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Differential item functioning in
neonatal behavioral neurological
assessment in high-risk full-term
infants in NICU based on a
machine learning approach

Zhujiang Tan, Jinggang Wang, Jinwei Feng, Xuan Feng,
Yi Huang and Kanglong Peng*

Shenzhen Children’s Hospital, Shenzhen, Guangdong, China

Aim: This study adopted Rasch Analysis to evaluate the psychometric properties
of the neonatal behavioral neurological assessment (NBNA) in high-risk full-
term infants during their NICU stay.

Methods: A total of 543 full-term infants (14.26 + 7.02 days of age) were
included in the study. We used the Rasch Model (RM) to assess the reliability
and validity of the NBNA and GPCMlasso models to examine differential item
functioning (DIF).

Results: The samples responded to the NBNA according to the Rasch Model
pattern. We found that the NBNA measures neurobehavior with one extra
component regarding visual reactions. We found items that displayed disorder
category functions in the NBNA. Conservatively, we found that the participants’
responses to the NBNA items were mostly dependent on the neurological
developmental level, regardless of demographic traits.

Conclusion: Our results support the applicability of the NBNA in depicting
neurobehaviors in high-risk full-term infants in NICU. We found that high-risk
infants could respond to NBNA items that were mostly dependent on the neural
developmental level. The category functioning analysis revealed that the items
provided inaccurate information owing to the disordered rating design.
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Introduction

Infants in the neonatal intensive care unit (NICU) are more likely to display abnormal
developmental trajectories than their typically developing peers after discharge from the
NICU, and more complicated problems may emerge as they grow older (Sucharew et al., 2012;
Subedi et al., 2017). For example, infants who are discharged from the NICU may display
hypotonia at the beginning and suboptimal motor function later, and some may present
disorders in social communication when they enter kindergarten or even primary school (e.g.,
indifferent attitudes or insufficient social skills) (Sucharew et al., 2012). Longitudinal findings
reveal that the developmental trajectory of these infants may vary: some may deviate
downward from the average curve, and some may try to approach normal development, but
most cases commonly have the same suboptimal developmental status (van Beek et al., 2021;
Elbaum and Celimli-Aksoy, 2022). Studies have also revealed that infants discharged from the
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NICU are at a higher risk of poor academic achievement in regular
education, even if they must obtain additional medical or educational
resources to access the normal curriculum (Johnson et al., 2009;
Hutchinson et al., 2013). For now, more efforts are needed to
understand the neuromotor and associated psychological deficits
secondary to complicated issue in infants discharged from NICU, and
necessary monitoring is needed to prevent upcoming health threats
including neurological damage (e.g., cerebral palsy), developmental
delay, learning disorder, etc. (Bracewell and Marlow, 2002).

Previous studies have pointed out that timely early intervention
programs are needed for those who were discharged from the NICU
and presented unsatisfactory neurodevelopmental outcomes, and the
results showed that these populations can reach age-appropriate skills
in nearly all developmental aspects when they leave the programs
(Elbaum and Celimli-Aksoy, 2022; Litt et al., 2018). These
interventions can involve various developmental aspects and produce
promising impacts on future academic functions in the early
educational period, and require referral to these early intervention
programs prior to timely hospital discharge (Hutchinson et al., 2013).
To date, few factors have been found to determine whether infants
discharged from the NICU should be referred to an early intervention
program: birth weight, gestational age, NICU stay, medical
comorbidity, and developmental status (Atkins et al., 2020; Atkins
et al., 2017; Litt and Perrin, 2014). Despite increasing attention to
NICU discharge follow-up, studies have found that a large number of
eligible infants could miss the chance to receive necessary early
intervention until they display significant delays compared to their
typically developing peers (Atkins et al., 2017; Tang et al., 2012;
Greene and Patra, 2016). Neurobehavioral assessments are clinical
examinations designed for the preliminary period (e.g., the first few
weeks) of neonates, which can provide useful information about their
development. Several assessment tools have been used as predictors
for early intervention enrolment in the first years of life for infants
discharged from the NICU (Atkins et al., 2017; Rosinda et al., 2024;
Spittle et al., 2008). To our knowledge, no assessment tool can portray
the comprehensive contents of neurobehavioral profiles in infants
discharged from the NICU (Spittle et al., 2008). Neurobehavior is
broadly defined as the psychosocial and biological context of human
experience (Salisbury et al., 2005). Neurobehavior consists of three
dimensions: neurological items designed for active and passive tone,
primitive reflexes, central neural system integrity, behavioral items,
and stress/abstinence items (Salisbury et al., 2005; Malak et al., 2021;
Als et al., 1977). The neonatal behavioral neurological assessment
(NBNA) is established based on these dimensions to depict the
following neurobehavioral components: behavior, passive tone, active
tone, primary reflexes, and general status with excellent psychometric
qualities (Bao et al., 1991; Bao et al,, 1993; Zhang et al., 2021).

