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Intracellular aggregation of proteins such as Tau, TDP43, FUS, prion protein,

and α-synuclein is a major hallmark of many major neurodegenerative diseases.

Aberrant stress granules (SGs) are emerging as key contributors to the

nucleation of toxic protein aggregates in these disorders. SGs are dynamic,

membrane less cytoplasmic assemblies that form transiently through liquid–

liquid phase separation (LLPS) of RNA binding proteins (RBPs) containing

low complexity domains, together with stalled mRNAs, to help cells cope

with stress. While physiological SGs facilitate cellular resilience to acute

stress and undergo rapid disassembly, chronic or excessive stress leads to

persistent SGs, driving pathological protein aggregation characteristic of age

related neurodegeneration. The inherent reversible aggregation of RBPs crucial

for cellular function paradoxically exposes them to misfolding disorders.

Notably, recent findings expand this paradigm by demonstrating that Tau

itself participates in SG formation, with Tau–SG interactions potentiating Tau

aggregation and disease progression in tauopathies. Despite these insights, the

precise cellular stressors and posttranslational modifications (PTMs) governing

the shift from physiological granules to pathological aggregates remain

poorly defined. Emerging evidence highlights oxidative stress as a central

upstream mediator of this transition. In this perspective, we synthesize current

understanding of how SG dynamics intersect with oxidative stress to potentiate

protein aggregation, proposing molecular mechanisms that bridge SG biology

and neurodegenerative disease. Elucidating these pathways is essential for

the development of targeted therapeutic interventions for disorders such as

Alzheimer’s disease and related tauopathies.
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1 Introduction

A key hallmark of major neurodegenerative disorders—including Alzheimer’s
disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD),
synucleinopathies and prion diseases—is the intracellular accumulation of aggregated
proteins such as MAPT, TDP43, FUS, PRNP and SNCA (Wilson et al., 2023).
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TABLE 1 Summary of different RBPs or non-RBPs linked with specifically oxidative stress-induced stress granule pathology in 
neurodegenerative diseases. 

Protein Stressor Mutations Model PTM status References 

MAPT Sodium arsenite, 
pathophysiological stress 

P301L, P301S, 
G272V 

Cell lines, mouse 

brain, human brain 

(endogenous) 

Hyperphosphorylation, 
truncation, acetylation 

Maziuk et al., 2018; Vanderweyde 

et al., 2016; Younas et al., 2020; 
Kanaan et al., 2020; Shelkovnikova 

et al., 2017; Vanderweyde et al., 2012 

SFPQ Sodium arsenite, 
pathophysiological stress 

N533H, L534I Cell lines, live cells, 
human brain 

Oxidation, 
Phosphorylation 

Younas et al., 2020; Ke et al., 2012; 
Lukong et al., 2009; Neeves et al., 
2025; Uechi et al., 2025; Widagdo 

et al., 2022 

TDP43 Sodium arsenite, heat shock, 
sorbitol or paraquat, 
pathophysiological stress 

G294A, A315T, 
Q331K, Q343R, 
G348C, M337V, 
R361S 

Cell lines, primary 

glia, human brain or 

spinal cord 

Oxidation, 
Phosphorylation, 
S-nitrosylation 

Dewey et al., 2011; Liu-Yesucevitz 

et al., 2011; McDonald et al., 2011; 
McGurk et al., 2014; Parker et al., 2012 

FUS Sodium arsenite, traumatic 

injury or heat shock 

R521C, R495X, 
H517Q, P525L 

Mouse primary 

motor neuron, 
mouse spinal cord, 
drosophila brain or 

zebrafish spinal cord 

Methylation, 
phosphorylation, 
acetylation 

Baron et al., 2013; Bosco et al., 2010; 
Zhang et al., 2020 

PRNP Sodium arsenite, 
pathophysiological stress 

– Cell lines, mouse 

brain, 
Phosphorylation, 
glycosylation, truncation 

Wolschner et al., 2009; Younas et al., 
2023b; Yun et al., 2006 

SNCA Sodium arsenite, ↑OS 

interacts with mutations 
(H50Q, E46K), αS toxicity 

linked to P-bodies 

H50Q, E46K, A53T, 
A30P 

Cell lines, yeast, 
Drosophila, and 

human genetics 

Phosphorylation (S129), 
nitration, sumoylation 

Hallacli et al., 2022; Younas et al., 
2023b 

hnRNPA1 Sodium arsenite, heat shock, 
or sorbitol, 
pathophysiological stress, OS 

