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Motor imagery (MI) electroencephalogram (EEG) decoding plays a critical role
in brain—computer interfaces but remains challenging due to large inter-
subject variability and limited training data. Existing approaches often struggle
with few-shot cross-subject adaptation, as they require either extensive fine-
tuning or fail to capture individualized neural dynamics. To address this issue,
we propose a Task-Conditioned Prompt Learning (TCPL), which integrates a
Task-Conditioned Prompt (TCP) module with a hybrid Temporal Convolutional
Network (TCN) and Transformer backbone under a meta-learning framework.
Specifically, TCP encodes subject-specific variability as prompt tokens, TCN
extracts local temporal patterns, Transformer captures global dependencies, and
meta-learning enables rapid adaptation with minimal samples. The proposed
TCPL model is validated on three widely used public datasets, GigaScience,
Physionet, and BClI Competition IV 2a, demonstrating strong generalization and
efficient adaptation across unseen subjects. These results highlight the feasibility
of TCPL for practical few-shot EEG decoding and its potential to advance the
development of personalized brain—computer interface systems.

KEYWORDS

motor imagery, EEG decoding, task-conditioned prompt, few-shot learning,
transformer, meta-learning

1 Introduction

Motor imagery (MI) electroencephalogram (EEG) decoding has long been a central
challenge in brain-computer interface (BCI) research, offering promising applications
in motor rehabilitation, assistive communication, and intelligent neuroprosthetics (Lotte
et al, 2018; Lu et al,, 2021; Craik et al., 2019; Roy et al., 2019). The ability to accurately
decode motor intentions directly from neural activity enables seamless interaction between
humans and machines, thereby extending motor capabilities and improving the quality
of life for individuals with neurological impairments (Lotte, 2020; Lionakis et al., 2023).
Although substantial advances have been achieved in recent years, achieving reliable
MI decoding remains challenging due to the inherently noisy, non-stationary nature
of EEG signals and their considerable inter-subject variability (Jayaram et al., 2016;
Kostas and Rudzicz, 2021). Traditional methods based on handcrafted feature extraction,
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such as common spatial pattern analysis or frequency-domain
filtering, often fail to effectively capture the intricate spatiotemporal
dependencies inherent in EEG dynamics (Ang et al., 2012; Li, 2019).
More recent advances in deep learning have brought substantial
improvements by automatically learning multilevel features from
raw signals (Schirrmeister et al., 2017; Lawhern et al., 2018; Sun
et al., 2022). However, even state-of-the-art deep architectures
encounter substantial limitations in real-world BCI deployment,
particularly when adapting to unseen subjects with very limited
calibration data (Zhou et al., 2023; Wu et al., 2020).

Existing EEG decoding frameworks typically face two major
challenges. First, inter-subject variability strongly impacts model
generalization (Zhao et al., 2020; Chen et al., 2024). Each subject’s
brain dynamics are shaped by anatomical differences, electrode
placement variations, and diverse cognitive strategies during motor
imagery, which collectively cause significant distribution shifts
across subjects (Liu, 2020; Kostas and Rudzicz, 2021). Models
trained on pooled datasets often underperform when transferred
to new individuals, as they fail to capture these subject-specific
dynamics (Kwak et al., 2023).

Second, few-shot cross-subject adaptation remains particularly
problematic, as it involves adapting to new subjects with only a
few labeled trials per class. Many approaches require large volumes
of calibration data for each new user, which is impractical in
real clinical or daily-life BCI applications (Lu et al., 2021; Zhao
et al., 2020). Although transfer learning and domain adaptation
techniques have been explored (Wu et al., 2020; Xu et al., 2021;
Kwak et al., 2023), they often involve extensive fine-tuning of the
entire network or assume domain-invariant feature spaces that
may not fully represent individual variability (Li, 2019; Zhou et al.,
2023). As a result, current methods either sacrifice efficiency or fail
to provide personalized adaptability, limiting their scalability and
applicability in real-world BCI systems (Lotte, 2020).

Recent work has also explored more specialized strategies for
cross-subject EEG adaptation. For example, meta-transfer and
few-shot meta-learning variants aim to learn rapid adaptation
rules across subjects (Duan et al, 2020; Zhou et al, 2019),
where a meta-task typically corresponds to the support-query
split of an individual subject during episodic meta-training;
graph-based methods attempt to model channel relationships
explicitly for cross-subject alignment; and a growing body
of research has investigated conditional or attention-based
mechanisms to inject subject- or session-specific context into
deep decoders. Notably, recent attention-driven and hybrid CNN-
Transformer architectures, such as LMDA-Net (Miao et al,
2023), CNNVIT-MILF-a (Zhao et al., 2025), and other attention-
enhanced frameworks for motor imagery decoding (Wimpff et al.,
2024; Han et al, 2025), further demonstrate the potential of
integrating spatial-temporal attention to enhance generalization
and interpretability in EEG-based BCI. These lines of work provide
closer points of comparison to our approach and motivate the need
for parameter-efficient conditioning mechanisms that operate with
only a few calibration trials.

To address these shortcomings, we propose Task-Conditioned
Prompt Learning (TCPL), a novel framework that introduces
the idea of task-conditioned prompts into neural decoding. The
term “task” is used in two related senses in this work: (i) at the
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meta-learning level, a meta-task corresponds to a subject-level
adaptation problem (i.e., adapting to a particular subject given a
small support set); and (ii) at the signal level, a task may refer
to the MI class distinction (e.g., left vs. right hand). In TCPL,
prompt tokens are generated per meta-task (subject) to capture
subject-specific priors while the classifier still predicts MI task
labels. The central motivation behind TCPL is that EEG inter-
subject differences can be treated as implicit task conditions, which
can be explicitly modeled as a set of learnable prompt tokens (Liu,
2021; Zhou et al., 2022).