As timely identification of infants at risk for poorer prognosis is
critical for NICU discharge, necessary measures are needed to obtain
reliable information from infants in the NICU. The psychometric
assumptions achieved by Classical Test Theory (CTT) depend heavily
on the samples involved (Hambleton and Jones, 2005; Adedoyin et al.,
2008; Peeters and Augustine, 2023). This method may lead to different
psychometric results reported in different studies because the
measurement accuracy was assumed to be invariant across all samples,
regardless of personal characteristics (e.g., sex, gestational age, and
delivery method), and the total score was utilized to estimate the
measurement errors (Balasubramanian et al., 2024). Hence, to
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comprehensively explore the theoretical basis underlying the NBNA,
we adopted the Rasch Model to illustrate the item-level psychometric
properties in detail. Additionally, this study attempted to describe the
magnitude of the measurement bias elicited by related variables in a
clinical scenario. In addition, longitudinal follow-up was conducted
to record the prognosis of infants who were discharged from the
NICU in 2019. We aimed to build a prediction model for clinical
practitioners to identify items that may require additional
consideration for interpretation or for infants that may produce
unexpected NBNA performance.

Materials and methods
Participants

Participants were recruited from hospital referral programs. Term
infants with gestational age >38 weeks were admitted to the NICU
were referred for early comprehensive evaluation using this program
(Dolinskaya et al., 2023; Carlton et al., 2024). The referred infants
would undergo an interdisciplinary assessment to determine their
overall neurobehavioral status and join the follow-up program to
obtain the necessary intervention. The comprehensive assessment
routinely involved the administration of the NBNA and other
standardized tools if needed. To achieve a reasonable sample size, this
study categorized accompanying conditions according to International
Classification of Disease (ICD). Prior to administration, all necessary
consent was obtained from the legal guardians (s).

Measure

The Neonatal Behavioral Neurological Assessment (NBNA) can
serve as an observational rating tool to quantify neurobehaviors in
infants admitted to the NICU. The NBNA consists of five testing
components: behavior (six items), passive tone (four items), active
tone (four items), primary reflexes (three items), and general status
(three items). Each item is assigned a score from 0 to 2 where two
denotes appropriate behavior and zero denotes behavior severely
deviating from the normal criteria. The total score is the sum of all
items, with scores < 35 denoting abnormal neurobehavior. The NBNA
is performed by trained or licensed physicians or researchers.

Data analysis

Analysis workflow

Figure 1 shows the overall analysis workflow that displays how our
data is used and transfers in two different model fit procedures.
Detailed descriptions are presented below. Two models were selected
to simulate response data collected from infants at NICU. First, Rasch
Model was utilized to test the response pattern and verify the
psychometric quality of NBNA (e.g., reliability and validity) based on
the fit statistic. Then, GPCMlasso Model was utilized to test DIF using
demographic data (e.g., delivery way, gender). Detail description is
presented below. Data was analyzed using WINSTEPS (Version
5.2.3.0, Copyright(c) 2022, John M. Linacre, website: http://www.
winsteps.com) and R (RStudio, 2023.12.0 Build 369).
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FIGURE 1
Analysis workflow in this study.
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Rasch model

