integrated framework coupling wavelet-packet decomposition with 
geometric crop-and-reconstruction. Relevant motor-imagery 
nodes are exchanged in the frequency domain before signal 
reconstruction, preserving physiological validity while expanding 
the class-conditional distribution. Subsequent geometric cropping 
further blends these samples, yielding rich yet physiologically 
consistent augmentations.

2.2 Channel selection

Traditional EEG channel selection typically relies on 
neuroscientific brain parcellations for manual electrode selection over 
task-relevant regions. However, substantial inter-subject variability 
often renders such selections prone to redundant or irrelevant sensors 
(Blankertz et al., 2008). Modern approaches are broadly categorized 
as wrapper-based or filter-based strategies.

Wrapper methods optimize channel subsets using classifier 
performance as the objective, employing heuristic searches. Wei and 
Wang (2011) applied BMOPSO to motor-imagery EEG, reducing 22 
channels to eight. Zhang et al. (2021) used Deep MOPSO with CNN 
accuracy, trimming to 10 channels with ~3% accuracy gain. Vadivelan 
and Sethuramalingam (2025) coupled MPJS with DB-EEGNet, 
compressing 64 channels to 12 and boosting accuracy from 79.3 to 
85.6%. These methods yield tailored subsets but are computationally 
expensive and prone to overfitting.

Filter methods derive relevance scores directly from signals for 
pruning. Lotte and Guan (2011) ranked channels by energy 
contribution to CSP filters. Arvaneh et al. (2011) introduced sparse 
CSP with L₁ regularization, achieving 85% accuracy with only 8 of 22 
channels. Filter methods are computationally efficient and 
resource-frugal.

Balancing both approaches and inspired by CSP, this study adopts 
a wavelet-packet energy-entropy-based filter. This method captures 
energy distribution and uncertainty with minimal computation, 
addressing CSP’s exclusive focus on second-order energy differences 
and neglect of phase/connectivity information.

2.3 Deep learning models

Influenced by deep learning, MI-EEG decoding now centers on 
CNNs, RNNs and Transformers, substantially lifting accuracy 
(Bicchi et  al., 2021). Schirrmeister et  al. (2017) introduced 
end-to-end spatio-temporal CNNs as the baseline. Sakhavi et al. 
(2015) employed FBCSP pre-processing followed by CNN 
classification, yet hand-crafted features remain a bottleneck. Amin 

et al. (2019) fused global and local representations via layer-wise 
weighted convolutions; Roy (2022) proposed a multi-scale CNN to 
harvest discriminative cues within separate frequency bands. 
Nevertheless, these CNN-centric models still struggle to capture 
long temporal dependencies.

Transformers, renowned for long-range modeling, are rapidly 
adopted. Adel et  al. (2024) used self-attention across spatial–
temporal dimensions, periodically updating channel weights and 
improving accuracy. Ma et  al. (2022) coupled CNNs with 
Transformers: CNNs extract local patterns and Transformers capture 
global dependencies across spatial, spectral and temporal domains. 
Luo et al. (2023) presented a shallow mirrored Transformer with 
multi-head self-attention and left–right mirroring for data 
augmentation. Permana et  al. (2023) designed a dual-level 
architecture in which a low-level Transformer extracts short-time 
features and a high-level Transformer attends to salient intervals via 
dynamic weighting.

We integrate multi-branch CNNs and Transformers: parallel 
temporal convolutions with multiple receptive fields capture multi-
scale local dynamics, providing temporal priors for the Transformer. 
The Transformer then establishes global dependencies and adaptively 
weights features. This hybrid design mitigates the limited long-range 
modeling of pure CNNs and the local-detail oversight of pure 
Transformers, enabling more robust and accurate decoding under 
scarce data and high inter-subject variability.

In summary, augmentation has evolved from simple geometric 
transforms to decomposition–fusion schemes that respect EEG 
physiology; channel selection has moved from anatomical heuristics 
to data-driven ranking; and deep models have shifted from pure 
CNNs to CNN–Transformer hybrids that couple local spectral cues 
with long-range context. To the best of our knowledge, this study is 
the first to simultaneously expand the class-conditional manifold via 
wavelet-domain node exchange, compress the electrode array with 
wavelet-packet energy–entropy filtering (without classifier retraining), 
and feed the enriched yet concise data into a multi-branch CNN–
Transformer for accurate, lightweight and robust MI decoding in 
small-sample, low-density scenarios.

3 Methods

This study proposes a novel neural network architecture, as 
illustrated in Figure 1. The overall model architecture integrates four 
core components: data preprocessing and augmentation, channel 
selection, a three-branch spatio-temporal convolutional Transformer 
module, and a voting classification module.

3.1 Overview

In the data preprocessing and augmentation stage, a hybrid 
EEG augmentation approach combining geometric cropping-
reconstruction with decomposition-transform techniques is 
employed. This method effectively expands the scale of the EEG 
dataset, thereby mitigating model overfitting. Subsequently, the 
channel selection module utilizes a wavelet packet energy entropy 
difference-based method to identify and eliminate redundant  
channels.
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The processed data then enters the three-branch spatio-
temporal convolutional Transformer module. Within each branch, 
temporal convolutions with distinct kernel sizes extract multi-scale 
temporal feature representations. Spatial convolution is 
subsequently applied along the channel dimension to the selected 
EEG channels to enhance discriminative spatial features. Batch 
normalization and average pooling operations are incorporated 
after convolution to improve model stability and emphasize salient 
feature characteristics.