Unlike conventional fine-tuning approaches that adjust
network parameters, our method leverages these task-conditioned
prompts to encode individualized neural signatures and inject
them directly into the feature extraction pipeline. The prompt
refers here to a small set of continuous tokens that condition
the downstream encoder on subject-specific context. Specifically,
TCPL incorporates a Task-Conditioned Prompt (TCP) module
that generates subject-specific prompts from a few calibration
samples, a Temporal Convolutional Network (TCN) for capturing
local temporal dynamics of oscillatory patterns (Bai et al., 2018),
and a Transformer module for modeling global cross-channel
dependencies (Vaswani et al., 2017; Dosovitskiy et al., 2021). These
modules are jointly optimized within a meta-learning framework
(Finn et al., 2017; Nichol et al., 2018), which trains the model across
multiple subject-level tasks, enabling it to rapidly adapt to new
individuals with minimal calibration data (Duan et al., 2020; Zhou
et al,, 2019). Prompt-based conditioning is especially suitable for
EEG because (i) it enables parameter-efficient personalization (only
the prompt generator needs to synthesize task-specific tokens),
(ii) it lets the backbone retain a stable shared representation
while being dynamically modulated by subject context, and
(iii) continuous prompts can capture subtle distributional shifts
without overfitting on extremely small support sets.

Prompt-based conditioning is particularly suitable for EEG
data due to several inherent properties of the signals and the
learning framework. First, EEG recordings are typically low in
signal-to-noise ratio and exhibit substantial inter-subject and
inter-session variability; using prompt tokens allows efficient
incorporation of subject-specific priors without modifying the
backbone parameters, thereby reducing overfitting. Then, prompts
function as adaptable bias vectors that capture distributional
differences, such as electrode configurations or baseline spectral
patterns, and modulate feature extraction in a personalized
manner. By meta-learning prompt generation across multiple
subjects, the model can encode common adaptation dynamics,
achieving rapid few-shot personalization during testing. Finally,
the continuous and composable nature of prompts enables
seamless integration with hybrid architectures such as the TCN-
Transformer, where prompts provide subject-aware conditioning
in the temporal domain, facilitating adaptive feature aggregation
and enhancing generalization.

By explicitly modeling inter-subject variability and steering the
representation learning process through task-conditioned prompts,
TCPL attains efficient and robust few-shot EEG decoding. The
proposed TCPL model offers several distinctive features that
address the fundamental challenges of MI EEG decoding. First, it
pioneers the use of task-conditioned prompts to represent subject
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individuality, providing a lightweight yet powerful mechanism for
cross-subject personalization without retraining the entire network.
Second, the hybrid TCN-Transformer backbone effectively unifies
local temporal feature extraction with global spatial dependency
modeling, ensuring that both short-range oscillatory rhythms
and long-range cross-regional interactions are preserved. Third,
the meta-learning framework equips TCPL with the ability
to generalize across heterogeneous subject populations while
retaining the flexibility to adapt rapidly to new users.
In summary, this work makes the following contributions:

. We introduce TCPL, a novel task-conditioned prompt learning
framework for few-shot cross-subject motor imagery EEG
decoding, which explicitly encodes subject individuality as
prompt tokens for efficient adaptation.

. We hybrid backbone,
Convolutional ~Networks

design a combining Temporal

and Transformer layers, to
jointly capture local temporal dynamics and global spatial
dependencies in EEG signals.

. We embed TCPL within a meta-learning paradigm, enabling
rapid adaptation to new subjects with only a few calibration
samples while ensuring robust cross-subject generalization.

. We conduct extensive evaluations on two widely used public
datasets, demonstrating that TCPL consistently outperforms

state-of-the-art baselines in few-shot cross-subject settings.

2 Methodology

In this section, we present the TCPL (Task-Conditioned
Prompt Learning) model for few-shot cross-subject motor imagery
EEG decoding (Figure 1). We first provide an overview of the

10.3389/fnins.2025.1689286

model architecture and then describe the key components,
including the Task-Conditioned Prompt (TCP) module, the
Temporal Convolutional Network (TCN), the Transformer
module, and the meta-learning framework. Finally, we detail the
training objectives and the inference procedure.

2.1 Overview of TCPL

The proposed Task-Conditioned Prompt Learning (TCPL)
framework is designed to achieve efficient and robust cross-
subject EEG decoding by explicitly modeling subject-specific
variability as learnable prompt tokens. Unlike conventional fine-
tuning or domain adaptation methods that require extensive
retraining, TCPL introduces a lightweight mechanism that rapidly
personalizes the decoding process to new subjects with only a few
calibration trials. The core idea is to treat inter-subject differences
as implicit “tasks,” and encode these differences through task-
conditioned prompts that adapt the model’s feature extraction
and attention mechanisms without modifying the backbone
parameters. The framework consists of three tightly integrated
components: (1) a Task-Conditioned Prompt (TCP) module
that generates a compact set of prompt tokens representing the
neural signature of a given subject, based on a few labeled
samples; (2) a Temporal Convolutional Network (TCN) that
efficiently captures hierarchical temporal dynamics and local
oscillatory patterns from raw EEG signals; and (3) a Transformer
encoder that models global cross-channel dependencies, where
the generated prompts are injected into the self-attention layers
to modulate attention weights in a subject-specific manner.
These components are jointly trained under a meta-learning
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FIGURE 1

The architecture of the proposed TCPL model. It consists of a Task-Conditioned Prompt (TCP) module that generates subject-specific prompts from
a few-shot support set, a Temporal Convolutional Network (TCN) backbone for local temporal feature extraction, and a Transformer module that
integrates prompts with sequence features to capture global dependencies for robust few-shot EEG decoding.
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framework that simulates few-shot adaptation across subjects
during training, thereby allowing the model to generalize quickly
to unseen individuals. Through this design, TCPL bridges the
gap between personalized calibration and generalizable feature
learning, enabling fast, adaptive, and reproducible EEG decoding
for real-world brain-computer interface applications.

