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Motor imagery EEG classification
via wavelet-packet synthetic
augmentation and entropy-based
channel selection

Minmin Zheng*, Zhengkang Qian and Tong Zhao

College of Intelligent Manufacturing, Putian University, Putian, China

Introduction: Motor-imagery (MI) brain—computer interfaces often suffer
from limited EEG datasets and redundant channels, hampering both accuracy
and clinical usability. We address these bottlenecks by presenting a unified
framework that simultaneously boosts classification performance, reduces the
number of required sensors, and eliminates the need for extra recordings.
Methods: A three-stage pipeline is proposed. (1) Wavelet-packet decomposition
(WPD) partitions each MI class into low-variance “stable” and high-variance
“variant” trials; sub-band swapping between matched pairs generates synthetic
trials that preserve event-related desynchronization/synchronization signatures.
(2) Channel selection uses wavelet-packet energy entropy (WPEE) to quantify
both spectral-energy complexity and class-separability; the top-ranked leads are
retained. (3) A lightweight multi-branch network extracts multi-scale temporal
features through parallel dilated convolutions, refines spatial patterns via depth-
wise convolutions, and feeds the fused spatiotemporal tensor to a Transformer
encoder with multi-head self-attention; soft-voted fully-connected layers
deliver robust class labels.

Results: On BCI Competition IV 2a and PhysioNet MI datasets the proposed
method achieves 86.81 and 86.64% mean accuracies, respectively, while
removing 27% of sensors. These results outperform the same network trained on
all 22 channels, and paired t-tests confirm significant improvements (p < 0.01).
Discussion: Integrating WPD-based augmentation with WPEE-driven channel
selection yields higher M| decoding accuracy with fewer channels and without
extra recordings. The framework offers a computationally efficient, clinically
viable paradigm for enhanced EEG classification in resource-constrained
settings.
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1 Introduction

The brain—computer interface (BCI) system establishes a communication pathway
between the human brain and external devices, enabling the translation of users” intentions
into actions without relying on peripheral nerves or muscles (Xiong et al., 2021). Motor
Imagery (MI), a prominent BCI paradigm, involves users actively imagining limb movements
to activate corresponding brain regions and generate electroencephalogram (EEG) signals.
Distinct motor imagery tasks produce differentiable EEG patterns, thereby facilitating the
linkage between mental commands and external devices (Keutayeva et al., 2024). Accurate
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recognition and classification of MI-EEG signals are critical for
advancing BCI systems toward practical daily applications. While
EEG is convenient and inexpensive, practical MI decoding is hindered
by three intertwined limitations. First, single-session recordings rarely
exceed a few 100 trials, yielding a severely under-sampled condition.
Second, the low signal-to-noise ratio of scalp measurements makes
the relevant a/f components easily obscured by physiological or
environmental artifacts. Third, high-density montages (64-128
electrodes) improve spatial resolution but prolong preparation and
computation, conflicting with the portability and low-latency
demands of mobile or home-use systems.

Motor-imagery (MI) EEG decoding has long been hampered by
small sample sizes, high noise levels, and redundant channels. Data
augmentation (DA) and channel selection (CS) are therefore
routinely exploited to mitigate these problems. Early studies relied
on hand-crafted features combined with digital filtering: the
common spatial pattern (CSP) family—e.g., FBCSP (Chin et al,,
2008), RCSP (Lotte and Guan, 2011), and TR-CSP (Samek et al.,
2014)—decomposes the signal into multiple frequency bands or
introduces regularization terms to derive spatial filters that
simultaneously perform channel selection. To reduce filter leakage,
CSP-based pipelines usually incorporate cross-validation on the
training set together with symmetric subset selection, establishing
the classical CS paradigm. With the advent of deep learning, both
DA and CS have been integrated into end-to-end architectures.
Representative DA techniques include CSGAN (Song et al., 2021),
CovMix (Zoumpourlis and Patras, 2022) and OT-FMixup (Chen et
al.,, 2022) augment motor-imagery EEG by interpolating or
adversarially generating new samples along the time-frequency-
spatial dimensions, enhancing cross-subject decoding without extra
recordings. For CS, EEGNet (Lawhern et al, 2018) and
ShallowConvNet (Schirrmeister et al., 2017) learn channel weights
through the first 1-D convolutional layer, whereas TCNet-Fusion
(Musallam et al., 2021) and M-FANet (Fu et al., 2024) attach
attention gates; conformer (Song et al., 2023) and C2CM (Sakhavi
et al., 2018) impose implicit pruning via grouped or sparse self-
attention. Recent work further infuses neurophysiological priors
into model training. Physics-informed Attention-TCN (Altaheri
et al., 2022), for instance, constructs a frequency-domain loss term
that aligns the network’s internal representations with the well-
established y/f rhythms of EEG, and jointly optimizes this loss with
the data-driven objective to enhance interpretability. The Fine-
Grained Spatial-Frequency-Time (SFT) (Liu et al., 2025) framework
partitions 22 scalp channels into several region-of-interest groups
guided by neuroanatomy, enabling multi-scale spatial feature
extraction. Building on these advances, the present study aims to
unify data augmentation and channel selection under a common
neurophysiological prior.

To address these limitations, this paper proposes: a hybrid EEG
data augmentation method integrating time-domain and frequency-
domain techniques; a channel selection approach based on wavelet
packet energy entropy difference for eliminating redundant
channels; a multi-branch  spatio-temporal  convolutional
Transformer network that effectively leverages the complementary
advantages of multi-scale feature extraction across subjects, with
final classification determined through a voting mechanism. First,
we augment the EEG dataset by generating synthetic EEG data
through our hybrid time-frequency augmentation method.
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Combining original and synthetic data effectively mitigates model
overfitting. Subsequently, redundant channels are eliminated using
our wavelet packet energy entropy difference-based selection
method. For the model architecture, three parallel branches with
distinct temporal convolutional scales extract local temporal
features, followed by spatial convolution to capture spatial patterns.
The resulting spatio-temporal features are processed by Transformer
encoder modules, where multi-head self-attention mechanisms
learn global temporal dependencies in EEG signals. Each branch
produces independent outputs through separate fully connected
layers, with final classification determined by majority voting.
Experimental validation on public datasets confirms the effectiveness
of our method in enhancing classification performance.
The principal contributions of this study are as follows:

1. EEG data augmentation method: A hybrid time-domain and
frequency-domain EEG data augmentation approach designed
to expand datasets and alleviate model overfitting.

