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challenges, and clinical
applications
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Deep learning has emerged as a transformative tool for the automated detection
and classification of seizure events from intracranial EEG (iEEG) recordings. In
this review, we synthesize recent advancements in deep learning techniques
including convolutional neural networks (CNN), recurrent neural networks (RNN)
with long short term memory (LSTM) units, and transformer based architectures
that enable accurate localization of epileptogenic zones (EZ) in drug resistant
epilepsy. These approaches effectively extract spatial and temporal features
from raw iEEG signals to detect epileptiform discharges (ED) including seizures
alongside other electro-physiological biomarkers such as high-frequency
oscillations (HFO). Importantly, beyond relying solely on these traditional
markers, several studies have indicated direct seizure detection by modeling ictal
and preictal dynamics. Such methods capture alternative biomarkers including
spectral changes, connectivity patterns, and complex temporal signatures that
directly reflect seizure activity. Although deep learning models often achieve
high accuracy, they continue to face several challenges due to data scarcity,
heterogeneity in iEEG acquisition, inconsistent preprocessing protocols, and
limited model interpretability. We also highlight emerging integrative strategies
that combine multimodal neuroimaging data with deep learning analyses as
well as neuromorphic computing techniques designed for real-time clinical
application. Addressing these limitations has significant potential for surgical
planning, reducing diagnostic subjectivity, and ultimately enhancing patient
outcomes in epilepsy care.

KEYWORDS

clinical neurophysiology, high frequency oscillations (HFO), intracranial EEG (iEEG),
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1 Introduction

Epilepsy is a major neurological disorder affecting approximately 65 million
people worldwide, imposing a substantial global health burden (Dash et al., 2022;
Milligan, 2021). Characterized by recurrent, unprovoked seizures, this chronic
condition disrupts daily functioning and adversely impacts cognitive performance,
psychosocial integration, and overall quality of life. Although anti-seizure medications
(ASM) serve as the basis of treatment, about one-third of patients show drug
resistant epilepsy (DRE) experiencing persistent seizures despite appropriate
pharmacological intervention (Worrell and Gotman, 2011; Enatsu and Mikuni, 2016).
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Such people face limited therapeutic alternatives which leads
to rising morbidity and highlights the necessity for alternative
techniques. In cases of drug resistant epilepsy, surgical intervention
can be curative, although its effectiveness depends on accurately
identifying and completely resecting the epileptogenic zone (EZ),
defined as the smallest cortical region whose removal yields
seizure freedom (Frauscher, 2020; Jobst et al., 2020). Achieving
this precision means finding a balance between increasing seizure
control and avoiding disturbance of healthy functionally necessary
brain tissue.

Traditionally, EZ localization has depended predominantly
on expert visual inspection of intracranial electroencephalography
(iEEG) recordings (Flanary et al., 2022; Sperling, 1997). Although
this procedure is an established clinical standard, it requires
considerable effort and expertise due to the size and complexity
of the data. Moreover, the process can be highly subjective.
Multiple studies have identified significant inter-expert variability
in labeling iEEG patterns potentially leading to inconsistent
outcomes in surgical planning and patient care (Flanary et al,
2022; Weiss et al., 2019). Such variability highlights the need
for computational tools particularly deep learning (DL) methods
that can reduce subjectivity, enhance reproducibility, and improve
clinical decision making.

While automated seizure detection excels at identifying ictal
events in long-term iEEG recordings reducing review time
for clinicians, its primary clinical value lies in supporting the
localization of the epileptogenic zone (EZ) and seizure onset zone
(SOZ). The primary goal of epilepsy surgery is to identify the
smallest cortical area whose removal eliminates seizures, while
balancing effectiveness with the preservation of critical tissue
(Nissen et al., 2021). Deep learning addresses this by extracting
spatiotemporal patterns that associate detected events with EZ
boundaries. Nevertheless, detection alone does not determine
surgical margins.

In response, researchers have increasingly developed
automated and semi-automated approaches to facilitate EZ
localization (Bernabei et al., 2023a; Ahmedt-Aristizabal et al.,
2017). Advances in computational neuroscience have accelerated
this shift, showing the potential of deep learning in processing
complex iEEG signals. Specifically, deep learning enables
automated feature extraction from raw input data, thus showing
the complex spatiotemporal dynamics of neural activity (Mirchi
et al, 2022). Transformer based architectures in particular
have started to gain attention for seizure detection and iEEG
classification (Potter et al., 2022; Wang et al., 2021; Zhang X. et al.,
2024; Sun et al., 2022; Yang et al., 2024) extending the capabilities
of more traditional CNN and RNN based methods (Antoniades
et al,, 2017, 2016; Liu et al., 2019; Zuo et al., 2019; Ren et al., 2021;
Lai et al.,, 2019).

Among the most notable applications of deep learning
in this domain is the automated detection and classification
of seizure events. Such events are believed to represent key
pathophysiological processes leading to irregular neural activity
and the formation and spreading of epileptic seizures. Their
correlation with the epileptogenic zone has caused an increased
focus on deploying deep learning techniques not only for accurate
seizure identification but also for differentiating pathological
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signals from normal background patterns (Lai et al., 2019; Liu
et al,, 2016). Seizure signals show significant heterogeneity causing
substantial difficulties for conventional signal processing methods.
Modern deep learning architectures including transformer based
networks provide an effective solution to these challenges by
directly modeling complex temporal dependencies (Wang et al.,
2021; Potter et al.,, 2022; Zhang X. et al., 2024). Although traditional
methods using Long Short Term Memory (LSTM) networks or
CNN have exceeded 90% accuracy in identifying epileptiform
activity (Medvedev et al., 2019), emerging alternatives ranging
from neuromorphic systems to hyperdimensional computing
are also showing potential for real-time, low-power detection,
potentially suitable for implantable surgical devices (Schindler
and Rahimi, 2021; Burrello et al., 2018, 2019). Deep Learning
not only detects events but simulates epileptogenicity indices
(EI) by scoring channel contributions to EZ propagation, guiding
resection margins and predicting postoperative seizure reduction
(Yamamoto et al., 2021; Zhang et al., 2021).

highlight the
of standardizing automated seizure detection methods and

Nevertheless, recent studies importance
performing strict clinical validation (Bernabei et al., 2023a;
Abibullaev et al., 2010; Ahmedt-Aristizabal et al., 2017; Sindhu
et al., 2020; Dimakopoulos et al., 2022). These initiatives highlight
the challenges in selecting and validating appropriate algorithms
for clinical use while also providing guidelines for safely integrating
advanced computational methods into epilepsy surgery workflows.
This review offers a structured examination of methodologies
for seizure detection and classification including transformer
based models, RNN, CNN, and emerging alternative architectures.
We discuss the limitations of conventional iEEG analysis and
automated approaches, propose potential solutions, and outline
future research directions to strengthen clinical implementation
and improve surgical planning outcomes. Figure 1 shows the whole
workflow from iEEG acquisition to surgical decision making. The
subsequent sections explore the significance of seizure detection
(Section 3), review current deep learning strategies (Section 4),
current challenges and ethical considerations (Section 5), and
conclude by outlining prospective developments (Section 6).