2.2 Task-conditioned prompt module

The TCP module is designed to encode subject-specific
variability and provide individualized guidance to the feature
extractor. Given a support set S = {(Xj, yﬁ}ﬁ‘]m

the TCP generates a set of prompt tokens:

from a new subject,

P =g¢(8), (1)

where gy is a small neural network parameterized by ¢ that maps
the few-shot samples to L prompt tokens P = {py,...,pr}, with
each p; € R4

We explicitly specify the encoder, pooling, and prompt-
generator used in our implementation. Let each trial X; € R“*T be
first processed by a lightweight support encoder f4 (-) (shared across

tasks) that maps a trial to a d-dimensional embedding:
ei = fp(X;) € R )

In practice f consists of two 1-D convolutional layers (kernel
size 3, stride 1, padding same), followed by global average
pooling across time and a linear projection to dimension d. We
compute a summary subject embedding by mean pooling over
support embeddings:

1 Nihot
e € Rd. (3)
i=1

hs =

Nshot

The prompt generator gy, (notation changed to 1 to distinguish
generator params) is implemented as a two-layer MLP with hidden
width d and ReLU activation that maps h; to kxd outputs, reshaped
into k prompt tokens:

Py =gy(hg) = [ps1; - psg) € R4, (4)

We use k = 10 and d =
are initialized from N'(0,0.01) and are not independent free

64 as default values. Prompts

parameters—they are deterministic outputs of gy, (h,) and therefore
updated only via ¥ during meta-training.

In the original text prompt concatenation was described along
the channel dimension. For clarity and reproducibility, we explicitly
state the approach used in experiments: after TCN processing (see
next subsection) the temporal feature sequence is H € RT'>d,
We concatenate prompts as prefix tokens along the temporal
(sequence) dimension, forming the Transformer input

7 = [P H] € RK&+T)xd,

This choice ensures direct interaction of prompts with sequence
tokens via self-attention.
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For conceptual continuity, the channel-wise concatenation X =
[X; P] is shown here, but in our implementation, prompt tokens
are never concatenated to the raw EEG input. Instead, they are
appended as temporal prefix tokens after TCN feature extraction
and before the Transformer:

7 = [P57 H] c R(/H—T’)Xd)

where H € RT*? is the TCN output sequence. This ensures
that the prompts guide the Transformer via sequence-based
self-attention while leaving TCN feature extraction on raw
EEG unaltered.

For reproducibility we replace the above X usage in the rest of
the Method section by the sequence-based notation Z = [Ps; H]
once TCN features H are available. The equation above is retained
for conceptual continuity with earlier descriptions, and the precise
implementation used in experiments is (Z = [Ps; H]) as explained.

In our TCPL implementation, prompt tokens are never
concatenated to raw EEG channels. Instead, they are always
appended along the temporal (sequence) dimension after TCN
feature extraction and before the Transformer. This consistent
sequence-based injection ensures that subject-specific prompts
modulate the Transformer attention while keeping TCN feature
extraction unaltered.

2.3 Temporal convolutional network
module

The TCN module extracts local temporal features from EEG
signals. We use causal convolutions with dilated kernels to model
long-range dependencies efficiently. For each layer I, the TCN
operation is defined as:

W = o (WO 5 hD 4 p0), (5)

where * denotes the causal dilated convolution, #© = X, w®,
and b are learnable weights and biases, and o is an activation
function (e.g., ReLU). The receptive field grows exponentially with
the number of layers due to dilation, allowing the network to
capture both short-term oscillatory dynamics (u/8 rhythms) and
longer temporal patterns relevant for MI decoding.

For reproducibility we specify the exact TCN used in
4 residual TCN blocks. Each
block contains two causal 1-D convolutions with kernel size
k = 3, dilation rates [1,2,4,8] across blocks, channel widths
[64, 64,128, 128], ReLU activations and dropout p = 0.1. Residual
connections apply a 1 x 1 conv when channel dimensions change.
The TCN outputs a sequence H € R” *? where d = 64 (projected
via a linear layer if necessary) and T is the downsampled temporal

experiments: we stack Ny, =

length after TCN processing.

2.4 Transformer module

After temporal feature extraction, the Transformer module
captures global sequence dependencies. Let H = h( e RT'xd
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denote the TCN output sequence (not concatenated with prompts).
The prompt tokens Ps are then prepended as temporal prefix
embeddings to form the Transformer input:

Z =[P H] e REFT), (6)

We first project it into query, key, and value matrices:

Q=HWq, K=HWg, V=HWy, 7)

where Wq, Wi, Wy € R are learnable projection matrices. The
self-attention operation is defined as:

. QK"
Attention(Q, K, V) = softmax( )V. (8)
Vd

The prompt tokens P are incorporated by concatenation in H,
ensuring that attention weights are conditioned on subject-specific
information. The Transformer output is then passed through a
feed-forward network with residual connections to yield the final
feature representation F € RAXT,

Using the sequence-prefix notation Z = [Pg; H] € R
we compute for each multi-head attention head (with per-head dim
dy = d/h):

(k+T")xd

Q =2ZWq, K=ZWg, V=~ZWy, %)

QK"
Attn(Q,K,V) = softmax(—)V. (10)
V dn

Because the first k rows of Z correspond to prompts P,
they contribute to keys and values; consequently, EEG sequence
tokens attend to prompt-derived keys/values and thus receive
prompt-conditioned modulation. We also apply standard residual
connections and Layer Normalization (LN) after MHSA and after
FFN in each Transformer block. In experiments we use Ly = 4
Transformer layers, h = 8 heads, model dimension d = 64, and
FFN inner dimension 256.

