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Spiking Neural Networks (SNNs) offer transformative, event-driven

neuromorphic computing with unparalleled energy efficiency, representing

a third-generation AI paradigm. Extending this paradigm to graph-structured

data via Spiking Graph Neural Networks (SGNNs) promises energy-efficient

graph cognition, yet existing SGNN architectures exhibit critical fragility

under adversarial topology perturbations. To address this challenge, this

study presents the Spike-based Structural Entropy Learning framework (SSEL),

which introduces structural entropy theory into the learning objectives of

SGNNs. The core innovation establishes structural entropy-guided topology

refinement: By minimizing structural entropy, we derive a sparse topological

graph that intrinsically prunes noisy edges while preserving critical low-entropy

connections. To further enforce robustness, we develop an entropy-driven

topological gating mechanism that restricts spiking message propagation

exclusively to entropy-optimized edges, systematically eliminating adversarial

pathways. Crucially, this co-design strategy synergizes two sparsity sources:

Structural sparsity from the entropy-minimized graph topology and Event-

driven sparsity from spike-based computation. This dual mechanism not only

ensures exceptional robustness (64.58% accuracy vs. 30.14% baseline under

0.1 salt-and-pepper noise) but also enables ultra-low energy consumption,

achieving 97.28% reduction compared to conventional GNNs while maintaining

state-of-the-art accuracy (85.31% on Cora). This work demonstrates that

the principled minimization of structural entropy is a powerful strategy for

enhancing the robustness of Spiking Graph Neural Networks. The SSEL

framework successfully mitigates the impact of adversarial topological

perturbations while capitalizing on the energy-efficient nature of spike-

based computation, which underscore the significant potential of combining

information-theoretic graph principles with neuromorphic computing

paradigms.
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1 Introduction 

Graph Neural Networks (GNNs) have emerged as a powerful 
paradigm for representation learning on graph-structured data, 
with foundational architectures including Graph Convolutional 
Networks (Kipf and Welling, 2016) and Graph Attention Networks 
(GAT) (Veliˇ ckovi´ c et al., 2017). Despite their success in domains
from social network analysis to biomedicine (Wu et al., 2022), 
GNNs exhibit critical vulnerabilities: they are susceptible to 
adversarial topology perturbations (Zügner et al., 2018), while 
their computational overhead–particularly in transformer-based 
variants (Chen et al., 2023)–impedes deployment in resource-
constrained environments. Although defense strategies like graph 
purification (Zhu et al., 2019) and adversarial training (Miyato 
et al., 2016) have been proposed, they often compromise eÿciency 
or lack theoretical robustness guarantees. 

Concurrently, Spiking Neural Networks (SNNs) have 
demonstrated transformative potential for energy-eÿcient 
neuromorphic computing through event-driven processing 
(Zhu et al., 2022). Their extension to Spiking Graph Neural 
Networks (SGNNs) promises ultra-low-power graph cognition 
but introduces a critical new vulnerability: existing SGNNs exhibit 
severe fragility under adversarial structural attacks. This dual 
challenge – balancing robustness against topology perturbations 
with ultra-low energy consumption – constitutes a significant 
challenge in the field. 

Structural entropy theory (Chen and Liu, 2019) oers 
a promising pathway to address topological vulnerability. By 
quantifying hierarchical structural uncertainty in graphs, entropy 
minimization enables principled noise reduction while preserving 
community organization (Wang et al., 2023). Yet its potential 
remains untapped in neuromorphic graph learning. Bridging 
this gap requires reconciling three elements: (1) entropy-guided 
topology robustness, (2) event-driven computation eÿciency, and 
(3) theoretical guarantees against adversarial attacks. 

To this end, we propose Spike-based Structural Entropy 
Learning framework (SSEL), a novel framework that introduces 
structural entropy minimization into SGNNs. Our approach 
features two core innovations: entropy-guided topology refinement 
through dierentiable objective formulation, generating sparse 
subgraphs that intrinsically prune adversarial edges while 
preserving low-entropy connections critical for community 
structure; and entropy-driven topological gating, which restricts 
spiking message propagation exclusively to optimized edges to 
systematically block adversarial pathways while maintaining 
event-driven sparsity. This co-design synergizes structural 
sparsity (from entropy-minimized topology) and event-driven 
sparsity (from spike-based computation), enabling simultaneous 
robustness and eÿciency. 

This work makes three key contributions. First, we establish a 
theoretically grounded approach for adversarial-resistant topology 
refinement in SGNNs using structural entropy minimization. 
Second, we design an entropy-gated spike propagation mechanism 
that confines message-passing to robust pathways. Third, we 
demonstrate that SSEL achieves 64.58% accuracy under severe 
perturbations (0.1 salt-and-pepper noise), outperforming SGNN 
baselines by >34% while maintaining state-of-the-art accuracy on 
clean graphs (85.31% on Cora). Crucially, our framework reduces 

energy consumption by >97% compared to conventional GNNs, 
fulfilling neuromorphic computing’s promise for sustainable 
graph intelligence. 

2 Related work 

2.1 Robust graph neural networks 

Recent advances in graph representation learning have 
highlighted the vulnerability of GNNs to adversarial perturbations. 
Early work by Zügner et al. (2018) demonstrated that even 
minor structural perturbations could significantly degrade model 
performance. This led to the development of defense mechanisms 
such as RGCN (Zhu et al., 2019), which employs Gaussian 
distributions to model node uncertainty during message passing. 
Subsequent approaches like GNNGuard (Zhang and Zitnik, 2020) 
introduced edge pruning based on feature similarity, while Pro-
GNN (Jin et al., 2020) jointly optimized graph structure and model 
parameters using sparsity and low-rank constraints. However, these 
methods often incur substantial computational overhead due to 
their reliance on dense gradient computations. 

Structural entropy has recently emerged as a powerful tool for 
graph robustness. The concept, formalized by Li and Pan (2016), 
quantifies the information required to encode a graph’s hierarchical 
organization. Applications include community detection (Xian 
et al., 2025) and graph pooling (Wu et al., 2022), where entropy 
minimization helps preserve critical topological features. SE-GSL 
(Zou et al., 2023) extended this idea to graph structure learning, but 
did not address the computational eÿciency challenges inherent 
to GNNs. In contrast, our SSEL framework synergizes structural 
entropy minimization with event-driven sparsity to achieve both 
robustness and eÿciency simultaneously. 

