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Oxidative stress-induced stress
granules: a central link to protein
aggregation in
neurodegenerative diseases
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Intracellular aggregation of proteins such as Tau, TDP43, FUS, prion protein,
and a-synuclein is a major hallmark of many major neurodegenerative diseases.
Aberrant stress granules (SGs) are emerging as key contributors to the
nucleation of toxic protein aggregates in these disorders. SGs are dynamic,
membrane less cytoplasmic assemblies that form transiently through liquid—
liquid phase separation (LLPS) of RNA binding proteins (RBPs) containing
low complexity domains, together with stalled mRNAs, to help cells cope
with stress. While physiological SGs facilitate cellular resilience to acute
stress and undergo rapid disassembly, chronic or excessive stress leads to
persistent SGs, driving pathological protein aggregation characteristic of age
related neurodegeneration. The inherent reversible aggregation of RBPs crucial
for cellular function paradoxically exposes them to misfolding disorders.
Notably, recent findings expand this paradigm by demonstrating that Tau
itself participates in SG formation, with Tau-SG interactions potentiating Tau
aggregation and disease progression in tauopathies. Despite these insights, the
precise cellular stressors and posttranslational modifications (PTMs) governing
the shift from physiological granules to pathological aggregates remain
poorly defined. Emerging evidence highlights oxidative stress as a central
upstream mediator of this transition. In this perspective, we synthesize current
understanding of how SG dynamics intersect with oxidative stress to potentiate
protein aggregation, proposing molecular mechanisms that bridge SG biology
and neurodegenerative disease. Elucidating these pathways is essential for
the development of targeted therapeutic interventions for disorders such as
Alzheimer's disease and related tauopathies.
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1 Introduction

A key hallmark of major neurodegenerative disorders—including Alzheimer’s
disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD),
synucleinopathies and prion diseases—is the intracellular accumulation of aggregated
proteins such as MAPT, TDP43, FUS, PRNP and SNCA (Wilson et al, 2023).
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TABLE1 Summary of different RBPs or non-RBPs linked with specifically oxidative stress-induced stress granule pathology in
neurodegenerative diseases.

Protein Stressor Mutations Model PTM status References ‘
MAPT Sodium arsenite, P301L, P301S, Cell lines, mouse Hyperphosphorylation, Maziuk et al., 2018; Vanderweyde
pathophysiological stress G272V brain, human brain truncation, acetylation etal, 2016; Younas et al., 2020;
(endogenous) Kanaan et al., 2020; Shelkovnikova
etal, 2017; Vanderweyde et al., 2012
SFPQ Sodium arsenite, N533H, L5341 Cell lines, live cells, Oxidation, Younas et al., 2020; Ke et al., 2012;
pathophysiological stress human brain Phosphorylation Lukong et al., 2009; Neeves et al.,
2025; Uechi et al., 2025; Widagdo
etal., 2022
TDP43 Sodium arsenite, heat shock, G294A, A315T, Cell lines, primary Oxidation, Dewey et al., 2011; Liu-Yesucevitz
sorbitol or paraquat, Q331K, Q343R, glia, human brain or Phosphorylation, etal., 2011; McDonald et al., 2011;
pathophysiological stress G348C, M337V, spinal cord S-nitrosylation McGurk et al., 2014; Parker et al., 2012
R361S
FUS Sodium arsenite, traumatic R521C, R495X, Mouse primary Methylation, Baron et al., 2013; Bosco et al., 2010;
injury or heat shock H517Q, P525L motor neuron, phosphorylation, Zhang et al., 2020
mouse spinal cord, acetylation
drosophila brain or
zebrafish spinal cord
PRNP Sodium arsenite, - Cell lines, mouse Phosphorylation, Wolschner et al., 2009; Younas et al.,
pathophysiological stress brain, glycosylation, truncation 2023b; Yun et al., 2006
SNCA Sodium arsenite, 1OS H50Q, E46K, A53T, Cell lines, yeast, Phosphorylation (S129), Hallacli et al., 2022; Younas et al.,
interacts with mutations A30P Drosophila, and nitration, sumoylation 2023b
(H50Q, E46K), oS toxicity human genetics
linked to P-bodies
hnRNPA1 Sodium arsenite, heat shock, D290A, P288A, Cell lines, human Phosphorylation, Beijer et al., 2021; Duan et al.,, 2019;
or sorbitol, D262V, *321Eext*6, fibroblast cells from PAR-ylation Guil et al., 2006; Kim et al., 2013
pathophysiological stress, OS *321Qext*6, and ALS/FTD patients
induces stress granule G304Nfs*3
pathology
TIA1 Sodium arsenite, P362L Cell lines, mouse Oxidation, PAR-ylation Maziuk et al., 2018; Vanderweyde
pathophysiological stress brain, human brain et al., 2016; Younas et al., 2020;
Arimoto-Matsuzaki et al., 2016;
Mackenzie et al., 2017; Shelkovnikova
etal, 2017; Vanderweyde et al., 2012
ATXN2 Sodium arsenite Toxic polyQ Yeast cells, mouse Oxidation, Guevara-Garcia et al., 2012; Kato
expansions (SCA2), cellular phosphorylation, LLPS etal., 2019
models interactions
UBQLN2 OS increases stress granules, P497H, P497S, iPSC-motor neurons, Phosphorylation, Gu et al., 2024; Peng et al., 2022
aggregation A488T KO mice aggregation, altered LLPS

OS, oxidative stress; LLPS, liquid-liquid phase separation; aS, alpha synuclein.