2.5 Meta-learning framework

To enable few-shot cross-subject adaptation, we adopt a meta-
learning strategy. For each subject-level task t, we split data into a
support set S; and query set Q.. The meta-training objective is:

min Y Lea(f(Qr 1 g5(Seya), (1)

~p(T)

where Lcg is the cross-entropy loss, and p(7) denotes the
distribution over tasks (subjects). This objective encourages the
model to learn how to adapt rapidly to new subjects via the TCP-
generated prompt tokens, without retraining the entire backbone.
We make the meta-objective explicit for reproducibility.
Denote model backbone parameters by 6, support-encoder
parameters by ¢, and prompt-generator parameters by . For each
training episode (subject task) s, we sample a support set S; and a
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query set Q;. We compute prompts Ps = gy({f3(X)}xes,) and the
query predictions y = fy(X; Ps) for X € Q,. The meta-loss is:

1
1Qs]

Lueta(6,0,%) = Y Lee(fo(X; P).y) + AR5, (12)

(X)y)e Qs

and training minimizes 2567}“ Lometa Vvia Adam. The
regularization A (we use A = le—4) stabilizes prompt magnitudes.
In our implementation we update 6, ¢,V jointly; an alternative
is to freeze O after pretraining and update only ¢ and a small
adaptation head.

The Algorithm 1 summarizes meta-training and meta-testing:

2.6 Training and inference

Training: All network parameters 0 and TCP parameters ¢
are optimized jointly via stochastic gradient descent on meta-tasks
sampled from training subjects.

Inference: For a new subject, prompt tokens P are generated
from the support set Spew, concatenated with incoming EEG trials,
and processed by the fixed TCN-Transformer backbone to produce
predictions j.

The principal hyperparameters and implementation details we
used in our experiments are summarized as follows. The model is
trained using the Adam optimizer with an initial learning rate of
1 x 1073, weight decay of 1 x 104, and a batch size of 16 meta-
episodes. The Temporal Convolutional Network (TCN) consists of
four blocks (Nin = 4) with a kernel size of 3, dilation factors
of [1, 2, 4, 8], and output channels [64, 64, 128, 128], enabling
efficient multi-scale temporal feature extraction. The Transformer
encoder includes four layers (L = 4) with eight attention heads
(h = 64), feed-forward
dimension of 256, and dropout rate of 0.1. The task-conditioned

8), a model dimension of 64 (d =

prompt generator produces k = 10 prompts, each with a dimension
of 64, and includes an ¢, regularization term on the prompt

Require: training subjects Tirain,
episodes E

1: initialize 0, ¢, ¥

2: for e=1 to E do

learning rate «,

3: sample subject s~ Tirain

4: split subject s data into support Ss and query
Qs

5: compute embeddings f{e; =y (Xi)lx,es,

6:  hs<— g ¥ie:

7: Ps < gy (hs)

8:  compute 1oss L « 59 ¥ (x,y)e, Le(fa(X;Ps), y) +
AIPs I3

9: update 6, ¢, ¥ < Adam(VL)

10: end for

11: Meta-test: For unseen subject s, compute Py =
gy (hg) from few-shot support and evaluate fy(-;Ps)
on queries (no backbone fine-tuning).

Algorithm 1. Meta-training and meta-testing of TCPL.
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parameters with weight A = 1 x 107*. Layer normalization
is applied after both the multi-head self-attention (MHSA) and
feed-forward network (FFN) layers to stabilize training. All linear
layers are initialized using Xavier initialization. Experiments are
implemented in PyTorch 1.12 and executed on NVIDIA GeForce
RTX 2080Ti GPUs. To ensure statistical robustness, all experiments
are repeated with five different random seeds, and results are
reported as the mean =+ standard deviation.

The entire TCPL pipeline is end-to-end differentiable, allowing
seamless integration of task-conditioned prompts, temporal feature
extraction, and global attention modeling, making it particularly
suitable for few-shot cross-subject MI decoding.

3 Materials

3.1 Dataset |I: GigaScience motor imagery
dataset

The first dataset used in our experiments is a large-scale
motor imagery (MI) EEG dataset released by Cho et al. (2017)
and hosted on GigaScience. This dataset was collected from 52
healthy participants who performed motor imagery tasks involving
the left hand, right hand, both feet, and rest. EEG signals were
recorded using a 64-channel system based on the international
10-20 electrode placement, sampled at 512 Hz. Each trial lasted
4 seconds and was preceded by a visual cue to guide the subject’s
motor imagery. The dataset provides a balanced design across
classes and subjects, making it well-suited for cross-subject learning
and few-shot adaptation studies. In this work, we used the four
standard MI classes (left hand, right hand, both feet, and rest) to
evaluate the generalization capability of our TCPL model.

3.2 Dataset II: PhysioNet EEG Motor
Movement/Imagery Dataset

The second dataset employed is the PhysioNet EEG Motor
Movement/Imagery Dataset (MMIDB) (Schalk et al., 2004), which
is one of the most widely used open-access EEG corpora. It
contains recordings from 109 subjects, each performing both actual
motor execution and motor imagery tasks. In the MI condition,
subjects were instructed to imagine repetitive movements of the
left or right fist, cued by visual instructions. EEG signals were
acquired using 64 electrodes placed according to the international
10-10 system and sampled at 160 Hz. Each recording session
included multiple trials with sufficient repetitions to ensure reliable
inter-subject comparisons. Compared to Dataset I, the PhysioNet
dataset provides a much larger and more diverse population, which
enables us to test the scalability and robustness of TCPL across
heterogeneous subject groups. In this study, we specifically use
the two-class MI scenario (left hand vs. right hand) for cross-
subject evaluation.
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3.3 Dataset Ill: BCI Competition IV 2a
dataset

The BCI Competition IV 2a dataset is a widely recognized
benchmark for motor imagery (MI) EEG decoding research
(Tangermann et al., 2012). It contains recordings from nine healthy
subjects, each performing four MI tasks, left hand, right hand,
both feet, and tongue movements. EEG signals were captured from
22 Ag/AgCl electrodes following the international 10-20 system,
sampled at 250 Hz with synchronized electrooculogram (EOG)
channels to facilitate artifact correction. Each subject participated
in two sessions recorded on different days, ensuring inter-session
variability. Every session includes 288 trials with well-defined cue
and feedback periods, enabling systematic analysis of temporal
and spatial EEG dynamics. This dataset provides a standardized
and challenging foundation for evaluating subject-independent
and few-shot learning approaches in MI-based brain-computer
interface studies.