2.2 Spiking neural networks for graphs 

SNNs achieve exceptional energy eÿciency through event-
driven binary activations, reducing power consumption by >90% 
compared to analog architectures (Zhu et al., 2022). Pioneering 
SGNNs like Spiking GCN (Zhu et al., 2022) encoded node features 
as spike trains but overlooked topological vulnerabilities, resulting 
in severe performance degradation under attacks. Subsequent 
work such as DRSGCN (Zhao et al., 2024) improved dynamic 
feature aggregation through spiking recurrent units, while Yao 
et al. (2023) further introduced spiking self-attention for adaptive 
feature weighting. However, these approaches either treated 
graph topology as static or provided no theoretical guarantees 
against structural perturbations. As evidenced in our experiments, 
while Spiking GCN and DRSGCN represent key energy-eÿcient 
baselines, their fragility to adversarial edges underscores the need 
for SSEL’s topology-aware spiking mechanism. 

Recent work has begun to bridge this gap. Lun et al. (2025) 
demonstrated that sparse gradients in SNNs naturally resist random 
perturbations, while Jiang and Zhang (2022) proposed bio-inspired 
defenses against targeted attacks. Nevertheless, none of these 
methods explicitly incorporate graph topological properties into 
their robustness frameworks. 
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2.3 Hybrid approaches 

The intersection of robustness and eÿciency has seen limited 
exploration. USER (Wang et al., 2023) employed structural entropy 
for unsupervised robustness but retained conventional GNN 
architectures. Similarly, the research (He et al., 2024) used entropy 
regularization for sparse graphs without considering spiking 
mechanisms. 

Our approach fundamentally diverges by pursuing robustness 
and eÿciency through a single principle derived from structural 
entropy minimization. This entropy reduction inherently promotes 
adversarial resilience by pruning noisy connections, while the 
spiking mechanism ensures ultra-low computational overhead— 
a co-design absent in prior work. The proposed SSEL framework 
advances beyond existing methods in three key aspects: (1) 
Structural entropy-guided topology refinement, generalizing low-
rank constraints to spike-based computation; (2) Entropy-driven 
topological gating, extending sparse aggregation with structure-
aware event propagation; (3) Synergistic sparsity co-design, where 
entropy-minimized topology and event-driven spiking dynamics 
mutually reinforce during training. 

SSEL’s foundation in structural entropy minimization provides 
provable robustness bounds, while its spiking implementation 
guarantees practical scalability—advantages not demonstrated in 
earlier hybrid models like (Zheng et al., 2024). Unlike RGCN (Zhu 
et al., 2019) or Pro-GNN (Jin et al., 2020) which require dense 
computations, SSEL leverages dual sparsity sources: structural 
sparsity from the entropy-optimized graph and event-driven 
sparsity from spike-based processing. Compared to Spiking GCN 
(Zhu et al., 2022), SSEL explicitly models adversarial resilience 
through entropy-guided topology refinement. This dual emphasis 
positions SSEL as a uniquely scalable solution for real-world graph 
tasks. 

3 Preliminaries 

3.1 Graph neural networks and their 
limitations 

Modern GNNs operate through message-passing frameworks 
where node representations are iteratively updated by aggregating 
information from neighboring nodes. In Equation 1, the 
fundamental operation can be expressed as: 

h(l+1) 
v = σ( 

X 

u∈N (v) 

W(l)h(l) 
v ) (1) 

where h(l) 
v denotes the representation of node v at layer l, 

N(v) represents its neighbors, and W(l) is a learnable weight 
matrix. While eective, this paradigm suers from two critical 
weaknesses. First, the aggregation process is highly sensitive to 
structural perturbations—even minor changes in edge connections 
can significantly alter the message flow (Zügner et al., 2018). 
Second, attention-based variants like GAT (Veličković et al., 2017) 
compute pairwise attention coeÿcients using Equation 2: 

αij = softmax 

 
(Whi) T (Whj)

√
d 

 

(2) 

leading to O(n2) complexity that becomes prohibitive for large 
graphs. These limitations motivate the need for architectures that 
are both robust to perturbations and computationally eÿcient. 

3.2 Spiking neural networks and 
event-driven computation 

SNNs model biological neuronal dynamics through discrete 
spike events and membrane potentials. The membrane potential 
U (t) of a neuron evolves with Equation 3: 

U (t) = 
X 

i 

wiSi (t) + λU (t − 1) (3) 

where Si (t) represents incoming spikes, wi are synaptic weights, 
and λ is a leakage factor. WhenU (t)crosses a threshold θ , the 
neuron fires a spike according to Equation 4: 

S (t) = θ (U (t) − θ) (4) 

with θ (·) being the Heaviside step function. This event-driven 
paradigm oers two key advantages: (1) sparse activations reduce 
energy consumption by avoiding dense matrix operations (Zhu 
et al., 2022), and (2) the temporal coding of spikes provides 
inherent noise resilience as perturbations must align precisely with 
spike timings to aect computations. However, integrating SNNs 
with graph learning requires careful design to preserve structural 
relationships while maintaining these benefits. 

3.3 Adversarial attacks on graph neural 
networks 

Adversarial attacks on GNNs typically manipulate either 
graph structure (edge additions/deletions) or node features. 
Structural attacks are particularly eective because they directly 
alter the message-passing pathways. Let G = (A, X) denote a 
graph with adjacency matrix A and node features X. An adversarial 
perturbationAmodifies the graph to G 

= (A + A, X), 
where A0 ≤ constrains the number of edge changes. Such 
perturbations can cause significant misclassification of target nodes 
by strategically disrupting their neighborhood aggregation (Zhu 
et al., 2019).Defending SGNNs against these attacks necessitates 
mechanisms that are insensitive to small but adversarial changes in 
graph topology. 

