
Frontiers in Neuroscience 01 frontiersin.org

Differential item functioning in 
neonatal behavioral neurological 
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Aim: This study adopted Rasch Analysis to evaluate the psychometric properties 
of the neonatal behavioral neurological assessment (NBNA) in high-risk full-
term infants during their NICU stay.
Methods: A total of 543 full-term infants (14.26 ± 7.02 days of age) were 
included in the study. We used the Rasch Model (RM) to assess the reliability 
and validity of the NBNA and GPCMlasso models to examine differential item 
functioning (DIF).
Results: The samples responded to the NBNA according to the Rasch Model 
pattern. We  found that the NBNA measures neurobehavior with one extra 
component regarding visual reactions. We found items that displayed disorder 
category functions in the NBNA. Conservatively, we found that the participants’ 
responses to the NBNA items were mostly dependent on the neurological 
developmental level, regardless of demographic traits.
Conclusion: Our results support the applicability of the NBNA in depicting 
neurobehaviors in high-risk full-term infants in NICU. We found that high-risk 
infants could respond to NBNA items that were mostly dependent on the neural 
developmental level. The category functioning analysis revealed that the items 
provided inaccurate information owing to the disordered rating design.
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Introduction

Infants in the neonatal intensive care unit (NICU) are more likely to display abnormal 
developmental trajectories than their typically developing peers after discharge from the 
NICU, and more complicated problems may emerge as they grow older (Sucharew et al., 2012; 
Subedi et al., 2017). For example, infants who are discharged from the NICU may display 
hypotonia at the beginning and suboptimal motor function later, and some may present 
disorders in social communication when they enter kindergarten or even primary school (e.g., 
indifferent attitudes or insufficient social skills) (Sucharew et al., 2012). Longitudinal findings 
reveal that the developmental trajectory of these infants may vary: some may deviate 
downward from the average curve, and some may try to approach normal development, but 
most cases commonly have the same suboptimal developmental status (van Beek et al., 2021; 
Elbaum and Celimli-Aksoy, 2022). Studies have also revealed that infants discharged from the 
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NICU are at a higher risk of poor academic achievement in regular 
education, even if they must obtain additional medical or educational 
resources to access the normal curriculum (Johnson et  al., 2009; 
Hutchinson et  al., 2013). For now, more efforts are needed to 
understand the neuromotor and associated psychological deficits 
secondary to complicated issue in infants discharged from NICU, and 
necessary monitoring is needed to prevent upcoming health threats 
including neurological damage (e.g., cerebral palsy), developmental 
delay, learning disorder, etc. (Bracewell and Marlow, 2002).

Previous studies have pointed out that timely early intervention 
programs are needed for those who were discharged from the NICU 
and presented unsatisfactory neurodevelopmental outcomes, and the 
results showed that these populations can reach age-appropriate skills 
in nearly all developmental aspects when they leave the programs 
(Elbaum and Celimli-Aksoy, 2022; Litt et  al., 2018). These 
interventions can involve various developmental aspects and produce 
promising impacts on future academic functions in the early 
educational period, and require referral to these early intervention 
programs prior to timely hospital discharge (Hutchinson et al., 2013). 
To date, few factors have been found to determine whether infants 
discharged from the NICU should be referred to an early intervention 
program: birth weight, gestational age, NICU stay, medical 
comorbidity, and developmental status (Atkins et al., 2020; Atkins 
et al., 2017; Litt and Perrin, 2014). Despite increasing attention to 
NICU discharge follow-up, studies have found that a large number of 
eligible infants could miss the chance to receive necessary early 
intervention until they display significant delays compared to their 
typically developing peers (Atkins et  al., 2017; Tang et  al., 2012; 
Greene and Patra, 2016). Neurobehavioral assessments are clinical 
examinations designed for the preliminary period (e.g., the first few 
weeks) of neonates, which can provide useful information about their 
development. Several assessment tools have been used as predictors 
for early intervention enrolment in the first years of life for infants 
discharged from the NICU (Atkins et al., 2017; Rosinda et al., 2024; 
Spittle et al., 2008). To our knowledge, no assessment tool can portray 
the comprehensive contents of neurobehavioral profiles in infants 
discharged from the NICU (Spittle et al., 2008). Neurobehavior is 
broadly defined as the psychosocial and biological context of human 
experience (Salisbury et al., 2005). Neurobehavior consists of three 
dimensions: neurological items designed for active and passive tone, 
primitive reflexes, central neural system integrity, behavioral items, 
and stress/abstinence items (Salisbury et al., 2005; Malak et al., 2021; 
Als et al., 1977). The neonatal behavioral neurological assessment 
(NBNA) is established based on these dimensions to depict the 
following neurobehavioral components: behavior, passive tone, active 
tone, primary reflexes, and general status with excellent psychometric 
qualities (Bao et al., 1991; Bao et al., 1993; Zhang et al., 2021).