3.4 Preprocessing

For these datasets, a standardized preprocessing pipeline was
applied prior to model training. Raw EEG signals were first
band-pass filtered between 8-30 Hz, covering the w and B
frequency bands that are most relevant to motor imagery decoding.
Trials were segmented into 4-second epochs following the cue
onset, and baseline correction was performed using a 1-second
pre-cue interval. Channels contaminated with strong artifacts
were removed, and noisy trials were discarded based on an
amplitude thresholding criterion. To unify the datasets, signals
were downsampled to 128 Hz, and all data were re-referenced to the
common average reference (CAR). Finally, the processed epochs
were normalized per subject, i.e., each channel of each subjects
data was z-scored using the subject-specific mean and standard
deviation, before being fed into the TCPL framework.

3.5 Experimental settings

To rigorously evaluate the proposed TCPL framework, we
adopted a ten-fold cross-validation strategy across subjects.
Specifically, all participants in each dataset were randomly
partitioned into ten equally sized folds. In each round of validation,
nine folds were used for training and meta-learning, while the
remaining fold was held out for testing. This procedure was
repeated ten times so that every subject appeared in the test set
once, and the reported results were obtained by averaging across all
folds. Such a strategy ensures a fair and comprehensive evaluation
of the model’s generalization ability across individuals.

Within each training fold, we simulated few-shot scenarios
by selecting a small number of support samples per class (5-shot
and 10-shot settings), while the remaining trials were used as
queries. The Task-Conditioned Prompt (TCP) module generated
individualized prompt tokens from the support set, which guided
the hybrid backbone consisting of a Temporal Convolutional
Network (TCN) for local temporal feature extraction and a
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Transformer encoder for capturing long-range spatiotemporal
dependencies. The entire network was trained in an episodic meta-
learning fashion, where each episode contained a support-query
split sampled from the training folds.

Optimization was performed using the Adam optimizer with
an initial learning rate of le-3, weight decay of le-4, and a cosine
annealing schedule. Each batch consisted of 16 episodes, and the
number of prompt tokens was set to 10 with a dimension of 64.
Early stopping based on validation accuracy within the training
folds was applied to avoid overfitting.

For GigaScience and PhysioNet MMIDB dataset, ten-fold
cross-subject validation is used. For BCI Competition IV 2a
(9 subjects), we employ leave-one-subject-out cross-validation
(LOSO-CV) to ensure each subject serves as the test set exactly
once, and statistical robustness was ensured by repeating the entire
procedure with five different random seeds. This ten-fold cross-
validation setup not only guarantees subject-level fairness but
also provides a reliable assessment of TCPLs adaptability under
realistic few-shot cross-subject motor imagery decoding scenarios.
A minimal reproducibility package will be made publicly available
shortly after publication. The full implementation and trained
model artifacts will be released subsequently.

4 Results and discussions

In this section, we present a comprehensive evaluation of
the proposed TCPL model on two publicly available motor
imagery EEG datasets. The experiments are designed to assess
the effectiveness of TCPL in different aspects, including overall
classification performance, few-shot cross-subject adaptation,
and robustness under noisy or reduced-channel conditions.
Furthermore, an ablation study is conducted to quantify the
contribution of each architectural component. By analyzing both
quantitative metrics and qualitative trends, we aim to provide
an in-depth understanding of how task-conditioned prompts,
combined with Transformer and TCN modules, enable TCPL
to achieve superior generalization and stability across diverse
experimental scenarios.

4.1 Performance comparison with baseline
methods

To comprehensively evaluate the effectiveness of TCPL, cross-
subject experiments were conducted on the GigaScience MI
dataset, PhysioNet MMIDB dataset, and BCI2a dataset, employing
a ten-fold cross-validation protocol. Each fold was treated as
an unseen subject, while the remaining folds were used for
meta-training, simulating realistic BCI scenarios where new
subjects provide only limited calibration data. Table 1 presents
the mean classification accuracy and standard deviation across
the ten folds for TCPL and representative baselines, including
FBCSP (Ang et al,, 2012), IFNet (Wang et al., 2023), FBMSNet (Liu
et al, 2022), TFTL (Wang et al, 2025), EEGNet (Lawhern
et al, 2018), ShallowConvNet (Schirrmeister et al., 2017),
DeepConvNet (Schirrmeister et al., 2017), CTNet (Zhao et al,
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2024), and MVCformer (Liang et al., 2025). To ensure statistical
rigor, we additionally conducted paired ¢-tests between TCPL and
the strongest baseline (MVCformer) for each dataset.

The results indicate that TCPL achieves consistently higher
performance across all datasets, with accuracies of 82.7% =+ 1.5%
(p < 0.01) on the GigaScience dataset, 80.6% £ 1.7% (p < 0.05)
on PhysioNet MMIDB, and 82.1% =+ 1.4% (p < 0.01) on the
BCI2a dataset. These statistically significant improvements over
the baseline suggest that TCPL effectively captures transferable
EEG representations across subjects. While detailed per-subject
distributions are not included here, the reduced standard deviations
across folds indicate that TCPL maintains stable performance
across different participants. These results suggested TCPLs ability
to effectively handle inter-subject variability, a common challenge
in motor imagery EEG decoding. The Task-Conditioned Prompt
(TCP) module enables the model to capture individual-specific
patterns while maintaining a shared representation, allowing rapid
adaptation to unseen subjects with minimal calibration data.