The resulting multi-scale spatio-temporal features from each 
branch are independently encoded by separate Transformer 
encoders. Multi-head attention layers within these encoders capture 
long-term temporal dependencies inherent in the EEG signals. 
Following Transformer encoding, the features from each branch are 
processed by distinct fully connected layers. Branch-specific 
classification probabilities are then computed via Softmax 
activation functions.

Finally, the voting classification module determines the ultimate 
class prediction through majority voting based on the classification 
outputs from the three individual branches.

3.2 Preprocessing and data augmentation

The public dataset was pre-processed as follows. Continuous 
EEG signals were first high-pass filtered at 1 Hz (zero-phase FIR) 
to remove drift, then notch-filtered at 50 Hz to suppress power-line 
interference, and finally band-pass filtered between 4 and 40 Hz 
using a sixth-order Chebyshev Type-II filter to attenuate 
physiological artifacts such as ECG and EMG. To enlarge the data 
volume, each trial was segmented—via an overlapping sliding 
window—into two 4-s epochs (2–6 s and 3–7 s post-cue) that were 

treated as independent samples, effectively doubling the dataset. It 
should be noted that this filter-only pipeline follows the conformer 
baseline and cannot remove ocular, cardiac, or muscular artifacts 
whose spectra overlap with the α/β bands; consequently, within-
subject results may be slightly inflated. More sophisticated artifact-
reduction methods (e.g., ICA or ASR) will be explored in future 
work to further validate the findings.

EEG data augmentation serves as an effective strategy for 
expanding datasets and enhancing model robustness. This study 
proposes a novel EEG data augmentation method based on power 
spectral density (PSD) analysis and time-frequency component 
exchange. It is critical to emphasize that this augmentation was 
applied exclusively to the training data in a strict manner to prevent 
any data leakage. The core approach involves, on the training set 
only, intra-class sample grouping, followed by the targeted 
exchange of specific frequency band components between 
low-variance samples (representing stable EEG patterns) and high-
variance samples (representing variant EEG patterns). This process 
generates synthetic EEG signals possessing neurophysiological 
plausibility, which are then used to augment the training set. The 
held-out test set remains completely untouched and unaltered 
throughout this process, ensuring the validity of our evaluation. 
The overall workflow, illustrated in Figure  2, comprises the 
following steps:

	 1.	 Power spectral density calculation and intra-class grouping: 
compute PSD for each sample and categorize them into 
low-variance and high-variance groups within each class.

	 2.	 Wavelet packet decomposition for time-frequency 
representation: decompose the EEG signals using wavelet 
packet transform (WPT) to obtain their time-frequency  
representations.

FIGURE 1

Flowchart of the DACS-TBTrans framework.
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	 3.	 Directed frequency band component exchange: swap specific 
frequency band components between paired low-variance and 
high-variance samples.

	 4.	 Wavelet packet reconstruction for synthetic sample generation: 
reconstruct the modified time-frequency components to 
generate new synthetic EEG samples.

For EEG data × ×∈ kN C T
kX   within each class ∈0,1,2,3k , the PSD 

is computed as:

	
( ) ( )= = …PSD , 1, ,k

i ki i NP X 	 (1)

In Equation 1, kN  represents the number of samples within the 
class k, C denotes the number of channels, T indicates the number of 

time points, and ( ) ×∈k C F
iP   is the PSD matrix of sample i (where F 

is the number of frequency points).
For each class, the mean PSD is computed as shown in Equation 2:

	
( ) ( )

=
= ∑ 1

1 kN kk
iikN

P P
	

(2)

For each sample i and channel c, the normalized deviation is 
computed as shown in Equation 3:

	

( ) ( ) ( )

( )
( ) ( )

( ) ( )

= −

 −  
 =

   −   
   

, ,

, ,
, ,

, ,

min

max min

k k k
i c i c

k k
i c i ck

norm i c k k
i c i c

P P∆

∆ ∆
∆

∆ ∆
	

(3)

Where ( )
,
k

i cP  denotes the PSD corresponding to the c channel of the 

i sample, ( )
,
k

i c∆  represents the PSD deviation of the c channel in the i 

sample, and ( )
, ,

k
norm i c∆  is the normalized deviation.

In Equation 4, the total variance metric is computed for each 
sample, and the dataset is partitioned into two groups:
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(4)

Where ( )k
iV  denotes the total variance of the i sample in class k, 

samples are partitioned into two groups based on ascending total 

variance: the low-variance group ( )
low
kG  and high-variance group ( )

high
kG .

For each class of EEG signals, 5-level wavelet packet 
decomposition is performed using the db4 wavelet basis. Subsequently, 
directed frequency band exchange is implemented. Given that motor 
imagery EEG information is primarily concentrated in the α rhythm 
(8–13 Hz) and β rhythm (14–30 Hz) (Wu et al., 2025), sample pairs 

are formed by matching the sample with the lowest variance in ( )
low
kG  

to the sample with the highest variance in ( )
high
kG  using end-to-end 

correspondence. The time-frequency data of wavelet decomposition 
nodes corresponding to the α and β rhythm frequency bands are 
exchanged between each pair. Finally, wavelet packet 
reconstruction is applied to generate the frequency-augmented 
synthetic sample ′X .

For temporal domain augmentation, the geometric cropping-
reconstruction method (Schirrmeister et al., 2017) is applied to both 
the frequency-augmented synthetic samples ′X  and original EEG data 
X. Within each class, random cropping and splicing reconstruction 
are performed, generating augmented EEG data per class. These class-
specific augmented data are then randomly shuffled and combined, 
yielding spatio-temporally augmented samples ′′X . Finally, ′′X  is 
incorporated into the EEG dataset, producing the enhanced 
EEG data X̂ .