Rasch Model is widely known as an augment to Classical Testing
Theory. The Rasch Model constructs an interval scale by converting
the raw score to its natural logarithm. Instead of using the total score
as the latent trait of the testing person, the Rasch Model adopted the
item performance as the Sufficient Statistic to estimate the person’s
ability (e.g., neurobehavioral status in this study) and item difficulty
(e.g., the neural developmental milestone denoted by each item)
independently. The possibility of successful/unsuccessful performance
Xy, is related to the difference between neurobehavioral status S, and
developmental milestones &,, which allows us to estimate £, and J,
independently from the available data. We can then simulate how
these data fit the prediction model. The equations are as follows:

) __ee(fo=d)
P{xuz —1|ﬂu’5’} - [1+exp(ﬂu _51)}

The following psychometric properties were extracted from our
simulation process: rater-related reliability, content-related reliability,
internal consistency, and construct validity. The Rasch Model is widely
utilized to test the psychometric properties of commonly used
assessment tools including the Test of Infant Motor Development,
Motor Proficiency 2nd Edition, Peabody Developmental Motor Scale,
etc. (Wilson et al., 2011; Huang et al., 2018; Campbell et al., 2008;
Dallmeijer et al., 2011; Chien and Bond, 2009).

In this study, the NBNA utilized a polytomous option design (e.g.,
0, 1, 2); however, each item was rated based on its own criteria. For
example, the criteria for scoring two points on Items 1 and 2 are
different. Our study assumed that infants with a more optimal neural
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developmental status could display more behavioral patterns. Hence,
we chose the Partial Credit Model (PCM) to examine the psychometric
quality of the NBNA.

Item fitness

Item and person scores were transformed into natural logarithm
units. The Rasch Model was then established based on the infants’
responses to the items. Item fitness reflects the prior assumptions of
the Rasch Model. All Rasch measurements are built on the assumption
that all items and infants should display acceptable fitness to the
Rasch Model.

In this study, the infit mean square (MNSQ) and standardized Z
(Zstd) were adopted to neutralize the impact of these unexpected
performances by assigning corresponding weights to residuals. The
MNSQ describes how much the participants’ responses may deviate
from the model, and Zstd denotes how possible it is that the
participants may generate unexpected responses. A reasonable
deviation is defined by the infit mean square and Zstd, which fall
within 0.75-1.33 and -2 to 2, respectively (Stolt et al., 2021; Sung
etal, 2021; Ogawa et al., 2021).

Rater-rated and content-related reliability

Rater- and content-related reliability is defined as the
measurement precision of the number of milestones distributed along
the rating scale (e.g., analogical continuum). The person reliability
index is used to measure the replicability of a person’s location on a
continuum if another parallel set of items measuring the same
construct is used. The item reliability index indicates the replicability
of milestone locations along the continuum if these items are used by
another group of people with the same demographic characteristics.
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Reasonable person and item reliability are supported with indexes
beyond 0.8 (Stolt et al., 2021; Sung et al., 2021; Ogawa et al., 2021). A
reasonable differential efficacy was established with a separation index
greater than 2.0, indicating acceptable measurement precision.

Internal consistency

We used point measure correlation (PTMEASURE-CORR) to
evaluate the relationship between the observations (e.g., actual
performance) and measures (e.g., predicted performance).
PTMEASURE CORR indicates the extent to which the items measure
various aspects of the same latent trait. A negative correlation indicates
that this item does not contribute to the traits that the measure intends
to assess.

Construct validity

Category functioning

The NBNA used a 3-point rating scale (for example, 0, 1, 2). The
Rasch Model defines the rating scale using ordering thresholds to
separate different scores, and the threshold between different scores
(e.g., threshold between “0” point and “1” points) is defined as the
location on the ability continuum where there is a 50/50 possibility of
scoring either of two adjacent points. Therefore, the NBNA contains
two thresholds for each item, and these special ability landmarks are
supposed to be aligned from left to right on this continuum. This
means that individuals with a more optimal neural function status
should obtain higher scores for each item. Hence, the interval between
adjacent thresholds should cover a reasonable range (range from 1.4
to 5 is recommended) (Chang et al., 2014; Lu et al., 2013; Llamas-
Ramos et al., 2018). In this study, we focused on the interval between
the 0-1 threshold and 1-2 threshold. A well-designed category
structure should assign an acceptable number of participants to an
appropriate location on the ability continuum. Therefore, we expected
that each category would be endorsed by at least 10 participants.