2 Literature search methodology and
strategy

A systematic literature review was undertaken to identify
and analyze studies applying deep learning (DL) methods to
seizure detection within the context of epilepsy surgery. The
review specifically targeted peer-reviewed journal articles and
conference proceedings that utlized intracranial EEG (iEEG) data
to develop, evaluate, or clinically integrate DL based techniques.
Comprehensive searches were conducted across multiple academic
databases, including PubMed, IEEE Xplore, Scopus, and Web of
Science using various keyword combinations coupled with Boolean
operators focusing on literature published in the last five years.
Principal search queries included:

e “Deep Learning” AND “Epilepsy Surgery”
e “Intracranial EEG (iEEG)” AND “Deep Learning”
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FIGURE 1

An overview of the workflow for detecting epileptogenic zones using deep learning. (1) Data Acquisition: Brain signals are recorded through
electrodes. (2) Preprocessing: Noise is removed and signals are downsampled to retain clinically relevant information. (3) Deep Learning Model: A
neural network architecture is applied to detect epileptogenic zones (EZ/SOZ). (4) Clinical Integration: The model results inform treatment planning
enabling clinicians to utilize the identified zones to direct therapeutic actions.
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Results Used for
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e “Epileptiform” AND “Seizure” AND “iEEG” AND “Deep
Learning”

e “High Frequency Oscillation (HFO)” AND “Epilepsy” AND
“iEEG” AND “Deep Learning”

Additional
“LSTM”,
were also used to refine the scope. Articles referenced within

“CNN”,
and “Neuromorphic

“RNN”,
Computing”

targeted terms such as

“Transformer”,
the bibliographies of selected studies

were subsequently

examined to ensure a comprehensive collection of
relevant literature.

The screening and selection process followed explicit
inclusion and exclusion criteria (Figure 2) and involved multiple
stages. Initially, titles and abstracts were inspected to exclude
clearly unrelated works. Next, the full texts of potentially
relevant papers were examined to confirm their alignment
with the review objectives. Finally, only those that met all
inclusion criteria were retained for detailed comparative

analysis. From each selected study, key methodological

and outcome details were extracted including the size and
characteristics of the dataset, the type of deep learning
(CNN, RNN/LSTM,
based models), and performance metrics such as accuracy,

architecture  utilized Transformer
sensitivity, specificity, or area under the curve (AUC). This
structured approach enabled a thorough synthesis of recent
advancements, ongoing methodological challenges, and future
research prospects in deep learning based seizure analysis for

epilepsy surgery.
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3 Electrophysiological biomarkers in
epilepsy

High frequency oscillations (HFO) which are considered a
distinct type of epileptiform discharge (ED) along with other ED
patterns are important electrophysiological biomarkers in current
epilepsy research and clinical practice (Krikid et al., 2023; Smith
etal., 2022).

HFO, typically defined as transient events in the 80-500 Hz
range, are thought to result from synchronized neuronal firing
within the epileptogenic zone (EZ) (Worrell and Gotman, 2011;
Kobayashi et al, 2017). These oscillations can appear during
interictal and ictal periods and are usually classified into ripples
(80-250 Hz) and fast ripples (250-500 Hz) (Jacobs et al., 2012; Lee
etal., 2019; Ye et al,, 2023). More evidence suggests that HFO rich
regions overlap significantly with the EZ making these oscillations
valuable indicators for localizing seizure onset zones in surgical
candidates (Zhang et al., 2021; Qing et al., 2024).

An ongoing challenge in applying HFO to clinical practice
involves  distinguishing pathological HFO (pHFO) from
physiological HFO (pHO) (Cimbalnik et al, 2018). Both
share similar frequency ranges although originate from different
underlying processes (Weiss et al., 2019; Zhang et al., 2022).
Table 1 summarizes the commonly used morphological (e.g.,
amplitude, duration) and spectral (e.g., power distribution, phase
amplitude coupling) features utilized to differentiate pHFO from
pHO (Weiss et al.,, 2019; Sindhu et al., 2024; Lai et al., 2020). This
differentiation is essential for ensuring that surgical resections
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Records identified from databases
(n = 1,352)
e PubMed (n = 422)
e IEEE Xplore (n = 368)
e Scopus (n = 523)
e Other (n = 39)

Records removed
(n = 427)
Duplicates (n = 427)

l

Records screened (title/abstract)

Excluded Records excluded

(n = 925)

Reports sought for retrieval (full-text)

(n = 567)

Excluded Records excluded

(n = 358)

Reports assessed for eligibility
(n = 325)

Studies included in the synthesis
(n = 146)

FIGURE 2

PRISMA flow diagram illustrating the study selection process for the systematic review.

(n =33)

Reports excluded with reasons
(n =179)
e Not deep learning (traditional
ML / signal processing)

Exeluded

(n =93)
e Scalp EEG only / not iEEG
(n =58)

e Not peer-reviewed (preprint /
grey literature)

(n=21)
o Not in English
(n="7)

TABLE 1 Morphological and spectral distinctions between pathological and physiological HFO.

Features Pathological HFO (pHFO)

Qualitative Characteristics

Physiological HFO (pHFO) References

Frequency range Fast ripples: 250-500 Hz

Ripples: 80-250 Hz
Jacobs et al., 2012; Lee et al., 2019

Temporal association High temporal coupling with

epileptiform spikes

Little or no spike association
Charupanit et al., 2020

Amplitude High amplitude and strong contrast to

background

Lower amplitude relative to background
Qing et al., 2024

Spectral characteristics Broader spectral profile with complex

phase amplitude coupling

Narrower spectral content with typical

PAC patterns Lai et al., 2020

Localization Predominantly localized to the Distributed across normal functional
epileptogenic zone (EZ) regions Zhang et al., 2021; Qing et al., 2024
Quantitative Measures [values from Matsumoto et al. (2013)]
Spectral amplitude (z-score) 9.07 + 3.49 4.10 £+ 0.65
Mean frequency (Hz) 188.4 +104.7 264.2 +162.1
Duration (ms) 23.1+19.5 12.1 £8.3

target only epileptogenic tissue thereby minimizing the risk of
normal cognitive functions.

To complement the quantitative summary in Table 1 and
Figure 3 provides a visual overview of how high-frequency
oscillations (HFO) are characterized in epilepsy research. It
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highlights typical ripple and fast ripple waveforms, contrasts
pathological and physiological HFO morphologies, and shows their
expression in time—-frequency space and through phase—amplitude
coupling (PAC). The lower panels summarize key quantitative
metrics reported in the literature, including spectral amplitude,
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Visual summary of HFO in epilepsy. (a, b) Time-domain examples of ripples (80-250 Hz) and fast ripples (250-500 Hz). (c, d) Pathological HFO
(pPHFO) show spike association and higher amplitude, while physiological HFO (pHO) appear in normal networks. (e) Time-frequency map with
transient HFO bursts; (f) phase-amplitude coupling (PAC). (g—i) Quantitative feature comparisons (spectral amplitude, mean frequency, duration).

mean frequency, and event duration, which help distinguish
pathological from physiological activity.

The EZ includes the seizure onset zone (SOZ; early ictal
involvement), regions prominent in high-frequency oscillations
(HFO; indicative of hypersynchronous firing), and irritative
zones (interictal spike generators that may extend beyond the
SOZ) (Cai et al, 2021). Deep learning identifies epileptogenic
zones (EZ) by integrating them through multi-task models: for
instance, convolutional neural networks (CNN) extract spatial
high-frequency oscillation (HFO) patterns, while transformers
assess the temporal propagation of the seizure onset zone (SOZ)
in relation to irritative activity, producing channel-specific scores

Frontiersin Neuroscience 05

(e.g., through attention maps) that identify resectable tissue.
This reduces qualitative variability in visual inspection; however,
validation against postoperative outcomes is important for clinical
confidence (Broti et al., 2025).

Epileptiform discharges (ED) including spikes, sharp waves,
and spike-and-wave complexes are likewise fundamental to
understanding epilepsy pathophysiology and guiding treatment
strategies (Zhao et al., 2018; Jaoude et al., 2019; Kural et al., 2020).
ED generally present as temporary high amplitude waveforms
(approximately 20-70 ms in duration) sometimes followed by slow-
wave components (Falach et al., 2024). These events are examined
in terms of morphological, temporal, and spectral properties to

frontiersin.org


https://doi.org/10.3389/fnins.2025.1677898
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Qamar et al.