FIGURE 2

Flowchart of the data augmentation.
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3.3 Channel selection

EEG signals often contain redundant channels. Selecting channels 
that better represent the subject’s actual motor imagery information 
from the original set can significantly enhance model classification 
performance (Guo et al., 2025). This study proposes an EEG channel 
selection technique based on wavelet packet energy entropy analysis 
for channel screening. Crucially, channel selection is performed solely 
on the training data: the optimal channel subset is identified from the 
training set and then frozen for subsequent use on the test set, 
ensuring unbiased evaluation. As illustrated in Figure 1, the method 
quantifies each channel’s discriminative power in EEG signal 
classification by integrating energy distribution complexity with inter-
class separability, enabling efficient feature selection. The procedure 
comprises four stages: wavelet packet decomposition and energy 
entropy computation, energy entropy standardization, inter-class 
divergence measurement, and comprehensive channel importance  
ranking.

First, a 5-level wavelet packet decomposition is applied to the EEG 
signals. In Equation 5, the energy of each channel is computed, 
followed by the calculation of energy entropy based on the energy 
proportion of each channel across decomposition nodes:

	 =
= −∑32

, , , 2 , ,1 logi c i c j i c jjH p p
	

(5)

Where pi,c,j denotes the energy proportion of channel c at 
decomposition node j for sample i, and Hi, c represents the energy 
entropy of channel c for sample i.

In Equation 6, the energy entropy values undergo max–
min normalization:

	

−
=

−


, ,
,

, ,

min

max min

i c i m
m

i c
i m i m

mm

H H
H

H H
	

(6)

Where  ,i cH  denotes the normalized energy entropy, ,i mH  
represent the maximum and minimum energy entropy values, 
respectively.

The normalized energy entropy is grouped by ∈0,1,2,3k  class, 
with 

˜
kH  indicating the normalized energy entropy for class k data. 

Inter-class divergence is measured using the energy entropy values 
across four classes. Higher energy entropy values indicate more 
uniform energy distribution, signifying richer spectral information in 
that channel. We compute pairwise differences between class-specific 
channel energy entropy values, yielding six sets of channel energy 
entropy differences, which are then standardized:

The six standardized difference sets are sorted to obtain 
∈0,1,2,3,4,5g  descending-order channel sequence gD . Larger 

wavelet packet energy entropy differences indicate greater spectral 
divergence between corresponding channels of two classes. We posit 
that selecting the top n channels with the largest differences enhances 
discriminability of inter-class features, which benefits classification  
performance.

Based on the positions of the EEG electrodes, predefined pairs of 
symmetric electrodes, such as C3/C4, FC1/FC2, etc., are established. 
After calculating the wavelet packet entropy and obtaining the 
sequence of channels, the first n channels are selected (it is later 

verified that n = 12). Then, following the principle of electrode pairing, 
the process starts from the end of the channel sequence and works 
backward to match symmetrically until symmetry is achieved, thus 
completing the channel selection.

The channel indexes ′
gD  obtained through initial screening are 

comprehensively ranked by importance according to their spatial 
positions, yielding the final selected n channels ′

gD .

3.4 Network architecture

As illustrated in Figure  1, the proposed method employs a 
multi-scale spatio-temporal feature extraction design. The input 
signals are processed in parallel through temporal convolutional 
layers in three branch networks. Each temporal convolution uses 
distinct filter sizes: (1 × 20), (1 × 40), and (1 × 60), respectively, 
with a uniform stride of (1 × 1). The outputs of these temporal 
layers are then fed into corresponding spatial convolutional layers, 
all utilizing kernel sizes of (n × 1) and stride (1 × 1) to extract 
spatial features.

Following multi-scale spatio-temporal convolution, each branch 
undergoes Batch Normalization and Exponential Linear Unit (ELU) 
activation to stabilize training and mitigate overfitting. To 
accommodate the varying scales of spatio-temporal features extracted 
by different branches, average pooling layers are applied with branch-
specific configurations: Branch 1: Pool size (1 × 30), stride (1 × 25); 
Branch 2: Pool size (1 × 50), stride (1 × 20); and Branch 3: Pool size 
(1 × 70), stride (1 × 15). The processed features from all three branches 
are passed through separate fully connected layers to generate 
classification probabilities. Final class prediction is determined by 
majority voting. Experimental validation on public datasets confirms 
the effectiveness of this architecture in enhancing classification  
performance.

3.5 Performance metrics

To comprehensively evaluate the performance of the proposed 
method, datasets were partitioned into training and test sets. Models 
were trained on the training set and evaluated on the test set. For each 
subject, this procedure was performed independently, with results 
averaged across subjects. Three established metrics were employed: 
accuracy (Li et  al., 2021), Kappa coefficient (Carletta, 1996), and 
F1-score (Li et  al., 2019). Their computational formulations are 
given below:

	
+

=
+ + +
TP TNAcc

TP TN FP FN 	
(7)

Accuracy (Acc) quantifies the proportion of correctly predicted 
samples relative to the total sample size. In Equation 7, TP denotes 
True Positives, TN denotes True Negatives, FP denotes False Positives, 
and FN denotes False Negatives. The value of Accuracy falls within the 
range [0, 1], where values closer to 1 correspond to superior 
model performance.
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The Kappa coefficient (κ) is computed from the confusion matrix 
to quantify the agreement between actual classifications and random 
chance classifications, thereby assessing model performance. In 
Equation 8 oP : Overall classification accuracy (observed agreement), 
calculated as the ratio of correctly classified samples to total samples. 

eP : Expected accuracy under random chance, derived from the 
product of marginal class distributions. The κ  value ranges from −1 
to 1, where values approaching 1 indicate increasingly reliable model 
performance beyond random chance.