As timely identification of infants at risk for poorer prognosis is 
critical for NICU discharge, necessary measures are needed to obtain 
reliable information from infants in the NICU. The psychometric 
assumptions achieved by Classical Test Theory (CTT) depend heavily 
on the samples involved (Hambleton and Jones, 2005; Adedoyin et al., 
2008; Peeters and Augustine, 2023). This method may lead to different 
psychometric results reported in different studies because the 
measurement accuracy was assumed to be invariant across all samples, 
regardless of personal characteristics (e.g., sex, gestational age, and 
delivery method), and the total score was utilized to estimate the 
measurement errors (Balasubramanian et  al., 2024). Hence, to 

comprehensively explore the theoretical basis underlying the NBNA, 
we adopted the Rasch Model to illustrate the item-level psychometric 
properties in detail. Additionally, this study attempted to describe the 
magnitude of the measurement bias elicited by related variables in a 
clinical scenario. In addition, longitudinal follow-up was conducted 
to record the prognosis of infants who were discharged from the 
NICU in 2019. We aimed to build a prediction model for clinical 
practitioners to identify items that may require additional 
consideration for interpretation or for infants that may produce 
unexpected NBNA performance.

Materials and methods

Participants

Participants were recruited from hospital referral programs. Term 
infants with gestational age ≥38 weeks were admitted to the NICU 
were referred for early comprehensive evaluation using this program 
(Dolinskaya et al., 2023; Carlton et al., 2024). The referred infants 
would undergo an interdisciplinary assessment to determine their 
overall neurobehavioral status and join the follow-up program to 
obtain the necessary intervention. The comprehensive assessment 
routinely involved the administration of the NBNA and other 
standardized tools if needed. To achieve a reasonable sample size, this 
study categorized accompanying conditions according to International 
Classification of Disease (ICD). Prior to administration, all necessary 
consent was obtained from the legal guardians (s).

Measure

The Neonatal Behavioral Neurological Assessment (NBNA) can 
serve as an observational rating tool to quantify neurobehaviors in 
infants admitted to the NICU. The NBNA consists of five testing 
components: behavior (six items), passive tone (four items), active 
tone (four items), primary reflexes (three items), and general status 
(three items). Each item is assigned a score from 0 to 2 where two 
denotes appropriate behavior and zero denotes behavior severely 
deviating from the normal criteria. The total score is the sum of all 
items, with scores < 35 denoting abnormal neurobehavior. The NBNA 
is performed by trained or licensed physicians or researchers.

Data analysis

Analysis workflow
Figure 1 shows the overall analysis workflow that displays how our 

data is used and transfers in two different model fit procedures. 
Detailed descriptions are presented below. Two models were selected 
to simulate response data collected from infants at NICU. First, Rasch 
Model was utilized to test the response pattern and verify the 
psychometric quality of NBNA (e.g., reliability and validity) based on 
the fit statistic. Then, GPCMlasso Model was utilized to test DIF using 
demographic data (e.g., delivery way, gender). Detail description is 
presented below. Data was analyzed using WINSTEPS (Version 
5.2.3.0, Copyright(c) 2022, John M. Linacre, website: http://www.
winsteps.com) and R (RStudio, 2023.12.0 Build 369).
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Rasch model
Rasch Model is widely known as an augment to Classical Testing 

