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Spiking  Neural Networks (SNNs) offer transformative, event-driven
neuromorphic computing with unparalleled energy efficiency, representing
a third-generation Al paradigm. Extending this paradigm to graph-structured
data via Spiking Graph Neural Networks (SGNNs) promises energy-efficient
graph cognition, yet existing SGNN architectures exhibit critical fragility
under adversarial topology perturbations. To address this challenge, this
study presents the Spike-based Structural Entropy Learning framework (SSEL),
which introduces structural entropy theory into the learning objectives of
SGNNSs. The core innovation establishes structural entropy-guided topology
refinement: By minimizing structural entropy, we derive a sparse topological
graph that intrinsically prunes noisy edges while preserving critical low-entropy
connections. To further enforce robustness, we develop an entropy-driven
topological gating mechanism that restricts spiking message propagation
exclusively to entropy-optimized edges, systematically eliminating adversarial
pathways. Crucially, this co-design strategy synergizes two sparsity sources:
Structural sparsity from the entropy-minimized graph topology and Event-
driven sparsity from spike-based computation. This dual mechanism not only
ensures exceptional robustness (64.58% accuracy vs. 30.14% baseline under
0.1 salt-and-pepper noise) but also enables ultra-low energy consumption,
achieving 97.28% reduction compared to conventional GNNs while maintaining
state-of-the-art accuracy (85.31% on Cora). This work demonstrates that
the principled minimization of structural entropy is a powerful strategy for
enhancing the robustness of Spiking Graph Neural Networks. The SSEL
framework successfully mitigates the impact of adversarial topological
perturbations while capitalizing on the energy-efficient nature of spike-
based computation, which underscore the significant potential of combining
information-theoretic graph principles with neuromorphic computing
paradigms.
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1 Introduction

Graph Neural Networks (GNNs) have emerged as a powerful
paradigm for representation learning on graph-structured data,
with foundational architectures including Graph Convolutional
Networks (Kipf and Welling, 2016) and Graph Attention Networks
(GAT) (Velickovic et al., 2017). Despite their success in domains
from social network analysis to biomedicine (Wu et al, 2022),
GNNs exhibit critical vulnerabilities: they are susceptible to
adversarial topology perturbations (Ziigner et al., 2018), while
their computational overhead-particularly in transformer-based
variants (Chen et al,, 2023)-impedes deployment in resource-
constrained environments. Although defense strategies like graph
purification (Zhu et al, 2019) and adversarial training (Miyato
et al., 2016) have been proposed, they often compromise efficiency
or lack theoretical robustness guarantees.
Networks
potential for

(SNNs)  have

energy-efficient

Concurrently, Spiking Neural

demonstrated transformative
neuromorphic computing through event-driven processing
(Zhu et al, 2022). Their extension to Spiking Graph Neural
Networks (SGNNs) promises ultra-low-power graph cognition
but introduces a critical new vulnerability: existing SGNNs exhibit
severe fragility under adversarial structural attacks. This dual
challenge - balancing robustness against topology perturbations
with ultra-low energy consumption - constitutes a significant
challenge in the field.

Structural entropy theory (Chen and Liu, 2019) offers
a promising pathway to address topological vulnerability. By
quantifying hierarchical structural uncertainty in graphs, entropy
minimization enables principled noise reduction while preserving
community organization (Wang et al, 2023). Yet its potential
remains untapped in neuromorphic graph learning. Bridging
this gap requires reconciling three elements: (1) entropy-guided
topology robustness, (2) event-driven computation efficiency, and
(3) theoretical guarantees against adversarial attacks.

To this end, we propose Spike-based Structural Entropy
Learning framework (SSEL), a novel framework that introduces
structural entropy minimization into SGNNs. Our approach
features two core innovations: entropy-guided topology refinement
through differentiable objective formulation, generating sparse
subgraphs that intrinsically prune adversarial edges while
preserving low-entropy connections critical for community
structure; and entropy-driven topological gating, which restricts
spiking message propagation exclusively to optimized edges to
systematically block adversarial pathways while maintaining
sparsity. This
sparsity (from entropy-minimized topology) and event-driven

event-driven co-design synergizes structural
sparsity (from spike-based computation), enabling simultaneous
robustness and efficiency.