3.4 Energy efficiency in neural networks 

The energy consumption of neural networks is dominated 
by floating-point operations (FLOPs), especially in attention 
mechanisms that compute all-pair interactions. For an n-node 
graph, traditional attention requires O(n2d) FLOPs per layer where 
d is the feature dimension (Figure 1). In contrast, event-driven 
SNNs can reduce this to O(knd), with k  n being the average 
number of spikes per timestep (Zhu et al., 2022). This eÿciency 
stems from two properties: (1) binary spikes eliminate expensive 
multiplications, and (2) inactive neurons (those not firing) skip 
computations entirely. 

Frontiers in Neuroscience 03 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1687815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1687815 November 26, 2025 Time: 10:7 # 4

Yang et al. 10.3389/fnins.2025.1687815 

FIGURE 1 

The diagram of our framework whose complexity is O(knd) vs. traditional ANN-based graph attention whose complexity is On 2 d. 

However, achieving accuracy comparable to continuous 
networks remains challenging due to information loss during 
spike encoding. Crucially, while SNNs provide intrinsic event-
driven sparsity, robust performance necessitates structural 
sparsity through adversarial edge identification and removal. Our 
framework resolves both sparsity requirements and the accuracy-
eÿciency trade-o via entropy-driven mechanisms: Structural 
entropy minimization actively governs spiking dynamics to achieve 
dual sparsity inherently. 

Based on these limitations–GNNs/SGNNs’ vulnerability to 
structural attacks and energy ineÿciency, SNNs’ inherent noise 
resilience but limited adversarial robustness, and the critical 
need for energy-eÿcient graph learning–we develop SSEL. This 
framework employs structural entropy minimization to condition 
event-driven computation, simultaneously resolving robustness 
and eÿciency constraints in graph representation learning. 

4 Spike-based structural entropic 
learning framework 

To address the dual challenges of adversarial fragility and 
computational ineÿciency outlined in section 3, we propose a 
novel framework which leverages structural entropy theory to 
enhance SGNN robustness against graph perturbations. The core 
approach minimizes hierarchical structural entropy to extract 
intrinsic graph connectivity while maintaining compatibility with 
spiking dynamics. This section presents the formal mathematical 
foundation and components. 

4.1 Theoretical foundation: mitigating 
graph randomness in SGNNs 

GNNs face significant challenges when processing real-world 
graph data contaminated by random perturbations that disrupt 
structural patterns. Inspired by the Structural entropy theory 

(Chen and Liu, 2019), we establish formal criteria for constructing 
robust graph representations resilient to such randomness. The 
theoretical foundation recognizes that observed graphs represent 
perturbed samples of an underlying intrinsic connectivity graph 
GI = (V, EI ), which exclusively contains edges within semantic 
communities. This ideal graph structure satisfies (Equation 5): 

EI = {(vi, vj)|vi and vj share community membership} (5) 

where its adjacency matrix AI exhibiting rank 
equal to the number of communities c, preserving 
the essential semantic relationships without 
noise contamination. 

To operationalize this concept for SNNs, we define innocuous 
graphs G as structural equivalents that induce identical SGNN 
embeddings as GI under all parameterizations. The formal 
indistinguishability condition requires that: 

SGNN(A , X, W) ≡ SGNN(AI , X, W) 

∀ feature matrices X, weight sets W (6) 

This equivalence (Equation 6) imposes two fundamental 
requirements on G: 

1. Rank preservation (rank(A) ≥ c) :Ensures the adjacency 
matrix captures suÿcient semantic dimensions to maintain 
community separation. 

2. Community-Coherent Features: Nodes within the same 
topological community must exhibit similar spiking patterns 
with significant dierentiation from other communities. 

These criteria establish the theoretical basis for constructing 
noise-resilient graph representations within spiking neural 
architectures. SSEL aims to learn such an innocuous graph G from 
the observed (potentially perturbed) graph G. 
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4.2 Second-order structural entropy 
minimization 

Structural entropy quantifies the uncertainty in hierarchical 
graph partitioning, measuring the information content required 
to describe community structures at dierent scales. Minimizing 
structural entropy helps identify the intrinsic community structure 
by pruning random connections (Chen and Liu, 2019). For a graph 
G = (V, E) with adjacency matrix A, we define the core concepts as 
follows: 

The encoding tree T represents a hierarchical partitioning 
of vertex set V into nested, non-overlapping communities 
{C1, . . . , Ck} at multiple resolution levels. Each non-root node 
vt ∈ T corresponds to a community subset, with v+

t denoting its 
immediate parent community in the hierarchy. 

The k-dimensional structural entropy formalizes the optimal 
partitioning uncertainty at depth k: 

H(k)(G) = minT:Height(T)=k 

0 @− 
X 

vt ∈T 

gvt 

vol(V) 
log2 

vol(vt ) 

vol(v+ 
t ) 

1 A (7) 

where gvt counts edges with both endpoints in the leaf nodes of 
partition vt ,vol(vt ) = 

P
u∈vt 

du represents the sum of degrees of 
nodes in community vt , vol(v+

t ) is the volume of the immediate 
parent community, vol(V) = 

P
vi∈V di denotes the total graph 

volume, This formulation (Equation 7) captures the information 
required to describe the graph’s community structure at depth k, 
with lower values indicating clearer hierarchical organization. 

We focus on specific dimensions for robustness. The first 
dimension, 1D structural entropy, characterizes node-level 
homogeneity using the expression: 

H1(G) = − 
X 

vi∈V 

di 

2|E | 
log2 

di 

2|E | 
(8) 

Here, di represents the degree of node vi, denotes the total 
number of edges in graph G, and the summation extends over all 
nodes in vertex set V . This formulation (Equation 8) measures 
homogeneity in degree distributions, where skewed distributions 
indicate structural vulnerabilities to random edge perturbations. 
Higher values of H1(G) correspond to increased sensitivity to 
topological noise. 