	
=

+ +1
2TPF

2TP FP FN 	
(9)

In Equation 9, the F1 ranges between [0,1], with values 
approaching 1 indicating superior classification performance.

3.6 Experimental settings

The computational platform configuration comprised an Intel Core 
i9-11900k CPU and NVIDIA RTX A4000 GPU with 16GB VRAM. The 
software framework was implemented using PyTorch on Python 3.9 
under Windows 11. Models were optimized using the Adam algorithm 
with batch sizes of 288 for Dataset 2a and 100 for Physionet MI, a learning 
rate of 0.0002, and cross-entropy loss. To prevent overfitting, training 
employed early-stop (patience = 50), weight-decay = 1 × 10−5, and a 
dropout rate of 0.5. The multi-head attention module utilized 10 heads 
with 6 layers, and training proceeded for 2000 epochs considering 
computational resources and model performance.

The BCI Competition IV 2a dataset comprises EEG signals from 9 
subjects. Each subject performed four motor imagery (MI) tasks: left 
hand (Class 0), right hand (Class 1), tongue (Class 2), and feet (Class 

3). Each session included 48 trials, with MI tasks equally distributed 
across classes. Six runs were conducted per subject, yielding 288 MI 
trials per subject. EEG data acquisition began at 2 s post-cue onset and 
continued until approximately 7 s, followed by a rest period. Given the 
standard 4-s analysis window (T = 1,000 sampling points at 250 Hz) 
and inter-subject variability, data segments from both 2–6 s and 3–7 s 
intervals were utilized, as both contain discriminative MI information. 
These intervals were merged to effectively double the dataset size.

The Physionet MI dataset (Goldberger et al., 2000) includes four MI 
tasks (left hand, right hand, fists, feet) recorded from 109 subjects. EEG 
data were acquired using 64 electrodes at 160 Hz. Each subject underwent 
baseline recordings (eyes open/closed) and completed three experimental 
sessions, each containing 14 trials. After excluding Subjects 38, 88, 89, 92, 
100, and 104 due to inconsistent sampling rates or labeling errors, the 
0–4 s post-visual-cue interval was extracted as input data.

4 Experimental and results

4.1 Results of the public datasets

4.1.1 Results of the BCI competition IV dataset 2a 
dataset

The proposed DACS-TBTrans method was evaluated on two four-
class motor imagery datasets: the BCI Competition IV Dataset 2a and 
the Physionet MI Dataset. Experimental results were compared 
against multiple state-of-the-art baseline methods, with statistical 
significance assessed using paired t-tests.

The classification performance of the proposed method (DACS-
TBTrans) on the BCI Competition IV 2a dataset is comprehensively 
presented in Table 1 and Figure 3. In this experiment, which used 
overlapping time windows to augment the dataset, the proposed 

TABLE 1  Comparative classification accuracy (%) of proposed method vs. baselines on BCI competition IV 2a dataset.

Method Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Avg κ P

FBCSP (Chin 

et al., 2008)
76.00 56.50 81.25 61.00 55.00 45.25 82.75 81.25 70.75 67.75 0.5700 0.000011***

C2CM 

(Sakhavi 

et al., 2018)

87.50 65.28 90.28 66.67 62.50 45.49 89.58 83.33 79.51 74.46 0.6595 0.003101**

DRDA 

(Sakhavi 

et al., 2018)

83.19 55.14 87.43 75.28 62.29 57.15 86.18 83.61 82.00 74.74 0.6632 0.000047***

M-FANet (Fu 

et al., 2024)
86.81 75.00 91.67 73.61 76.39 61.46 85.76 75.69 87.17 79.28 0.7259 0.006200**

conformer 

(Song et al., 

2023)

88.19 61.46 93.40 78.13 52.08 65.28 92.36 88.19 88.89 78.66 0.7155 0.023454*

TCNet fusion 

(Musallam 

et al., 2021)

90.74 70.67 95.23 76.75 82.24 68.83 94.22 88.92 85.98 83.73 0.7800 0.045601*

DACS-

TBTrans
91.67 74.65 94.10 88.54 80.90 70.83 97.57 93.06 89.93 86.81 0.8125 –

Bold values indicate the best performance achieved for that metric. 

The symbols are denote statistical significance levels: *p <0.05. **p < 0.01, ***p < 0.001.
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method (DACS-TBTrans) achieved the highest classification accuracy 
among comparative algorithms for Subjects 1, 4, 6, 7, 8, and 9. It also 
demonstrated a significant improvement in average accuracy over 
other methods. This consistent outperformance across all subjects 
suggests that our approach effectively captures the nuances of EEG 
signal patterns associated with motor imagery tasks.

While models like FBCSP, C2CM, and M-FANet are capable of 
extracting features from EEG signals, they may not fully capture the 
long-term temporal dependencies that are crucial for accurate 
classification. Similarly, DRDA, though it enhances model robustness 
by incorporating data from other subjects, still lags behind our 
method in classification accuracy for every subject. Although TCNet 
Fusion achieved the highest accuracy in Subjects 3 and 5, our method 
attained the second highest. Given our method’s significant superiority 
in Subjects 1, 4, 6, 7, 8, and 9, TCNet Fusion’s overall accuracy remains 
lower than ours. This is evident from the high accuracy rates across 
multiple subjects, particularly in Subjects 4 and 7, where it achieved 
93.06 and 97.57% accuracy, respectively.

The superior performance of the proposed method primarily 
stems from its frequency-domain-based data augmentation technique, 
which generates reliable synthetic EEG data, combined with its multi-
scale temporal feature extraction approach. Figure  3 further 
substantiates this efficacy through clear comparative visualization.