TABLE 2 Morphological and quantitative distinctions between pathological and benign epileptiform discharges.

Features

Pathological ED

Qualitative Characteristics

Benign variants

10.3389/fnins.2025.1677898

References

Waveform Sharp high amplitude spikes or sharp waves with a Less defined lower amplitude transients that often Tjepkema-Cloostermans et al.,

morphology steep onset and a pronounced after slow lack a distinct after slow 2024; Janmohamed et al., 2022
component

Temporal Often occur in clusters or display periodicity Typically isolated events without consistent Tong et al., 2024; Tveit et al., 2023

association aligning with epileptogenic activity clustering

Amplitude contrast

Significant difference toward the background
(peak amplitudes well above baseline)

Lower amplitude relative to the background
within normal variation

Tjepkema-Cloostermans et al.,
2024; Tong et al., 2024

Localization Predominantly focal (mapping to the More diffusely distributed with no clear focal Janmohamed et al., 2022
epileptogenic zone) or generalized in specific origin
syndromes
After-slow Clear after-slow deflection following the spike Typically absent or minimal with a smoother Janmohamed et al., 2022
component indicating post-ictal suppression return to baseline

Quantitative Measures

Spike duration (ms)

Spikes: 20-70, Sharp Waves: 70-200

Generally shorter or more variable (often less
distinct <50)

Da Silva Lourengo et al., 2021;
Tong et al., 2024

ED rate

Often increased (commonly 2-4 discharges per
minute or higher)

Rare or sporadic in normal recordings (typically

<0.5/min)

Tong et al., 2024; Tveit et al., 2023

determine their clinical significance. Table 2 outlines qualitative
and quantitative measures that assist in differentiating pathological
ED from benign variants (Zhao et al., 2018; Yamamoto et al., 2021).
Although manual iEEG analysis remains a clinical benchmark,
emerging automated tools utilizing deep learning show potential
in reducing manual work and lead to more consistent evaluations
(Kolodziej et al., 2023; Zhao et al., 2022b).

Overall, reliable detection and differentiation of HFO and
ED are essential for refining epilepsy diagnostics and surgical
interventions. Advances in computational neuroscience and
large scale data analytics continue to drive improvements
in the accuracy, consistency, and clinical relevance of these
electrophysiological biomarkers.

4 Deep learning for detection of HFO,
epileptiform discharge, and seizure
dynamics

Traditional machine learning and signal processing techniques
detection,
particularly in identifying high-frequency oscillations (HFO)
and epileptiform discharges (ED) (Abibullaev et al., 2009; Weiss
et al., 2019; Sharifshazileh et al., 2021; Burelo et al., 2022; Burrello
et al., 2019; Schindler and Rahimi, 2021; Krikid et al., 2021;
Lachner-Piza et al., 2019; Guo et al., 2021; Sciaraffa et al., 2020;
Sindhu et al., 2020; Dimakopoulos et al., 2022; Wong et al., 2020;
Donos et al., 2020; Sindhu et al., 2024; Li et al., 2021b). However,
these approaches face persistent challenges. They typically depend
on manual feature extraction and extensive parameter tuning

have significantly advanced automated seizure

which limit robustness and generalizability across heterogeneous
iEEG datasets. In addition, balancing sensitivity and specificity
often requires complex post-processing or careful recalibration for
different seizure biomarkers.

Frontiersin Neuroscience

Recent advances in deep learning (DL) represent a paradigm
shift by enabling end-to-end feature learning directly from raw
iEEG signals (Hoogteijling and Zijlmans, 2021). Unlike traditional
methods that rely on manual features, DL architectures learn
rich, nonlinear representations that can capture complex seizure
related patterns including HFO, ED, and subtler biomarkers (Wang
et al., 2021). Various architectures have been explored, including
convolutional neural networks (CNN), recurrent neural networks
(RNN), and more recently transformer based models which can
effectively model the spatio-temporal dynamics of epileptic events
(Geng et al., 2021; Singh and Malhotra, 2022; Wang et al., 2024b;
Ma et al., 2018; Zuo et al., 2019; Ma et al., 2019; Sadek et al., 2023;
Liu etal, 2019; Zhao B. et al., 2020; Ren et al., 2021; Zanghieri et al.,
2021; Wang et al,, 2020; Abderrahim et al.,, 2023). Transformers
are particularly promising due to their self-attention mechanisms
which model long-range dependencies and contextual relationships
while supporting parallel processing (Guo et al., 2022; Vaswani
etal,, 2017). To improve clinical applicability, several studies have
proposed lightweight CNN and transformer networks optimized
for patient-independent real-time seizure detection (Si et al., 2023;
Yang et al,, 2024; Sun et al,, 2022; Potter et al., 2022). Hybrid
frameworks that combine CNN with RNN or transformers aim to
utilize each model strengths, CNN for spatial representation and
RNN or transformers for temporal dependencies resulting in more
robust and adaptable detection systems (Ouichka et al., 2022; Sun
L. etal., 2024).

Recent DL approaches have also focused on localizing the
epileptogenic zone (EZ) through probabilistic mapping. Hybrid
CNN-LSTM models, for instance, assign EZ likelihood scores
to individual channels by linking HFO/ED density with seizure
onset zone (SOZ) propagation, often analyzed via Granger
causality (Wang et al, 2024b). Attention mechanisms further
refine these models by reducing the influence of non-propagating
spikes, generating saliency heatmaps to guide surgical inspection
(Gunnarsdottir et al, 2022; Nejedly et al., 2025). Transformer
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based models extend the classic epileptogenicity index (EI) by
learning dynamic, channel-wise margins: multi-head attention
layers capture HFO-SOZ correlations, while adaptive thresholds
minimize irritative zone spillover (Yamamoto et al., 2021). Such
techniques enable predictive modeling of surgical outcomes in
drug-resistant epilepsy by identifying interictal epileptogenic
networks, guiding resections to maximize overlap with these
networks and reduce distance from resected tissue. Reported
performance reaches an AUC of 0.85-0.86 for predicting >50%
seizure reduction and Engel Class I/II outcomes (Partamian
2025).
models for multifocal epilepsy where resection margins are

et al, Key challenges remain in validating these
inherently ambiguous.

Beyond HFO and ED, DL has expanded to capture ictal
dynamics directly, offering insight into seizure onset and
progression critical for surgical planning (Ma et al, 2018;
Singh and Malhotra, 2022; Dwaraka et al, 2021; Sun Y.
et al., 2024; Zhao X. et al., 2020; Zhang and Zhou, 2023).
For example, time-aware RNN effectively model the temporal
evolution of ictal states (Palanichamy and Ahamed, 2022) while
autoencoder based frameworks have distinguished focal from non-
focal epilepsy biomarkers (Jangde et al., 2023). Advanced time-
frequency methods such as spectral envelope analysis further
enrich representations by characterizing power changes during
seizures (Zhang and Zhou, 2023). Ensemble models that integrate
CNN, SVM, and LSTM outputs have achieved superior accuracy
by combining complementary strengths (Usman et al, 2021).
Other hybrid designs for example, reconstruction independent
component analysis (R-ICA) combined with LSTM networks
reduce computational complexity while maintaining performance
(Dwaraka et al., 2021).