The second dimension, 2D structural entropy, balances 
intra-community density against inter-community sparsity. 
To construct innocuous graphs satisfying these criteria, we 
implement second-order structural entropy H2(G) minimization, 
selected for its explicit optimization of community structures and 
natural enforcement of the rank condition. This entropy variant 
provides the optimal balance between computational eÿciency 
and robustness for spiking networks, directly addressing the core 
challenge of graph randomness. The mathematical formulation 
quantifies the essential trade-o between intra-community 
cohesion and inter-community separation: 

H2(G) = minP 

 

H1(G|P) + 
cut(P) 

2|E | 

 

(9) 

In this expression (Equation 9), P = {C1, . . . , Cc} represents 
a partition into c communities, H1(G|P) measures 
degree distribution homogeneity within communities, and 

cut(P) = |{(u, v)u ∈ Ci, v ∈ Cj, i = j}| imposes a penalty on 
cross-community connections. Minimization of this compound 
expression simultaneously strengthens intra-community 
bonds while suppressing inter-community noise propagation 
during spike aggregation, directly satisfying the conditions for 
innocuous graphs. 

We implement this optimization through a dierentiable 
Network Partition Structural Information (NPSI) loss operating on 
the adaptive adjacency matrix A: 

LNPSI = 
cX 

k=1 

(YT AY )kk 

2||A||1 
log2 

(1T AY)kk 

2||A||1 
(10) 

The community assignment matrix Y ∈ {0, 1}
n×c partitions nodes 

into semantic groups, while (YT AY )kk quantifies the intra-
community connection strength. The logarithmic component 
log2 

(1T AY)kk 
2||A||1

penalizes ambiguous community assignments when 
the total edge weight involving communitykpoorly aligns with 
its internal connectivity. This formulation (Equation 10) ensures 
that during optimization, communities evolve toward densely 
connected internal structures with sparse external linkages, 
eectively filtering random perturbations from the graph topology. 

LNPSI exhibits an adaptive optimization behavior, dynamically 
determining whether to strengthen or prune edges based on 
the internal connectivity of a community. This dual behavior is 
captured by the gradient with respect toA



ij, as shown in Equation 
11: 

∂LNPSI 

∂A 
 

ij 
= 
X 

k 

YikYjk 

||A  ||1 
(1 + log2 

zk 

vol(Ck) 
− 

vol(Ck) ln zk 

||A  ||1 ln 2 
) (11) 

where zk = (YT AY )kk .Crucially, for edges within 
communityk(YikYjk = 1)(1) if zk is small (sparse intra-
connections), the gradient is positive, encouraging strengthening 
of within-community edges; Conversely, when zk > ||A

 
||1/e, 

the gradient becomes negative and prunes weak edges, pruning 
weak or noisy intra-community edges. This gradient behavior 
intrinsically prunes adversarial edges and refines the topology 
toward the innocuous graph G . 

Concurrently, we enforce feature coherence within 
communities through the Davies-Bouldin Index (DBI), which 
aligns topological communities with spiking feature distributions, 
as expressed in Equation 12: 

LDBI = 
1
c 

cX 

k=1 

maxm=k 

 
σk + σm 

||µk − µm||2 

 

(12) 

Here µk represents the mean spiking features of nodes in 
community k, while σk measures the standard deviation of these 
features. The numerator (σk + σm) penalizes feature dispersion 
within communities, while the denominator (||µk − µm||2) 
rewards separation between community centroids. 

Minimizing LDBI achieves two objectives: (1) It compresses 
intra-community feature dispersion (σk → 0), enhancing temporal 
coding consistency; (2) It repels centroids of overlapping 
communities (||µk − µm|| → ∞), enforcing semantic separation. 

We construct an objective function as shown in Equation 13: 

Lse = LNPSI + βLDBI (13) 
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where LNPSI eliminates inter-community edges, collapsing into c 
quasi-clique subgraphs, LDBI prunes intra-community edges with 
divergent features, refining to retain only geometrically consistent 
connections. Then, we can learn an innocuous graph G that meets 
the conditions mentioned in Equation 5. 

4.3 Spiking dynamics with topological 
gating 

The neuron model foundation of our architecture employs 
leaky integrate-and-fire (LIF) dynamics, which provide biologically 
plausible temporal processing capabilities. The membrane potential 
Vi of each neuron evolves according to Equation 14: 

τ 
dVi 

dt 
= −(Vi − Vrest) + 

X 

j 

WijSj(t) (14) 

where τ is the membrane time constant, Vrest denotes the resting 
potential, Wij represents synaptic weights, and Sj(t) are incoming 
spike trains. When the membrane potential exceeds threshold Vth, 
the neuron emits a spike: 

Si(t) = 

( 
1 if Vi(t) ≥ Vth 

0 otherwise 
(15) 

This formulation (Equation 15) captures essential biological 
properties including temporal integration, threshold behavior, and 
post-spike reset dynamics. Then, the spiking attention module 
transforms traditional softmax attention into an event-driven 
process. For query Q, key K, and value V projections, the spike 
activation Sij between nodes i and j is defined by Equation 16: 

Sij = θ 
QiKT 

j
√

d 
− θ 

! 

(16) 

where θ is a learnable threshold. The attention weights are then 
computed only over active spikes using Equation 17: 

αij = softmax 
 

S⊗ 
 

QKT / 
√ 

d 
 

ij 
(17) 

This sparse computation reduces the complexity from O(n2) to 
O(nnz(S)) where nnz counts non-zero spikes. The membrane 
potential dynamics ensure temporal consistency, as shown in 
Equation 18: 

Ui(t) = λUi(t − 1) + 
X 

j∈N (i) 

aijVj (18) 

A spike is emitted when Ui(t) > θ , triggering a node state 
update. The combination of sparse attention and event-driven 
updates achieves up to three times faster computation compared 
to dense attention. 

To further enforce robustness, we implement topological gating 
using the optimized adjacency matrix A

 
. This mechanism filters 

spike transmission based on connection significance, creating 
synergistic alignment between topological structure and neuronal 
dynamics: 

Ŝ(t) 
ij = S(t) 

ij · I 
h 

A 
ij > τgate 

i 
where τgate = 

1 

n2 ||A

||1 (19) 

This gating operation (Equation 19) functions as a structural 
attention mechanism: intra-community edges (high A

ij) permit 
unimpeded spike transmission, amplifying synchronized firing 
essential for information coding; conversely, inter-community or 
noisy connections (low A

ij) block spike propagation, reducing 
metabolic cost and cross-talk. The adaptive threshold τgate 

automatically scales with graph density, ensuring context-sensitive 
filtering across diverse networks. Biologically, this process mirrors 
myelinated neural pathways where strong structural connections 
enable eÿcient signal transmission while weak connections are 
functionally suppressed, which ensures attention is computed only 
over edges deemed robust by the structural entropy criterion. 