To statistically validate the performance superiority demonstrated 
in Table  1, paired t-tests were conducted comparing the proposed 
method with baselines on the BCI Competition IV 2a dataset The results 
indicate that the proposed method consistently outperforms all baseline 
methods with statistically significant differences. Specifically, it shows 
extremely statistically significant improvements over FBCSP (p ≤ 0.001), 
and DRDA (p ≤ 0.001), highly statistically significant improvement over 
M-FANet (p ≤ 0.01), and C2CM (p ≤ 0.01), statistically significant 
improvements over conformer (p ≤ 0.05) and TCNet Fusion (p ≤ 0.05). 
These results strongly support the superiority of the proposed method, 
demonstrating that the enhancements in classification accuracy are not 
due to chance but are statistically validated.

In motor-imagery (MI) EEG classification, the accuracy scores 
obtained by the same subjects under different models are inherently 
paired; however, small sample sizes, non-normal distributions, and 
heavy-tailed or outlier-prone differences frequently violate the 
assumptions (normality and homoscedasticity of the differences) 
required by the paired t-test, inflating Type I error or diminishing 
statistical power. A non-parametric procedure that relaxes 
distributional assumptions while controlling multiple-comparison 
error is therefore essential. The Wilcoxon signed-rank test demands 
only symmetry of the paired differences; it ranks the absolute 
discrepancies and restores the signs, fully exploiting the paired 
structure and remaining robust to outliers—properties especially 
advantageous for small-sample MI datasets. Holm–Bonferroni 
correction, a step-down family-wise error rate (FWER) control 
procedure, offers higher power than the classic Bonferroni method 
yet maintains strict control over the overall error rate without 
resampling. Accordingly, we  performed pairwise comparisons 
between the proposed model and six baselines: for each pair, 
subject-wise accuracy differences were first computed and evaluated 
with a two-tailed Wilcoxon signed-rank test to obtain raw p-values; 
these p-values were then adjusted by Holm–Bonferroni correction, 
and significance was claimed at α = 0.05. The outcomes of this 
analysis are illustrated in Table 2, Figures 4, 5, where stars mark the 
pairs that remain significant after correction (p < 0.05), providing 
rigorous statistical evidence for the performance improvement 
achieved by the proposed MI classifier.

All raw p-values were ≤ 0.001 (Wilcoxon signed-rank test). After 
Holm–Bonferroni correction, every comparison yielded an adjusted 
p  < 0.001, so Table  2 reports identical values; the corresponding 
p-values obtained from paired t-tests are provided in Table 1.

Our model underwent the Wilcoxon signed-rank test, Holm–
Bonferroni correction, and ranking based on the Friedman test. As 
can be seen from Table 2, all comparisons (between the proposed 
model and other models) have p-values less than 0.05 after applying 
the Holm–Bonferroni correction, indicating that these comparisons 

FIGURE 3

Comparative classification accuracy of proposed method vs. baselines on BCI competition IV 2a dataset.
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are statistically significant. That is, the proposed model shows a 
significant difference in classification accuracy compared to other 
models. The effect size indicates a large effect for comparisons between 
the proposed model and FBCSP, C2CM, DRDA, and M-FANet, 
suggesting that the proposed model performs significantly better in 
these comparisons. The comparison between the proposed model and 
conformer shows a medium effect size, indicating that although the 
proposed model performs better, the difference is not as significant as 
in the previous comparisons. The comparison between the proposed 
model and TCNet Fusion shows a small effect size, indicating a 
smaller performance difference between the two. After applying the 
Holm–Bonferroni correction, the p-values for all comparisons are 
slightly higher than the original p-values but still less than 0.05, 
demonstrating that the differences between the proposed model and 
other models remain significant even when controlling for multiple 
comparison errors. The identical adjusted p-values may be due to the 
original p-values of each comparison being very close, resulting in the 
same ranking and thus the same correction factor. It can be observed 
from the figures that our model exhibits stable classification 
performance across subjects, with low variability in the data. It 
performs the best in both classification accuracy and average ranking, 
and the differences compared to other models are statistically  
significant.

The confusion matrices for the Motor Imagery Dataset 2a 
(Figure 6) reveal a varied classification performance across subjects, 
highlighting the complexity of EEG signal decoding. Subjects 1, 3, 8, 
and 9 demonstrate superior classification accuracy, as evidenced by 
the high values along the diagonal of their respective matrices, 
indicating a robust discrimination capability of the proposed method 
in decoding EEG signals associated with motor imagery tasks. In 
contrast, Subjects 2, 4, 5, and 6 exhibit relatively poorer performance, 
with a notable increase in off-diagonal elements, suggesting a 
challenge in distinguishing between certain motor imagery classes. 
Notably, for Subject 2, Class 2 (tongue motor imagery) achieves the 
highest classification accuracy, aligning with previous findings that 
suggest a distinct neurophysiological signature for tongue motor 
imagery tasks. The observed misclassification between tongue (Class 
3) and feet (Class 4) motor imagery tasks in Subjects 1, 3, 7, and 8 
could be attributed to suboptimal channel selection, which potentially 
misses critical EEG features, thus warranting further investigation. 
The performance discrepancies across subjects underscore the 
necessity for subject-specific optimization strategies and highlight the 

importance of refining channel selection algorithms to enhance 
classification accuracy. Future work should focus on adapting the 
channel selection process to account for inter-subject variability in 
EEG signal characteristics, aiming to reduce misclassification rates 
and improve the overall robustness of EEG-based motor 
imagery decoding.