This work makes three key contributions. First, we establish a
theoretically grounded approach for adversarial-resistant topology
refinement in SGNNs using structural entropy minimization.
Second, we design an entropy-gated spike propagation mechanism
that confines message-passing to robust pathways. Third, we
demonstrate that SSEL achieves 64.58% accuracy under severe
perturbations (0.1 salt-and-pepper noise), outperforming SGNN
baselines by >34% while maintaining state-of-the-art accuracy on

clean graphs (85.31% on Cora). Crucially, our framework reduces
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energy consumption by >97% compared to conventional GNNG,
fulfilling neuromorphic computing’s promise for sustainable
graph intelligence.

2 Related work

2.1 Robust graph neural networks

Recent advances in graph representation learning have
highlighted the vulnerability of GNNs to adversarial perturbations.
Early work by Ziigner et al. (2018) demonstrated that even
minor structural perturbations could significantly degrade model
performance. This led to the development of defense mechanisms
such as RGCN (Zhu et al, 2019), which employs Gaussian
distributions to model node uncertainty during message passing.
Subsequent approaches like GNNGuard (Zhang and Zitnik, 2020)
introduced edge pruning based on feature similarity, while Pro-
GNN (Jin et al., 2020) jointly optimized graph structure and model
parameters using sparsity and low-rank constraints. However, these
methods often incur substantial computational overhead due to
their reliance on dense gradient computations.

Structural entropy has recently emerged as a powerful tool for
graph robustness. The concept, formalized by Li and Pan (2016),
quantifies the information required to encode a graph’s hierarchical
organization. Applications include community detection (Xian
et al,, 2025) and graph pooling (Wu et al., 2022), where entropy
minimization helps preserve critical topological features. SE-GSL
(Zouetal., 2023) extended this idea to graph structure learning, but
did not address the computational efficiency challenges inherent
to GNN. In contrast, our SSEL framework synergizes structural
entropy minimization with event-driven sparsity to achieve both
robustness and efficiency simultaneously.

2.2 Spiking neural networks for graphs

SNNs achieve exceptional energy efficiency through event-
driven binary activations, reducing power consumption by >90%
compared to analog architectures (Zhu et al., 2022). Pioneering
SGNN:G like Spiking GCN (Zhu et al., 2022) encoded node features
as spike trains but overlooked topological vulnerabilities, resulting
in severe performance degradation under attacks. Subsequent
work such as DRSGCN (Zhao et al., 2024) improved dynamic
feature aggregation through spiking recurrent units, while Yao
et al. (2023) further introduced spiking self-attention for adaptive
feature weighting. However, these approaches either treated
graph topology as static or provided no theoretical guarantees
against structural perturbations. As evidenced in our experiments,
while Spiking GCN and DRSGCN represent key energy-efficient
baselines, their fragility to adversarial edges underscores the need
for SSELs topology-aware spiking mechanism.

Recent work has begun to bridge this gap. Lun et al. (2025)
demonstrated that sparse gradients in SNNs naturally resist random
perturbations, while Jiang and Zhang (2022) proposed bio-inspired
defenses against targeted attacks. Nevertheless, none of these
methods explicitly incorporate graph topological properties into
their robustness frameworks.
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2.3 Hybrid approaches

The intersection of robustness and efficiency has seen limited
exploration. USER (Wang et al., 2023) employed structural entropy
for unsupervised robustness but retained conventional GNN
architectures. Similarly, the research (He et al., 2024) used entropy
regularization for sparse graphs without considering spiking
mechanisms.

Our approach fundamentally diverges by pursuing robustness
and efficiency through a single principle derived from structural
entropy minimization. This entropy reduction inherently promotes
adversarial resilience by pruning noisy connections, while the
spiking mechanism ensures ultra-low computational overhead—
a co-design absent in prior work. The proposed SSEL framework
advances beyond existing methods in three key aspects: (1)
Structural entropy-guided topology refinement, generalizing low-
rank constraints to spike-based computation; (2) Entropy-driven
topological gating, extending sparse aggregation with structure-
aware event propagation; (3) Synergistic sparsity co-design, where
entropy-minimized topology and event-driven spiking dynamics
mutually reinforce during training.

SSELs foundation in structural entropy minimization provides
provable robustness bounds, while its spiking implementation
guarantees practical scalability—advantages not demonstrated in
earlier hybrid models like (Zheng et al., 2024). Unlike RGCN (Zhu
et al,, 2019) or Pro-GNN (Jin et al., 2020) which require dense
computations, SSEL leverages dual sparsity sources: structural
sparsity from the entropy-optimized graph and event-driven
sparsity from spike-based processing. Compared to Spiking GCN
(Zhu et al,, 2022), SSEL explicitly models adversarial resilience
through entropy-guided topology refinement. This dual emphasis
positions SSEL as a uniquely scalable solution for real-world graph
tasks.