The gated spike matrix Ŝij then drives the final node 
representations via Equation 20: 

h(l+1) 
i = MLP 

0 @ 
X 

j∈N (i) 

ŜijW(l)h(l) 
j 

1 A (20) 

creating a closed loop where topological structure shapes 
spiking activity while neural dynamics provide feedback to 
refine community detection. This neuro-symbolic integration 
fundamentally embeds structural entropy principles into the core 
computation of spiking graph networks rather than treating them 
as separate components. 

4.4 End-to-end architecture and training 

Let Ltask be the loss function of the supported model, Lse 

in Equation 12 is employed to alleviate the interference of 
randomness. The model is trained by minimizing L: 

L = αLtask + (1 − α)Lse (21) 

where Ltask denotes the task-specific loss, Lse represents the 
structural entropy loss, and (α ∈ [0, 1]) controls the robustness-
eÿciency trade-o. This objective function (Equation 21) achieves 
structural sparsity through direct entropy minimization, which 
selectively prunes noisy connections while preserving critical low-
entropy edges. 

Building upon these theoretical foundations, we develop SSEL 
framework featuring a dual-pathway design that coordinates 
structural optimization with spatio-temporal feature extraction, as 
illustrated in Figure 2. In the structural optimization pathway, a 
GNN module minimizes Lse to derive a noise-resilient topological 
graph A

 
. Concurrently, the temporal encoding pathway processes 

node features through a Spike-Transformer that converts inputs 
into sparse spike trains Sij using biologically inspired LIF dynamics. 
Crucially, the entropy-optimized topology A

 
actively gates these 

spike trains before LIF neuron integration, enforcing strict 
alignment between structural and dynamical representations by 
restricting spike propagation exclusively to low-entropy pathways. 

The SSEL framework systematically blocks adversarial access 
points while preserving event-driven computation sparsity, 
with the topological gating mechanism serving as the critical 
enforcer of pathway integrity. Training employs backpropagation-
through-time adapted for spiking neurons, where straight-through 
estimators enable gradient flow across the non-dierentiable gating 
operation. The complete end-to-end approach thus preserves 
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FIGURE 2 

The architecture of the Spike-based Structural Entropy Learning framework (SSEL) framework, synergizing structural sparsity (from 
entropy-minimized topology) and event-driven sparsity (from spike-based computation). 

the model’s energy eÿciency while ensuring robustness against 
structural perturbations through principled co-optimization of 
topological constraints and spatio-temporal dynamics. 

5 Experimental results 

In this section, we compare SSEL-supported SGNN network 
(Sun et al., 2024) (SSEL) with state-of-the-art methods and conduct 
some analyses. 

5.1 Experimental setup 

To evaluate the proposed framework, we conducted 
experiments on two benchmark datasets spanning dierent 

scales. The Cora citation network (Sen et al., 2008) contains 2,708 

scientific publications with 5,429 citation links, where nodes 
represent papers and edges denote citations. The Citeseer dataset 
(Zhu et al., 2003) comprises 3,327 academic papers with 4,732 

citation edges, featuring a larger and sparser structure than Cora. 
We compare SSEL against three categories of baseline methods: 

(1) Standard GNNs: GCN (Kipf and Welling, 2016) and GAT 

(Veliˇ ckovi´ c et al., 2017), which represent conventional graph
learning approaches without explicit robustness mechanisms. (2) 
Robust GNNs: RGCN (Zhu et al., 2019) and Pro-GNN (Jin et al., 
2020), which incorporate various adversarial defense strategies. (3) 
Spiking GNNs: Spiking GCN (Zhu et al., 2022) and DRSGCN (Zhao 

et al., 2024), which integrate spiking neural mechanisms for energy 

eÿciency.“w.o. SSEL” refers to a network configuration where the 

SSEL component is omitted. 
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TABLE 1 Classification accuracy (%) on clean graphs 

Method 
Category 

Method Dataset 

Cora Citeseer 

Standard GNNs GCN 81.35 ± 1.03 69.93 ± 1.21 

GAT 82.33 ± 0.69 71.25 ± 0.46 

Robust GNNs RGCN 82.8 ± 0.6 71.2 ± 0.5 

Pro-GNN 82.98 ± 0.23 73.28 ± 0.69 

Spiking GNNs Spiking GCN 77.72 ± 0.65 70.58 ± 0.54 

DRSGCN 82.50 ± 0.51 72.52 ± 0.33 

SSEL 85.31 ± 0.25 72.5 ± 0.87 

w.o. SSEL 84.65 ± 0.95 71.74 ± 0.71 

Values in bold indicate the highest accuracy, while values with underlining indicate the 
second highest accuracy. 

To comprehensively evaluate model robustness, we 
conducted experiments under two adversarial perturbations. 
(1) Feature-level attacks: Gaussian noise (N ) and salt-and-
pepper noise are injected into node features with noise ratios 
ρ∈{0.1,0.2, ...,0.9}. (2) Random Structural attacks: Random edge 
perturbations (addition/removal/flip) are applied with attack rates 
δ∈{0.1,0.2, ...,0.9}, where δ represents the fraction of modified 
edges. For each attack type and strength, we generate 10 dierent 
perturbed versions of each dataset to ensure statistical significance. 
To ensure the stability of the results, all the reported results are the 
average results of 10 experiments. 

5.2 Experimental results 

5.2.1 Clean graph performance 
SSEL demonstrates superior performance on unperturbed 

graphs compared to all baseline methods. As shown in Table 1, 
SSEL achieves 85.31% accuracy on Cora, outperforming standard 
GNNs (GCN: 81.35%, GAT: 82.33%), robust GNNs (RGCN: 82.8%, 
Pro-GNN: 82.98%), and spiking GNNs (Spiking GCN: 77.72%, 

DRSGCN: 82.50%). The performance gap is particularly significant 
compared to other spiking methods, with SSEL showing a 7.59% 
absolute improvement over Spiking GCN. On Citeseer, SSEL 
maintains competitive performance (72.5%) despite the dataset’s 
higher complexity, slightly trailing only Pro-GNN (73.28%) among 
all baselines. The variant without structural entropy (w.o. SSEL) 
shows marginally lower accuracy (Cora: 84.65%, Citeseer: 71.74%), 
confirming the importance of our topological optimization. 