2. EEG channel selection method: A wavelet packet energy
entropy difference-based channel selection algorithm that
eliminates redundant channels. This approach achieves
comparable or superior classification performance to full-
channel methods using fewer EEG channels. Evaluations of
different channel group configurations demonstrate that
symmetrically distributed channel groups yield optimal results.

3. Multi-branch spatio-temporal feature extraction architecture:
A network design featuring three parallel temporal
convolutional branches for multi-scale temporal feature
extraction. Spatial convolution is subsequently applied to each
branch. The spatio-temporal features are fed into Transformer
networks where multi-head attention mechanisms dynamically
assign weights. Final decisions are integrated via voting across
fully connected layers.

2 Related work

Section 2 surveys the three computational pillars of modern
MI-EEG decoding: data augmentation, channel selection, and deep
representation learning. For each pillar we trace the evolution from
heuristic or handcrafted solutions to recent learning-based strategies,
highlight residual bottlenecks, and thereby motivate the integrated
framework proposed in this work.

2.1 Data augmentation

Early EEG augmentation relies on geometric transforms—
rotation, flipping, and electrode swapping—to enlarge datasets.
Shovon et al. (2019) rotate and flip MI-EEG trials in a multi-input
CNN, though these operations risk discarding fine temporal-spectral
information. Zhang et al. (2019) first convert EEG to STFT
spectrograms, then apply rotation and noise injection, enhancing
geometric augmentation for image-based pipelines. Roy et al. (2019)
swap left-right electrodes within the same class, yielding modest
benefits. Roy et al. (2020) employ GANS for subject-specific synthesis,
requiring heavy adversarial training. Qin et al. (2023) use Static-Var
Generation (SVG) to model electrode displacements and spatial brain
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patterns, densifying samples near the original manifold; the impact of
exact electrode positioning needs further study.
Decomposition-fusion strategies exploit deeper EEG structure.
Yu and Stefan (2023) exchange time segments between same-class
trials and swap matched frequency bands, achieving joint
temporal-spectral augmentation. Xia et al. (2024) apply DCT,
randomly recombine six selected frequency bands, and reconstruct
plausible synthetic trials. EEG augmentation has thus progressed
from simple geometric manipulations to sophisticated
decomposition-fusion schemes respecting spatio-temporal-
spectral properties. Motivated by these advances, we propose an
integrated framework coupling wavelet-packet decomposition with
geometric crop-and-reconstruction. Relevant motor-imagery
nodes are exchanged in the frequency domain before signal
reconstruction, preserving physiological validity while expanding
the class-conditional distribution. Subsequent geometric cropping
further blends these samples, yielding rich yet physiologically

consistent augmentations.

2.2 Channel selection

Traditional EEG
neuroscientific brain parcellations for manual electrode selection over

channel selection typically relies on
task-relevant regions. However, substantial inter-subject variability
often renders such selections prone to redundant or irrelevant sensors
(Blankertz et al., 2008). Modern approaches are broadly categorized
as wrapper-based or filter-based strategies.

Wrapper methods optimize channel subsets using classifier
performance as the objective, employing heuristic searches. Wei and
Wang (2011) applied BMOPSO to motor-imagery EEG, reducing 22
channels to eight. Zhang et al. (2021) used Deep MOPSO with CNN
accuracy, trimming to 10 channels with ~3% accuracy gain. Vadivelan
and Sethuramalingam (2025) coupled MPJS with DB-EEGNet,
compressing 64 channels to 12 and boosting accuracy from 79.3 to
85.6%. These methods yield tailored subsets but are computationally
expensive and prone to overfitting.

Filter methods derive relevance scores directly from signals for
pruning. Lotte and Guan (2011) ranked channels by energy
contribution to CSP filters. Arvaneh et al. (2011) introduced sparse
CSP with L, regularization, achieving 85% accuracy with only 8 of 22
channels. Filter methods are computationally efficient and
resource-frugal.

Balancing both approaches and inspired by CSP, this study adopts
a wavelet-packet energy-entropy-based filter. This method captures
energy distribution and uncertainty with minimal computation,
addressing CSP’s exclusive focus on second-order energy differences
and neglect of phase/connectivity information.

2.3 Deep learning models

Influenced by deep learning, MI-EEG decoding now centers on
CNNs, RNNs and Transformers, substantially lifting accuracy
(Bicchi et al., 2021). Schirrmeister et al. (2017) introduced
end-to-end spatio-temporal CNNs as the baseline. Sakhavi et al.
(2015) employed FBCSP pre-processing followed by CNN
classification, yet hand-crafted features remain a bottleneck. Amin
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et al. (2019) fused global and local representations via layer-wise
weighted convolutions; Roy (2022) proposed a multi-scale CNN to
harvest discriminative cues within separate frequency bands.
Nevertheless, these CNN-centric models still struggle to capture
long temporal dependencies.

Transformers, renowned for long-range modeling, are rapidly
adopted. Adel et al. (2024) used self-attention across spatial-
temporal dimensions, periodically updating channel weights and
improving accuracy. Ma et al. (2022) coupled CNNs with
Transformers: CNNs extract local patterns and Transformers capture
global dependencies across spatial, spectral and temporal domains.
Luo et al. (2023) presented a shallow mirrored Transformer with
multi-head self-attention and left-right mirroring for data
augmentation. Permana et al. (2023) designed a dual-level
architecture in which a low-level Transformer extracts short-time
features and a high-level Transformer attends to salient intervals via
dynamic weighting.

We integrate multi-branch CNNs and Transformers: parallel
temporal convolutions with multiple receptive fields capture multi-
scale local dynamics, providing temporal priors for the Transformer.
The Transformer then establishes global dependencies and adaptively
weights features. This hybrid design mitigates the limited long-range
modeling of pure CNNs and the local-detail oversight of pure
Transformers, enabling more robust and accurate decoding under
scarce data and high inter-subject variability.

In summary, augmentation has evolved from simple geometric
transforms to decomposition-fusion schemes that respect EEG
physiology; channel selection has moved from anatomical heuristics
to data-driven ranking; and deep models have shifted from pure
CNNs to CNN-Transformer hybrids that couple local spectral cues
with long-range context. To the best of our knowledge, this study is
the first to simultaneously expand the class-conditional manifold via
wavelet-domain node exchange, compress the electrode array with
wavelet-packet energy-entropy filtering (without classifier retraining),
and feed the enriched yet concise data into a multi-branch CNN-
Transformer for accurate, lightweight and robust MI decoding in
small-sample, low-density scenarios.