Although significant progress has been made in delineating the
aggregation process, the exact cellular mechanisms that precipitate
pathological aggregation remain inadequately resolved.

Newly identified elements of these aggregates are stress
granules (SGs)-membrane less cytoplasmic assemblies of RNA-
binding proteins and stalled RNA translational machinery-
as crucibles of aggregation (Anderson and Kedersha, 2008;
Fomicheva and Ross, 2021). Stress granule dynamics are conserved
throughout eukaryotes and represent a universal cytoprotective
mechanism against diverse environmental stresses (Kedersha
et al, 2013) including oxidative stress, heat shock, osmotic
stress, UV irradiation, and nutrient deprivation (Cabral et al,
2022; Glauninger et al, 2022; Kedersha et al, 1999). Under
physiological conditions, SGs are transient, rapidly dissolving
upon stress resolution. However, chronic or persistent SGs—
often observed with aging or continuous stress exposure—
may act as nucleation centers for disease-associated protein
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aggregation, thereby contributing to neurodegenerative pathology
(Figure 1).

Multiple lines of evidence provide a strong evidence that SGs
in cells exposed to environmental stress play the role of seeds
for pathogenic protein aggregation in neurodegenerative disorders.
First, several proteins [MAPT (Maziuk et al., 2018; Vanderweyde
et al.,, 2016; Younas et al.,, 2020), TDP43 (Yan et al., 2025), FUS,
SNCA (Younas et al., 2023b) and PRNP (Younas et al., 2023b)]
that mount up in cytoplasmic aggregates are also components of
these SGs (Ash et al.,, 2021; LeBlang et al., 2020; Yan et al., 2025;
Younas et al., 2023b). Second, long lifespan and high metabolism
of neurons make them specifically vulnerable to successive stress
episodes and to cycles of SG assembly-disassembly (Bishop et al.,
2010). Third, mutations in the disease-linked proteins can disrupt
normal dynamics of SGs (Lenzi et al, 2015; Mateju et al,
2017; Murakami et al, 2015). Additionally, mutations in other
components of SGs e.g., hnRNPAI (Clarke et al, 2021), TIAl

frontiersin.org


https://doi.org/10.3389/fnins.2025.1686571
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Younas and Zerr

10.3389/fnins.2025.1686571

Oxidative stress

Altered PTMs
Aberrant LLPS

o o o o

Physiological SG

N ¥

2
How
Cytoprotective

FIGURE 1

dysfunction.

Oxidative stress

Persistent stress

Mutant proteins

Altered dynamics
Increased size/density
Impaired dissolution
Altered PTMS

l Pathological SG

Protein aggregation

Mechanistic overview by which oxidative stress promotes pathological stress granule (SG) formation and protein aggregation. Under acute stress,
SGs transiently assemble, sequester RNAs and proteins, and regulate translation, supporting cell survival during stress (left). Chronic/recurrent
oxidative stress promotes persistent SGs, oxidation of key residues, abnormal PTMs, and LLPS transitions, especially in the presence of disease
mutations (middle), leading to conversion of dynamic liquid-like SGs into dense, pathological condensates. These aberrant SGs display impaired
dissolution, altered composition, and serve as nucleation sites for neurodegeneration-associated protein aggregates. Their persistence (right) drives
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(Apicco et al., 2018; Baradaran-Heravi et al., 2020; Jiang et al.,
2022), ATXN2 (Guevara-Garcia et al., 2012; Kato et al., 2019),
UBQLN2 (Peng et al., 2022; Yan et al,, 2025) can also disrupt SG
dynamics (Table 1). Fourth, SG dense cores act as hotspots for
protein aggregation (Maziuk et al.,, 2018; Vanderweyde et al., 2016;
Yan et al.,, 2025). Stress granules (SGs) have emerged as a critical
missing link that integrates genetic, cellular, and pathological
evidence, completing the puzzle of aberrant protein aggregation
cascade in neurodegenerative diseases (Cui et al., 2024; Dudman
and Qi, 2020; Gu et al, 2024; Yuan et al, 2025). A summary
of key proteins, their associated stressors, reported mutations,
models used for study, post-translational modifications (PTM), and
supporting references are described in Table 1.

2 Oxidative stress-induced stress
granules as key drivers of
pathological aggregation

A central unresolved question in the field is whether specific
stressors preferentially drive the conversion of physiological
protein condensates into pathogenic aggregates in vivo, especially
under prolonged or recurrent stress. A growing body of research
points toward oxidative stress as a principal upstream trigger in
this pathogenic cascade (Gu et al., 2024; Ratti et al., 2020). Recent
work by Yan et al. (2025) demonstrates that the aggregation of
TDP-43 within SGs not only requires high protein concentrations
but also strictly depends on oxidative insults. Oxidative agents
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such as arsenite and paraquat oxidize cysteine residues, which
is crucial for induction of TDP-43 demixing within condensates,
finally converting it into pathological aggregates. By contrast, stress
granules induced by non-oxidative agents (e.g., puromycin) fail to
trigger aggregation—even at high TDP-43 levels and with impaired
proteasomal or chaperone systems—unless oxidative stress is also
present (Yan et al., 2025).