Finally, DL based architectures contribute to EZ/SOZ
localization by clustering high-density biomarkers (e.g., HFO
during seizures) to specific channels, thereby supporting surgical
decision-making (see Section 5). Figure 4 summarizes common
deep learning paradigms for seizure detection and classification,
illustrating how CNN, RNN/LSTM, and transformers are
utilized to model the
of iEEG.

complex spatio-temporal structure

4.1 CNN: advanced architectures for
spatiotemporal feature extraction

CNN have gained significant attention for their efficacy
in analyzing iEEG data due to their capacity for extracting
both spatial and temporal features (Lai et al., 2019; Ren
et al, 2021; Zuo et al, 2019). By stacking convolutional
and pooling layers, CNN can learn complex representations
directly from raw signals. These representations are important
for detecting HFO, ED, and related biomarkers essential to
localizing the epileptogenic zone (EZ). Additionally, the high
sensitivity and specificity that CNN based models achieved
make them suitable for real-time clinical applications.
Many recent studies have refined CNN based algorithms
for seizure detection and classification as summarized in

Tables 3, 4.
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4.1.1 HFO detection via CNN

In a study, Ma et al. (2019) proposed a CNN based framework
for HFO detection in iEEG by converting 80 - 500 Hz signals into
time-frequency scalograms. Trained on 18,000 labeled samples,
their five-layer CNN achieved 94.19% precision. Sadek et al. (2023)
proposed an unsupervised clustering framework using a temporal
basis set, dimensionality reduction, and a deep cluster module
to separate HFO from artifacts and ripple peaks, successfully
identifying the seizure onset zone (SOZ) for potential surgical
guidance. Zhao B. et al. (2020) developed a model combining
bandpass filtering, amplitude thresholding, and time-frequency
scalograms, classified by four ResNet101 CNN into artifacts, spikes,
ripples, and fast ripples. Similarly, Zuo et al. (2019) transformed 1D
iEEG signals into 2D grayscale images and used a pyramidal CNN
to classify ripples and fast ripples from non-HFO.

Furthermore, Zhao et al. (2022b) extended CNN for SOZ
localization by segmenting iEEG into 20s intervals, extracting
spectral and entropy features, and comparing classifiers (CNN,
SVM, FCNN). Using positive-unlabeled learning to limit labeling
needs, PU learning achieved 76.91% with only 15.87% labeled data.
More recently, Ren et al. (2021) proposed a multi-stream CNN
that processes raw and filtered waveforms, wavelet spectrograms,
and smoothed pseudo Wigner-Ville distributions to distinguish
EZ from non-EZ HFO. Lai et al. (2019) similarly combined short
time energy (STE) estimation with a CNN architecture using
filters of various sizes. Expanding on these advances, Zhang Y.
et al. (2024) introduced PyHFO, an open-source platform with
CNN based classifiers and fast detection algorithms to distinguish
artifacts from true HFO and separate spike-associated from non-
spike HFO. Tested on iEEG datasets, PyHFO achieved up to 50x
faster performance than MATLAB tools like RIPPLELAB.

4.1.2 Epileptiform discharge analysis via CNN

Antoniades et al. (2017) introduced a CNN based approach for
detecting ED. By relying on continuous score labels rather than
binary classifications, they improved both sensitivity and the ability
to capture salient ED morphologies thereby enhancing clinical
interpretability. In an earlier study, Antoniades et al. (2016) showed
that CNN could effectively learn features for subject independent
ED classification training on data from 25 patients without manual
feature engineering. Similarly, Jaoude et al. (2019) achieved area
under the curve (AUC = 0.996) in detecting mesial temporal
lobe ED using a CNN trained on large augmented datasets from
46 patients.

In related work, Li et al. (2019) presented a one dimensional
CNN that classifies focal versus non-focal signals directly from
raw iEEG recordings achieving 85.14% accuracy. Meanwhile, Liu
et al. (2019) combined Stockwell transform (S-transform) with a
15-layer CNN achieved high sensitivity (97.01%) and specificity
(98.12%) across a public database of 21 patients. Yamamoto et al.
(2021) developed EpiNet, a CNN architecture that outperformed
an SVM baseline with 0.944 AUC, and introduced a data driven
epileptogenicity index (d-EI) correlating with surgical outcomes.
Further simplifying the approach, Zhao et al. (2022a) proposed a
one dimensional CNN that operates directly on raw iEEG data
combining a novel discrete cosine transform (DCT) based data
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FIGURE 4
Overview of three deep learning architectures for seizure detection and classification. CNN: Convolutional layers extract features from raw signals,
followed by activation, pooling, and fully connected layers for classification. RNN/LSTM: Sequential modeling of preprocessed iEEG captures
temporal dependencies before final classification. Transformer: Self-attention layers model long-range dependencies followed by normalization and
softmax classification.

augmentation method to address limited labeled data achieving
high classification performance on the Juntendo iEEG dataset.

4.2 RNN and LSTM: modeling temporal
dependencies

RNN have an important role for modeling the complex
temporal dependencies of iEEG signals with LSTM architectures
being particularly effective in addressing seizure detection
challenges (Medvedev et al., 2019). By maintaining internal states
and combining of memory cells through feedback loops, RNN
offer a robust mechanism to capture transient neural events
including HFO and ED (Rezk et al,, 2020). LSTM networks, a
specialized variant of RNN, minimize the problem of vanishing
gradients through gating mechanisms (input, forget, and output
gates) thus preserving both short and long term temporal
dependencies (Lindemann et al, 2021). Table5 present an
overview of RNN/LSTM based architectures for seizure detection
across different iEEG biomarkers.

4.2.1 HFO and ED analysis via RNN/LSTM

In a study, Liu et al. (2021) proposed a hybrid bi-branch
neural network for HFO detection, combining a 1D ResNet-LSTM
on bandpass-filtered signals with a 2D ResNet-CBAM on wavelet
transforms. A multilayer perceptron integrated these features,
achieving high sensitivity, specificity, and accuracy in both intra
and cross subject tests. In another study, Geng et al. (2021)
presented IEDNet which integrates LSTM, GRU, and an auxiliary
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classifier GAN to detect interictal epileptiform discharges (ED).
Synthetic data augmentation further boosts detection robustness.
Medvedev et al. (2019) similarly demonstrated the efficacy of
bi-directional LSTM networks in capturing multiple forms of
epileptiform activity including spikes and ripples achieving overall
accuracies exceeding 90%.

4.2.2 Seizure dynamics modeling via RNN/LSTM

Wang et al. (2021) proposed a multi-branch fusion network
with a Bi-LSTM and attention mechanism, utilizing bidirectional
temporal context and feature weighting to outperform single
direction LSTM in distinguishing epileptogenic from non-
epileptogenic signals. Kolodziej et al. (2023) combined wavelet
based higher order statistics and chaos theory measures with an
LSTM classifier achieving seizure detection accuracies exceeding
98%. Singh and Malhotra (2022) proposed a frequency band
decomposition method that feeds iEEG signals into both CNN
and LSTM architectures for seizure prediction. Wang et al. (2024b)
utilized Gated Recurrent Units (GRUs) within a Granger causality
framework to localize ictal onsets and analyze network connectivity
patterns in iEEG data.

Similarly, Wang et al. (2024a) introduced a dual CNN-LSTM
model that utilizes a channel reordering approach achieving 100%
event based sensitivity on two standard iEEG datasets. Other hybrid
systems include TA-CNN-RNN (Palanichamy and Ahamed, 2022)
where a time-aware CNN integrates spatial and temporal feature
extraction before passing outputs to an LSTM based classifier
achieving accuracies of 88.6% on the Bonn dataset. Dwaraka
et al. (2021) combined Reconstruction Independent Component
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TABLE 3 Overview and performance comparison of CNN based deep learning architectures for seizure detection and classification.