3 Preliminaries

3.1 Graph neural networks and their
limitations

Modern GNNs operate through message-passing frameworks
where node representations are iteratively updated by aggregating
information from neighboring nodes. In Equation 1, the
fundamental operation can be expressed as:

WD =o( > wOnD) (1)
ueN (v)

where h{ denotes the representation of node v at layer I,
N(v) represents its neighbors, and W is a learnable weight
matrix. While effective, this paradigm suffers from two critical
weaknesses. First, the aggregation process is highly sensitive to
structural perturbations—even minor changes in edge connections
can significantly alter the message flow (Ziigner et al, 2018).
Second, attention-based variants like GAT (Velickovi¢ et al., 2017)
compute pairwise attention coefficients using Equation 2:

(Whi)T (Wh;)
ajj = softmax (T’) (2)
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leading to O(n?) complexity that becomes prohibitive for large
graphs. These limitations motivate the need for architectures that
are both robust to perturbations and computationally efficient.

3.2 Spiking neural networks and
event-driven computation

SNNs model biological neuronal dynamics through discrete
spike events and membrane potentials. The membrane potential
U (t) of a neuron evolves with Equation 3:

Ut) =D wiSi(t)+ AU (t—1) 3)

where S; () represents incoming spikes, w; are synaptic weights,
and A is a leakage factor. WhenU (f)crosses a threshold 6, the
neuron fires a spike according to Equation 4:

St =0U®—-0) 4

with 6 (-) being the Heaviside step function. This event-driven
paradigm offers two key advantages: (1) sparse activations reduce
energy consumption by avoiding dense matrix operations (Zhu
et al, 2022), and (2) the temporal coding of spikes provides
inherent noise resilience as perturbations must align precisely with
spike timings to affect computations. However, integrating SNNs
with graph learning requires careful design to preserve structural
relationships while maintaining these benefits.

3.3 Adversarial attacks on graph neural
networks

Adversarial attacks on GNNs typically manipulate either
graph structure (edge additions/deletions) or node features.
Structural attacks are particularly effective because they directly
alter the message-passing pathways. Let G = (4, X) denote a
graph with adjacency matrix A and node features X. An adversarial
to G = (A+ AA, X),
where AAp < constrains the number of edge changes. Such
perturbations can cause significant misclassification of target nodes

perturbationAAmodifies the graph

by strategically disrupting their neighborhood aggregation (Zhu
et al,, 2019).Defending SGNNs against these attacks necessitates
mechanisms that are insensitive to small but adversarial changes in

graph topology.

3.4 Energy efficiency in neural networks

The energy consumption of neural networks is dominated
by floating-point operations (FLOPs), especially in attention
mechanisms that compute all-pair interactions. For an n-node
graph, traditional attention requires O(n>d) FLOPs per layer where
d is the feature dimension (Figure 1). In contrast, event-driven
SNNs can reduce this to O(knd), with k <« n being the average
number of spikes per timestep (Zhu et al., 2022). This efficiency
stems from two properties: (1) binary spikes eliminate expensive
multiplications, and (2) inactive neurons (those not firing) skip
computations entirely.
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FIGURE 1
The diagram of our framework whose complexity is O(knd) vs. traditional ANN-based graph attention whose complexity is On?d.

However, achieving accuracy comparable to continuous
networks remains challenging due to information loss during
spike encoding. Crucially, while SNNs provide intrinsic event-
driven sparsity, robust performance necessitates structural
sparsity through adversarial edge identification and removal. Our
framework resolves both sparsity requirements and the accuracy-
efficiency trade-off via entropy-driven mechanisms: Structural
entropy minimization actively governs spiking dynamics to achieve
dual sparsity inherently.

Based on these limitations—GNNs/SGNNs’ vulnerability to
structural attacks and energy inefficiency, SNNs’ inherent noise
resilience but limited adversarial robustness, and the critical
need for energy-efficient graph learning-we develop SSEL. This
framework employs structural entropy minimization to condition
event-driven computation, simultaneously resolving robustness

and efficiency constraints in graph representation learning.

4 Spike-based structural entropic
learning framework

To address the dual challenges of adversarial fragility and
computational inefliciency outlined in section 3, we propose a
novel framework which leverages structural entropy theory to
enhance SGNN robustness against graph perturbations. The core
approach minimizes hierarchical structural entropy to extract
intrinsic graph connectivity while maintaining compatibility with
spiking dynamics. This section presents the formal mathematical
foundation and components.