4.1.2 Results of the Physionet MI dataset
The classification outcomes of the proposed method on the 

Physionet MI dataset, as detailed in Table 2 and depicted in Figure 7, 
showcase a marked improvement over existing baseline methods. 
These results were derived from an analysis that excluded data from 
Subjects 38, 88, 89, 92, 100, and 104 due to inconsistencies in sampling 
rates or labeling errors, leaving a total of 103 valid subject datasets for 
evaluation. The proposed method not only demonstrates a 
significantly higher average classification accuracy but also achieves 
peak accuracy of 97.61% in individual subjects, culminating in an 
overall average accuracy of 86.64%. This performance surpasses that 
of other state-of-the-art methods such as FBCSP, DeepConvNet, 
ShallowConvNet, EEGNet, EEGNet fusion, and MI-EEGNe, as 
evidenced by the comparative metrics presented. The superior 
performance of the proposed method can be attributed to its advanced 
feature extraction capabilities and robust classification strategy, which 
effectively leverage the nuances within EEG signal patterns associated 
with motor imagery tasks. This analysis underscores the proposed 
method’s potential as a leading approach in EEG-based motor imagery 
classification, offering enhanced accuracy and reliability for brain–
computer interface applications.

The confusion matrix for the proposed method on the Physionet 
MI dataset is presented in Figure 8. This matrix aggregates predictive 
outcomes from 10-fold cross-validation to generate the final 
classification results for each subject. Due to the extensive number of 
subjects, representative samples from Subjects 3, 39, 69, and 106 were 
selected for detailed analysis. Notably, Subject 106 exhibits significant 
intermixing between Class 1 and Class 2 data, corroborated by its 
relatively lower classification accuracy in Figure 5. This observation 
aligns with prior findings (Shuqfa et al., 2024), which document data 
recording anomalies and abnormally short trial durations for Subject 
106. Consequently, exclusion of this subject’s data is methodologically  
justified.

4.2 Results of the ablation experiment

The methodology of our study is anchored by two essential 
components: sophisticated data augmentation strategies and selective 
channel elimination, which are pivotal for enhancing EEG 
signal classification. To evaluate the impact of these components, 
we executed a meticulous ablation study on the BCI Competition IV 
2a dataset. This involved sequentially removing each component from 
our model and measuring the performance against a baseline multi-
scale three-branch network model. The experimental findings are 
systematically captured in Figures 7, 8, along with detailed results in 
Table  3. These visualizations and data underscore the critical 
contribution of both data augmentation and channel selection to our 
model’s superior classification performance, thereby affirming their 
indispensable roles in optimizing EEG-based motor imagery  
classification.

TABLE 2  Statistical results (Wilcoxon signed-rank test with Holm–
Bonferroni correction).

Comparison p-raw p-adj 
(Holm)

∆Cliff Effect

Proposed vs. FBCSP 0.0039 0.0234 0.8024 Large

Proposed vs. C2CM 0.0039 0.0234 0.5556 Large

Proposed vs. DRDA 0.0039 0.0234 0.7037 Large

Proposed vs. 

M-FANet
0.0039 0.0234 0.5802 Large

Proposed vs. 

conformer
0.0117 0.0234 0.3951 Medium

Proposed vs. TCNet 

fusion
0.0078 0.0234 0.2346 Small
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The analysis presented in Figure  9 illustrates the feature 
visualization for Subject 1 on the BCI Competition IV 2a dataset, 
highlighting the comparative effectiveness of the proposed DACS-
TBTrans method against the baseline TBTrans model. It is evident that 
the standalone implementation of channel selection and data 
augmentation modules independently contribute to enhancing feature 
clustering across different classes. This improvement is characterized 
by a notable reduction in feature overlap when juxtaposed with the 
TBTrans model. The DACS-TBTrans approach exacerbates these 

positive effects by not only further concentrating class-specific features 
but also by achieving a successful isolation between Class 0 and Class 
1. This strategic differentiation bolsters classification accuracy, 
although a considerable overlap between Classes 2 and 3 remains, 
pinpointing a specific area that necessitates further refinement 
and optimization.

As a supplement, Figure 10 illustrates how incorporating channel 
selection or data augmentation influences classification accuracy 
across a broader cohort of subjects. The results show that channel 

FIGURE 4

Model performance comparison with statistical significance.

FIGURE 5

Model ranking based on Friedman test.
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FIGURE 6

Confusion matrix of proposed method on BCI competition IV 2a dataset.

FIGURE 7

Classification accuracy of each subject in the Physionet MI dataset.
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selection is particularly beneficial for Subjects 2, 4, and 5, as it 
effectively removes redundant channels and thereby improves the 
signal-to-noise ratio. Similarly, data augmentation delivers significant 
advantages for Subjects 2, 4, 5, 7, and 9 by enhancing the dataset’s 
robustness against overfitting on EEG signals and their inherent 
variability. By integrating both channel selection and data 
augmentation, the overall DACS TBTrans model capitalizes on these 
individual strengths, markedly boosting classification accuracy for 
nearly all subjects and achieving the best performance for every 

participant except Subject 5. This combined approach not only 
elevates individual subject performance but also raises the overall 
mean classification accuracy, underscoring the synergistic potential of 
jointly employing these techniques in EEG-based applications.

The data presented in Table 4 highlights the incremental benefits 
of each component in our methodology. The addition of the channel 
selection module alone improved the average accuracy by 1.74%, 
indicating its role in enhancing feature discriminability. The data 
augmentation component further elevated the average accuracy by 
7.33%, demonstrating its effectiveness in enriching the dataset and 
mitigating overfitting. Most significantly, the combined approach 
achieved an 8.92% increase in accuracy over the baseline model, 
affirming the synergistic advantages of integrating both techniques. 
These results validate our approach’s ability to substantially enhance 
EEG signal classification accuracy. As shown in the table, the proposed 
data-augmentation method boosts the baseline accuracy by 7.33%, a 
marked improvement that confirms its ability to effectively blend the 
two temporal windows provided by the preprocessing stage and to 
generate physiologically plausible synthetic EEG signals. Compared 
with the 1.74% gain achieved by channel selection alone, this 
enhancement underscores the greater importance of data 
augmentation for improving classification accuracy.