5.2.2 Robustness evaluation on SSEL 
To rigorously evaluate the robustness of the SSEL framework, 

we subjected it to comprehensive adversarial testing against both 
feature-level and structural perturbations. The results, detailed 
in Figures 3, 4, demonstrate its superior resilience compared to 
the baseline model without SSEL components (denoted as w.o. 
SSEL). Figure 3 illustrate the models’ resilience against feature-
level perturbations including Gaussian noise and salt-and-pepper 
noise with dierent noise ratios on Citeseer and Cora respectively. 
On Citeseer (Figure 3A) Under Gaussian noise, SSEL maintains 
71.95% accuracy at 0.1 noise ratio compared to 69.14% for w.o. 
SSEL, with the gap widening to 50.0% vs. 36.53% at 0.9 noise 
ratio. The salt-and-pepper noise results are even more striking 
- SSEL preserves 64.58% accuracy at 0.1 noise ratio while w.o. 
SSEL drops to 30.14%, demonstrating the critical role of structural 
entropy in filtering feature noise. On Cora (Figure 3B), SSEL shows 
similar advantages, particularly under high noise ratios. At 0.7 
salt-and-pepper noise, SSEL achieves 67.73% accuracy compared 
to w.o. SSEL’s 48.27%, though both models experience significant 
degradation. The relative robustness (1—accuracy drop) improves 
by 15.7% on average across noise types and ratios, validating 
our hypothesis that structural entropy enhances perturbation 
invariance. 

SSEL demonstrates exceptional robustness against all three 
structural attack modalities on Citeseer (Figure 4A). Under 
edge addition attacks, SSEL maintains 69.41% accuracy at 
0.1 perturbation ratio versus 68.33% for the baseline, with 
this advantage expanding to 63.62% vs. 55.71% at extreme 
perturbation (0.7 ratio). For edge removal attacks, SSEL’s 
damage mitigation is particularly pronounced: it preserves 

FIGURE 3 

Classification accuracy of SSEL and basic SGNN (w.o. SSEL) under increasing feature noise ratios on the Citeseer dataset (A) and Cora dataset (B), 
showing superior robustness of the proposed method. 
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FIGURE 4 

Classification accuracy of SSEL and basic SGNN (w.o. SSEL) under increasing random attack ratios on the Citeseer dataset (A) and Cora dataset (B), 
showing superior robustness of the proposed method. 

FIGURE 5 

Comparison of FLOPs and energy consumption between SSEL, w.o.SSEL and the counterpart ANN. 

72.43% accuracy at 0.1 ratio (compared to baseline’s 68.98%) 
and maintains a decisive 8.35 percentage-point advantage at 
0.9 ratio (49.75% vs. 41.4%). Similarly, against edge flipping 
perturbations, SSEL consistently outperforms the baseline across 
all severity levels - most notably retaining 60.95% accuracy 
at 0.9 ratio while the baseline deteriorates to 51.11%. This 
comprehensive protection stems from SSEL’s entropy-optimized 
topology which systematically filters adversarial pathways while 
preserving essential connections. Cora results (Figure 4B) reveal 
an important nuance: while SSEL consistently outperforms the 
baseline, the margins are narrower than on Citeseer. This 
indicates the benefits of structural entropy may exhibit dataset 
dependency, potentially oering greater advantages for graphs 
with inherently noisier structures. Across all structural attack 
types, SSEL delivers an average relative robustness improvement of 
12.3%. 

5.2.3 Computational efficiency 
We validate the energy eÿciency of the proposed SSEL 

architecture through comprehensive comparison with counterpart 
ANN and w.o. SSEL within identical network configurations. 
Our analysis evaluates floating point operations (FLOPs) across 
core computational components, leveraging the established 

neuromorphic energy estimation framework (Lee et al., 2022). 
Results confirm that SSEL consistently reduces FLOPs relative to 

both ANN and w.o. SSEL counterparts across critical modules, 
attributed to its event-driven paradigm where computations 
occur only upon neuronal activation. This activation sparsity, 
compounded by structural entropy optimization that dynamically 

gates topological connections, eectively compresses redundant 
information flow. Consequently, SSEL prioritizes processing of 
salient features while suppressing energetically wasteful operations 

Frontiers in Neuroscience 09 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1687815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1687815 November 26, 2025 Time: 10:7 # 10

Yang et al. 10.3389/fnins.2025.1687815 

on non-critical data, as visually evidenced by energy distribution 
trends analogous to Figure 5. 

To quantify energy savings, we accounted for fundamental 
operational dierences between ANN and SSEL. Conventional 
ANNs execute dense Multiply-and-Accumulate (MAC) operations, 
while SSEL employs sparse Accumulate (AC) operations triggered 
by neuronal events. Per established semiconductor metrics for 
45nm CMOS technology (Miskin et al., 2025), the energy costs are 
defined as: EMAC = 4.6pJ and EAC = 0.9pJ per 32-bit operation. 
Consequently, the energy consumption models follow Equations 
22, 23: 

EANN = 
X 

l 
FlOPs(l) • EMAC (22) 

ESNN = 
X 

l 
FlOPs(l) • EAC (23) 

where the intrinsic eÿciency of AC operations multiplicatively 
amplifies FLOPs reductions. Notably, modules with high 
computational intensity (e.g., attention and transformer blocks) 
exhibit the most significant energy contraction under SSEL, 
consistently exceeding 95% reduction relative to ANN equivalents. 
Aggregate measurements demonstrate that SSEL achieves near 
two-orders-of-magnitude energy reduction over ANN baselines, 
while substantially outperforming the w.o. SSEL configuration 
where structural sparsity optimizations are disabled. Therefore, it 
suggests 97.3 and 28.5% cut down of energy consumption by SSEL 
in comparison with counterpart ANN and w.o. SSEL respectively. 