Unidimensionality

The Rasch Model utilizes point residuals between the actual and
expected performance to conduct principal component analysis
(PCA). The unidimensional structure is validated if NABA can explain
over 40% of the residual variances, and the rest of the residual
variances can be explained by random factors (eigenvalue less than
2.0). Additionally, the variance explained by the 1st contrast should
be less than 15%, and the explained variance ratio of the measurement
to the 1st contrast should be greater than 3:1 (Stolt et al., 2021; Sung
etal,, 2021; McCreary et al., 2013).

Differential item functioning

To address measurement bias, we used uniform DIF to evaluate
the potential impact of related demographic variables. Various
statistical methods have been introduced for DIF detection, and the
Rasch Model is the most frequently used. However, a large sample was
used in this study, which more easily elicited type 1 error. In addition,
the Rasch Model can only focus on one variable and cannot eliminate
the impact of other confounding factors. For example, the Rasch
Model can only detect the DIF influence by gender on one trial, but
these results may be contaminated by delivery way or other factors.

To fill the gap mentioned above, we used a machine learning
method to establish a Rasch Model with a lasso penalty to identify the
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uniform DIF in the NBNA. The GPCMlIasso R package was used to
produce A which denotes the magnitude of the influence produced by
the covariances (e.g., delivery method, sex, critical conditions this
study). Thus, uniform DIF is confirmed if this lasso coeflicient is
unequal to zero. In this study, a DIF analysis was conducted to test the
influence of covariates, including delivery method, sex, and
critical conditions.
Therefore, the calculation method can be written as follows:

P (Ypi — T‘) Vil * Gender + Yia *
log P Ca— =pi| 0p +xIT, — 0y —| DeliveryWay + yi3 *
( pi=r— 1) CriticalConditions

In this equation, y;, (n=1,2,3,4) denotes the influence of
covariates on items 7 respectively. To modify the original DIF analysis
methods (e.g., Welch’s t-test), the GPCMlasso package can test
multiple covariates simultaneously and eliminate the potential
multicollinearity that may exist among these variables. In this study,
the Bayesian information criterion was adopted to screen for the
optimal parameter .

Sample consideration

To obtain 99% confidence that the item calibration (item difficulty
measure) is within +1/2 logit of its robust value and avoid type one
errors. A sample size of over 250 is recommended to generate robust
result in study using Rasch Model (Smith et al., 2008; Hagell and
Westergren, 2016; Svanborg et al., 2022).

Results
Demographic data

A total of 543 term infants with normal birth weights were
included in this study. Table 1 displays the overall demographic data
for this sample. We managed to recruit a sample aged approximately
14.26 days. The sex ratio was 341/202 (boys/girls). Over 137 infants
were delivered by cesarean section (25.2%), which is much higher
than the 15% recommended by the WHO. In our study, 443 neonates
were admitted to the NICU due to conditions that originated in the
perinatal period, while 100 neonates were admitted due to other
complicated postnatal issues.

Person and item mapping and fit statistics

The item-person map showed that (see Supplementary material 1
for details) item 3 (“Reflection to GEGE-like sound) was the most
difficult item (e.g., least observed behavior). This indicates that it is
difficult for infants to respond to GEGE-like sounds. Item 6
(“Reflection to comfort”) was the most common behavior that could
be easily observed in infants with different conditions. As the mean
item frequency was set at 0 logit, item-person map shows that items
in the NBNA are distributed symmetrically from 3 to —2 logit. This
means that the NBNA can distinguish 83.34% of the behavior profiles
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TABLE 1 Participant demographic data.