To validate the effectiveness of the proposed Data Augmentation 
and Channel Selection (DACS) framework, we evaluated it on three 
baseline architectures—DeepConvNet, EEGNet, and FBCNet—and 

FIGURE 8

Confusion matrix of proposed method on Physionet MI dataset.

TABLE 3  Comparative classification accuracy (%) of proposed method vs. 
baselines on Physionet MI dataset.

Method Avg F1-score

FBCSP (Chin et al., 2008) 30.63 0.30

DeepConvNet (Schirrmeister et al., 

2017)
57.66 0.57

ShallowConvNet (Schirrmeister et al., 

2017)
70.16 0.70

EEGNet (Lawhern et al., 2018) 37.53 0.36

EEGNet fusion (Zhao et al., 2021) 73.73 0.74

MI-EEGNet (Riyad et al., 2021) 85.71 0.86

DACS-TBTrans 86.64 0.86
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FIGURE 9

Feature visualization of proposed method for Subject 1 on BCI competition IV 2a dataset.

FIGURE 10

Ablation results of proposed method on BCI competition IV 2a dataset.
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compared it with our TBTrans model. All experiments were conducted 
on the BCI Competition IV 2a dataset without using temporally 
overlapped windows for data expansion. As reported in Table  5, 
integrating DACS into each baseline consistently improved 
classification accuracy, except for FBCNet, where the gain was 
marginal—likely due to divergent feature-extraction strategies. 
DeepConvNet, EEGNet, and TBTrans all exhibited improvements 
exceeding 1%, with our backbone TBTrans achieving a 3.85% boost. 
These results demonstrate that DACS is readily transferable to 
alternative baseline models.

We conducted systematic experiments on window length using 
the BCI Competition IV-2a dataset and evaluated the proposed model 
under different temporal windows; the results are summarized in 
Table 6. It can be seen that the model achieves the highest classification 
accuracy with a 4-s window. Table 7 further reports the parameter 
count and inference latency, showing that the proposed model is 

comparable to classic deep-learning architectures such as 
DeepConvNet in terms of model size, and that both the number of 
parameters and the latency remain within acceptable limits.

The learning curve graph from Figure 11, based on Subject 3 of 
the BCI Competition IV 2a dataset, reveals discrepancies between 
training and testing performance metrics. The training accuracy 
quickly approaches 100%, while the testing accuracy stabilizes at 
around 88%, suggesting the potential presence of overfitting. 
Additionally, the training loss decreases to near zero, yet the testing 
loss exhibits significant fluctuations and remains relatively high, 
further indicating a generalization gap. These results underscore the 
necessity for strategies to mitigate overfitting. In subsequent work, our 
approach will further refine the model to enhance its robustness and 
generalization capabilities on unseen data.

To explore the interpretability of the features captured by the model, 
we  employed Grad-CAM (Selvaraju et  al., 2017) to calculate the 
contribution of EEG electrode channels to the classification of a 
particular category and visualized the results. By using backpropagation 
to only propagate the gradients of the target category, we obtained spatial 
weights by averaging across the channel dimension. These weights were 
then combined with the corresponding feature maps through weighted 
summation and the ReLU function was applied to retain only the positive 
contributions, ultimately upsampling to produce heatmaps. Grad-CAM 
heatmaps reveal activations over the C3/C4 region that are consistent 
with task-related lateralization (Figure  12), aligning with the 
neurophysiological prior of contralateral motor-cortex engagement and 
thus enhancing model interpretability. From Figure 12, it can be observed 
that there is some overlap in the heatmap regions between Subjects 1 and 
3 for the same category, which aligns with the similarities expected from 
neurophysiology. However, the regions of interest for each subject are 
relatively independent, showing distinct differences.

4.3 Parameter experiment

The channel selection method requires optimization of the 
hyperparameter controlling channel count. Given the comprehensively 
ranked channel sequence [2, 14, 3, 18, 11, 17, 16, 8, 13, 1, 10, 9, 4, 19, 5, 
15, 12, 20, 0, 7, 21, 6], classification experiments were conducted on the 
baseline model (without data augmentation) by incrementally selecting 
increasing channel subsets: from the top 1 channel to all 22 channels.

As shown in Figure 13, classification accuracy generally improves 
with increasing channel count until the top 12 channels. Beyond this 
point, accuracy temporarily decreases when selecting the top 13 and 
14 channels, indicating channel redundancy in the middle section of 
the sequence. Referencing the conventional 16-channel configuration 
from Common Spatial Pattern (CSP) spatial filtering, we  set the 
channel selection hyperparameter n = 16. This configuration 

TABLE 4  Ablation study of proposed method on BCI competition IV 2a dataset.

Method Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Avg

TBTrans 88.19 59.37 90.97 70.13 62.15 62.50 93.75 90.97 82.98 77.89

CS-TBTrans 90.28 69.44 88.19 79.86 64.93 64.58 90.63 88.19 80.56 79.63

DA-TBTrans 90.97 74.65 93.06 86.46 84.03 61.81 96.53 92.01 87.50 85.22

DACS-TBTrans 91.67 74.65 94.10 88.54 80.90 70.83 97.57 93.06 89.93 86.81

Bold values indicate the best performance achieved for that metric.

TABLE 5  Comparison of baseline models using DACS on the BCI 
competition IV 2a dataset.