The better performance of TCPL can be attributed to the
synergy between the hybrid TCN-Transformer architecture and
the Task-Conditioned Prompt module. The TCN efficiently
captures local temporal dynamics of EEG signals, while the
Transformer component models long-range dependencies across
time, providing a comprehensive temporal representation. The
TCP module adaptively adjusts feature representations through
prompt tokens that encode subject- and class-specific contextual
cues. To qualitatively assess what the prompts learn, we examined
their activation patterns across tasks and found that they tend
to emphasize sensorimotor regions during corresponding motor
imagery tasks, supporting their role in capturing task-relevant
neural dynamics.

The TCP module introduces subject-specific prompt tokens,
dynamically modulating feature representations to account for
individual differences in EEG patterns. This design not only
improves cross-subject generalization but also enhances the
robustness of the model against variations in signal quality and
electrode placement. Furthermore, the consistent performance
gains across these datasets demonstrate TCPLs versatility in
handling multi-class and binary MI tasks, making it suitable for
practical BCI applications where limited calibration is desired.
Overall, these results confirm that the combination of prompt-
guided adaptation and hybrid temporal modeling forms the
core advantage of TCPL in achieving better accuracy, stable
generalization, and practical applicability in cross-subject motor
imagery decoding.

As shown in Tablel, TCPL significantly outperformed
conventional convolution-based approaches on three datasets. The
improvement was particularly notable in cross-subject evaluation,
where traditional models struggled with inter-subject variability.
The incorporation of task-conditioned prompt tokens enabled
TCPL to capture individual-specific patterns while retaining a
shared representation, leading to superior generalization. This
result highlights the effectiveness of prompt-based adaptation for
motor imagery decoding.

Recent studies have demonstrated the importance of
adaptive feature learning and frequency interaction modeling
in enhancing MI-EEG generalization. IFNet (Wang et al,
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Bold values indicate the best performance for each dataset and metric.
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2023) explored cross-frequency coupling to improve motor
imagery decoding, while FBMSNet (Liu et al., 2022) employed
a multi-scale spectral representation to enhance robustness
across subjects. More recently, MVCFormer (Liang et al,
2025) introduced a transformer-based multi-view fusion
architecture for cross-dataset EEG learning. Compared with
these approaches, the proposed TCPL model achieves comparable
or superior performance under few-shot settings, highlighting its
efficiency in capturing transferable neural patterns with minimal
calibration data.

Furthermore, the capability of TCPL to rapidly adapt to new
subjects with only a few calibration trials holds strong potential
for clinical BCI applications. In motor rehabilitation or patient—
machine communication scenarios, where long recording sessions
are impractical, TCPLs task-conditioned prompting can provide a
fast and personalized calibration process, enabling more accessible
EEG-based neuroprosthetic systems.

4.2 Few-shot adaptation and stability

To evaluate the cross-subject adaptability of TCPL in low-
resource scenarios, we conducted few-shot experiments on the
PhysioNet MMIDB and BCI2a datasets. Each unseen subject
provided only 1, 5, 10, or 20 calibration samples per class,
simulating realistic BCI applications where acquiring large
amounts of per-subject EEG data is impractical. Baseline models,
including EEGNet, ShallowConvNet (Schirrmeister et al., 2017),
and DeepConvNet (Schirrmeister et al., 2017), were trained
under the same few-shot conditions for fair comparison. Table 2
summarizes the mean classification accuracy and standard
deviation across ten folds, while Figure 2 illustrates the relationship
between the number of shots and model performance.

The results demonstrate that TCPL significantly outperforms
all baselines under extremely limited calibration data. In the 1-
shot scenario, TCPL achieves 65.3%, exceeding DeepConvNet by
12.9 points and EEGNet by 14.6 points. Even with only 5 shots,
TCPL attains 74.8%, while baselines remain below 65%, reflecting
the model’s rapid adaptation capability. As the number of shots
increases to 20, TCPL further improves to 83.1%, maintaining both
high accuracy and low standard deviation, which demonstrates
stable learning dynamics. These results indicate that TCPL can
efficiently extract discriminative features from minimal data, a
crucial property for practical BCI systems where extensive per-
subject calibration is undesirable.

The superior few-shot performance of TCPL is mainly
attributed to the Task-Conditioned Prompt (TCP) module, which
generates personalized prompt tokens based on limited calibration
samples. These prompts dynamically modulate the internal feature
representations, enabling the model to capture subject-specific
EEG patterns without overfitting. Additionally, the hybrid TCN-
Transformer backbone plays a complementary role: the TCN
captures local temporal dependencies in the EEG signals, while
the Transformer models long-range temporal correlations across
time. This combination allows TCPL to maintain robust temporal
representations even with minimal data, providing both accuracy
and stability.
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TABLE 2 Few-shot cross-subject performance (mean =+ std %) on PhysioNet MMIDB and BCl2a datasets.

Dataset Model 1-shot 5-shot 10-shot 20-shot
PhysioNet MMIDB EEGNet 517 432 6334238 722422 748 £ 1.8
ShallowConvNet 53.8+33 654427 729424 76.0 + 1.8
DeepConvNet 524430 64.5425 73.8 2.1 76.5+ 1.7
TCPL (ours) 65.3+2.4 748+ 1.8 80.6+ 1.7 83.1+1.5
BCI2a EEGNet 495+34 60.8 429 694425 721420
ShallowConvNet 51.2+3.1 623 +2.6 70.5+2.3 73.8+1.9
DeepConvNet 50.7 £ 3.2 63.5+238 712422 746+ 1.8
TCPL (ours) 63.1£2.6 7254 2.0 78.4+1.8 810+ 1.6

Bold values indicate the best performance for each dataset and metric.

Moreover, the few-shot results have practical significance for
real-world BCI applications. By requiring only a handful of
calibration trials per user, TCPL reduces setup time and participant
burden, enabling faster deployment of motor imagery BCIs. The
low variance across folds also indicates that the model generalizes
well to new subjects, supporting the feasibility of cross-subject MI
decoding in scenarios where individual differences are substantial.
Overall, these experiments confirm that prompt-guided adaptation
coupled with hybrid temporal modeling is effective for achieving
both rapid adaptation and stable generalization in few-shot EEG
decoding tasks.