Variables Mean (SD)/
Count (%)

Sample 543

Delivery way

Natural delivery 406 (75.8%)

Cesarean 137 (25.2%)

Gender

Female 202 (37.2%)

Male 341 (62.8%)

Age (days)

Overall ‘ 14.26 (7.02)

Gestational age

Opverall (days) ‘ 274.35 (7.94)
Birth weight
Overall (g) ‘ 3,167.33 (321.09)

Critical conditions

ICD_00_Health conditions 3
ICD_01_Certain infectious or parasitic diseases 5
ICD_03_Diseases of the blood or blood-forming organs 1
ICD_05_Endocrine, nutritional or metabolic diseases 7
ICD_08_Diseases of the nervous system 22
ICD_11_Diseases of the circulatory system 8
ICD_12_Diseases of the respiratory system 5
ICD_13_Diseases of the digestive system 3
ICD_14_Diseases of the skin 1
ICD_15_Diseases of the musculoskeletal system or 2

connective tissue

ICD_19_Certain conditions originating in the perinatal 443
period

ICD_20_Developmental anomalies 15
ICD_21_Symptoms, signs or clinical findings, not 21

elsewhere classified

ICD_22_Injury, poisoning or certain other consequences 6

of external causes

ICD_25_Codes for special purposes 1

S.D., standard deviation.

in high-risk infants (e.g., 3 logit = 0.0474, —2 logit = 0.8808). The
response pattern in this sample confirmed the hypothesis built by the
Rasch Model (Table 2). This means that the following analysis results
were established based on solid prior assumptions. The person
reliability and separation index indicated that the NBNA is sufficiently
efficient to distinguish infants with different neural developmental
statuses. This means that the NBNA can capture all inter-person
variations in neurobehavior instead of other irrelevant symptoms. A
value of 0.74 means that 74% of the personal variants captured by the
NBNA originated from interindividual differences and 26% were due
to random errors. The item reliability and separation index revealed
that the recruited sample size was reasonable for validating the item
ranking on the scale continuum.
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Evaluation of item-fitness

In this study, we identified only nine items that violated the judge
criteria (see Supplementary material 2). This means that these items may
reflect some components that are not related to neural development, or
these behaviors tend to happen randomly instead of patterns (e.g., slipping
or accidentally presenting). Among them, we found only one item (item
15) that violated the MNSQ and Zstd criteria [for example, MNSQ (0.75-
1.33), Zstd (—2-2)]. That means sucking activity may show up randomly
instead of by appropriate stimulation (e.g., touching), and slipping here
means it is possible that sucking activities will not show up even that suck
reflex is already mastered by neonates. In general, outfit statistics denote
the unstandardized residual between the expected and real values, and
infit statistics represent the standardized residual that aims to eliminate
the effect of erratic or robust patterns in this sample. MNSQ indicates the
magnitude of the pattern deviation, while the Zstd indicates the possibility
of an unexpected value.

In this study, most items displayed acceptable deviations from the
model prediction, but the response pattern was too robust or erratic.
For example, item 1 (“reflection to light) process normal MNSQ (for
example 1.32) but unacceptable Zstd (for example 2.51), and this may
propose that visual reflection to light was related to neurological
status, but this behavior can also happen randomly due to other
factors (e.g., environmental factors like sound, temperature). For
example, item 15 (“sucking reflex) may be more suspected as random
behaviors rather than neurological traits, and this behavior may not
be a suitable behavior to calibrate the neurological status. In addition,
all the items displayed positive PTMEASURE-CORR values, which
means that all the items were related to the latent traits that the
NBNA intended to examine.

Category function

The category function analysis showed that four items (items 6,
18, 19, and 20) were not proportionally endorsed, especially item 18
(“Awake”). No response is endorsed in the “0” category for item 18.
Three items did not display ordered threshold measures (items 1, 7,
and 9), implying that the probability of individuals scoring specific
points on these items may not be related to neurological status. Hence,
we found that these items displayed abnormal threshold intervals.
Other results also show nine items with abnormal threshold intervals,
indicating that the original rating scale may be redundant. More
details can be seen in Supplementary material 3.

Assessment of unidimensionality

Principal component analysis revealed that the measurement
variances explained by the NBNA were 51.3%. One contrast was
found in the NBNA with an eigenvalue over 2 (for example, 2.38 in Ist
contrast). This means that the NBNA measures more than just
neurobehavior. The unexplained ratio of measured variances in the 1st
contrast was 5.8%, and the raw explained variance ratio of the measure
to the 1st contrast was 20.06/2.38 which was larger than 3/1.