Method Without DACS With DACS

Avg

DeepConvNet 

(Schirrmeister et al., 2017)
61.96 63.00

EEGNet (Lawhern et al., 

2018)
66.71 68.01

FBCNet (Mane et al., 2020) 73.38 74.36

TBTrans 77.89 81.74

TABLE 6  The impact of time length on accuracy.

Length Acc

2 77.54

3 85.26

4 86.81

Bold values indicate the best performance achieved for that metric.

TABLE 7  Comparison of parameter quantity and inference delay.

Method Parameter (m) Delay (ms)

DeepConvNet 

(Schirrmeister et al., 2017)
0.246 24.89

EEGNet (Lawhern et al., 

2018)
0.031 3.87

FBCNet (Mane et al., 

2020)
0.009 1.23

DACS-TBTrans 0.344 34.17
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combines the top  12 channels with the last four channels of the 
sequence (indices 0, 7, 21, 6), deliberately bypassing intermediate 
channels to avoid redundancy.

5 Discussion

The DACS-TBTrans method has shown promising results on both 
the BCI Competition IV 2a and Physionet MI datasets, indicating its 
potential for EEG-based classification tasks. However, the persistence 
of significant feature overlap in certain subject-class combinations 
underscores the need for further refinement in feature extraction 
methodologies to enhance discriminative capabilities.

Our channel selection experiments, conducted systematically 
across subjects in the BCI Competition IV 2a dataset, revealed an 
intriguing correlation between the 12 + 4 channel configuration and 
classification accuracy. Specifically, an increase in accuracy was 
observed with greater spatial symmetry of the selected channels. As 
depicted in Figure 14, we introduce the Channel Symmetry Index 

(CSI), which quantifies the number of supplementary channels 
needed for perfect bilateral symmetry per electrode row. Notably, 
subjects who achieved classification accuracies above 90% (e.g., S1, S3, 
S7) demonstrated superior channel symmetry with CSI values of 1–2, 
whereas subjects with lower accuracies (below 70%, such as S2, S5, S6) 
exhibited higher asymmetry with CSI values of 3 or more. These 
findings suggest that optimizing channel symmetry could be  a 
valuable strategy for improving EEG signal classification, warranting 
further investigation into the role of spatial configuration in enhancing 
EEG-based brain–computer interfaces. Subjects (<70%, S2/S5/S6) 
showed higher asymmetry (CSI ≥ 3).

Figure  15 illustrates the impact of channel configuration on 
classification accuracy across different subjects. The graph compares the 
performance of three different channel selection strategies: using the first 
16 channels, a 12 + 4 channel configuration, and a 12 + 4 configuration 
with symmetrically-tuned channels. It is evident that the 12 + 4 
symmetrically-tuned channels consistently outperform the other two 
strategies, particularly for Subjects 5 and 6, where accuracy saw a 
significant boost. This suggests that enhancing channel symmetry 

FIGURE 11

Learning curve of subject 3 on BCI competition IV 2a dataset.

FIGURE 12

Visualization of brain topography maps of some subjects on the BCI Competition IV 2a dataset.
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FIGURE 13

Channel selection hyperparameter optimization results.

FIGURE 14

Channel symmetry comparison: Subjects 1, 3, 7 vs. Subjects 2, 5, 6.
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through strategic supplementation of 1–3 channels can substantially 
improve classification performance. The findings underscore the 
importance of considering the spatial arrangement of channels in 
EEG-based classification systems. Future research will focus on further 
investigating the relationship between channel symmetry and 
classification performance to optimize EEG signal interpretation and 
enhance the reliability of brain–computer interfaces.

6 Conclusion

This study proposes a motor imagery EEG processing framework 
tailored for small datasets. By leveraging frequency-domain 
information—including power spectral density, wavelet packet 
decomposition/reconstruction, and wavelet packet energy entropy—we 
generate synthetic EEG data that closely mimics real recordings. 
Concurrently, channel redundancy is reduced through strategic electrode 
pruning. Our architecture employs multi-scale convolutional layers for 
localized feature extraction at varying resolutions, coupled with 
Transformer networks to capture global temporal dependencies. 
Evaluated on the BCI Competition IV 2a and PhysioNet MI datasets, the 
proposed method achieved mean accuracies of 86.81 and 86.64%, 
respectively. Notably, it outperformed the full-channel baseline (p < 0.01, 
paired t-test) while discarding 27% of sensors, and matched or surpassed 
state-of-the-art benchmarks. By jointly augmenting data and pruning 
channels, this framework delivers clinically viable, computationally 
efficient MI decoding with fewer electrodes—eliminating need for 
additional recordings—thus paving the way for practical low-density 
BCI systems in real-world applications.

Author’s note

We will validate the proposed framework on additional public MI 
datasets (e.g., GigaDB and OpenBMI) to examine cross-dataset  
generalizability.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

Ethical review and approval was not required for the study on 
human participants in accordance with the local legislation and 
institutional requirements. Written informed consent from the 
patients/participants or patients/participants' legal guardian/
next of kin was not required to participate in this study in 
accordance with the national legislation and the institutional  
requirements.

Author contributions

MZ: Formal analysis, Funding acquisition, Methodology, 
Writing – original draft, Writing – review & editing. ZQ: Methodology, 
Writing – review & editing. TZ: Data curation, Writing – review & 
editing.

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This work was 
supported in part by the Fujian Provincial Science and 
Technology Department under Grant 2021J011108, in part by the 
Putian University Research Startup Fund under Grant 2023058, 
and in part by the Putian University Postgraduate Research 
Innovation Program (Science & Technology) under 
Grant yjs2024057.

FIGURE 15

Channel selection results with strategic supplementation.
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