The results show that TCPL substantially outperforms the
baselines in extremely low-shot conditions (Figure 2). In the 1-shot
scenario, TCPL achieves 65.3% accuracy, exceeding DeepConvNet
by 12.9 percentage points and EEGNet by 14.6 points. Even as the
number of shots increases, TCPL maintains a consistent advantage,
reaching 83.1% at 20-shot, indicating both rapid adaptation
and stable learning. This is attributed to the Task-Conditioned
Prompt (TCP) module, which generates subject-specific prompt
tokens from limited calibration data, allowing the model to
adjust internal representations efficiently. The hybrid TCN-
Transformer architecture further stabilizes the feature extraction
process by balancing local temporal dynamics and long-range
dependencies. These findings suggest that TCPL is particularly
suitable for real-world BCI applications where extensive per-subject
calibration is impractical, providing a fast and stable few-shot
adaptation mechanism.

4.3 Robustness analysis

To evaluate TCPLs robustness under realistic EEG conditions,
we conducted experiments introducing Gaussian noise and channel
reduction on both the GigaScience and BCI2a datasets. Signal noise
and electrode variations are common in practical BCI systems
due to environmental interference, electrode displacement, or
subject movement. Gaussian noise with SNR levels of 10 dB and
5 dB was added to the EEG signals to simulate mild and severe
contamination. Additionally, the number of electrodes was reduced
from 64 to 32 and 16 channels to assess performance under limited
spatial information.

Table 3 presents the classification accuracy of TCPL and
baseline models (EEGNet, ShallowConvNet, DeepConvNet) under

Frontiersin Neuroscience

Few-Shot Adaptation on PhysioNet MMIDB
80 4
N —
& 70
>
o
2 ./
S 65
S
<
60
- —&— TCPL (ours)
—#— DeepConvNet
—&— EEGNet
50 T T T T T -
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of shots per class
FIGURE 2
Few-shot cross-subject adaptation performance of TCPL,
DeepConvNet, and EEGNet on the PhysioNet MMIDB dataset.
Accuracy (%) is plotted against the number of calibration samples
per class, showing that TCPL achieves superior performance with
minimal training data.

different noise levels on the GigaScience dataset. TCPL achieves
82.7% accuracy with clean signals, and maintains 78.6% at
SNR = 10 dB and 734% at SNR =
outperforming baselines, which suffer drops exceeding 10 points in

5 dB, significantly

low SNR conditions.

The channel reduction experiment reveals that TCPL
maintains 74.5% accuracy with only 16 channels, while baselines
drop below 63%, as shown in Figure 3. These results indicate
that TCPL effectively extracts task-relevant features even when
spatial information is limited. This resilience is largely attributed
to the TCP module, which generates subject-specific prompts
that guide the model to focus on discriminative temporal
patterns. Meanwhile, the TCN-Transformer backbone balances
local and global temporal dependencies, providing stable
representations that are robust to noise and missing channels.
In this experiment, channel removal was conducted in a random
manner to emulate realistic electrode dropout or signal loss
that may occur during EEG acquisition. This random strategy
aims to assess the model’s robustness under unpredictable
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TABLE 3 Cross-subject performance (%) under Gaussian noise on GigaScience and BCl2a datasets (mean =+ std %).

GigaScience dataset

BCl2a dataset

Baseline (no SNR = 10dB SNR = 5dB Baseline (no SNR = 10dB SNR = 5dB
added noise) added noise)
EEGNet 735425 68.9+28 61.2+3.1 70.8 £ 2.6 66.5+2.9 59.0 £ 3.2
ShallowConvNet 758 £2.3 704 +2.6 63.5429 735424 68.7 427 61.843.0
DeepConvNet 76.4+2.4 703 £2.7 63.743.0 741423 69.0 4 2.6 62.1429
TCPL (ours) 82.7+1.8 78.6 + 2.0 73.4+23 82.1+1.6 779+ 1.9 72.8 +2.2

Bold values indicate the best performance for each dataset and metric.

Performance under channel reduction
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FIGURE 3

Performance comparison of TCPL, DeepConvNet, and EEGNet
under channel reduction on the PhysioNet MMIDB dataset.
Accuracy (%) is shown with error bars representing standard
deviation across ten folds.

spatial rather than

neurophysiological assumptions.

degradation relying on pre-defined

Furthermore, robustness analysis highlights TCPLs practical
applicability in real-world BCI systems. Environmental noise and
electrode misplacement often degrade decoding performance, but
TCPLs hybrid design mitigates these effects, ensuring consistent
cross-subject performance. This capability allows for reliable
MI decoding in less controlled or mobile EEG settings, where
traditional models often fail. Collectively, the noise and channel
experiments confirm that TCPL provides both accuracy and
resilience, making it suitable for deployment in diverse and
challenging BCI scenarios.

4.4 Ablation study

To systematically evaluate the contribution of each component
in TCPL, we conducted an ablation study on the PhysioNet
MMIDB dataset under a 10-shot cross-subject setting. Four variants
were tested: (1) w/o TCP - Task-Conditioned Prompt removed;
(2) w/o Transformer-TCN only; (3) w/o TCN-Transformer only;
(4) Full TCPL. Each model was trained and evaluated using

Frontiersin Neuroscience

TABLE 4 Ablation study results on PhysioNet MMIDB and BCIC IV 2a
datasets (10-shot, mean = std).

Model variant PhysioNet BCl2a Acc. (%)
MMIDB Acc. (%)

w/o TCP 74.6 £ 1.9 75.2£2.0

w/o Transformer 76.1 £ 1.8 77.0 £ 1.7

w/o TCN 775+ 1.7 78.6 £ 1.6

Full TCPL 80.6 + 1.5 82.1+ 1.4

Bold values indicate the best performance for each dataset and metric.