3 Methods

This study proposes a novel neural network architecture, as
illustrated in Figure 1. The overall model architecture integrates four
core components: data preprocessing and augmentation, channel
selection, a three-branch spatio-temporal convolutional Transformer
module, and a voting classification module.

3.1 Overview

In the data preprocessing and augmentation stage, a hybrid
EEG augmentation approach combining geometric cropping-
reconstruction with decomposition-transform techniques is
employed. This method effectively expands the scale of the EEG
dataset, thereby mitigating model overfitting. Subsequently, the
channel selection module utilizes a wavelet packet energy entropy
difference-based method to identify and eliminate redundant
channels.
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FIGURE 1
Flowchart of the DACS-TBTrans framework.

The processed data then enters the three-branch spatio-
temporal convolutional Transformer module. Within each branch,
temporal convolutions with distinct kernel sizes extract multi-scale
temporal feature representations. Spatial convolution is
subsequently applied along the channel dimension to the selected
EEG channels to enhance discriminative spatial features. Batch
normalization and average pooling operations are incorporated
after convolution to improve model stability and emphasize salient
feature characteristics.

The resulting multi-scale spatio-temporal features from each
branch are independently encoded by separate Transformer
encoders. Multi-head attention layers within these encoders capture
long-term temporal dependencies inherent in the EEG signals.
Following Transformer encoding, the features from each branch are
processed by distinct fully connected layers. Branch-specific
classification probabilities are then computed via Softmax
activation functions.

Finally, the voting classification module determines the ultimate
class prediction through majority voting based on the classification

outputs from the three individual branches.

3.2 Preprocessing and data augmentation

The public dataset was pre-processed as follows. Continuous
EEG signals were first high-pass filtered at 1 Hz (zero-phase FIR)
to remove drift, then notch-filtered at 50 Hz to suppress power-line
interference, and finally band-pass filtered between 4 and 40 Hz
using a sixth-order Chebyshev Type-II filter to attenuate
physiological artifacts such as ECG and EMG. To enlarge the data
volume, each trial was segmented—via an overlapping sliding
window—into two 4-s epochs (2-6 s and 3-7 s post-cue) that were
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treated as independent samples, effectively doubling the dataset. It
should be noted that this filter-only pipeline follows the conformer
baseline and cannot remove ocular, cardiac, or muscular artifacts
whose spectra overlap with the a/f bands; consequently, within-
subject results may be slightly inflated. More sophisticated artifact-
reduction methods (e.g., ICA or ASR) will be explored in future
work to further validate the findings.

EEG data augmentation serves as an effective strategy for
expanding datasets and enhancing model robustness. This study
proposes a novel EEG data augmentation method based on power
spectral density (PSD) analysis and time-frequency component
exchange. It is critical to emphasize that this augmentation was
applied exclusively to the training data in a strict manner to prevent
any data leakage. The core approach involves, on the training set
only, intra-class sample grouping, followed by the targeted
exchange of specific frequency band components between
low-variance samples (representing stable EEG patterns) and high-
variance samples (representing variant EEG patterns). This process
generates synthetic EEG signals possessing neurophysiological
plausibility, which are then used to augment the training set. The
held-out test set remains completely untouched and unaltered
throughout this process, ensuring the validity of our evaluation.
The overall workflow, illustrated in Figure 2, comprises the
following steps:

1. Power spectral density calculation and intra-class grouping:
compute PSD for each sample and categorize them into
low-variance and high-variance groups within each class.

2. Wavelet time-frequency
representation: decompose the EEG signals using wavelet

packet decomposition  for

packet transform (WPT) to obtain their time-frequency
representations.
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Flowchart of the data augmentation.

3. Directed frequency band component exchange: swap specific
frequency band components between paired low-variance and
high-variance samples.

4. Wavelet packet reconstruction for synthetic sample generation:
reconstruct the modified time-frequency components to
generate new synthetic EEG samples.

For EEG data X, € RNCXT yithin each class k € 0,1,2,3 the PSD
is computed as:

2 _psp(X;), i=1...,N; M

In Equation 1, Ny represents the number of samples within the
class k, C denotes the number of channels, T indicates the number of

time points, and Pl(k) e RS is the PSD matrix of sample i (where F
is the number of frequency points).
For each class, the mean PSD is computed as shown in Equation 2:

plk) -1

Nk

Nig(k)
i=1 1

)

For each sample i and channel ¢, the normalized deviation is
computed as shown in Equation 3:

3)

k
Agm)rm,i,c_ ( (k)j
max| A; 7 |-

Where Pz(];) denotes the PSD corresponding to the ¢ channel of the

(k)

isample, A; ’ represents the PSD deviation of the c channel in the i

sample, and A( ) is the normalized deviation.

norm,i,c
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In Equation 4, the total variance metric is computed for each
sample, and the dataset is partitioned into two groups:

z Var( norm.i c)

Gﬂ:& = {Xz‘k |Vi(k) < median(v(k) )} @
GLIiZh = {Xz(k)lvi(k) > median(V(k) )}

k . . .
Where Vl( ) denotes the total variance of the i sample in class k,
samples are partitioned into two groups based on ascending total

(k)

variance: the low-variance group G| and high-variance group ng g)h

For each class of EEG signals, 5-level wavelet packet
decomposition is performed using the db4 wavelet basis. Subsequently,
directed frequency band exchange is implemented. Given that motor
imagery EEG information is primarily concentrated in the « rhythm
(8-13 Hz) and f rhythm (14-30 Hz) (Wu et al., 2025), sample pairs

(k)

are formed by matching the sample with the lowest variance in G,

to the sample with the highest variance in Ggfg)h using end-to-end
correspondence. The time-frequency data of wavelet decomposition
nodes corresponding to the @ and S rhythm frequency bands are
exchanged between each pair. Finally, wavelet packet
reconstruction is applied to generate the frequency-augmented
synthetic sample X'.

For temporal domain augmentation, the geometric cropping-
reconstruction method (Schirrmeister et al., 2017) is applied to both
the frequency-augmented synthetic samples X' and original EEG data
X. Within each class, random cropping and splicing reconstruction
are performed, generating augmented EEG data per class. These class-
specific augmented data are then randomly shuffled and combined,
yielding spatio-temporally augmented samples X". Finally, X" is
incorporated into the EEG dataset, producing the enhanced

EEG data X.

frontiersin.org


https://doi.org/10.3389/fnins.2025.1689647
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zheng et al.