4.1 Theoretical foundation: mitigating
graph randomness in SGNNs

GNNGs face significant challenges when processing real-world
graph data contaminated by random perturbations that disrupt
structural patterns. Inspired by the Structural entropy theory

Frontiers in Neuroscience 04

(Chen and Liu, 2019), we establish formal criteria for constructing
robust graph representations resilient to such randomness. The
theoretical foundation recognizes that observed graphs represent
perturbed samples of an underlying intrinsic connectivity graph
Gr = (V, &), which exclusively contains edges within semantic
communities. This ideal graph structure satisfies (Equation 5):

&r = {(vi, vj)|v; and v; share community membership}  (5)
where  its  adjacency  matrix = A;  exhibiting  rank
equal to the number of communities ¢, preserving
the essential semantic relationships without

noise contamination.

To operationalize this concept for SNNs, we define innocuous
graphs G’ as structural equivalents that induce identical SGNN
embeddings as §r under all parameterizations. The formal
indistinguishability condition requires that:

SGNN(4/, X, W) = SGNN(A}, X, W)

(6)

V feature matrices X, weight sets W

This equivalence (Equation 6) imposes two fundamental
requirements on G':

1. Rank preservation (rank(A’) > ¢) :Ensures the adjacency
matrix captures sufficient semantic dimensions to maintain
community separation.

Community-Coherent Features: Nodes within the same
topological community must exhibit similar spiking patterns
with significant differentiation from other communities.

These criteria establish the theoretical basis for constructing
noise-resilient graph representations within spiking neural
architectures. SSEL aims to learn such an innocuous graph G’ from
the observed (potentially perturbed) graph G.
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4.2 Second-order structural entropy
minimization

Structural entropy quantifies the uncertainty in hierarchical
graph partitioning, measuring the information content required
to describe community structures at different scales. Minimizing
structural entropy helps identify the intrinsic community structure
by pruning random connections (Chen and Liu, 2019). For a graph
G = (V, £) with adjacency matrix A, we define the core concepts as
follows:

The encoding tree T represents a hierarchical partitioning
of vertex set Vinto nested, non-overlapping communities
{C1, ..
veT corresponds to a community subset, with v; denoting its

., C¢} at multiple resolution levels. Each non root node

immediate parent community in the hierarchy.
The k-dimensional structural entropy formalizes the optimal
partitioning uncertainty at depth k:

v vol(vy)
. vol(V)

HP(G) )

= MINT:Height(T)=k 2 Lol(v7)
t

where g, counts edges with both endpoints in the leaf nodes of
partition v;,vol(v;) = >, du represents the sum of degrees of
nodes in community vy, VO](Vt ) is the volume of the immediate
parent community, vol(V) = >, .y, d; denotes the total graph
volume, This formulation (Equation 7) captures the information
required to describe the graph’s community structure at depth k,
with lower values indicating clearer hierarchical organization.

We focus on specific dimensions for robustness. The first
dimension, 1D structural entropy, characterizes node-level
homogeneity using the expression:

1 d d;

H'(G) Z\:} 2171 198 317 (8)
Here, d; represents the degree of node v;, denotes the total
number of edges in graph G, and the summation extends over all
nodes in vertex set V. This formulation (Equation 8) measures
homogeneity in degree distributions, where skewed distributions
indicate structural vulnerabilities to random edge perturbations.
Higher values of H'(G) correspond to increased sensitivity to
topological noise.

The second dimension, 2D structural entropy, balances
intra-community density against inter-community sparsity.
To construct innocuous graphs satisfying these criteria, we
implement second-order structural entropy H?(G) minimization,
selected for its explicit optimization of community structures and
natural enforcement of the rank condition. This entropy variant
provides the optimal balance between computational efficiency
and robustness for spiking networks, directly addressing the core
challenge of graph randomness. The mathematical formulation
quantifies the essential trade-off between intra-community

cohesion and inter-community separation:

&)

H2(G) = minp (Hl(G|7>) + CUt(P))

21€]

P ={C,...,C.} represents
H'(GIP)
degree distribution homogeneity within communities, and

In this expression (Equation 9),

a partition into ¢ communities, measures
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cut(P) = {(u,v)u € C;,v € Cj, i #j}| imposes a penalty on
cross-community connections. Minimization of this compound
expression  simultaneously  strengthens  intra-community
bonds while suppressing inter-community noise propagation
during spike aggregation, directly satisfying the conditions for
innocuous graphs.