References

Model architecture

Performance metrics

Other metrics

Study highlights

High frequency oscillations

Lai et al. (2019)

STE-based detection; deep 2D
CNN on CWT time-freq.
maps

Sensitivity
Ripples 88.16%, Fast Ripples 93.37%
Specificity 91.52%

Prec 88.67%; Rec 91.27%; F1
89.95%;
FDR: Ripples 12.6%, FR 8.1%

Improves HFO detection with
high sensitivity and low false
discovery

Sadek et al. (2023)

Pretrained ResNet-18
features; dimensionality

Unsupervised HFO clustering
to aid seizure onset

reduction + k-means localization
clustering
Zhao B. et al. RMS threshold + Morlet Accuracy Sen 94.4% (10 dB) / 97.2% (15 Integrated detection,
(2020) scalograms; pretrained Artifacts ~99%, Spikes ~98%, Ripples dB); Prec 97.1/97.2%; F1 classification, and mapping of

scalograms; two conv +
pooling + FC layers

Training ~3 min

ResNet101 (transfer learning) ~96%, FR ~97% 94.4/97.2%; AUC up to 0.988 HFO for presurgical
evaluation
Zuo et al. (2019) 1D— 2D grayscale; CNN Ripples: HFO 93.1% / non 88.1%; FR: Cohen « 0.54/0.78; Spearman Enhanced HFO detection
blocks with dropout + FC HFO 88.4% / non 93.4%; 0.86/0.94 (p<0.01); with better sensitivity and
layers Sen: Ripples 77.0% / FR 83.2%; Spec: Proc: 20s / 5 min signal specificity
Ripples 72.3% / FR 79.4%
Ma et al. (2019) CNN on 714x714 CWT Rec 89.37%; Prec 94.19%; F1 91.71% Detection 1-3s / event; Efficient HFO detection with

high precision and recall

Ren et al. (2021)

CNN on four 2D image types
(orig., filtered, wavelet,
ASPWVD); conv, pool, FC

Acc: Ripples 80.9£1.4%, FR 77.9£1.6%;
Sen: 80.1£2.0%, 77.4£2.5%; Spec:
82.542.3%, 78.842.3%

Differentiates epileptogenic vs
non-epileptogenic HFO

Zhao et al. (2022b)

Three models: SVM; FCNN
(2%32); CNN (dense 128);
Adam optimizer

Acc: STFT/CNN 88.1; Entropy/ FCNN
80.1; Entropy/FCNN/PU 76.9

Localizes SOZ from 20 s iEEG
segments; PU learning
reduces labeling effort

Zhang Y. et al.
(2024)

Two CNN: artifact rejection +
spkHFO detection; uses
128128 time-freq./amp.
maps

STE: Art Acc 98.6+0.2%, spkHFO
89.240.8%; MNI: Art 98.740.6%,
spkHFO 89.843.1%;

Sens: STE Art 99.2+0.3, spkHFO
90.841.9; MNI Art 94.8+2.7, spkHFO

STE: F1 99.1+£0.1, Prec
99.040.3; spkHFO F1
91.4+0.6, Prec 92.142.1;
MNIL: F1 90.244.9, Prec 100;
spkHFO F1 94.1+1.9, Prec

Automated HFO
detection/classification using
STE & MNI with CNN

90.9£4.2

97.8£0.7

Analysis (RICA) with LSTM layers (RICA-LSTM) attaining an
accuracy of 98.92%. These results collectively highlights the
capacity of LSTM based models to precisely capture short and long-
term dependencies in iEEG data thereby facilitating more reliable
detection of diverse seizure biomarkers. RNN and LSTM have
shown their effectiveness in identifying temporal patterns in iEEG
recordings enhancing accuracy in detecting HFO, ED, and other
seizure related events. Although modern LSTM implementations
are sufficiently optimized for potential real-time applications,
further work remains necessary to optimize deployment in resource
constrained clinical environments particularly where on-device
processing or ultra-low-latency inference is critical.

4.3 Transformer models: capturing
long-range temporal context

Transformer based architectures originally developed for
natural language processing (Vaswani et al, 2017; Kumar and
Khan, 2023; Anwar et al., 2024) are increasingly being adopted
in biomedical signal analysis for their capability to model
extensive temporal dependencies in parallel. Unlike RNN which
process data sequentially, transformers utilize a multi head self-
attention mechanism to capture complex relationships across
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entire sequences supported by positional encodings that preserve
temporal order (Lin et al., 2022). These properties are particularly
advantageous for seizure detection where ictal events and interictal
patterns may span variable durations and occur at multiple
time scales.

The success of transformer models for seizure analysis comes
from key architectural advantages. First, multi-head attention
enables the model to attend to different time-scale dependencies
concurrently (Li et al., 2021a). Second, positional encodings ensure
that sequence order is effectively maintained during parallel
processing (Li et al., 2023). Third, feed-forward layers within
transformer blocks facilitate complex, nonlinear transformations
of attention weighted representations (Gillioz et al., 2020). Table 6
summarizes recent developments in transformer based frameworks
for iEEG analysis.

In a study, Potter et al. (2022) developed an unsupervised
anomaly detection approach using transformers, training an
encoder on non-seizure data and identifying seizures through
enhanced reconstruction errors. Sun et al. (2022) introduced
a combined Transformer-CNN method for raw multichannel
iEEG data. Similarly, Yang et al. (2024) utilized a hierarchical
structure which combines local features (extracted by CNN)
with global representations (extracted by transformer layers)
enhancing classification performance. Yu et al. (2023) presented
IEEG-CT which integrates a 1D CNN and a transformer
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TABLE 4 Overview and perfromance comparison of CNN based deep learning architectures for seizure detection and classification.

References

Model architecture

Performance metrics

Other metrics

Epileptiform Discharges

Antoniades et al.
(2016)

- CNNT1 (Shallow : One
convolutional layer and FC
sigmoidal layer)

- CNN2 (Deeper : Two
convolutional layers and FC
layer)

Accuracy
Temporal : 77.20%
TF : 86.67%

CNNT1 : 79.48%
CNN2: 87.51%

Filter Correlations
First layer : 42%

Second layer : 52%
McNemar test : p < 0.01

Automatically extracts features from the
time domain for ED detection

layers with ReLU
- Final sigmoid output layer

Sensitivity : 0.878 £ 0.143
Specificity : 0.933 + 0.072

Preictal vs Early Seizure
AUC

Epi-Net : 0.910 &+ 0.107

SVM : 0.804 4 0.194
Epileptogenicity Index AUC
0.822 £ 0.135

Liu et al. (2019) - Stockwell transform to Sensitivity False Discovery Rate Achieves high sensitivity and specificity
generate time frequency Segment Based : 97.01% 0.36 per hour in automatic seizure detection
representations Event Based : 95.45%
- Deep 15 layer CNN with Specificity
dropout and batch Segment based : 98.12%
normalization
Yamamoto et al. - Processes raw iEEG signals AUC SVM AUC Detects the early phase of epileptic
(2021) via temporal convolutional 0.944 £ 0.067 (using EpiNet) 0.808 + 0.253 seizures from iEEG signals

Zhao et al. (2022a)

- Eight layer 1D CNN

- Three convolutional layers
- Kernel size 1x10

- Filters : 32, 64, 32

- Max pooling (1 x5, stride 4)
- Fully connected layer

EEGAug (Patient 1)
Accuracy : 97.55%

Recall : 51.89%

Specificity : 99.95%

CB Focal Loss (Patient 1)
Accuracy : 97.32%

Recall : 51.00%

Specificity : 99.75%

Patient 1

Precision

EEGAug : 98.42%

CB Focal Loss : 92.23%
F1 Score

EEGAug : 67.38%

CB Focal Loss : 65.30%
Matthews Correlation
Coefficient

EEGAug : 70.22%

CB Focal Loss : 67.27%
Cohen Kappa
EEGAug : 66.26%

CB Focal Loss : 64.03%

Classifies invasive iEEG signals to
localize the epileptic focus by bypassing
manual feature extraction and using a
novel DCT based data augmentation
method

Antoniades et al.
(2017)