3.3 Channel selection

EEG signals often contain redundant channels. Selecting channels
that better represent the subject’s actual motor imagery information
from the original set can significantly enhance model classification
performance (Guo et al., 2025). This study proposes an EEG channel
selection technique based on wavelet packet energy entropy analysis
for channel screening. Crucially, channel selection is performed solely
on the training data: the optimal channel subset is identified from the
training set and then frozen for subsequent use on the test set,
ensuring unbiased evaluation. As illustrated in Figure 1, the method
quantifies each channel’s discriminative power in EEG signal
classification by integrating energy distribution complexity with inter-
class separability, enabling efficient feature selection. The procedure
comprises four stages: wavelet packet decomposition and energy
entropy computation, energy entropy standardization, inter-class
divergence measurement, and comprehensive channel importance
ranking.

First, a 5-level wavelet packet decomposition is applied to the EEG
signals. In Equation 5, the energy of each channel is computed,
followed by the calculation of energy entropy based on the energy
proportion of each channel across decomposition nodes:

32
Hic=-%" joiPicj1082 Pic, ®)

Where p;.; denotes the energy proportion of channel ¢ at
decomposition node j for sample i, and H,, ¢ represents the energy
entropy of channel ¢ for sample i.

In Equation 6, the energy entropy values undergo max-—
min normalization:

Hi,c —minHi)m
7. — m
Hi = ; (6)
max H; ,,, —minH; ,,,
m m

Where H;, denotes the normalized energy entropy, H;
represent the maximum and minimum energy entropy values,
respectively.

The normalized energy entropy is grouped by k €0,1,2,3 class,
with Hg indicating the normalized energy entropy for class k data.
Inter-class divergence is measured using the energy entropy values
across four classes. Higher energy entropy values indicate more
uniform energy distribution, signifying richer spectral information in
that channel. We compute pairwise differences between class-specific
channel energy entropy values, yielding six sets of channel energy
entropy differences, which are then standardized:

The six standardized difference sets are sorted to obtain
£€0,1,2,3,4,5 descending-order channel sequence D Ie Larger
wavelet packet energy entropy differences indicate greater spectral
divergence between corresponding channels of two classes. We posit
that selecting the top n channels with the largest differences enhances
discriminability of inter-class features, which benefits classification
performance.

Based on the positions of the EEG electrodes, predefined pairs of
symmetric electrodes, such as C3/C4, FC1/FC2, etc., are established.
After calculating the wavelet packet entropy and obtaining the
sequence of channels, the first # channels are selected (it is later
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verified that n = 12). Then, following the principle of electrode pairing,
the process starts from the end of the channel sequence and works
backward to match symmetrically until symmetry is achieved, thus
completing the channel selection.

The channel indexes D'g obtained through initial screening are
comprehensively ranked by importance according to their spatial

positions, yielding the final selected n channels D,

3.4 Network architecture

As illustrated in Figure 1, the proposed method employs a
multi-scale spatio-temporal feature extraction design. The input
signals are processed in parallel through temporal convolutional
layers in three branch networks. Each temporal convolution uses
distinct filter sizes: (1 x 20), (1 x 40), and (1 x 60), respectively,
with a uniform stride of (1 x 1). The outputs of these temporal
layers are then fed into corresponding spatial convolutional layers,
all utilizing kernel sizes of (n x 1) and stride (1 x 1) to extract
spatial features.

Following multi-scale spatio-temporal convolution, each branch
undergoes Batch Normalization and Exponential Linear Unit (ELU)
activation to stabilize training and mitigate overfitting. To
accommodate the varying scales of spatio-temporal features extracted
by different branches, average pooling layers are applied with branch-
specific configurations: Branch 1: Pool size (1 x 30), stride (1 x 25);
Branch 2: Pool size (1 x 50), stride (1 x 20); and Branch 3: Pool size
(1 x 70), stride (1 x 15). The processed features from all three branches
are passed through separate fully connected layers to generate
classification probabilities. Final class prediction is determined by
majority voting. Experimental validation on public datasets confirms
the effectiveness of this architecture in enhancing classification
performance.

3.5 Performance metrics

To comprehensively evaluate the performance of the proposed
method, datasets were partitioned into training and test sets. Models
were trained on the training set and evaluated on the test set. For each
subject, this procedure was performed independently, with results
averaged across subjects. Three established metrics were employed:
accuracy (Li et al.,, 2021), Kappa coefficient (Carletta, 1996), and
Fl-score (Li et al, 2019). Their computational formulations are
given below:

TP+TN

Acc=————
TP+TN+FP+FN

@)

Accuracy (Acc) quantifies the proportion of correctly predicted
samples relative to the total sample size. In Equation 7, TP denotes
True Positives, TN denotes True Negatives, FP denotes False Positives,
and FN denotes False Negatives. The value of Accuracy falls within the
range [0, 1], where values closer to 1 correspond to superior
model performance.

Po_Pe

1-P, ®
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The Kappa coefficient (x) is computed from the confusion matrix
to quantify the agreement between actual classifications and random
chance classifications, thereby assessing model performance. In
Equation 8 P,: Overall classification accuracy (observed agreement),
calculated as the ratio of correctly classified samples to total samples.
P,: Expected accuracy under random chance, derived from the
product of marginal class distributions. The x value ranges from —1
to 1, where values approaching 1 indicate increasingly reliable model
performance beyond random chance.

2TP
B=—— &)
2TP+FP+FN
In Equation 9, the F, ranges between [0,1], with values
approaching 1 indicating superior classification performance.

3.6 Experimental settings

The computational platform configuration comprised an Intel Core
i9-11900k CPU and NVIDIA RTX A4000 GPU with 16GB VRAM. The
software framework was implemented using PyTorch on Python 3.9
under Windows 11. Models were optimized using the Adam algorithm
with batch sizes of 288 for Dataset 2a and 100 for Physionet MI, a learning
rate of 0.0002, and cross-entropy loss. To prevent overfitting, training
employed early-stop (patience = 50), weight-decay=1x 10", and a
dropout rate of 0.5. The multi-head attention module utilized 10 heads
with 6 layers, and training proceeded for 2000 epochs considering
computational resources and model performance.

The BCI Competition IV 2a dataset comprises EEG signals from 9
subjects. Each subject performed four motor imagery (MI) tasks: left
hand (Class 0), right hand (Class 1), tongue (Class 2), and feet (Class

10.3389/fnins.2025.1689647

3). Each session included 48 trials, with MI tasks equally distributed
across classes. Six runs were conducted per subject, yielding 288 MI
trials per subject. EEG data acquisition began at 2 s post-cue onset and
continued until approximately 7 s, followed by a rest period. Given the
standard 4-s analysis window (T = 1,000 sampling points at 250 Hz)
and inter-subject variability, data segments from both 2-6 s and 3-7 s
intervals were utilized, as both contain discriminative MI information.
These intervals were merged to effectively double the dataset size.