10-fold cross-validation, and classification accuracy and standard
deviation were recorded to assess both performance and stability.
Table 4 summarizes the final accuracies with four model in
PhysioNet MMIDB.

The ablation study reveals several key insights. First, removing
the TCP module results in a substantial drop in accuracy to
74.6%, highlighting its critical role in capturing subject-specific
EEG patterns. The prompts generated by TCP dynamically guide
the model to attend to discriminative temporal features for each
subject, which is especially important under few-shot conditions.
Without the TCP module, the model struggles to adapt to unseen
subjects, demonstrating that cross-subject adaptability heavily
relies on personalized prompt guidance.

Second, omitting either TCN or Transformer also degrades
performance, though to a lesser extent than removing TCP.
The TCN alone (w/o Transformer) captures local temporal
dependencies, enabling recognition of short-term oscillatory
patterns but failing to model long-range correlations, resulting
in 76.1% accuracy. Conversely, the Transformer alone (w/o
TCN) models long-range dependencies effectively but lacks fine-
grained local feature extraction, achieving 77.5% accuracy. The
combination of TCN and Transformer in the full TCPL model
enables synergistic learning, integrating local and global temporal
information, which accelerates convergence and enhances stability.

The ablation results confirm that TCPLs architecture is well-
suited for real-world BCI applications. Each module addresses a
distinct challenge in EEG decoding: TCP handles subject variability,
TCN ensures local temporal fidelity, and Transformer models
extended dependencies. This modular synergy ensures that TCPL
can provide high accuracy, rapid adaptation, and robust stability,
making it a promising candidate for deployment in real-time,
cross-subject motor imagery BCI systems.

frontiersin.org



https://doi.org/10.3389/fnins.2025.1689286
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Wang et al.

4.5 Limitations and future work

While the TCPL model demonstrates strong performance
in few-shot cross-subject motor imagery EEG decoding, several
limitations should be acknowledged. Firstly, TCPL relies on the
quality of the support set for prompt generation. In scenarios where
the few available calibration trials are noisy or contain artifacts,
the generated task-conditioned prompts may not fully capture the
subject-specific neural patterns, potentially reducing adaptation
accuracy. Although the TCN-Transformer backbone is robust to
moderate noise, extreme signal degradation remains a challenge.

Secondly, the current prompt design assumes a fixed number
of prompt tokens and a predetermined token dimension. While
effective in our experiments, this static configuration may
not optimally represent all subjects, particularly when there is
significant variability in neural dynamics or the number of
channels varies. Dynamic prompt sizing or adaptive token selection
strategies could further enhance individualization.

Thirdly, the computational cost of the Transformer module
increases with the number of channels and sequence length.
Although feasible for most current BCI datasets, scaling TCPL to
high-density EEG recordings or real-time BCI applications may
require model compression, efficient attention mechanisms, or
pruning strategies.

Furthermore, TCPL can be extended to larger and more diverse
datasets such as OpenBMI, which integrates multiple sessions
and mixed motor imagery paradigms, offers an ideal testbed
for evaluating cross-session generalization. Thanks to TCPLs
task-conditioned prompt design, the framework can naturally
adapt to multi-session data and heterogeneous MI paradigms by
embedding session-specific and task-specific context within its
prompt representations. This property provides a seamless path
toward generalizable, multi-center MI-BCI modeling.

Finally, TCPL currently focuses on motor imagery tasks.
Extending the framework to other EEG paradigms, such as event-
related potentials or continuous cognitive workload monitoring,
may require modifications in both the temporal feature extraction
and the meta-learning task construction. Future work will
explore adaptive prompt generation mechanisms, lightweight
attention architectures, and broader applicability across diverse
EEG domains to further improve generalization, efficiency,
and robustness.

5 Conclusion

In this study, we introduced TCPL, Task-Conditioned Prompt
Learning, a novel framework for few-shot cross-subject motor
imagery EEG decoding. TCPL integrates task-conditioned prompts
with a hybrid TCN-Transformer backbone within a meta-
learning paradigm, enabling rapid adaptation to unseen subjects
while capturing both local temporal dynamics and global cross-
channel dependencies.

The TCP module effectively encodes subject-specific neural
variability into learnable prompt tokens, allowing the model to
personalize feature extraction without fine-tuning the backbone
network. The TCN captures short-range temporal patterns, such
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as p and B rhythms, while the Transformer models long-range
spatial and temporal dependencies. Meta-learning trains the model
to generalize across subjects, ensuring robust few-shot adaptation.

Extensive evaluations on the GigaScience, PhysioNet, and
BCI2a datasets demonstrate that TCPL consistently outperforms
state-of-the-art baselines in few-shot settings, achieving superior
classification accuracy and efficient adaptation. Beyond numerical
gains, these results indicate that incorporating task-conditioned
prompts enables the model to better capture subject-specific neural
dynamics, thereby enhancing cross-subject generalization.

Importantly, the findings reveal that prompt-based modulation
can serve as a lightweight yet effective mechanism for neural
personalization in EEG decoding, which has been a long-standing
challenge in brain-computer interface research. This suggests that
TCPL not only provides an architectural improvement but also
introduces a conceptual step toward interpretable and adaptive
neural modeling. The current study primarily focuses on motor
imagery EEG tasks. Extending TCPL to other cognitive paradigms,
multimodal neurophysiological data, and real-time online BCI
settings remains an open avenue for future research.

In summary, TCPL provides a scalable, flexible, and effective
solution for personalized EEG decoding, bridging the gap
between generalized deep learning models and subject-specific
adaptation. By demonstrating that task-conditioned prompting
can systematically improve cross-subject generalization, this work
contributes both a methodological innovation and a scientific
insight into how adaptive representations can emerge from limited
neural data.
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