We implement this optimization through a differentiable
Network Partition Structural Information (NPSI) loss operating on

the adaptive adjacency matrix A”:

(TA'Y) i

i (YTAY ) )
2[1A][y

(10)
2014 P

Lnpst =
k=1

The community assignment matrix Y € {0, 1}"*¢ partitions nodes
into semantic groups, while (YTA'Y) i quantifies the intra-
community connection strength. The logarithmic component

log2 W penalizes ambiguous community assignments when
the total edge weight involving communitykpoorly aligns with
its internal connectivity. This formulation (Equation 10) ensures
that during optimization, communities evolve toward densely
connected internal structures with sparse external linkages,
effectively filtering random perturbations from the graph topology.

Lnpst exhibits an adaptive optimization behavior, dynamically
determining whether to strengthen or prune edges based on
the internal connectivity of a community. This dual behavior is
captured by the gradient with respect toA;j, as shown in Equation
11:

OLNpsI ik Yk Zk vol(Cy) In z,
— = (1+1lo - 7 ) (11

oA Z AT 8 lC T AT In2
where  zp = (YTA'Y)p  .Crucially, for edges within
communityk(Yy Yy = 1)(1) if 2z is small (sparse intra-

connections), the gradient is positive, encouraging strengthening
of within-community edges; Conversely, when z; > ||A/||1 /e,
the gradient becomes negative and prunes weak edges, pruning
weak or noisy intra-community edges. This gradient behavior
intrinsically prunes adversarial edges and refines the topology
toward the innocuous graph G'.

Concurrently, we enforce feature coherence within
communities through the Davies-Bouldin Index (DBI), which
aligns topological communities with spiking feature distributions,

as expressed in Equation 12:

Lppr = Z max,, sk (

Here pj represents the mean spiking features of nodes in

o +om ) (12)

Huk — wmll2

community k, while o measures the standard deviation of these
features. The numerator (ox + 0,,) penalizes feature dispersion
within communities, while the denominator (||ur — pmll2)
rewards separation between community centroids.

Minimizing Lpp; achieves two objectives: (1) It compresses
intra-community feature dispersion (o5, — 0), enhancing temporal
coding consistency; (2) It repels centroids of overlapping
communities (||xx — 4mll — 00), enforcing semantic separation.

We construct an objective function as shown in Equation 13:

Lse = Lnpst + BLppr (13)

frontiersin.org


https://doi.org/10.3389/fnins.2025.1687815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Yang et al.

where Lypsy eliminates inter-community edges, collapsing into ¢
quasi-clique subgraphs, Lpp; prunes intra-community edges with
divergent features, refining to retain only geometrically consistent
connections. Then, we can learn an innocuous graph G’ that meets
the conditions mentioned in Equation 5.

4.3 Spiking dynamics with topological
gating

The neuron model foundation of our architecture employs
leaky integrate-and-fire (LIF) dynamics, which provide biologically
plausible temporal processing capabilities. The membrane potential
Vi of each neuron evolves according to Equation 14:

dv;

= Vi= Vie) + ; WiiS;(t) (14)

where T is the membrane time constant, Vi, denotes the resting
potential, Wj; represents synaptic weights, and §;(¢) are incoming
spike trains. When the membrane potential exceeds threshold Vi,
the neuron emits a spike:

1if Vi(t) > Vg
Si(t) = 15
i) 0 otherwise (15)

This formulation (Equation 15) captures essential biological
properties including temporal integration, threshold behavior, and
post-spike reset dynamics. Then, the spiking attention module
transforms traditional softmax attention into an event-driven
process. For query Q, key K, and value V projections, the spike
activation S;; between nodes i and j is defined by Equation 16:

QinT
7 -0 (16)

where 6 is a learnable threshold. The attention weights are then

S;j =10

computed only over active spikes using Equation 17:

ajj = softmax (S® (QKT/x/;i)) B 17)
y
This sparse computation reduces the complexity from O(n?) to
O(nnz(S)) where nnz counts non-zero spikes. The membrane
potential dynamics ensure temporal consistency, as shown in
Equation 18:

Ui) =AUt — D)+ D azVj (18)
JeN (i)

A spike is emitted when Uj(t) > 6, triggering a node state
update. The combination of sparse attention and event-driven
updates achieves up to three times faster computation compared
to dense attention.