induces stress granule 

pathology 

D290A, P288A, 
D262V, *321Eext*6, 
*321Qext*6, and 

G304Nfs*3 

Cell lines, human 

fibroblast cells from 

ALS/FTD patients 

Phosphorylation, 
PAR-ylation 

Beijer et al., 2021; Duan et al., 2019; 
Guil et al., 2006; Kim et al., 2013 

TIA1 Sodium arsenite, 
pathophysiological stress 

P362L Cell lines, mouse 

brain, human brain 

Oxidation, PAR-ylation Maziuk et al., 2018; Vanderweyde 

et al., 2016; Younas et al., 2020; 
Arimoto-Matsuzaki et al., 2016; 
Mackenzie et al., 2017; Shelkovnikova 

et al., 2017; Vanderweyde et al., 2012 

ATXN2 Sodium arsenite Toxic polyQ 

expansions 
Yeast cells, mouse 

(SCA2), cellular 

models 

Oxidation, 
phosphorylation, LLPS 

interactions 

Guevara-García et al., 2012; Kato 

et al., 2019 

UBQLN2 OS increases stress granules, 
aggregation 

P497H, P497S, 
A488T 

iPSC-motor neurons, 
KO mice 

Phosphorylation, 
aggregation, altered LLPS 

Gu et al., 2024; Peng et al., 2022 

OS, oxidative stress; LLPS, liquid-liquid phase separation; αS, alpha synuclein. 

Although significant progress has been made in delineating the 
aggregation process, the exact cellular mechanisms that precipitate 
pathological aggregation remain inadequately resolved. 

Newly identified elements of these aggregates are stress 
granules (SGs)–membrane less cytoplasmic assemblies of RNA-
binding proteins and stalled RNA translational machinery– 
as crucibles of aggregation (Anderson and Kedersha, 2008; 
Fomicheva and Ross, 2021). Stress granule dynamics are conserved 
throughout eukaryotes and represent a universal cytoprotective 
mechanism against diverse environmental stresses (Kedersha 
et al., 2013) including oxidative stress, heat shock, osmotic 
stress, UV irradiation, and nutrient deprivation (Cabral et al., 
2022; Glauninger et al., 2022; Kedersha et al., 1999). Under 
physiological conditions, SGs are transient, rapidly dissolving 
upon stress resolution. However, chronic or persistent SGs— 
often observed with aging or continuous stress exposure— 
may act as nucleation centers for disease-associated protein 

aggregation, thereby contributing to neurodegenerative pathology 
(Figure 1). 

Multiple lines of evidence provide a strong evidence that SGs 
in cells exposed to environmental stress play the role of seeds 
for pathogenic protein aggregation in neurodegenerative disorders. 
First, several proteins [MAPT (Maziuk et al., 2018; Vanderweyde 
et al., 2016; Younas et al., 2020), TDP43 (Yan et al., 2025), FUS, 
SNCA (Younas et al., 2023b) and PRNP (Younas et al., 2023b)] 
that mount up in cytoplasmic aggregates are also components of 
these SGs (Ash et al., 2021; LeBlang et al., 2020; Yan et al., 2025; 
Younas et al., 2023b). Second, long lifespan and high metabolism 
of neurons make them specifically vulnerable to successive stress 
episodes and to cycles of SG assembly-disassembly (Bishop et al., 
2010). Third, mutations in the disease-linked proteins can disrupt 
normal dynamics of SGs (Lenzi et al., 2015; Mateju et al., 
2017; Murakami et al., 2015). Additionally, mutations in other 
components of SGs e.g., hnRNPA1 (Clarke et al., 2021), TIA1 