To determine which of the NBNA items loaded into the residual
factors, we set 0.4 as the cutoff value to define a meaningful factor
loading (Martsolf et al., 2017; Maskey et al., 2018). Two items (e.g.,
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item 4 vision speaking face, and item 5 vision red ball) displayed
distinct dimensions of visual behavior.

Differential items functioning

In the GPCMlasso equation, each group variable is encoded by
the corresponding 4. To simplify the original equation, the GPCMlasso
Model can be written as follows:

) P(Ypi=r) _| o [ Bitvii*DeliveryWay +
og —) =| 6,

p(ypi =r—1 ¥ir * Gender + y;3 * Conditions

In this study, the GPCMIlasso Model set the following characteristics
in our sample as dummy codes: Delivery/nature delivery, Gender/girls,
and Conditions/postnatal conditions were equal to 0 in this formulation
(e.g., yi1 * Cesarean, y;, *boys, y;3 * perinatalConditions).

The Akaike Information Criterion (AIC) and Bayesian
Information Criterion are widely used in model selection, and the AIC
or BIC is defined as

AICOR BIC (A)==2L(-)+df (4)logn

where L() denotes the likelihood for the parameters estimated
with tunning parameter 4, df (/1) denotes the total number of
parameters estimated unequal to zero and n is the number of
observations (Jafari et al., 2022). For a regular sequence of A values,
which was created by the GPCMlasso R package, the AIC or BIC
was computed and sorted from largest to smallest values. The

TABLE 2 Fit statistics summary of the NBNA.

10.3389/fnins.2025.1681152

optimal A is defined as which can lead to the smallest AIC or
BIC value.

Table 3 represents the results of DIF detection using the
GPCMlasso model in terms of the BIC and AIC criteria. Item DIF was
examined between groups with different demographic traits. No Item
DIF was found according to the BIC. Nine items displayed DIF for
delivery way, gender, and critical conditions according to the AIC. For
example, Table 3 shows that the Laplace coefficient A for gender in
item 7 (“Scarf sign”) is 0.3. For the same O for children, the item
difficulty for boys equals to £5;, and f; +0.3 for girls. This means that
boys are more likely to maintain normal muscle tone than girls (e.g.,
the elbow cannot reach over the midline).

An independent t-test was conducted to compare the subscale and
total scores between the subgroups (Table 4). Our study only found
significant differences between boys and girls in the behavior and
passive tone subscales (p = 0.01 and 0, respectively).

Discussion

Our study aimed to examine the psychometric properties of the
NBNA using the Rasch Model and machine learning methods. This
study aimed to describe the psychometric properties of the NBNA at the
item level and address some limitations regarding potential assessment
bias. Our findings confirmed that the overall response pattern in high-
risk full-term infants with NICU stays can be well explained by the
Rasch Model. In addition, the NBNA can explain over 51.3% of the
measurement variance. An additional measurement component was
identified for visual behavior. Our study proposes that sensory
responses, especially visual interactions, can also reflect neurobehaviors
in neonates. Our study also revealed some drawbacks regarding the

Fit statistics Total Count Measure Infit Outfit Real Real
score separation reliabilit
MNSQ ZSTD MNSQ ZSTD y
Mean 30 20 1.56 1.02 0.01 1.06 0.1 ‘
Person 1.67 0.74
S.D. 52 0 1.04 0.47 112 0.91 0.98 ‘
Mean 815.6 543 0 1.01 —0.12 1.07 —0.09 ‘
Item 12.14 0.99
S.D. 228.7 0 1.28 0.18 2.39 0.43 2.85 ‘

S.D., standard deviation.

TABLE 3 The results of DIF analysis based on AIC method in the GPCMlasso model for variables in the NBNA.

ltem Content Delivery/Natural Gender/Girls Condition/Postnatal
3 Auditory_GeGe 0.165 —0.254 0

4 Vision_Speeking_Face —0.101 —0.266 0

7 Scarf_Sign —0.02 0.303 0

8 Forearm_Rebound 0 0.042 0

10 Popliteal_Angle 0 0.362 0

13 Strech_Reaction —0.048 0.011 0

14 Support_Reaction 0.03 0 0

16 Stepping 0.117 0 0

20 Mobility 0 0 0.04

Remark: Non-zero numbers under the group variable represent uniform DIF between subgroups.
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TABLE 4 The NBNA scores comparison in DIF analysis regarding gender.