- Four 1D convolutional
layers

- Flattening, fully connected
layer

- Logistic regression with
ordered score labels

Accuracy Multiclass CNN
~3% improvement w.r.t binary
AUC:0.900

40 - 50x higher
computational cost but 14%
improvement in accuracy
over alternatives

Detects interictal epileptiform
discharges in iEEG with improved
sensitivity and balanced false positives

Jaoude et al. (2019)

- Three convolutional layers
- Kernel sizes : 32, 16, 8
samples

- Max pooling, dropout

- Batch normalization

- FC layer with sigmoid
output

AUC:0.996 + 0.002
Sensitivity

False Positive Rate (<6/min)
97.0 + 1.0%

False Positive Rate (<1/min)
84.0 +4.0% at <1

Positive Predictive Value (0.80)
67.7 £ 11.0%

Precision Recall Curve
AUCPR: 0.807 £ 0.066
Partial AUC (Specificity>0.9)
0.981 + 0.006

Detects mesial temporal lobe
epileptiform discharges in iEEG from
foramen ovale electrodes

Lietal. (2019)

- 21 layer 1d CNN

- Kernel size 3

- Max pooling, dropout
- Batch normalization

- Softmax output

Accuracy : 85.14%
True Positive Rate : 88.76%
True Negative Rate : 81.68%

False Positive Rate : 18.32%
False Negative Rate : 11.24%
Precision: 82.26%

F1 Score: 85.39%

Automates epileptic focus localization
using iEEG recordings without
preprocessing or manual feature
extraction.

encoder with convolutional multi-head attention outperforming

prior models.

Further advancements include Sun Y. et al. (2024) proposed a
subject-independent seizure detection model combining channel-

merging wavelet packet decomposition with a convolution based

embedding module and transformer blocks in a hybrid HMM-

wise mixup with multi-task transformer learning, achieving

high AUC and improving generalization across patients and
electrode setups. Jiang et al. (2024) extended this concept by
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Wavformer design achieving 92.75% seizure detection accuracy
while identifying crucial frequency bands.

Transformer based methods showed an exceptional ability
to capture extensive contextual information in iEEG recordings
while preserving critical temporal patterns (Wang et al., 2021).
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TABLE 5 Overview and performance comparison of RNN/LSTM based deep learning architectures for seizure detection and classification.

References

Model architecture

Performance metrics

Other metrics

Study highlights

High frequency oscillations

Liu et al. (2021)

Bi-branch network:

- Branchl: 1D ResNet +
LSTM on 80-500 Hz signals
- Branch2: 2D ResNet +
CBAM on time-freq images
Fused outputs — MLP

Acc: Intra 93.62%, Cross 89.76%
Sen: Intra 94.62%, Cross 92.00%
Spec: Intra 92.70%, Cross 88.26%

Intra: Prec 92.1%, F1 93.3%,
FDR 7.9%, SEN_SPE 93.6%

Cross: Prec 86.9%, F1 89.1%,
FDR 13.1%, SEN_SPE 89.9%

Automated HFO detection aiding
epileptogenic zone localization

Epileptiform Disc

harges

Medvedev et al.
(2019)

Bidirectional LSTM (200
units) on spectral power from
8 bands over 3 time bins

Acc >90% in all cases
Sen <86% in only 2 cases
Spec >90% overall

Detects epileptiform spikes/HFO with
high within- and between-subject
accuracy

Geng et al. (2021)

GRU classifier (IEDnet) +
AC-GAN for synthetic

DS1: Acc 93.4%, Sen 93.2%, Spec
93.5%

DS1: F1 90.4%, FDR 12.1%,
FPR 6.5%, AUROC 93.4%

Detects epileptiform discharges in iEEG
with data augmentation

(2023)

two FC — Softmax

augmentation DS2: Acc 93.1+3.2%, Sen DS2: F1 89.7+5.1%, FDR
89.24£9.9%, Spec 95.3+2.3% 9.043.6%, FPR 4.742.3%,
AUROC 92.3+4.5%
Other Epileptic Seizure Dynamics

Wang et al. (2024b) | GRU network estimating Acc: Group O Max 6/7 (85.7), - Localizes epileptogenic zones using
effective connectivity via Some 5/7 (71.4); Group P Max directional iEEG interactions
Granger causality + graph 4/5 (80), Some 3/5 (60)
analysis

Kolodziej et al. 1D iEEG — LSTM(20) — Acc 98%; Sen 100%; Spec 99% Prec 96% Captures temporal dynamics in iEEG

with high detection accuracy

Wang et al. (2021)

Dual branch:

- Classical feats (time, freq.,
nonlinear) — Bi-LSTM +
attn

- Raw iEEG — 1D CNN;
fused —» MLP

Acc: Bern 97.6, Bonn 92.1, SEEG
Intra 92.5, Cross 90.3

Sen: Bern 97.8, Bonn 91.1, Intra
93.2, Cross 89.1

Spec: Bern 97.4, Bonn 93.0, Intra
91.8, Cross 91.6

Test time 40 ms/signal

Combines classic signal processing and
DL for SEEG

Palanichamy and
Ahamed (2022)

Time-aware CNN for
spatio-temporal features +
LSTM

Acc 88.6%; Rec 90.9%

Prec 87.7%; F1 89.2%

Automated seizure detection with
denoising, z-score norm, TA-CNN +
LSTM

Dwaraka et al.
(2021)

Two-stage:
preprocess/segment — RICA
features —
LSTM(100/125/100)

Acc 98.9%; Sen 99.0%; Spec
98.7%

BalAcc 99.2%; F1 98.3%

RICA + LSTM for effective temporal
learning in iEEG

Wang et al. (2024a)

Dual CNN-LSTM (two 1D
conv streams, BN, MP,
LSTM); concat + GAP + FC

Event: Sen - Freiburg 100, SWEC
100, AES 90.5

Segment: Acc — Freiburg 93.5,
SWEC 99.6, AES 78.2; Sen -
88.1/99.1/69.2; Spec -
94.0/99.7/79.9

Event EPR (h™!): Freib 0.10,
SWEC 0, AES 0.47

Segment AUC: Freib 0.910,
SWEC 0.994, AES 0.737

Channel ranking by per-ch F1;
incremental subset selection for
prediction

Singh and
Malhotra (2022)

FFT-based spectral feats —
CNN — LSTM

Acc 94.7%; Sen 95.8%; Spec
94.5%

AUC 95.1%; F1 94.8%; Test
50 ms

Real-time preictal seizure prediction

Despite these advancements, other deep learning architectures
such as CNN and LSTM remain competitive particularly when
Ongoing
research thus focuses on hybrid architectures, optimizing

combined with advanced signal representations.
real-time performance and enhancing clinical interpretability.
Comparisons indicate that transformer based models frequently
outperform conventional CNN and RNN on long-sequence
tasks (Potter et al., 2022; Sun et al, 2022; Yang et al,
2024; Yu et al, 2023) further emphasizing their potential
for real-time seizure detection where parallel processing

and precise segmentation of critical neurological events

is important.
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4.4 Alternative deep learning architectures

Although CNN, RNN, and transformer based methods
dominate the area of deep learning for seizure detection, several
alternative architectures have also gained attention by providing
unique benefits and methodological innovations (Wu et al,
2021; Li et al, 2022; Jangde et al, 2023). These architectures
utilize autoencoders, variational approaches, or graph based neural
networks to capture complex iEEG patterns beyond the capabilities
of more conventional techniques. By focusing on unsupervised or
semi-supervised learning structures, they often reduce reliance on
large labeled datasets while maintaining robust performance.
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TABLE 6 Overview and performance comparison of transformer based deep learning architectures for seizure detection and classification.