The Physionet MI dataset (Goldberger et al., 2000) includes four MI
tasks (left hand, right hand, fists, feet) recorded from 109 subjects. EEG
data were acquired using 64 electrodes at 160 Hz. Each subject underwent
baseline recordings (eyes open/closed) and completed three experimental
sessions, each containing 14 trials. After excluding Subjects 38, 88, 89, 92,
100, and 104 due to inconsistent sampling rates or labeling errors, the
0-4 s post-visual-cue interval was extracted as input data.

4 Experimental and results
4.1 Results of the public datasets

4.1.1 Results of the BCl competition IV dataset 2a
dataset

The proposed DACS-TBTrans method was evaluated on two four-
class motor imagery datasets: the BCI Competition IV Dataset 2a and
the Physionet MI Dataset. Experimental results were compared
against multiple state-of-the-art baseline methods, with statistical
significance assessed using paired t-tests.

The classification performance of the proposed method (DACS-
TBTrans) on the BCI Competition IV 2a dataset is comprehensively
presented in Table 1 and Figure 3. In this experiment, which used
overlapping time windows to augment the dataset, the proposed

TABLE 1 Comparative classification accuracy (%) of proposed method vs. baselines on BCl competition IV 2a dataset.

Method

FBCSP (Chin
et al., 2008)

Subl  Sub2 Sub3 = Sub4  Sub5

76.00 56.50 81.25 61.00 55.00

Sub6

45.25

Sub7  Sub8 Sub9 @ Avg P

82.75 81.25 70.75 67.75 0.5700 0.00001 1%#%*

C2CM

(Sakhavi 87.50 65.28 90.28 66.67 62.50

etal., 2018)

45.49

89.58 83.33 79.51 74.46 0.6595 0.0031017%*

DRDA
(Sakhavi
etal., 2018)

83.19 55.14 87.43 75.28 62.29

57.15

86.18 83.61 82.00 74.74 0.6632 0.0000477+%**

M-FANet (Fu
etal., 2024)

86.81 75.00 91.67 73.61 76.39

61.46

85.76 75.69 87.17 79.28 0.7259 0.0062007**

conformer

(Song et al., 88.19 61.46 93.40 78.13 52.08

2023)

65.28

92.36 88.19 88.89 78.66 0.7155 0.023454*

TCNet fusion

(Musallam 90.74 70.67 95.23 76.75 82.24

etal., 2021)

68.83

94.22 88.92 85.98 83.73 0.7800 0.045601%*

DACS-
TBTrans

91.67 74.65 94.10 88.54 80.90

70.83

97.57 93.06 89.93 86.81 0.8125 -

Bold values indicate the best performance achieved for that metric.

The symbols are denote statistical significance levels: *p <0.05. **p < 0.01, ***p < 0.001.
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FIGURE 3
Comparative classification accuracy of proposed method vs. baselines on BCI competition IV 2a dataset.

method (DACS-TBTrans) achieved the highest classification accuracy
among comparative algorithms for Subjects 1, 4, 6, 7, 8, and 9. It also
demonstrated a significant improvement in average accuracy over
other methods. This consistent outperformance across all subjects
suggests that our approach effectively captures the nuances of EEG
signal patterns associated with motor imagery tasks.

While models like FBCSP, C2CM, and M-FANet are capable of
extracting features from EEG signals, they may not fully capture the
long-term temporal dependencies that are crucial for accurate
classification. Similarly, DRDA, though it enhances model robustness
by incorporating data from other subjects, still lags behind our
method in classification accuracy for every subject. Although TCNet
Fusion achieved the highest accuracy in Subjects 3 and 5, our method
attained the second highest. Given our method’s significant superiority
in Subjects 1, 4, 6, 7, 8, and 9, TCNet Fusion’s overall accuracy remains
lower than ours. This is evident from the high accuracy rates across
multiple subjects, particularly in Subjects 4 and 7, where it achieved
93.06 and 97.57% accuracy, respectively.

The superior performance of the proposed method primarily
stems from its frequency-domain-based data augmentation technique,
which generates reliable synthetic EEG data, combined with its multi-
scale temporal feature extraction approach. Figure 3 further
substantiates this efficacy through clear comparative visualization.

To statistically validate the performance superiority demonstrated
in Table 1, paired t-tests were conducted comparing the proposed
method with baselines on the BCI Competition IV 2a dataset The results
indicate that the proposed method consistently outperforms all baseline
methods with statistically significant differences. Specifically, it shows
extremely statistically significant improvements over FBCSP (p < 0.001),
and DRDA (p < 0.001), highly statistically significant improvement over
M-FANet (p <0.01), and C2CM (p <0.01), statistically significant
improvements over conformer (p < 0.05) and TCNet Fusion (p < 0.05).
These results strongly support the superiority of the proposed method,
demonstrating that the enhancements in classification accuracy are not
due to chance but are statistically validated.
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In motor-imagery (MI) EEG classification, the accuracy scores
obtained by the same subjects under different models are inherently
paired; however, small sample sizes, non-normal distributions, and
heavy-tailed or outlier-prone differences frequently violate the
assumptions (normality and homoscedasticity of the differences)
required by the paired ¢-test, inflating Type I error or diminishing
statistical power. A non-parametric procedure that relaxes
distributional assumptions while controlling multiple-comparison
error is therefore essential. The Wilcoxon signed-rank test demands
only symmetry of the paired differences; it ranks the absolute
discrepancies and restores the signs, fully exploiting the paired
structure and remaining robust to outliers—properties especially
advantageous for small-sample MI datasets. Holm-Bonferroni
correction, a step-down family-wise error rate (FWER) control
procedure, offers higher power than the classic Bonferroni method
yet maintains strict control over the overall error rate without
resampling. Accordingly, we performed pairwise comparisons
between the proposed model and six baselines: for each pair,
subject-wise accuracy differences were first computed and evaluated
with a two-tailed Wilcoxon signed-rank test to obtain raw p-values;
these p-values were then adjusted by Holm-Bonferroni correction,
and significance was claimed at a = 0.05. The outcomes of this
analysis are illustrated in Table 2, Figures 4, 5, where stars mark the
pairs that remain significant after correction (p < 0.05), providing
rigorous statistical evidence for the performance improvement
achieved by the proposed MI classifier.