Frontiers in Neuroscience 02 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1686571
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1686571 November 6, 2025 Time: 13:43 # 3

Younas and Zerr 10.3389/fnins.2025.1686571 

FIGURE 1 

Mechanistic overview by which oxidative stress promotes pathological stress granule (SG) formation and protein aggregation. Under acute stress, 
SGs transiently assemble, sequester RNAs and proteins, and regulate translation, supporting cell survival during stress (left). Chronic/recurrent 
oxidative stress promotes persistent SGs, oxidation of key residues, abnormal PTMs, and LLPS transitions, especially in the presence of disease 
mutations (middle), leading to conversion of dynamic liquid-like SGs into dense, pathological condensates. These aberrant SGs display impaired 
dissolution, altered composition, and serve as nucleation sites for neurodegeneration-associated protein aggregates. Their persistence (right) drives 
protein misfolding and mislocalization, sequestration of signaling factors, disruption of protein/RNA homeostasis, and ultimately neuronal 
dysfunction. 

(Apicco et al., 2018; Baradaran-Heravi et al., 2020; Jiang et al., 
2022), ATXN2 (Guevara-García et al., 2012; Kato et al., 2019), 
UBQLN2 (Peng et al., 2022; Yan et al., 2025) can also disrupt SG 
dynamics (Table 1). Fourth, SG dense cores act as hotspots for 
protein aggregation (Maziuk et al., 2018; Vanderweyde et al., 2016; 
Yan et al., 2025). Stress granules (SGs) have emerged as a critical 
missing link that integrates genetic, cellular, and pathological 
evidence, completing the puzzle of aberrant protein aggregation 
cascade in neurodegenerative diseases (Cui et al., 2024; Dudman 
and Qi, 2020; Gu et al., 2024; Yuan et al., 2025). A summary 
of key proteins, their associated stressors, reported mutations, 
models used for study, post-translational modifications (PTM), and 
supporting references are described in Table 1. 

2 Oxidative stress-induced stress 
granules as key drivers of 
pathological aggregation 

A central unresolved question in the field is whether specific 
stressors preferentially drive the conversion of physiological 
protein condensates into pathogenic aggregates in vivo, especially 
under prolonged or recurrent stress. A growing body of research 
points toward oxidative stress as a principal upstream trigger in 
this pathogenic cascade (Gu et al., 2024; Ratti et al., 2020). Recent 
work by Yan et al. (2025) demonstrates that the aggregation of 
TDP-43 within SGs not only requires high protein concentrations 
but also strictly depends on oxidative insults. Oxidative agents 

such as arsenite and paraquat oxidize cysteine residues, which 
is crucial for induction of TDP-43 demixing within condensates, 
finally converting it into pathological aggregates. By contrast, stress 
granules induced by non-oxidative agents (e.g., puromycin) fail to 
trigger aggregation—even at high TDP-43 levels and with impaired 
proteasomal or chaperone systems—unless oxidative stress is also 
present (Yan et al., 2025). 

Similar mechanisms appear operative with Tau protein, the 
signature protein in AD and related tauopathies (Younas et al., 
2020). Oxidative stress (induced by sodium arsenite) lead to 
the upregulation of TIA-1 (a classical marker of SGs) and 
phosphorylation of Tau in cellular models in both neuronal and 
non-neuronal cell lines, and human brain of AD cases (Alavi 
Naini and Soussi-Yanicostas, 2015; Younas et al., 2020). Tau 
phosphorylation–a hallmark of AD–promotes its phase separation 
and aggregation in vitro (Ambadipudi et al., 2017). Chronic or 
repeated oxidative stress, coupled with elevated levels of TIA-
1 and phosphorylated Tau, may create a microenvironment 
within SGs that nucleates pathological aggregation. Thus, stress 
granules may represent the missing mechanistic link bridging 
oxidative damage, protein modification, and aggregate formation 
in neurodegenerative diseases (Figure 1). 