10.3389/fnins.2025.1681152

Components Girls/N Levene's test
202

Behavior 7.55 (1.96) 8 (2.02) 0.37 253 0.01
Passive tone’ 6.74 (1.32) 6.34 (1.54) 0 —3.11 0.00
Active tone 5.2(1.7) 5.08 (1.85) 0.27 -0.76 0.45
Primary reflex 5.06 (1.28) 5.02 (1.31) 0.79 —0.35 0.73
General status 5.55(0.83) 5.46 (0.9) 0.09 —1.16 0.25
Total 30.11 (5.15) 29.91 (5.32) 0.28 —0.44 0.66

'N, sample size. *p, p value. *Unequal variances is assumed, and the Welch't test and Mann-Whitney U test are conducted to produce both p values equal to 0.

rating design. Differences in characteristics traits can generate potential
evaluation bias which can lead to variant psychometric properties across
different subsample diagnoses as high-risk infants.

Measurement properties of the NBNA
items

The overall response pattern of high-risk infants shows that
individuals with a more optimal neural developmental status can
perform more neurobehaviors in the NBNA. Our study concurs with
previous research that intraindividual variability can be observed in
infants at a few days (de Weerth et al., 1999; Robertson, 1993). This is
the reason why the measurement component may display a high
probability of an unexpected response, and these variations are limited
within an acceptable range.

In the NBNA, three items were not proportionally endorsed. Among
them, we found that no infants remained unconscious, which means that
most infants can remain in normal sleep-wake cycles (e.g., 2 points in
item 18) or drowsiness (e.g., 1 point in item 18). This finding is in line
with previous findings that the arousal state is important during
neurological or neurobehavioral examinations (Brown and Spittle, 2014).
The unreasonable category function may cause the following problems.
First, unnecessary time is needed to judge which score is appropriate due
to redundant scoring design (e.g., zero is unnecessary in item 18).
Second, inaccurate information may be given due to inappropriate
scoring curve. For example, we found that the cutoff ability scale between
zero and one point is 0.26 while it is —0.26 between one and two points.
Third, unreasonable intervals may be created. The interval between
ascending point along the ability continuum may be too narrow to
distinguish participants with different neurological status.

Measurement unidimensionality

For dimensionality analysis, the NBNA explained 51.3% of the
measurement variance. The analysis also revealed an additional meaning
component within the NBNA: visual behavior. Neonates in the NICU
experience both sensory overload and deprivation (Lott, 1989). In our
study, two visual reaction items constitute one extra meaning dimension
apart from neurobehavior. One study found that temperament profiles
in neonates may affect sensory reactions in early infancy (DeSantis et al.,
2011). Another study found that arousal status also has a remarkable
impact on environmental interaction regarding external stimuli (e.g.,
light, sound) (Roy et al.,, 2004). Our study supports the notion that
sensory responses or engagement can be affected by various factors
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apart from neurological status (DeSantis et al., 2011; Roy et al., 2004).
Hence, more studies are needed to discuss whether the visual
components should be extracted from the original behavior section.

Differential items functioning

To date, our study is the first to focus on DIF detection in the
NBNA. In addition, our study is the latest study using machine
learning methods for DIF analysis. Two model selection methods were
used in our study: AIC and BIC (Vrieze, 2012). BIC was selected as the
criterion to produce more conservative parameters than AIC
(Schauberger and Mair, 2020). The BIC assumes that as the sample size
increases, the number of parameters in the true model is finite. This
means that as the sample size grows sufficiently large, the true model
will be selected. According to the BIC method, our study revealed that
no items in the NBNA displayed different DIF in different groupings.
This may imply that these populations may respond to NBNA items
depending on their neural developmental level only. The identification
of items with DIF using the AIC criteria emphasizes that specific
considerations regarding individual characteristics if more
participants were involved (e.g., gender and critical conditions in this
study) are needed to interpret the NBNA score at the item level.