5.2.4 Ablation study 
Through ablation studies examining SSEL’s core components, 

the indispensable roles of its key mechanisms are revealed. The 
removal of structural entropy optimization critically compromises 
adversarial robustness, manifesting as an 18.53% absolute accuracy 
drop (from 59.46 to 40.93%) under structural attacks with 
60% edge perturbations—a degradation magnitude underscoring 
its pivotal role in topology defense. Conversely, removing the 
entropy-driven topological gating mechanism not only inflames 
computational costs but also degrades noise resilience, causing 
a 4.85% performance drop when handling feature corruption. 
These controlled experiments show the framework coordinates 
structural entropy-driven graph refinement, event-triggered sparse 
computation, and adaptive topology modulation to simultaneously 
enhance robustness against multifaceted perturbations and yield 
substantial computational eÿciency gains. 

6 Conclusion 

This study presents a novel spike-based structural entropy 
learning framework called SSEL, which enhances robustness and 
energy eÿciency in SGNNs. By introducing structural entropy 
theory, SSEL derives adversarial—resilient graph topologies. It 
preserves critical connections while pruning noisy edges and 
employs an entropy—aware gating mechanism to restrict spiking 
propagation to optimized pathways. This dual design eectively 
leverages the inherent event—driven sparsity of SNNs for 
eÿcient computation. Experimental results have demonstrated 
consistent improvements in accuracy, robustness against structural 
and feature perturbations, and energy eÿciency compared to 

standard GNNs, robust GNN variants, and existing SGNNs across 
benchmark datasets. 

Despite its strengths, the framework has limitations, 
particularly in scalability to very large-scale graphs, where the 
computational overhead of entropy minimization could impact 
performance, and its current design for static graphs limits 
application to dynamically evolving topologies. Future work will, 
therefore, focus on improving scalability through adaptive entropy 
thresholds and eÿcient algorithms, exploring other entropy 
measures for specific graph types, and developing distributed 
training strategies for neuromorphic hardware. In conclusion, 
SSEL provides a principled approach to building eÿcient and 
robust graph learning systems, oering a promising direction for 
neuromorphic computing applications. Ongoing research will 
focus on extending its scalability and applicability. 

Data availability statement 

The original contributions presented in the study are included 
in the article/supplementary material, further inquiries can be 
directed to the corresponding author. 

Author contributions 

SY: Writing – review & editing, Writing – original draft. YW: 
Writing – original draft, Writing – review & editing. BC: Writing – 
review & editing. 

Funding 

The author(s) declare financial support was received for the 
research and/or publication of this article. This study was partly 
supported by the National Science and Technology Innovation 
2030 – Major Project (Grant No. 2022ZD0160405) and National 
Natural Science Foundation of China with grant numbers (Grant 
Nos. 62088102, 62376185, and U21A20485). 

Conflict of interest 

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest. 

Generative AI statement 

The authors declare that no Generative AI was used in the 
creation of this manuscript. 

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable eorts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us. 

Frontiers in Neuroscience 10 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1687815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1687815 November 26, 2025 Time: 10:7 # 11

Yang et al. 10.3389/fnins.2025.1687815 

Publisher’s note 

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their aÿliated 

organizations, or those of the publisher, the editors and the 

reviewers. Any product that may be evaluated in this article, or 

claim that may be made by its manufacturer, is not guaranteed or 

endorsed by the publisher. 

References 

Chen, Y., and Liu, J. (2019). “Distributed community detection over blockchain 
networks based on structural entropy,” in Proceedings of the 2019 ACM International 
Symposium on Blockchain and Secure Critical Infrastructure, (New York, NY: ACM). 

Chen, Z., Tan, H., Wang, T., Shen, T., Lu, T., Peng, Q., et al. (2023). Graph 
propagation transformer for graph representation learning. arXiv [Preprint] doi: 10. 
48550/arXiv.2305.11424 

He, S., Zhuang, J., Wang, D., Peng, L., and Song, J. (2024). Enhancing the 
resilience of graph neural networks to topological perturbations in sparse graphs. arXiv 
[Preprint] doi: 10.48550/arXiv.2406.03097 

Jiang, C., and Zhang, Y. (2022). Adversarial defense via neural oscillation inspired 
gradient masking. ArXiv [Preprint] doi: 10.48550/arXiv.2211.02223 

Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J. (2020). “Graph structure 
learning for robust graph neural networks,” in Proceedings of the 26th ACM SIGKDD 
international conference on knowledge discovery & data mining, (New York, NY: ACM). 

Kipf, T. N., and Welling, M. (2016). Semi-supervised classification with graph 
convolutional networks. arXiv [Preprint] doi: 10.48550/arXiv.1609.02907 

Lee, C., Kosta, A. K., and Roy, K. (2022). “Fusion-FlowNet: Energy-eÿcient 
optical flow estimation using sensor fusion and deep fused spiking-analog network 
architectures,” in Proceedings of the 2022 International Conference on Robotics and 
Automation (ICRA), (Piscataway, NJ: IEEE), 6504–6510. 

Li, A., and Pan, Y. (2016). Structural information and dynamical complexity of 
networks. IEEE Trans. Inform. Theory 62, 3290–3339. doi: 10.1109/TIT.2016.2555904 

Lun, L., Feng, K., Ni, Q., Liang, L., Wang, Y., Li, Y., et al. (2025). Towards 
eective and sparse adversarial attack on spiking neural networks via breaking invisible 
surrogate gradients. arXiv [Preprint] doi: 10.48550/arXiv.2503.03272 

Miskin, V. P., Kerur, S. S., Sulakhe, O. P., Shahapur, H. V., Deshpande, A. G., 
and Shirasangi, A. B. (2025). “Performance metrics comparison of 8-Bit adder 
architectures in 45nm CMOS,” in Proceedings of the 2025 Third International 
Conference on Networks, Multimedia and Information Technology (NMITCON), 
(Piscataway, NJ: IEEE), 1–8. 