Theory. The Rasch Model constructs an interval scale by converting 
the raw score to its natural logarithm. Instead of using the total score 
as the latent trait of the testing person, the Rasch Model adopted the 
item performance as the Sufficient Statistic to estimate the person’s 
ability (e.g., neurobehavioral status in this study) and item difficulty 
(e.g., the neural developmental milestone denoted by each item) 
independently. The possibility of successful/unsuccessful performance 
υιx  is related to the difference between neurobehavioral status υβ  and 

developmental milestones ιδ , which allows us to estimate υβ  and ιδ  
independently from the available data. We can then simulate how 
these data fit the prediction model. The equations are as follows:
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The following psychometric properties were extracted from our 
simulation process: rater-related reliability, content-related reliability, 
internal consistency, and construct validity. The Rasch Model is widely 
utilized to test the psychometric properties of commonly used 
assessment tools including the Test of Infant Motor Development, 
Motor Proficiency 2nd Edition, Peabody Developmental Motor Scale, 
etc. (Wilson et al., 2011; Huang et al., 2018; Campbell et al., 2008; 
Dallmeijer et al., 2011; Chien and Bond, 2009).

In this study, the NBNA utilized a polytomous option design (e.g., 
0, 1, 2); however, each item was rated based on its own criteria. For 
example, the criteria for scoring two points on Items 1 and 2 are 
different. Our study assumed that infants with a more optimal neural 

developmental status could display more behavioral patterns. Hence, 
we chose the Partial Credit Model (PCM) to examine the psychometric 
quality of the NBNA.

Item fitness
Item and person scores were transformed into natural logarithm 

units. The Rasch Model was then established based on the infants’ 
responses to the items. Item fitness reflects the prior assumptions of 
the Rasch Model. All Rasch measurements are built on the assumption 
that all items and infants should display acceptable fitness to the 
Rasch Model.

In this study, the infit mean square (MNSQ) and standardized Z 
(Zstd) were adopted to neutralize the impact of these unexpected 
performances by assigning corresponding weights to residuals. The 
MNSQ describes how much the participants’ responses may deviate 
from the model, and Zstd denotes how possible it is that the 
participants may generate unexpected responses. A reasonable 
deviation is defined by the infit mean square and Zstd, which fall 
within 0.75–1.33 and −2 to 2, respectively (Stolt et al., 2021; Sung 
et al., 2021; Ogawa et al., 2021).

Rater-rated and content-related reliability
Rater- and content-related reliability is defined as the 

measurement precision of the number of milestones distributed along 
the rating scale (e.g., analogical continuum). The person reliability 
index is used to measure the replicability of a person’s location on a 
continuum if another parallel set of items measuring the same 
construct is used. The item reliability index indicates the replicability 
of milestone locations along the continuum if these items are used by 
another group of people with the same demographic characteristics. 

FIGURE 1

Analysis workflow in this study.
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Reasonable person and item reliability are supported with indexes 
beyond 0.8 (Stolt et al., 2021; Sung et al., 2021; Ogawa et al., 2021). A 
reasonable differential efficacy was established with a separation index 
greater than 2.0, indicating acceptable measurement precision.

Internal consistency
We used point measure correlation (PTMEASURE-CORR) to 

evaluate the relationship between the observations (e.g., actual 
performance) and measures (e.g., predicted performance). 
PTMEASURE CORR indicates the extent to which the items measure 
various aspects of the same latent trait. A negative correlation indicates 
that this item does not contribute to the traits that the measure intends 
to assess.

Construct validity

Category functioning
The NBNA used a 3-point rating scale (for example, 0, 1, 2). The 

Rasch Model defines the rating scale using ordering thresholds to 
separate different scores, and the threshold between different scores 
(e.g., threshold between “0” point and “1” points) is defined as the 
location on the ability continuum where there is a 50/50 possibility of 
scoring either of two adjacent points. Therefore, the NBNA contains 
two thresholds for each item, and these special ability landmarks are 
supposed to be aligned from left to right on this continuum. This 
means that individuals with a more optimal neural function status 
should obtain higher scores for each item. Hence, the interval between 
adjacent thresholds should cover a reasonable range (range from 1.4 
to 5 is recommended) (Chang et al., 2014; Lu et al., 2013; Llamas-
Ramos et al., 2018). In this study, we focused on the interval between 
the 0–1 threshold and 1–2 threshold. A well-designed category 
structure should assign an acceptable number of participants to an 
appropriate location on the ability continuum. Therefore, we expected 
that each category would be endorsed by at least 10 participants.