References

Potter et al. (2022)

Architectures

Autoencoder with input
projection, learnable pos.
encoding, multihead self-attn,
geometric masking

Performance

Acc: MIT 0.8740.006, UPenn
0.68+0.014, TUH 0.614-0.009
Rec: MIT 0.90+0.006, UPenn
0.76=+0.013, TUH 0.5740.009

Other metrics

MIT: Prec 0.98+0.003, AUC
0.9440.023

UPenn: Prec 0.884+0.01, AUC
0.731+0.027

TUH: Prec 0.92£0.005, AUC
0.5740.013

Study highlights

Anomaly detection: train on
non-seizure data; high reconstruction
error flags seizures

Sun et al. (2022)

Shared CNN for feature
extraction + transformer
encoders; channel-wise mixup
for variable iEEG channels

Event-based Sen:
SWEC-ETHZ 97.5%,
TJU-HH 98.1%

FDR (false alarms/hr): SWEC 0.06,

TJU 0.22
Latency: SWEC 13.75, TJTU 9.9 s
Inference: 30 min/128ch <1 s

Subject-independent seizure detection
using CNN temporal feats +
transformer spatio-temporal patterns

Yang et al. (2024)

CNN branch + conv
embedding + alternating
transformer blocks (context &
spatial)

Cross-subj AUROC: FNUSA
0.97, Mayo 0.93
Cross-inst AUROC: 0.89, 0.89

Cross-subj AUPRC: FNUSA 0.76,
Mayo 0.87
Cross-inst AUPRC: 0.81, 0.79

Classifies iEEG into
artifact/pathologic/physiologic;
supports EZ localization in
drug-resistant epilepsy

Yu et al. (2023)

1D CNN for local feature
extraction + transformer
encoder w/ causal conv
multihead attn

Improved AUROC & AUPRC

iEEG classification for epilepsy
diagnosis; outperforms prior models

Sun Y. et al. (2024)

Hybrid CNN-transformer:
channel embedding,
multihead self-attn, MLP
classifier

Acc: SWEC 91.15%, HUP
88.84%

Sen: SWEC 89.48%, HUP
87.41%

Spec: SWEC 92.82%, HUP
90.27%

SWEC: AUC 0.9700, Prec 93.0%,
F190.8%

HUP: AUC 0.9463, Prec 91.1%, F1
86.9%

Continuous seizure detection on
long-term iEEG with high sens. & low
latency

Jiang et al. (2024)

Wavelet packet

Acc 92.75%; Rec 92.06%; Spec

Prec 96.31%

Detects & phases temporal lobe epilepsy

decomposition - CNN 94.59%
embedding — transformer
(freq. weighting) — HMM

for seizure phase

via signal processing + attention +
temporal state modeling

Li et al. (2022)
autoencoder (CVAE) based approach for unsupervised HFO

introduced a convolutional variational

detection. In their method, time-frequency maps of candidate
HFO (ripples and fast ripples) were derived from continuous
wavelet transforms with only the red channel retained to highlight
dominant frequency components. Similarly, Wu et al. (2021)
proposed a similarly multi-stage strategy. First, they identified
events of interest using a Hilbert envelope based threshold,
converting these segments into time-frequency representations via
an optimized wavelet transform (SE-CMWT). They then utilized
a stacked denoising autoencoder (SDAE) to extract robust features
before classifying events with an AdaBoost based SVM ensemble
enhanced by sample weight adjusting factors (SWAF-ABSVM).
Gharebaghi and Sardouie (2024) also applied advanced signal
modeling to HFO detection by converting raw iEEG segments
into graph structures. Each time sample was treated as a node,
embedding energy-based features (RMS, short-time energy) within
a learnable adjacency matrix. A Deep Graph CNN then classified
HFO events, reporting a sensitivity of 90.7%. Table 7 summarizes
these diverse architectures and their respective outcomes in seizure
detection tasks.

While many deep learning studies focus on seizure detection,
it is important to distinguish this from the clinically critical
task of EZ/SOZ localization. Seizure detection primarily assists
in efficiently screening long-term iEEG recordings, whereas
localization links pathological patterns such as HFO and ED to
their spatial and temporal distributions, which directly informs
surgical planning. Thus, CNN, RNN/LSTM, and Transformer
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based approaches should not only be viewed as tools for automated
detection but also as additional techniques that help in identifying
epileptogenic regions for resection.

To complement the detailed tables, Figure 5 presents radar
charts summarizing the performance profiles of the main
deep learning model families (CNN, RNN/LSTM, Transformers,
and hybrid architectures). This visualization enables a quick
comparison of accuracy, sensitivity, AUROC, and F1-score across
methods. CNN show strong and well-balanced performance;
RNN/LSTM achieve high sensitivity but struggle with cross-
patient generalization; Transformers combine high accuracy with
strong AUROC, indicating better scalability; hybrid models remain
promising but inconsistent. These patterns provide a clear, visual
guide for selecting architectures and designing future seizure
detection systems.

5 Methodological challenges and
limitations

Despite the potential of deep learning in automating seizure
detection, the field currently faces several methodological
challenges including data availability, preprocessing protocols, and
technical constraints. Such challenges affect model robustness,
generalizability, and clinical adoption. Key among these issues
are limitations in dataset size and representativeness, lack
of standardized preprocessing pipelines, data scarcity and
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TABLE 7 Overview and performance comparison of alternate deep learning architectures for seizure detection and classification.

Reference

Architectures

Performance

Other metrics

Study highlights

Lietal. (2022)

Convolutional variational
autoencoder: conv encoder/decoder;
latent space clustered via k-means

Acc 92.85%; Sen 93.91%;
Spec 92.14%

Latent dim opt:
30 dims — overall 92.96%
40 dims — Spec 97.36%

Unsupervised HFO detector
bypassing manual feature design

Wu et al. (2021)

Time-freq maps (Shannon entropy +
Morlet) — AdaBoost SVM
ensemble

Sen: Ripples 92.4%, FR
90.3%

FDR: Ripples 9.2%, FR 10.7%

Automated HFO detection from iEEG
to aid EZ localization

encoder/decoder; latent space
clustered via k-means

Spec 92.14%

30 dims — overall 92.96%
40 dims — Spec 97.36%

Gharebaghi and iEEG segments — graph (time Sen 90.7 £ 1.26%; Spec AUC 0.96 Graph-based temporal representation

Sardouie (2024) samples = nodes) — Deep Graph 93.3 £ 1.36% with DGCNN for automated HFO
CNN + 1D CNN + dense classifier detection

Li et al. (2022) Conv. variational autoencoder with Acc 92.85%; Sen 93.91%; Latent dim opt: Unsupervised HFO detector avoiding

manual feature design

Wu et al. (2021)

Time-freq maps (Shannon entropy +
Morlet) — AdaBoost SVM
ensemble

Sen: Ripples 92.4%, FR
90.3%

FDR: Ripples 9.2%, FR 10.7%

Automated HFO detection from iEEG
aiding epileptogenic zone localization

Gharebaghi and
Sardouie (2024)

iEEG segments — graph (time
samples as nodes) — Deep Graph

Sen 90.7 &£ 1.26%; Spec
93.3 £1.36%

AUC 0.96

Graph-based temporal representation
with DGCNN for automated HFO

CNN + 1D CNN + dense layers

detection

heterogeneity, and the complexity of deep learning algorithms
which complicates model interpretability. Table 8 summarizes
these fundamental barriers.

5.1 Preprocessing and feature extraction

Studies in seizure detection frequently utilizes various signal
preprocessing and feature extraction methodologies which
can lead to inconsistent or non-replicable findings (Bernabei
et al, 2023a; Zhang X. et al, 2024). These inconsistencies
become visible in diverse artifact removal practices, variance
in filtering parameters, and signal normalization schemes
each of which can significantly affect model performance
(Bernabei et al, 2023a; Zhang X. et al, 2024). Consequently,
comparing results across different research groups or replicating

methodologies becomes challenging as different methods
obscure whether performance gains arise from genuine
algorithmic improvements or insignificant differences in

data handling.