To further enforce robustness, we implement topological gating
using the optimized adjacency matrix A" . This mechanism filters
spike transmission based on connection significance, creating
synergistic alignment between topological structure and neuronal
dynamics:

A 1
Sl(]t) = Sz(]t) -I I:A:] > Tgatei| where Tgate = EHA/Hl (19)
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This gating operation (Equation 19) functions as a structural
attention mechanism: intra-community edges (high A;j) permit
unimpeded spike transmission, amplifying synchronized firing
essential for information coding; conversely, inter-community or
noisy connections (low A:j) block spike propagation, reducing
metabolic cost and cross-talk. The adaptive threshold tgate
automatically scales with graph density, ensuring context-sensitive
filtering across diverse networks. Biologically, this process mirrors
myelinated neural pathways where strong structural connections
enable efficient signal transmission while weak connections are
functionally suppressed, which ensures attention is computed only
over edges deemed robust by the structural entropy criterion.

The gated spike matrix §,»j then drives the final node
representations via Equation 20:

WD =mep (> §wOn” (20)
ieN (i)

creating a closed loop where topological structure shapes
spiking activity while neural dynamics provide feedback to
refine community detection. This neuro-symbolic integration
fundamentally embeds structural entropy principles into the core
computation of spiking graph networks rather than treating them
as separate components.

4.4 End-to-end architecture and training

Let Ly, be the loss function of the supported model, Lge
in Equation 12 is employed to alleviate the interference of
randomness. The model is trained by minimizing L:

L=alpsg+ (1 —o)Lse (21)

where L,q denotes the task-specific loss, Ls represents the
structural entropy loss, and (a € [0, 1]) controls the robustness-
efficiency trade-oft. This objective function (Equation 21) achieves
structural sparsity through direct entropy minimization, which
selectively prunes noisy connections while preserving critical low-
entropy edges.

Building upon these theoretical foundations, we develop SSEL
framework featuring a dual-pathway design that coordinates
structural optimization with spatio-temporal feature extraction, as
illustrated in Figure 2. In the structural optimization pathway, a
GNN module minimizes Ls to derive a noise-resilient topological
graph A" . Concurrently, the temporal encoding pathway processes
node features through a Spike-Transformer that converts inputs
into sparse spike trains S;; using biologically inspired LIF dynamics.
Crucially, the entropy-optimized topology A" actively gates these
spike trains before LIF neuron integration, enforcing strict
alignment between structural and dynamical representations by
restricting spike propagation exclusively to low-entropy pathways.

The SSEL framework systematically blocks adversarial access
points while preserving event-driven computation sparsity,
with the topological gating mechanism serving as the critical
enforcer of pathway integrity. Training employs backpropagation-
through-time adapted for spiking neurons, where straight-through
estimators enable gradient flow across the non-differentiable gating
operation. The complete end-to-end approach thus preserves
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The architecture of the Spike-based Structural Entropy Learning framework (SSEL) framework, synergizing structural sparsity (from
entropy-minimized topology) and event-driven sparsity (from spike-based computation).
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R R

the model’s energy efficiency while ensuring robustness against
structural perturbations through principled co-optimization of
topological constraints and spatio-temporal dynamics.

5 Experimental results

In this section, we compare SSEL-supported SGNN network
(Sun et al., 2024) (SSEL) with state-of-the-art methods and conduct
some analyses.

5.1 Experimental setup

To evaluate the proposed framework, we conducted

experiments on two benchmark datasets spanning different

Frontiers in Neuroscience

scales. The Cora citation network (Sen et al., 2008) contains 2,708
scientific publications with 5,429 citation links, where nodes
represent papers and edges denote citations. The Citeseer dataset
(Zhu et al,, 2003) comprises 3,327 academic papers with 4,732
citation edges, featuring a larger and sparser structure than Cora.

We compare SSEL against three categories of baseline methods:
(1) Standard GNNs: GCN (Kipf and Welling, 2016) and GAT
(Velickovi¢ et al, 2017), which represent conventional graph
learning approaches without explicit robustness mechanisms. (2)
Robust GNNs: RGCN (Zhu et al.,, 2019) and Pro-GNN (Jin et al.,
2020), which incorporate various adversarial defense strategies. (3)
Spiking GNNG: Spiking GCN (Zhu et al., 2022) and DRSGCN (Zhao
et al,, 2024), which integrate spiking neural mechanisms for energy
efficiency.“w.o. SSEL” refers to a network configuration where the
SSEL component is omitted.
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TABLE 1 Classification accuracy (%) on clean graphs
Method

Method Dataset
Category

e ———

Standard GNNs 81.35+1.03 69.93 +1.21
GAT 82.33 £+ 0.69 71.25 £ 0.46

Robust GNNs RGCN 82.8£0.6 71.2£0.5
Pro-GNN 82.98 +0.23 73.28 £+ 0.69

Spiking GNNs Spiking GCN 77.72 £ 0.65 70.58 = 0.54
DRSGCN 82.50 £ 0.51 72.52 £ 0.33
SSEL 85.31 +0.25 72.5 £ 0.87
w.o. SSEL 84.65 £ 0.95 71.74 £0.71

Values in bold indicate the highest accuracy, while values with underlining indicate the
second highest accuracy.