Unidimensionality
The Rasch Model utilizes point residuals between the actual and 

expected performance to conduct principal component analysis 
(PCA). The unidimensional structure is validated if NABA can explain 
over 40% of the residual variances, and the rest of the residual 
variances can be explained by random factors (eigenvalue less than 
2.0). Additionally, the variance explained by the 1st contrast should 
be less than 15%, and the explained variance ratio of the measurement 
to the 1st contrast should be greater than 3:1 (Stolt et al., 2021; Sung 
et al., 2021; McCreary et al., 2013).

Differential item functioning
To address measurement bias, we used uniform DIF to evaluate 

the potential impact of related demographic variables. Various 
statistical methods have been introduced for DIF detection, and the 
Rasch Model is the most frequently used. However, a large sample was 
used in this study, which more easily elicited type 1 error. In addition, 
the Rasch Model can only focus on one variable and cannot eliminate 
the impact of other confounding factors. For example, the Rasch 
Model can only detect the DIF influence by gender on one trial, but 
these results may be contaminated by delivery way or other factors.

To fill the gap mentioned above, we used a machine learning 
method to establish a Rasch Model with a lasso penalty to identify the 

uniform DIF in the NBNA. The GPCMlasso R package was used to 
produce λ which denotes the magnitude of the influence produced by 
the covariances (e.g., delivery method, sex, critical conditions this 
study). Thus, uniform DIF is confirmed if this lasso coefficient is 
unequal to zero. In this study, a DIF analysis was conducted to test the 
influence of covariates, including delivery method, sex, and 
critical conditions.

Therefore, the calculation method can be written as follows:
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γ γ
β θ δ γ
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In this equation, ( )γ =1,2,3,4in n  denotes the influence of 
covariates on items i respectively. To modify the original DIF analysis 
methods (e.g., Welch’s t-test), the GPCMlasso package can test 
multiple covariates simultaneously and eliminate the potential 
multicollinearity that may exist among these variables. In this study, 
the Bayesian information criterion was adopted to screen for the 
optimal parameter λ.

Sample consideration

To obtain 99% confidence that the item calibration (item difficulty 
measure) is within ±1/2 logit of its robust value and avoid type one 
errors. A sample size of over 250 is recommended to generate robust 
result in study using Rasch Model (Smith et al., 2008; Hagell and 
Westergren, 2016; Svanborg et al., 2022).

Results

Demographic data

A total of 543 term infants with normal birth weights were 
included in this study. Table 1 displays the overall demographic data 
for this sample. We managed to recruit a sample aged approximately 
14.26 days. The sex ratio was 341/202 (boys/girls). Over 137 infants 
were delivered by cesarean section (25.2%), which is much higher 
than the 15% recommended by the WHO. In our study, 443 neonates 
were admitted to the NICU due to conditions that originated in the 
perinatal period, while 100 neonates were admitted due to other 
complicated postnatal issues.

Person and item mapping and fit statistics

The item-person map showed that (see Supplementary material 1 
for details) item 3 (“Reflection to GEGE-like sound) was the most 
difficult item (e.g., least observed behavior). This indicates that it is 
difficult for infants to respond to GEGE-like sounds. Item 6 
(“Reflection to comfort”) was the most common behavior that could 
be easily observed in infants with different conditions. As the mean 
item frequency was set at 0 logit, item-person map shows that items 
in the NBNA are distributed symmetrically from 3 to −2 logit. This 
means that the NBNA can distinguish 83.34% of the behavior profiles 
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in high-risk infants (e.g., 3 logit = 0.0474, −2 logit = 0.8808). The 
response pattern in this sample confirmed the hypothesis built by the 
Rasch Model (Table 2). This means that the following analysis results 
were established based on solid prior assumptions. The person 
reliability and separation index indicated that the NBNA is sufficiently 
efficient to distinguish infants with different neural developmental 
statuses. This means that the NBNA can capture all inter-person 
variations in neurobehavior instead of other irrelevant symptoms. A 
value of 0.74 means that 74% of the personal variants captured by the 
NBNA originated from interindividual differences and 26% were due 
to random errors. The item reliability and separation index revealed 
that the recruited sample size was reasonable for validating the item 
ranking on the scale continuum.