For gender DIE all NBNA items displayed an outstanding ability to
capture neural behaviors in children equally. However, previous findings
have revealed that sex can be a significant variable in predicting
neuromotor behavior in infants (Gabis et al., 2021; Ramoglu et al.,, 2016;
Samsom et al., 2002; Samsom et al., 2002). Study found that neural
structure differences can be noticed between boys and girls at term-
equivalent age (Liu et al., 2011; van Kooij et al,, 2011). To investigate
whether these structural differences were related to sex differences in
neurobehavior, various findings offer researchers unique opportunities to
observe neural behavior differences in neonates at a time when
environmental impact was still minimal. In our study, we found that boys
were superior to girls in passive muscle tone, and we identified four items
that were advantageous to boys at the item level, while girls performed
better in two items. In line with previous finding, there are more
similarities than differences between boys and girls in the neonatal period
in terms of neurobehavior (Samsom et al., 2002; Samsom et al., 2002).

In this study, we adopted the GPCMlasso model to examine the
potential impact of multiple related demographic variables simultaneously.
This method can address the statistical limitations mentioned in previous
studies (Boatella-Costa et al., 2007; Lundqvist and Sabel, 2000). Previous
studies have shown that neurobehavioral differences between sexes can
be ambiguous when using classical testing theory (e.g., t-test in this study
or cited studies). The GPCMlasso model using the AIC method can
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address these ambiguous relationships between sex and neurobehaviors
if the samples used in our study are large enough and the parameters used
in the formulation are sufficient. Hence, we conclude that gender DIF is
not true in our current sample (e.g., neonates who are born with normal
born weight and gestational age). And we are not sure whether this is also
true in other samples such as neonates who are born with low born weight
or shorter gestational age. More rigorous studies are needed.

In summary, the GPCMlasso model can explain the current data
set used in our study and may not remain true for other data sets or
may be altered if any one of the sample demographic characteristics
are changed. Nevertheless, model selection is not hypothesis tests and
does not draw determined conclusions as to whether candidate
models are true or false. Instead, it only explores and ranks all the
candidate models. For complex human conditions, especially
neonates’ status, we cannot expect that statistical methods alone can
perfectly simulate such complex situations. But, model selections can
provide reasonable frameworks to included information, such as
gender in this study, more flexibly (Li and Nyholt, 2001).

Implications for clinical practice

Our results provide preliminary evidence to support the conclusion
that the NBNA contains a reasonable measurement structure aimed at
capturing neurobehaviors in infants. Moreover, our findings revealed
that high-risk infants responded to NBNA items mostly depending on
their neural developmental status. But this may not be true if the
minority in our sample grows larger (e.g., neonates delivered by
cesarean or born preterm). We also found that some shortcomings may
jeopardize the psychometric properties of the NBNA. For example,
when neonate failed in item 15 (“sucking reflex”), more consideration
is needed to judge if suck reflex is mastered by neonates since they
tended to slip or perform this item randomly. This reminds clinicians
to interpret the scoring points in the NBNA with additional caution.
In particular, clinicians need to make decisions using scores that
approach the judgment threshold (e.g., 35 points in this study).

Study limitations

From a statistical perspective, our study failed to recruit an
equivalent subsample size in each subgroup (e.g., preterm or term). In
addition, the GPCMlasso model is only useful for detecting uniform
DIF; hence, we cannot find other items with non-uniform DIE This
means that if an item displays inconsistent DIF in subsamples,
we would be able to find it. For example, infants with lower birth
weights (e.g., Extremely low birth weight) would fail to display more
optimal behaviors in items, but infants with heavy birth weights (e.g.,
low birth weight) can display better behaviors. The DIF pattern cannot
maintain stability along the entire ability continuum (e.g.,
developmental level in this study). It is more complicated to use a
penalized likelihood function to determine items with non-uniform
items, even though it may be theoretically feasible.

Conclusion

Our results support the applicability of the NBNA in depicting
neurobehavior in high-risk infants with NICU stays. We found that
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high-risk infants could respond to NBNA items that were mostly
dependent on the neural developmental level. Our study did not
find any demographic bias according to the BIC method. In
addition, our findings concur with previous assumptions that
vision reaction is essential for depicting neurobehavior in high-
risk infants.
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