All raw p-values were < 0.001 (Wilcoxon signed-rank test). After
Holm-Bonferroni correction, every comparison yielded an adjusted
p <0.001, so Table 2 reports identical values; the corresponding
p-values obtained from paired ¢-tests are provided in Table 1.

Our model underwent the Wilcoxon signed-rank test, Holm-
Bonferroni correction, and ranking based on the Friedman test. As
can be seen from Table 2, all comparisons (between the proposed
model and other models) have p-values less than 0.05 after applying
the Holm-Bonferroni correction, indicating that these comparisons
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TABLE 2 Statistical results (Wilcoxon signed-rank test with Holm-
Bonferroni correction).

Comparison p-raw p-adj Effect
(Holm)

Proposed vs. FBCSP 0.0039 0.0234 0.8024 Large
Proposed vs. C2CM 0.0039 0.0234 0.5556 Large
Proposed vs. DRDA 0.0039 0.0234 0.7037 Large
Proposed vs.

0.0039 0.0234 0.5802 Large
M-FANet
Proposed vs.

0.0117 0.0234 0.3951 Medium
conformer
Proposed vs. TCNet

0.0078 0.0234 0.2346 Small

fusion

are statistically significant. That is, the proposed model shows a
significant difference in classification accuracy compared to other
models. The effect size indicates a large effect for comparisons between
the proposed model and FBCSP, C2CM, DRDA, and M-FANet,
suggesting that the proposed model performs significantly better in
these comparisons. The comparison between the proposed model and
conformer shows a medium effect size, indicating that although the
proposed model performs better, the difference is not as significant as
in the previous comparisons. The comparison between the proposed
model and TCNet Fusion shows a small effect size, indicating a
smaller performance difference between the two. After applying the
Holm-Bonferroni correction, the p-values for all comparisons are
slightly higher than the original p-values but still less than 0.05,
demonstrating that the differences between the proposed model and
other models remain significant even when controlling for multiple
comparison errors. The identical adjusted p-values may be due to the
original p-values of each comparison being very close, resulting in the
same ranking and thus the same correction factor. It can be observed
from the figures that our model exhibits stable classification
performance across subjects, with low variability in the data. It
performs the best in both classification accuracy and average ranking,
and the differences compared to other models are statistically
significant.

The confusion matrices for the Motor Imagery Dataset 2a
(Figure 6) reveal a varied classification performance across subjects,
highlighting the complexity of EEG signal decoding. Subjects 1, 3, 8,
and 9 demonstrate superior classification accuracy, as evidenced by
the high values along the diagonal of their respective matrices,
indicating a robust discrimination capability of the proposed method
in decoding EEG signals associated with motor imagery tasks. In
contrast, Subjects 2, 4, 5, and 6 exhibit relatively poorer performance,
with a notable increase in off-diagonal elements, suggesting a
challenge in distinguishing between certain motor imagery classes.
Notably, for Subject 2, Class 2 (tongue motor imagery) achieves the
highest classification accuracy, aligning with previous findings that
suggest a distinct neurophysiological signature for tongue motor
imagery tasks. The observed misclassification between tongue (Class
3) and feet (Class 4) motor imagery tasks in Subjects 1, 3, 7, and 8
could be attributed to suboptimal channel selection, which potentially
misses critical EEG features, thus warranting further investigation.
The performance discrepancies across subjects underscore the
necessity for subject-specific optimization strategies and highlight the
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importance of refining channel selection algorithms to enhance
classification accuracy. Future work should focus on adapting the
channel selection process to account for inter-subject variability in
EEG signal characteristics, aiming to reduce misclassification rates
and improve the overall robustness of EEG-based motor
imagery decoding.

4.1.2 Results of the Physionet M| dataset

The classification outcomes of the proposed method on the
Physionet MI dataset, as detailed in Table 2 and depicted in Figure 7,
showcase a marked improvement over existing baseline methods.
These results were derived from an analysis that excluded data from
Subjects 38, 88, 89, 92, 100, and 104 due to inconsistencies in sampling
rates or labeling errors, leaving a total of 103 valid subject datasets for
evaluation. The proposed method not only demonstrates a
significantly higher average classification accuracy but also achieves
peak accuracy of 97.61% in individual subjects, culminating in an
overall average accuracy of 86.64%. This performance surpasses that
of other state-of-the-art methods such as FBCSP, DeepConvNet,
ShallowConvNet, EEGNet, EEGNet fusion, and MI-EEGNe, as
evidenced by the comparative metrics presented. The superior
performance of the proposed method can be attributed to its advanced
feature extraction capabilities and robust classification strategy, which
effectively leverage the nuances within EEG signal patterns associated
with motor imagery tasks. This analysis underscores the proposed
method’s potential as a leading approach in EEG-based motor imagery
classification, offering enhanced accuracy and reliability for brain-
computer interface applications.

The confusion matrix for the proposed method on the Physionet
MI dataset is presented in Figure 8. This matrix aggregates predictive
outcomes from 10-fold cross-validation to generate the final
classification results for each subject. Due to the extensive number of
subjects, representative samples from Subjects 3, 39, 69, and 106 were
selected for detailed analysis. Notably, Subject 106 exhibits significant
intermixing between Class 1 and Class 2 data, corroborated by its
relatively lower classification accuracy in Figure 5. This observation
aligns with prior findings (Shuqfa et al., 2024), which document data
recording anomalies and abnormally short trial durations for Subject
106. Consequently, exclusion of this subject’s data is methodologically
justified.

4.2 Results of the ablation experiment

The methodology of our study is anchored by two essential
components: sophisticated data augmentation strategies and selective
channel elimination, which are pivotal for enhancing EEG
signal classification. To evaluate the impact of these components,
we executed a meticulous ablation study on the BCI Competition IV
2a dataset. This involved sequentially removing each component from
our model and measuring the performance against a baseline multi-
scale three-branch network model. The experimental findings are
systematically captured in Figures 7, 8, along with detailed results in
Table 3. These visualizations and data underscore the critical
contribution of both data augmentation and channel selection to our
model’s superior classification performance, thereby affirming their
indispensable roles in optimizing EEG-based motor imagery
classification.
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The analysis presented in Figure 9 illustrates the feature
visualization for Subject 1 on the BCI Competition IV 2a dataset,
highlighting the comparative effectiveness of the proposed DACS-
TBTrans method against the baseline TBTrans model. It is evident that
the standalone implementation of channel selection and data
augmentation modules independently contribute to enhancing feature
clustering across different classes. This improvement is characterized
by a notable reduction in feature overlap when juxtaposed with the
TBTrans model. The DACS-TBTrans approach exacerbates these

Frontiers in Neuroscience

positive effects by not only further concentrating class-specific features
but also by achieving a successful isolation between Class 0 and Class
1. This strategic differentiation bolsters classification accuracy,
although a considerable overlap between Classes 2 and 3 remains,
pinpointing a specific area that necessitates further refinement
and optimization.