Evaluation of item-fitness

In this study, we identified only nine items that violated the judge 
criteria (see Supplementary material 2). This means that these items may 
reflect some components that are not related to neural development, or 
these behaviors tend to happen randomly instead of patterns (e.g., slipping 
or accidentally presenting). Among them, we found only one item (item 
15) that violated the MNSQ and Zstd criteria [for example, MNSQ (0.75–
1.33), Zstd (−2–2)]. That means sucking activity may show up randomly 
instead of by appropriate stimulation (e.g., touching), and slipping here 
means it is possible that sucking activities will not show up even that suck 
reflex is already mastered by neonates. In general, outfit statistics denote 
the unstandardized residual between the expected and real values, and 
infit statistics represent the standardized residual that aims to eliminate 
the effect of erratic or robust patterns in this sample. MNSQ indicates the 
magnitude of the pattern deviation, while the Zstd indicates the possibility 
of an unexpected value.

In this study, most items displayed acceptable deviations from the 
model prediction, but the response pattern was too robust or erratic. 
For example, item 1 (“reflection to light) process normal MNSQ (for 
example 1.32) but unacceptable Zstd (for example 2.51), and this may 
propose that visual reflection to light was related to neurological 
status, but this behavior can also happen randomly due to other 
factors (e.g., environmental factors like sound, temperature). For 
example, item 15 (“sucking reflex) may be more suspected as random 
behaviors rather than neurological traits, and this behavior may not 
be a suitable behavior to calibrate the neurological status. In addition, 
all the items displayed positive PTMEASURE-CORR values, which 
means that all the items were related to the latent traits that the 
NBNA intended to examine.

Category function

The category function analysis showed that four items (items 6, 
18, 19, and 20) were not proportionally endorsed, especially item 18 
(“Awake”). No response is endorsed in the “0” category for item 18. 
Three items did not display ordered threshold measures (items 1, 7, 
and 9), implying that the probability of individuals scoring specific 
points on these items may not be related to neurological status. Hence, 
we found that these items displayed abnormal threshold intervals. 
Other results also show nine items with abnormal threshold intervals, 
indicating that the original rating scale may be  redundant. More 
details can be seen in Supplementary material 3.

Assessment of unidimensionality

Principal component analysis revealed that the measurement 
variances explained by the NBNA were 51.3%. One contrast was 
found in the NBNA with an eigenvalue over 2 (for example, 2.38 in 1st 
contrast). This means that the NBNA measures more than just 
neurobehavior. The unexplained ratio of measured variances in the 1st 
contrast was 5.8%, and the raw explained variance ratio of the measure 
to the 1st contrast was 20.06/2.38 which was larger than 3/1.

To determine which of the NBNA items loaded into the residual 
factors, we set 0.4 as the cutoff value to define a meaningful factor 
loading (Martsolf et al., 2017; Maskey et al., 2018). Two items (e.g., 

TABLE 1  Participant demographic data.

Variables Mean (SD)/
Count (%)

Sample 543

Delivery way

Natural delivery 406 (75.8%)

Cesarean 137 (25.2%)

Gender

Female 202 (37.2%)

Male 341 (62.8%)

Age (days)

Overall 14.26 (7.02)

Gestational age

Overall (days) 274.35 (7.94)

Birth weight

Overall (g) 3,167.33 (321.09)

Critical conditions

ICD_00_Health conditions 3

ICD_01_Certain infectious or parasitic diseases 5

ICD_03_Diseases of the blood or blood-forming organs 1

ICD_05_Endocrine, nutritional or metabolic diseases 7

ICD_08_Diseases of the nervous system 22

ICD_11_Diseases of the circulatory system 8

ICD_12_Diseases of the respiratory system 5

ICD_13_Diseases of the digestive system 3

ICD_14_Diseases of the skin 1

ICD_15_Diseases of the musculoskeletal system or 

connective tissue

2

ICD_19_Certain conditions originating in the perinatal 

period

443

ICD_20_Developmental anomalies 15

ICD_21_Symptoms, signs or clinical findings, not 

elsewhere classified

21

ICD_22_Injury, poisoning or certain other consequences 

of external causes

6

ICD_25_Codes for special purposes 1

S.D., standard deviation.
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item 4 vision speaking face, and item 5 vision red ball) displayed 
distinct dimensions of visual behavior.