Outstanding mechanistic questions remain, especially 
regarding which molecular species of Tau participate in SG 
formation. Are they distinct from the Tau species involved in the 
stabilization of microtubules? Previously it has been reported that a 
shift in localization of Tau toward somatodendritic compartments 
occurs to facilitate formation of SGs (Vanderweyde et al., 2016). 
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However, it is unlikely that the same Tau species involved in 
microtubule stabilization are also responsible for stress granule 
formation, as this would compromise microtubules integrity 
during stress. It is more plausible that nuclear Tau species 
(Younas et al., 2023a) might be involved in the formation 
of SGs. Tau has six isoforms and many posttranslational 
modifications. Post-translational modifications also aect stress 
granules dynamics (Wang et al., 2023). Certain pathological Tau 
species—especially those that are hyperphosphorylated—show 
enhanced association with SGs, impacting SG dynamics and 
contributing to neurodegenerative mechanisms. This mechanistic 
link underscores the importance of isoform diversity and 
PTMs in how Tau modulates SG formation and pathological 
aggregation. Further research is needed to clarify this important 
issue. By focusing future research on the molecular interactions 
between oxidative stress, SG dynamics, and protein aggregation, 
this emerging concept has the potential to transform our 
strategies for early diagnosis, disease monitoring, and the 
development of novel treatments for Alzheimer’s disease and 
related tauopathies. 

Chronic and recurrent oxidative stress in the context of mutant 
proteins—whether RNA binding or not—can drive the formation 
of pathological SGs (Table 1). Notably, mutations in SG-associated 
genes—including MAPT, TARDBP (TDP-43), FUS, ATXN2, TIA1, 
and HNRNPA1—have been shown to disrupt SG dynamics, 
impair disassembly, and enhance aggregation propensity, thereby 
contributing to neurodegenerative disease pathogenesis (Table 1). 

This is also important to note that the vast majority of 
knowledge about oxidative stress and stress granule dynamics 
is derived from experimental exposure to artificial oxidants 
(e.g., sodium arsenite, H2O2) in cellular models. There is 
limited direct evidence demonstrating that physiologically relevant 
endogenous reactive oxygen species levels induce the same 
oxidative modifications and phase behaviors under disease 
conditions in vivo (Table 1). The conversion of protective, 
metastable condensates into pathogenic aggregates within stress 
granules is determined by a complex interplay of the protein 
involved, nature of oxidative insult, and the posttranslational 
landscape. 

Taken together, these findings suggest that stress granules 
could represent a missing mechanistic link connecting oxidative 
damage, protein modification, and aggregate formation in 
neurodegenerative diseases (Figure 1). This mechanistic specificity 
underscores the potential for developing targeted, redox-oriented 
neuroprotective therapies aimed at modulating SG composition 
and stability under oxidative conditions. Advancement in this 
area will require deeper investigations into physiologically 
relevant stress profiles, diversity of isoforms and posttranslational 
modifications, and validation in robust in vivo models. These eorts 
hold promise for translating mechanistic insights into tangible 
clinical interventions that halt or reverse the aggregation process. 

3 Conclusion 

In conclusion, converging evidence positions stress granules 
as a mechanistic nexus where oxidative stress and altered 
protein homeostasis intersect to drive pathological aggregation 

in neurodegenerative disorders. The conversion of metastable, 
protective condensates into pathogenic aggregates appears to be 
highly contingent on the nature and duration of cellular insults— 
particularly oxidative stress—rather than on SG formation per 
se. This duality underscores the therapeutic potential of targeting 
stress granule dynamics and redox homeostasis, but also highlights 
the need for more granular understanding of the molecular players 
and contextual triggers involved. As our mechanistic insights 
deepen, SGs can oer a promising frontier for both biomarker 
discovery and intervention in proteinopathic neurodegeneration. 
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