Miyato, T., Dai, A. M., and Goodfellow, I. (2016). Adversarial training methods 
for semi-supervised text classification. arXiv [Preprint] doi: 10.48550/arXiv.1605. 
07725 

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. (2008). 
Collective classification in network data. AI Magaz. 29, 93–93. doi: 10.1609/aimag. 
v29i3.2157 

Sun, Y., Zhu, D., Wang, Y., Tian, Z., Cao, N., and O’Hared, G. (2024). 
SpikeGraphormer: A high-performance graph transformer with spiking graph 
attention. arXiv [Preprint] doi: 10.48550/arXiv.2403.15480 

Veliˇ ckovi´ c, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.
(2017). Graph attention networks. arXiv [Preprint] doi: 10.48550/arXiv.1710.10903 

Wang, Y., Wang, Y., Zhang, Z., Yang, S., Zhao, K., and Liu, J. (2023). “USER: 
Unsupervised structural entropy-based robust graph neural network,” in Proceedings 
of the 37th AAAI Conference on Artificial Intelligence and 35th Conference on 
Innovative Applications of Artificial Intelligence and Thirteenth Symposium on 
Educational Advances in Artificial Intelligence, (Washington, D.C: AAAI Press), doi: 
10.1609/aaai.v37i8.26219 

Wu, J., Chen, X., Xu, K., and Li, S. (2022). “Structural entropy guided graph 
hierarchical pooling,” in Proceedings of the International conference on machine 
learning, (Cambridge, MA: PMLR), 24017–24030. 

Xian, Y., Li, P., Peng, H., Yu, Z., Xiang, Y., and Yu, P. S. (2025). “Community 
detection in large-scale complex networks via structural entropy game,” in Proceedings 
of the ACM on Web Conference 2025, (New York, NY: Association for Computing 
Machinery), 3930–3941. doi: 10.1145/3696410.3714837 

Yao, M., Zhao, G., Zhang, H., Hu, Y., Deng, L., Tian, Y., et al. (2023). Attention 
spiking neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 45, 9393–9410. doi: 
10.1109/TPAMI.2023.3241201 

Zhang, X., and Zitnik, M. (2020). “Gnnguard: Defending graph neural networks 
against adversarial attacks,” Proceedings of the 34th International Conference on Neural 
Information Processing System, (New York, NY: ACM), 9263–9275. 

Zhao, H., Yang, X., Deng, C., and Yan, J. (2024). Dynamic reactive spiking graph 
neural network. Proc. AAAI Conf. Art. Intell. 38, 16970–16978. doi: 10.1609/aaai. 
v38i15.29640 

Zheng, X., Wu, B., Zhang, A. X., and Li, W. (2024). “Improving robustness of gnn-
based anomaly detection by graph adversarial training,” in Proceedings of the 2024 
Joint International Conference on Computational Linguistics, Language Resources and 
Evaluation (LREC-COLING 2024), (Paris: ELRA and ICCL), 8902–8912. 

Zhu, D., Zhang, Z., Cui, P., and Zhu, W. (2019). “Robust graph convolutional 
networks against adversarial attacks,” in Proceedings of the 25th ACM SIGKDD 
international conference on knowledge discovery & data mining, (New York, NY: ACM), 
1399–1407. 

Zhu, X., Ghahramani, Z., and Laerty, J. D. (2003). “Semi-supervised learning 
using gaussian fields and harmonic functions,” in Proceedings of the 20th International 
conference on Machine learning (ICML-03), (Washington, D.C: AAAI Press), 912–919. 

Zhu, Z., Peng, J., Li, J., Chen, L., Yu, Q., and Luo, S. (2022). Spiking graph 
convolutional networks. arXiv [Preprint] doi: 10.48550/arXiv.2205.02767 

Zou, D., Peng, H., Huang, X., Yang, R., Li, J., Wu, J., et al. (2023). “Se-gsl: A 
general and eective graph structure learning framework through structural entropy 
optimization,” in Proceedings of the ACM Web Conference 2023, (New York, NY: 
ACM), 499–510. 

Zügner, D., Akbarnejad, A., and Günnemann, S. (2018). “Adversarial attacks on 
neural networks for graph data,” in Proceedings of the 24th ACM SIGKDD international 
conference on knowledge discovery & data mining, (ACM), 2847–2856. 

Frontiers in Neuroscience 11 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1687815
https://doi.org/10.48550/arXiv.2305.11424
https://doi.org/10.48550/arXiv.2305.11424
https://doi.org/10.48550/arXiv.2406.03097
https://doi.org/10.48550/arXiv.2211.02223
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1109/TIT.2016.2555904
https://doi.org/10.48550/arXiv.2503.03272
https://doi.org/10.48550/arXiv.1605.07725
https://doi.org/10.48550/arXiv.1605.07725
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.48550/arXiv.2403.15480
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.1609/aaai.v37i8.26219
https://doi.org/10.1609/aaai.v37i8.26219
https://doi.org/10.1145/3696410.3714837
https://doi.org/10.1109/TPAMI.2023.3241201
https://doi.org/10.1109/TPAMI.2023.3241201
https://doi.org/10.1609/aaai.v38i15.29640
https://doi.org/10.1609/aaai.v38i15.29640
https://doi.org/10.48550/arXiv.2205.02767
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	SSEL: spike-based structural entropic learning for spiking graph neural networks
	1 Introduction
	2 Related work
	2.1 Robust graph neural networks
	2.2 Spiking neural networks for graphs
	2.3 Hybrid approaches

	3 Preliminaries
	3.1 Graph neural networks and their limitations
	3.2 Spiking neural networks and event-driven computation
	3.3 Adversarial attacks on graph neural networks
	3.4 Energy efficiency in neural networks

	4 Spike-based structural entropic learning framework
	4.1 Theoretical foundation: mitigating graph randomness in SGNNs
	4.2 Second-order structural entropy minimization
	4.3 Spiking dynamics with topological gating
	4.4 End-to-end architecture and training

	5 Experimental results
	5.1 Experimental setup
	5.2 Experimental results
	5.2.1 Clean graph performance
	5.2.2 Robustness evaluation on SSEL
	5.2.3 Computational efficiency
	5.2.4 Ablation study


	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References