Differential items functioning

In the GPCMlasso equation, each group variable is encoded by 
the corresponding λ. To simplify the original equation, the GPCMlasso 
Model can be written as follows:

	

( )
( )

β γ
θ γ γ

 =  + ∗ +   = −  ∗ + ∗ = −    

1
2 3

log
1

pi i i
p

i ipi

P Y r DeliveryWay
Gender ConditionsP Y r

In this study, the GPCMlasso Model set the following characteristics 
in our sample as dummy codes: Delivery/nature delivery, Gender/girls, 
and Conditions/postnatal conditions were equal to 0 in this formulation 
(e.g., γ ∗1i Cesarean, γ ∗2i boys, γ ∗3i perinatalConditions).

The Akaike Information Criterion (AIC) and Bayesian 
Information Criterion are widely used in model selection, and the AIC 
or BIC is defined as

	 ( ) ( ) ( )λ λ= − ⋅ +2 logAIC OR BIC L df n

where ( )⋅L  denotes the likelihood for the parameters estimated 
with tunning parameter λ, ( )λdf  denotes the total number of 
parameters estimated unequal to zero and n is the number of 
observations (Jafari et al., 2022). For a regular sequence of λ values, 
which was created by the GPCMlasso R package, the AIC or BIC 
was computed and sorted from largest to smallest values. The 

optimal λ is defined as which can lead to the smallest AIC or 
BIC value.

Table  3 represents the results of DIF detection using the 
GPCMlasso model in terms of the BIC and AIC criteria. Item DIF was 
examined between groups with different demographic traits. No Item 
DIF was found according to the BIC. Nine items displayed DIF for 
delivery way, gender, and critical conditions according to the AIC. For 
example, Table 3 shows that the Laplace coefficient λ for gender in 
item 7 (“Scarf sign”) is 0.3. For the same θp for children, the item 
difficulty for boys equals to βi, and β + 0.3i  for girls. This means that 
boys are more likely to maintain normal muscle tone than girls (e.g., 
the elbow cannot reach over the midline).

An independent t-test was conducted to compare the subscale and 
total scores between the subgroups (Table 4). Our study only found 
significant differences between boys and girls in the behavior and 
passive tone subscales (p = 0.01 and 0, respectively).

Discussion

Our study aimed to examine the psychometric properties of the 
NBNA using the Rasch Model and machine learning methods. This 
study aimed to describe the psychometric properties of the NBNA at the 
item level and address some limitations regarding potential assessment 
bias. Our findings confirmed that the overall response pattern in high-
risk full-term infants with NICU stays can be well explained by the 
Rasch Model. In addition, the NBNA can explain over 51.3% of the 
measurement variance. An additional measurement component was 
identified for visual behavior. Our study proposes that sensory 
responses, especially visual interactions, can also reflect neurobehaviors 
in neonates. Our study also revealed some drawbacks regarding the 

TABLE 2  Fit statistics summary of the NBNA.

Fit statistics Total 
score

Count Measure Infit Outfit Real 
separation

Real 
reliability

MNSQ ZSTD MNSQ ZSTD

Person
Mean 30 20 1.56 1.02 0.01 1.06 0.1

1.67 0.74
S.D. 5.2 0 1.04 0.47 1.12 0.91 0.98

Item
Mean 815.6 543 0 1.01 −0.12 1.07 −0.09

12.14 0.99
S.D. 228.7 0 1.28 0.18 2.39 0.43 2.85

S.D., standard deviation.

TABLE 3  The results of DIF analysis based on AIC method in the GPCMlasso model for variables in the NBNA.

Item Content Delivery/Natural Gender/Girls Condition/Postnatal

3 Auditory_GeGe 0.165 −0.254 0

4 Vision_Speeking_Face −0.101 −0.266 0

7 Scarf_Sign −0.02 0.303 0

8 Forearm_Rebound 0 0.042 0

10 Popliteal_Angle 0 0.362 0

13 Strech_Reaction −0.048 0.011 0

14 Support_Reaction 0.03 0 0

16 Stepping 0.117 0 0

20 Mobility 0 0 0.04

Remark: Non-zero numbers under the group variable represent uniform DIF between subgroups.
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rating design. Differences in characteristics traits can generate potential 
evaluation bias which can lead to variant psychometric properties across 
different subsample diagnoses as high-risk infants.