To
conducted experiments under two adversarial perturbations.
(1) Feature-level attacks: Gaussian noise (N) and salt-and-
pepper noise are injected into node features with noise ratios
p€{0.1,0.2, ...,0.9}. (2) Random Structural attacks: Random edge
perturbations (addition/removal/flip) are applied with attack rates
3€{0.1,0.2, ...,0.9}, where 3 represents the fraction of modified
edges. For each attack type and strength, we generate 10 different

comprehensively evaluate model robustness, we

perturbed versions of each dataset to ensure statistical significance.
To ensure the stability of the results, all the reported results are the
average results of 10 experiments.

5.2 Experimental results

5.2.1 Clean graph performance

SSEL demonstrates superior performance on unperturbed
graphs compared to all baseline methods. As shown in Table 1,
SSEL achieves 85.31% accuracy on Cora, outperforming standard
GNNs (GCN: 81.35%, GAT: 82.33%), robust GNNs (RGCN: 82.8%,
Pro-GNN: 82.98%), and spiking GNNs (Spiking GCN: 77.72%,

10.3389/fnins.2025.1687815

DRSGCN: 82.50%). The performance gap is particularly significant
compared to other spiking methods, with SSEL showing a 7.59%
absolute improvement over Spiking GCN. On Citeseer, SSEL
maintains competitive performance (72.5%) despite the dataset’s
higher complexity, slightly trailing only Pro-GNN (73.28%) among
all baselines. The variant without structural entropy (w.o. SSEL)
shows marginally lower accuracy (Cora: 84.65%, Citeseer: 71.74%),
confirming the importance of our topological optimization.

5.2.2 Robustness evaluation on SSEL

To rigorously evaluate the robustness of the SSEL framework,
we subjected it to comprehensive adversarial testing against both
feature-level and structural perturbations. The results, detailed
in Figures 3, 4, demonstrate its superior resilience compared to
the baseline model without SSEL components (denoted as w.o.
SSEL). Figure 3 illustrate the models’ resilience against feature-
level perturbations including Gaussian noise and salt-and-pepper
noise with different noise ratios on Citeseer and Cora respectively.
On Citeseer (Figure 3A) Under Gaussian noise, SSEL maintains
71.95% accuracy at 0.1 noise ratio compared to 69.14% for w.o.
SSEL, with the gap widening to 50.0% vs. 36.53% at 0.9 noise
ratio. The salt-and-pepper noise results are even more striking
- SSEL preserves 64.58% accuracy at 0.1 noise ratio while w.o.
SSEL drops to 30.14%, demonstrating the critical role of structural
entropy in filtering feature noise. On Cora (Figure 3B), SSEL shows
similar advantages, particularly under high noise ratios. At 0.7
salt-and-pepper noise, SSEL achieves 67.73% accuracy compared
to w.o. SSELs 48.27%, though both models experience significant
degradation. The relative robustness (1—accuracy drop) improves
by 15.7% on average across noise types and ratios, validating
our hypothesis that structural entropy enhances perturbation
invariance.

SSEL demonstrates exceptional robustness against all three
structural attack modalities on Citeseer (Figure 4A). Under
edge addition attacks, SSEL maintains 69.41% accuracy at
0.1 perturbation ratio versus 68.33% for the baseline, with
this advantage expanding to 63.62% vs. 55.71% at extreme
perturbation (0.7 ratio). For edge removal attacks, SSELs

damage mitigation is particularly pronounced: it preserves
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FIGURE 3

showing superior robustness of the proposed method.

Classification accuracy of SSEL and basic SGNN (w.o. SSEL) under increasing feature noise ratios on the Citeseer dataset (A) and Cora dataset (B),
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Comparison of FLOPs and energy consumption between SSEL, w.0.SSEL and the counterpart ANN.