As a supplement, Figure 10 illustrates how incorporating channel
selection or data augmentation influences classification accuracy
across a broader cohort of subjects. The results show that channel
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TABLE 3 Comparative classification accuracy (%) of proposed method vs.
baselines on Physionet Ml dataset.

Method Avg Fl-score
FBCSP (Chin et al., 2008) 30.63 0.30
DeepConvNet (Schirrmeister et al.,

57.66 0.57
2017)
ShallowConvNet (Schirrmeister et al.,

70.16 0.70
2017)
EEGNet (Lawhern et al., 2018) 37.53 0.36
EEGNet fusion (Zhao et al.,, 2021) 73.73 0.74
MI-EEGNet (Riyad et al., 2021) 85.71 0.86
DACS-TBTrans 86.64 0.86

selection is particularly beneficial for Subjects 2, 4, and 5, as it
effectively removes redundant channels and thereby improves the
signal-to-noise ratio. Similarly, data augmentation delivers significant
advantages for Subjects 2, 4, 5, 7, and 9 by enhancing the dataset’s
robustness against overfitting on EEG signals and their inherent
variability. By integrating both channel selection and data
augmentation, the overall DACS TBTrans model capitalizes on these
individual strengths, markedly boosting classification accuracy for
nearly all subjects and achieving the best performance for every
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participant except Subject 5. This combined approach not only
elevates individual subject performance but also raises the overall
mean classification accuracy, underscoring the synergistic potential of
jointly employing these techniques in EEG-based applications.

The data presented in Table 4 highlights the incremental benefits
of each component in our methodology. The addition of the channel
selection module alone improved the average accuracy by 1.74%,
indicating its role in enhancing feature discriminability. The data
augmentation component further elevated the average accuracy by
7.33%, demonstrating its effectiveness in enriching the dataset and
mitigating overfitting. Most significantly, the combined approach
achieved an 8.92% increase in accuracy over the baseline model,
affirming the synergistic advantages of integrating both techniques.
These results validate our approach’s ability to substantially enhance
EEQG signal classification accuracy. As shown in the table, the proposed
data-augmentation method boosts the baseline accuracy by 7.33%, a
marked improvement that confirms its ability to effectively blend the
two temporal windows provided by the preprocessing stage and to
generate physiologically plausible synthetic EEG signals. Compared
with the 1.74% gain achieved by channel selection alone, this
enhancement underscores the greater importance of data
augmentation for improving classification accuracy.

To validate the effectiveness of the proposed Data Augmentation
and Channel Selection (DACS) framework, we evaluated it on three
baseline architectures—DeepConvNet, EEGNet, and FBCNet—and

frontiersin.org


https://doi.org/10.3389/fnins.2025.1689647
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zheng et al. 10.3389/fnins.2025.1689647
t-SNE Feature Visualization - t-SNE Feature Visualization
o ® Class0 e ClassO
e Classl \ e Class1
e Class2 15 . l:o . e Class2
10 H (% e Class3 *m e Class3
‘ » L]
‘ 104 N Ve
. 3
4 . b S s?
5 S . L
~ ~ ]
z g 0
9w 9
0 ° o -5
5 ¢
L)
3? -10 .
- * 5 ot
% "!‘-*.&4, g L
X -20 A L Ricew
-30 20 10 0 10 20 % -15 -10 -5 0 5 10 15
t-SNE 1 t-SNE 1
(1) TBTrans (2) CS-TBTrans
t-SNE Feature Visualization t-SNE Feature Visualization
® Class0 e Class0
A e Class1 e Class1
20 e Class2 e Class2
e Class3 20 e Class3
10 \
104 .
: : £
g 0 z
9 90
04 J
-10 ‘
AP -
- L)
o e : ..
®
-20 10 0 10 20 20 10 0 10 20
t-SNE 1 t-SNE 1
(3) DA-TBTrans (4) DACS-TBTrans
FIGURE 9

Feature visualization of proposed method for Subject 1 on BCI competition IV 2a dataset.

Classification Accuracy

FIGURE 10

o
o

<
0

1
N

o
o

0.5

~@- Baseline model
—
—#:- Data augmentation
==%+ Combined method

Channel selection

2 4
Subject ID

Ablation results of proposed method on BCI competition IV 2a dataset.

6 8

Frontiers in Neuroscience

13

frontiersin.org



https://doi.org/10.3389/fnins.2025.1689647
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zheng et al.

10.3389/fnins.2025.1689647

TABLE 4 Ablation study of proposed method on BCl competition IV 2a dataset.

Method Subl Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Avg
TBTrans 88.19 59.37 90.97 70.13 62.15 62.50 93.75 90.97 82.98 77.89
CS-TBTrans 90.28 69.44 88.19 79.86 64.93 64.58 90.63 88.19 80.56 79.63
DA-TBTrans 90.97 74.65 93.06 86.46 84.03 61.81 96.53 92.01 87.50 85.22
DACS-TBTrans 91.67 74.65 94.10 88.54 80.90 70.83 97.57 93.06 89.93 86.81

Bold values indicate the best performance achieved for that metric.

TABLE 5 Comparison of baseline models using DACS on the BCI
competition IV 2a dataset.

Method Without DACS With DACS
Avg

DeepConvNet

61.96 63.00
(Schirrmeister et al., 2017)
EEGNet (Lawhern et al.,

66.71 68.01
2018)
FBCNet (Mane et al., 2020) 73.38 74.36
TBTrans 77.89 81.74

TABLE 6 The impact of time length on accuracy.

Length Acc
2 77.54
3 85.26
4 86.81

Bold values indicate the best performance achieved for that metric.

TABLE 7 Comparison of parameter quantity and inference delay.

Method Parameter (m) Delay (ms)
DeepConvNet

0.246 24.89
(Schirrmeister et al., 2017)
EEGNet (Lawhern et al.,

0.031 3.87
2018)
FBCNet (Mane et al.,

0.009 1.23
2020)
DACS-TBTrans 0.344 34.17

compared it with our TBTrans model. All experiments were conducted
on the BCI Competition IV 2a dataset without using temporally
overlapped windows for data expansion. As reported in Table 5,
integrating DACS into each baseline consistently improved
classification accuracy, except for FBCNet, where the gain was
marginal—likely due to divergent feature-extraction strategies.
DeepConvNet, EEGNet, and TBTrans all exhibited improvements
exceeding 1%, with our backbone TBTrans achieving a 3.85% boost.
These results demonstrate that DACS is readily transferable to
alternative baseline models.