Measurement properties of the NBNA 
items

The overall response pattern of high-risk infants shows that 
individuals with a more optimal neural developmental status can 
perform more neurobehaviors in the NBNA. Our study concurs with 
previous research that intraindividual variability can be observed in 
infants at a few days (de Weerth et al., 1999; Robertson, 1993). This is 
the reason why the measurement component may display a high 
probability of an unexpected response, and these variations are limited 
within an acceptable range.

In the NBNA, three items were not proportionally endorsed. Among 
them, we found that no infants remained unconscious, which means that 
most infants can remain in normal sleep–wake cycles (e.g., 2 points in 
item 18) or drowsiness (e.g., 1 point in item 18). This finding is in line 
with previous findings that the arousal state is important during 
neurological or neurobehavioral examinations (Brown and Spittle, 2014). 
The unreasonable category function may cause the following problems. 
First, unnecessary time is needed to judge which score is appropriate due 
to redundant scoring design (e.g., zero is unnecessary in item 18). 
Second, inaccurate information may be  given due to inappropriate 
scoring curve. For example, we found that the cutoff ability scale between 
zero and one point is 0.26 while it is −0.26 between one and two points. 
Third, unreasonable intervals may be  created. The interval between 
ascending point along the ability continuum may be  too narrow to 
distinguish participants with different neurological status.

Measurement unidimensionality

For dimensionality analysis, the NBNA explained 51.3% of the 
measurement variance. The analysis also revealed an additional meaning 
component within the NBNA: visual behavior. Neonates in the NICU 
experience both sensory overload and deprivation (Lott, 1989). In our 
study, two visual reaction items constitute one extra meaning dimension 
apart from neurobehavior. One study found that temperament profiles 
in neonates may affect sensory reactions in early infancy (DeSantis et al., 
2011). Another study found that arousal status also has a remarkable 
impact on environmental interaction regarding external stimuli (e.g., 
light, sound) (Roy et al., 2004). Our study supports the notion that 
sensory responses or engagement can be affected by various factors 

apart from neurological status (DeSantis et al., 2011; Roy et al., 2004). 
Hence, more studies are needed to discuss whether the visual 
components should be extracted from the original behavior section.

Differential items functioning

To date, our study is the first to focus on DIF detection in the 
NBNA. In addition, our study is the latest study using machine 
learning methods for DIF analysis. Two model selection methods were 
used in our study: AIC and BIC (Vrieze, 2012). BIC was selected as the 
criterion to produce more conservative parameters than AIC 
(Schauberger and Mair, 2020). The BIC assumes that as the sample size 
increases, the number of parameters in the true model is finite. This 
means that as the sample size grows sufficiently large, the true model 
will be selected. According to the BIC method, our study revealed that 
no items in the NBNA displayed different DIF in different groupings. 
This may imply that these populations may respond to NBNA items 
depending on their neural developmental level only. The identification 
of items with DIF using the AIC criteria emphasizes that specific 
considerations regarding individual characteristics if more 
participants were involved (e.g., gender and critical conditions in this 
study) are needed to interpret the NBNA score at the item level.

For gender DIF, all NBNA items displayed an outstanding ability to 
capture neural behaviors in children equally. However, previous findings 
have revealed that sex can be  a significant variable in predicting 
neuromotor behavior in infants (Gabis et al., 2021; Ramoğlu et al., 2016; 
Samsom et  al., 2002; Samsom et  al., 2002). Study found that neural 
structure differences can be noticed between boys and girls at term-
equivalent age (Liu et al., 2011; van Kooij et al., 2011). To investigate 
whether these structural differences were related to sex differences in 
neurobehavior, various findings offer researchers unique opportunities to 
observe neural behavior differences in neonates at a time when 
environmental impact was still minimal. In our study, we found that boys 
were superior to girls in passive muscle tone, and we identified four items 
that were advantageous to boys at the item level, while girls performed 
better in two items. In line with previous finding, there are more 
similarities than differences between boys and girls in the neonatal period 
in terms of neurobehavior (Samsom et al., 2002; Samsom et al., 2002).