72.43% accuracy at 0.1 ratio (compared to baseline’s 68.98%)
and maintains a decisive 8.35 percentage-point advantage at
0.9 ratio (49.75% vs. 41.4%). Similarly, against edge flipping
perturbations, SSEL consistently outperforms the baseline across
all severity levels - most notably retaining 60.95% accuracy
at 0.9 ratio while the baseline deteriorates to 51.11%. This
comprehensive protection stems from SSELs entropy-optimized
topology which systematically filters adversarial pathways while
preserving essential connections. Cora results (Figure 4B) reveal
an important nuance: while SSEL consistently outperforms the
baseline, the margins are narrower than on Citeseer. This
indicates the benefits of structural entropy may exhibit dataset
dependency, potentially offering greater advantages for graphs
with inherently noisier structures. Across all structural attack
types, SSEL delivers an average relative robustness improvement of
12.3%.
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5.2.3 Computational efficiency

We validate the energy efficiency of the proposed SSEL
architecture through comprehensive comparison with counterpart
ANN and w.o. SSEL within identical network configurations.
Our analysis evaluates floating point operations (FLOPs) across
core computational components, leveraging the established
neuromorphic energy estimation framework (Lee et al.,, 2022).
Results confirm that SSEL consistently reduces FLOPs relative to
both ANN and w.o. SSEL counterparts across critical modules,
attributed to its event-driven paradigm where computations
occur only upon neuronal activation. This activation sparsity,
compounded by structural entropy optimization that dynamically
gates topological connections, effectively compresses redundant
information flow. Consequently, SSEL prioritizes processing of

salient features while suppressing energetically wasteful operations
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on non-critical data, as visually evidenced by energy distribution
trends analogous to Figure 5.

To quantify energy savings, we accounted for fundamental
operational differences between ANN and SSEL. Conventional
ANNSs execute dense Multiply-and-Accumulate (MAC) operations,
while SSEL employs sparse Accumulate (AC) operations triggered
by neuronal events. Per established semiconductor metrics for
45nm CMOS technology (Miskin et al., 2025), the energy costs are
defined as: Eyac = 4.6pJ and Exc = 0.9p] per 32-bit operation.
Consequently, the energy consumption models follow Equations
22,23:

EANN = Zl FZOPS(I) o EMAC (22)

EqnN = Zl FIOPs(l) ® Exc (23)

where the intrinsic efficiency of AC operations multiplicatively
amplifies FLOPs reductions. Notably, modules with high
computational intensity (e.g., attention and transformer blocks)
exhibit the most significant energy contraction under SSEL,
consistently exceeding 95% reduction relative to ANN equivalents.
Aggregate measurements demonstrate that SSEL achieves near
two-orders-of-magnitude energy reduction over ANN baselines,
while substantially outperforming the w.o. SSEL configuration
where structural sparsity optimizations are disabled. Therefore, it
suggests 97.3 and 28.5% cut down of energy consumption by SSEL
in comparison with counterpart ANN and w.o. SSEL respectively.

5.2.4 Ablation study

Through ablation studies examining SSELs core components,
the indispensable roles of its key mechanisms are revealed. The
removal of structural entropy optimization critically compromises
adversarial robustness, manifesting as an 18.53% absolute accuracy
drop (from 59.46 to 40.93%) under structural attacks with
60% edge perturbations—a degradation magnitude underscoring
its pivotal role in topology defense. Conversely, removing the
entropy-driven topological gating mechanism not only inflames
computational costs but also degrades noise resilience, causing
a 4.85% performance drop when handling feature corruption.
These controlled experiments show the framework coordinates
structural entropy-driven graph refinement, event-triggered sparse
computation, and adaptive topology modulation to simultaneously
enhance robustness against multifaceted perturbations and yield
substantial computational efficiency gains.

6 Conclusion

This study presents a novel spike-based structural entropy
learning framework called SSEL, which enhances robustness and
energy efliciency in SGNNs. By introducing structural entropy
theory, SSEL derives adversarial—resilient graph topologies. It
preserves critical connections while pruning noisy edges and
employs an entropy—aware gating mechanism to restrict spiking
propagation to optimized pathways. This dual design effectively
leverages the inherent event—driven sparsity of SNNs for
efficient computation. Experimental results have demonstrated
consistent improvements in accuracy, robustness against structural
and feature perturbations, and energy efficiency compared to
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standard GNNs, robust GNN variants, and existing SGNNs across
benchmark datasets.

Despite its strengths, the framework has limitations,
particularly in scalability to very large-scale graphs, where the
computational overhead of entropy minimization could impact
performance, and its current design for static graphs limits
application to dynamically evolving topologies. Future work will,
therefore, focus on improving scalability through adaptive entropy
thresholds and efficient algorithms, exploring other entropy
measures for specific graph types, and developing distributed
training strategies for neuromorphic hardware. In conclusion,
SSEL provides a principled approach to building efficient and
robust graph learning systems, offering a promising direction for
neuromorphic computing applications. Ongoing research will

focus on extending its scalability and applicability.
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