Similar mechanisms appear operative with Tau protein, the
signature protein in AD and related tauopathies (Younas et al.,
2020). Oxidative stress (induced by sodium arsenite) lead to
the upregulation of TIA-1 (a classical marker of SGs) and
phosphorylation of Tau in cellular models in both neuronal and
non-neuronal cell lines, and human brain of AD cases (Alavi
Naini and Soussi-Yanicostas, 2015; Younas et al, 2020). Tau
phosphorylation-a hallmark of AD-promotes its phase separation
and aggregation in vitro (Ambadipudi et al, 2017). Chronic or
repeated oxidative stress, coupled with elevated levels of TIA-
1 and phosphorylated Tau, may create a microenvironment
within SGs that nucleates pathological aggregation. Thus, stress
granules may represent the missing mechanistic link bridging
oxidative damage, protein modification, and aggregate formation
in neurodegenerative diseases (Figure 1).

Outstanding mechanistic questions remain, especially
regarding which molecular species of Tau participate in SG
formation. Are they distinct from the Tau species involved in the
stabilization of microtubules? Previously it has been reported that a
shift in localization of Tau toward somatodendritic compartments
occurs to facilitate formation of SGs (Vanderweyde et al.,, 2016).

frontiersin.org


https://doi.org/10.3389/fnins.2025.1686571
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Younas and Zerr

However, it is unlikely that the same Tau species involved in
microtubule stabilization are also responsible for stress granule
formation, as this would compromise microtubules integrity
during stress. It is more plausible that nuclear Tau species
(Younas et al, 2023a) might be involved in the formation
of SGs. Tau has six isoforms and many posttranslational
modifications. Post-translational modifications also affect stress
granules dynamics (Wang et al., 2023). Certain pathological Tau
species—especially those that are hyperphosphorylated—show
enhanced association with SGs, impacting SG dynamics and
contributing to neurodegenerative mechanisms. This mechanistic
link underscores the importance of isoform diversity and
PTMs in how Tau modulates SG formation and pathological
aggregation. Further research is needed to clarify this important
issue. By focusing future research on the molecular interactions
between oxidative stress, SG dynamics, and protein aggregation,
this emerging concept has the potential to transform our
strategies for early diagnosis, disease monitoring, and the
development of novel treatments for Alzheimer’s disease and
related tauopathies.

Chronic and recurrent oxidative stress in the context of mutant
proteins—whether RNA binding or not—can drive the formation
of pathological SGs (Table 1). Notably, mutations in SG-associated
genes—including MAPT, TARDBP (TDP-43), FUS, ATXN2, TIA1,
and HNRNPAl—have been shown to disrupt SG dynamics,
impair disassembly, and enhance aggregation propensity, thereby
contributing to neurodegenerative disease pathogenesis (Table 1).

This is also important to note that the vast majority of
knowledge about oxidative stress and stress granule dynamics
is derived from experimental exposure to artificial oxidants
(e.g., sodium arsenite, H202) in cellular models. There is
limited direct evidence demonstrating that physiologically relevant
endogenous reactive oxygen species levels induce the same
oxidative modifications and phase behaviors under disease
conditions in vivo (Table 1). The conversion of protective,
metastable condensates into pathogenic aggregates within stress
granules is determined by a complex interplay of the protein
involved, nature of oxidative insult, and the posttranslational
landscape.

Taken together, these findings suggest that stress granules
could represent a missing mechanistic link connecting oxidative
damage, protein modification, and aggregate formation in
neurodegenerative diseases (Figure 1). This mechanistic specificity
underscores the potential for developing targeted, redox-oriented
neuroprotective therapies aimed at modulating SG composition
and stability under oxidative conditions. Advancement in this
area will require deeper investigations into physiologically
relevant stress profiles, diversity of isoforms and posttranslational
modifications, and validation in robust in vivo models. These efforts
hold promise for translating mechanistic insights into tangible
clinical interventions that halt or reverse the aggregation process.

3 Conclusion

In conclusion, converging evidence positions stress granules
altered
protein homeostasis intersect to drive pathological aggregation

as a mechanistic nexus where oxidative stress and
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in neurodegenerative disorders. The conversion of metastable,
protective condensates into pathogenic aggregates appears to be
highly contingent on the nature and duration of cellular insults—
particularly oxidative stress—rather than on SG formation per
se. This duality underscores the therapeutic potential of targeting
stress granule dynamics and redox homeostasis, but also highlights
the need for more granular understanding of the molecular players
and contextual triggers involved. As our mechanistic insights
deepen, SGs can offer a promising frontier for both biomarker
discovery and intervention in proteinopathic neurodegeneration.
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