We conducted systematic experiments on window length using
the BCI Competition IV-2a dataset and evaluated the proposed model
under different temporal windows; the results are summarized in
Table 6. It can be seen that the model achieves the highest classification
accuracy with a 4-s window. Table 7 further reports the parameter
count and inference latency, showing that the proposed model is
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comparable to classic deep-learning architectures such as
DeepConvNet in terms of model size, and that both the number of
parameters and the latency remain within acceptable limits.

The learning curve graph from Figure 11, based on Subject 3 of
the BCI Competition IV 2a dataset, reveals discrepancies between
training and testing performance metrics. The training accuracy
quickly approaches 100%, while the testing accuracy stabilizes at
around 88%, suggesting the potential presence of overfitting.
Additionally, the training loss decreases to near zero, yet the testing
loss exhibits significant fluctuations and remains relatively high,
further indicating a generalization gap. These results underscore the
necessity for strategies to mitigate overfitting. In subsequent work, our
approach will further refine the model to enhance its robustness and
generalization capabilities on unseen data.

To explore the interpretability of the features captured by the model,
we employed Grad-CAM (Selvaraju et al, 2017) to calculate the
contribution of EEG electrode channels to the classification of a
particular category and visualized the results. By using backpropagation
to only propagate the gradients of the target category, we obtained spatial
weights by averaging across the channel dimension. These weights were
then combined with the corresponding feature maps through weighted
summation and the ReLU function was applied to retain only the positive
contributions, ultimately upsampling to produce heatmaps. Grad-CAM
heatmaps reveal activations over the C3/C4 region that are consistent
with task-related lateralization (Figure 12), aligning with the
neurophysiological prior of contralateral motor-cortex engagement and
thus enhancing model interpretability. From Figure 12, it can be observed
that there is some overlap in the heatmap regions between Subjects 1 and
3 for the same category, which aligns with the similarities expected from
neurophysiology. However, the regions of interest for each subject are
relatively independent, showing distinct differences.

4.3 Parameter experiment

The channel selection method requires optimization of the
hyperparameter controlling channel count. Given the comprehensively
ranked channel sequence [2, 14, 3, 18, 11, 17, 16, 8, 13, 1, 10, 9, 4, 19, 5,
15, 12,20, 0, 7, 21, 6], classification experiments were conducted on the
baseline model (without data augmentation) by incrementally selecting
increasing channel subsets: from the top 1 channel to all 22 channels.

As shown in Figure 13, classification accuracy generally improves
with increasing channel count until the top 12 channels. Beyond this
point, accuracy temporarily decreases when selecting the top 13 and
14 channels, indicating channel redundancy in the middle section of
the sequence. Referencing the conventional 16-channel configuration
from Common Spatial Pattern (CSP) spatial filtering, we set the
channel selection hyperparameter #n=16. This configuration
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combines the top 12 channels with the last four channels of the
sequence (indices 0, 7, 21, 6), deliberately bypassing intermediate
channels to avoid redundancy.

5 Discussion

The DACS-TBTrans method has shown promising results on both
the BCI Competition IV 2a and Physionet MI datasets, indicating its
potential for EEG-based classification tasks. However, the persistence
of significant feature overlap in certain subject-class combinations
underscores the need for further refinement in feature extraction
methodologies to enhance discriminative capabilities.

Our channel selection experiments, conducted systematically
across subjects in the BCI Competition IV 2a dataset, revealed an
intriguing correlation between the 12 + 4 channel configuration and
classification accuracy. Specifically, an increase in accuracy was
observed with greater spatial symmetry of the selected channels. As
depicted in Figure 14, we introduce the Channel Symmetry Index
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(CSI), which quantifies the number of supplementary channels
needed for perfect bilateral symmetry per electrode row. Notably,
subjects who achieved classification accuracies above 90% (e.g., S1, S3,
S7) demonstrated superior channel symmetry with CSI values of 1-2,
whereas subjects with lower accuracies (below 70%, such as S2, S5, S6)
exhibited higher asymmetry with CSI values of 3 or more. These
findings suggest that optimizing channel symmetry could be a
valuable strategy for improving EEG signal classification, warranting
further investigation into the role of spatial configuration in enhancing
EEG-based brain-computer interfaces. Subjects (<70%, S2/S5/56)
showed higher asymmetry (CSI > 3).

Figure 15 illustrates the impact of channel configuration on
classification accuracy across different subjects. The graph compares the
performance of three different channel selection strategies: using the first
16 channels, a 12 + 4 channel configuration, and a 12 + 4 configuration
with symmetrically-tuned channels. It is evident that the 12 +4
symmetrically-tuned channels consistently outperform the other two
strategies, particularly for Subjects 5 and 6, where accuracy saw a
significant boost. This suggests that enhancing channel symmetry
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Channel selection results with strategic supplementation.

through strategic supplementation of 1-3 channels can substantially
improve classification performance. The findings underscore the
importance of considering the spatial arrangement of channels in
EEG-based classification systems. Future research will focus on further
investigating the relationship between channel symmetry and
classification performance to optimize EEG signal interpretation and
enhance the reliability of brain-computer interfaces.

6 Conclusion

This study proposes a motor imagery EEG processing framework
tailored for small datasets. By leveraging frequency-domain
information—including power spectral density, wavelet packet
decomposition/reconstruction, and wavelet packet energy entropy—we
generate synthetic EEG data that closely mimics real recordings.
Concurrently, channel redundancy is reduced through strategic electrode
pruning. Our architecture employs multi-scale convolutional layers for
localized feature extraction at varying resolutions, coupled with
Transformer networks to capture global temporal dependencies.
Evaluated on the BCI Competition IV 2a and PhysioNet MI datasets, the
proposed method achieved mean accuracies of 86.81 and 86.64%,
respectively. Notably, it outperformed the full-channel baseline (p < 0.01,
paired t-test) while discarding 27% of sensors, and matched or surpassed
state-of-the-art benchmarks. By jointly augmenting data and pruning
channels, this framework delivers clinically viable, computationally
efficient MI decoding with fewer electrodes—eliminating need for
additional recordings—thus paving the way for practical low-density
BCI systems in real-world applications.

Author’s note

We will validate the proposed framework on additional public MI
datasets (e.g., GigaDB and OpenBMI) to examine cross-dataset
generalizability.
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