In this study, we adopted the GPCMlasso model to examine the 
potential impact of multiple related demographic variables simultaneously. 
This method can address the statistical limitations mentioned in previous 
studies (Boatella-Costa et al., 2007; Lundqvist and Sabel, 2000). Previous 
studies have shown that neurobehavioral differences between sexes can 
be ambiguous when using classical testing theory (e.g., t-test in this study 
or cited studies). The GPCMlasso model using the AIC method can 

TABLE 4  The NBNA scores comparison in DIF analysis regarding gender.

Components Boys/N1 Girls/N Levene’s test t p2

341 202

Behavior 7.55 (1.96) 8 (2.02) 0.37 2.53 0.01

Passive tone3 6.74 (1.32) 6.34 (1.54) 0 −3.11 0.00

Active tone 5.2 (1.7) 5.08 (1.85) 0.27 −0.76 0.45

Primary reflex 5.06 (1.28) 5.02 (1.31) 0.79 −0.35 0.73

General status 5.55 (0.83) 5.46 (0.9) 0.09 −1.16 0.25

Total 30.11 (5.15) 29.91 (5.32) 0.28 −0.44 0.66

1N, sample size. 2p, p value. 3Unequal variances is assumed, and the Welch’t test and Mann–Whitney U test are conducted to produce both p values equal to 0.
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address these ambiguous relationships between sex and neurobehaviors 
if the samples used in our study are large enough and the parameters used 
in the formulation are sufficient. Hence, we conclude that gender DIF is 
not true in our current sample (e.g., neonates who are born with normal 
born weight and gestational age). And we are not sure whether this is also 
true in other samples such as neonates who are born with low born weight 
or shorter gestational age. More rigorous studies are needed.

In summary, the GPCMlasso model can explain the current data 
set used in our study and may not remain true for other data sets or 
may be altered if any one of the sample demographic characteristics 
are changed. Nevertheless, model selection is not hypothesis tests and 
does not draw determined conclusions as to whether candidate 
models are true or false. Instead, it only explores and ranks all the 
candidate models. For complex human conditions, especially 
neonates’ status, we cannot expect that statistical methods alone can 
perfectly simulate such complex situations. But, model selections can 
provide reasonable frameworks to included information, such as 
gender in this study, more flexibly (Li and Nyholt, 2001).

Implications for clinical practice

Our results provide preliminary evidence to support the conclusion 
that the NBNA contains a reasonable measurement structure aimed at 
capturing neurobehaviors in infants. Moreover, our findings revealed 
that high-risk infants responded to NBNA items mostly depending on 
their neural developmental status. But this may not be  true if the 
minority in our sample grows larger (e.g., neonates delivered by 
cesarean or born preterm). We also found that some shortcomings may 
jeopardize the psychometric properties of the NBNA. For example, 
when neonate failed in item 15 (“sucking reflex”), more consideration 
is needed to judge if suck reflex is mastered by neonates since they 
tended to slip or perform this item randomly. This reminds clinicians 
to interpret the scoring points in the NBNA with additional caution. 
In particular, clinicians need to make decisions using scores that 
approach the judgment threshold (e.g., 35 points in this study).

Study limitations

From a statistical perspective, our study failed to recruit an 
equivalent subsample size in each subgroup (e.g., preterm or term). In 
addition, the GPCMlasso model is only useful for detecting uniform 
DIF; hence, we cannot find other items with non-uniform DIF. This 
means that if an item displays inconsistent DIF in subsamples, 
we would be able to find it. For example, infants with lower birth 
weights (e.g., Extremely low birth weight) would fail to display more 
optimal behaviors in items, but infants with heavy birth weights (e.g., 
low birth weight) can display better behaviors. The DIF pattern cannot 
maintain stability along the entire ability continuum (e.g., 
developmental level in this study). It is more complicated to use a 
penalized likelihood function to determine items with non-uniform 
items, even though it may be theoretically feasible.

Conclusion

Our results support the applicability of the NBNA in depicting 
neurobehavior in high-risk infants with NICU stays. We found that 

high-risk infants could respond to NBNA items that were mostly 
dependent on the neural developmental level. Our study did not 
find any demographic bias according to the BIC method. In 
addition, our findings concur with previous assumptions that 
vision reaction is essential for depicting neurobehavior in high-
risk infants.
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