The issue extends beyond basic signal conditioning to include
feature selection. Different studies may choose distinct sets of
signal characteristics (e.g., temporal, spectral, or higher order
measures) thereby affecting detection rates and challenging cross-
validation efforts (Bernabei et al., 2023a; Zhang X. et al., 2024).
As such, establishing standardized protocols for preprocessing
and feature extraction remains a high priority. Initiatives that
develop and provide comprehensive recommendations similar
to standardized frameworks in other areas of biomedical signal
processing are essential for sustaining meaningful comparisons,
ensuring reproducibility, and ultimately advancing the reliability
of deep learning based seizure detection. Table9 describes
best
preprocessing pipelines to enhance reproducibility in iEEG

practices for data harmonization and standardized

based deep learning studies.
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5.2 Data scarcity and heterogeneity

Data scarcity and heterogeneity present significant challenges
to developing robust, generalizable deep learning models (Bernabei
etal, 2023a; Zhang X. et al., 2024; Keutayeva and Abibullaev, 2024).
Despite significant progress having been made in releasing more
comprehensive iIEEG datasets, publicly available resources still tend
to be small and lack uniform annotation and quality control
protocols. The problem is made worse by the high variability in
recording conditions, patient demographics, and seizure types.

In clinical practice, epilepsy takes multiple forms and requires
different electrode placements and recording methodologies. As a
result, data from different sources show significant heterogeneity,
complicating cross-institutional model evaluations (Bernabei et al.,
2023a). Moreover, limited data often lead to overfitting wherein
models perform better during training but fail to generalize
effectively across broader patient data. Tables 10, 11 detail
the inconsistencies in sample size, annotation quality, and
public accessibility among the commonly utilized iEEG datasets.
Addressing these limitations will require continuous community
wide collaboration, including the development of larger, more
diverse datasets and the adoption of shared annotation protocols.

5.3 Interpretability and explainability

A critical concern for the clinical adoption of deep learning
based seizure detection systems is their black-box nature (Zhang
et al, 2021). While such models can achieve high accuracy,
the complex decision making processes limit clinical trust and
acceptance. This challenge has started discussions about model
agnostic versus architecture specific interpretability strategies
(Stiglic et al., 2020). Model agnostic methods such as local surrogate
models or feature importance scores offer broad applicability but
may lack the granularity of architecture specific approaches which
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CNN-based RNN/LSTM-based
Accuracy Accuracy
95% 93%
F1 94% 92% Sensitivity F1 92% 91% Sensitivity
AUROC AUROC
97%
95%
Transformer-based Hybrid/Other
Accuracy Accuracy
96% 94%
F1 95% 94% Sensitivity F1 93% 90% Sensitivity
AUROC AUROC
96%
98%
FIGURE 5

Radar charts summarizing Accuracy, Sensitivity, AUROC, and F1-score (0—100%) for major deep learning model families (CNN, RNN/LSTM,
Transformer, Hybrid) based on Tables 3—7. CNN and Transformer models show balanced, high performance; RNN/LSTM models excel in sensitivity
but vary in AUROC; hybrid methods remain heterogeneous.

TABLE 8 Methodological challenges in deep learning based seizure detection and classification methods.

Challenge Description

Non-invasive localization (Jeong et al., 2022;
Makaram et al., 2023)

Localizing the epileptogenic zone solely via non-invasive modalities remains challenging. Advanced deep
learning methods for multimodal integration are emerging to improve localization accuracy.

Manual detection of HFO (Sharifshazileh et al., 2021;
Dimakopoulos et al., 2024; Burelo et al., 2022; Zhang
etal., 2021)

Manual HFO detection is time-consuming and prone to inter-rater variability. Distinguishing pathological
HFO from physiological ones remains a critical challenge for reliable clinical adoption.

Clinical and data heterogeneity (Bernabei et al.,
2023a)

Variability in patient characteristics, including epilepsy subtypes, electrode implantation methods, and
treatment approaches, introduces substantial heterogeneity. Underlying pathologies further complicate
the generalizability of deep learning models.

Robust iEEG-based detection (Zhang X. et al., 2024)

Noise artifacts, non-stationary signals, and data imbalance reduce detection reliability. Reproducibility
concerns and limited cross-patient generalizability persist, limiting widespread clinical translation.
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provide deeper insights by utilizing essential network components
(e.g., attention weights, filter visualizations).

To address these limitations, several explainable AI (XAI)
techniques have been systematically applied to deep learning
models in iEEG analysis to enhance the interpretability of seizure
detection and epileptogenic zone (EZ) localization (Patil and Patil,
2023). Gradient-weighted Class Activation Mapping (Grad-CAM)

TABLE 9 Recommended best practices for reproducible iEEG
preprocessing in deep learning studies.

Step Best practice and rationale

Data Adopt the BIDS-iEEG standard for metadata (e.g.,

harmonization electrode labels, patient demographics) to ensure
interoperability and minimize dataset-specific biases in
multi-center studies.

Artifact Use automated techniques such as ICA or RPCA to

removal remove non-neural artifacts (e.g., muscle activity, eye
blinks).

Filtering Apply a Standard bandpass filter (0.5-500 Hz) with
Notch filtering (50/60 Hz); use ripple-specific filtering
(80-250 Hz) for HFO related tasks.

Normalization Perform per-channel z-score normalization and use

and fixed-length windowing (e.g., 1-5 s epochs) for model

segmentation input consistency.

Validation and Report all preprocessing parameters in supplementary

transparency materials and use open-source tools (e.g.,
MNE-Python) to share code and pipelines for
reproducibility.

10.3389/fnins.2025.1677898

generates class-specific heatmaps by weighting convolutional layer
activations with gradients from the target class, highlighting critical
regions in input signals such as high-amplitude spikes in iEEG
recordings associated with epileptic seizures (Kolodziej et al.,
2023).

However, a central interpretability challenge lies in how models
integrate multiple electrophysiological biomarkers into a unified
EZ representation. While CNN can capture spatial HFO patterns
and transformers highlight temporal propagation within the SOZ,
the implicit weighting of SOZ, HFO, and irritative activity often
remains opaque (Sun Y. et al,, 2024; Yi et al., 2025). Attention
maps and probabilistic EZ heatmaps partially address this issue
but without explicit fusion strategies, clinicians may struggle to
reconcile model outputs with established EZ definitions. Validation
against postoperative outcomes therefore becomes essential to
ensure clinical trust in such designations.

Recent findings highlight that combining multiple biomarkers
such as pathological patterns alongside baseline activity can
create more accurate insights into epileptogenic regions (Ye
et al,, 2023). This highlights the need for interpretable systems
capable of contextualizing detection decisions based on these
diverse signal elements. Although reverse engineering methods,
including visualization and saliency mapping represent initial steps
(Zhang et al., 2021), more advanced approaches that can explain
how deep networks synthesize multi-modal iEEG information
remain an active area of research. Achieving clinically relevant
interpretability not only involves computational innovation but
also collaborative input from clinicians, ensuring that model

TABLE 10 Comparison of datasets used in deep learning based seizure detection and classification methods.

References Dataset Pts Type Rate (Hz)  Annotation Protocol Public

Burrello et al. SWEC-ETHZ (Long 18 iEEG 1,024 Visual review by epileptologist for seizure Yes

(2019) Term) on/offset; artifact channels removed

Burrello et al. SWEC-ETHZ (Short 13 iEEG 512 Visual review; artifacts removed; 3 min Yes

(2018) Term) preictal/ictal/postictal included

Karoly et al. (2018) Melbourne NeuroVista 12 iEEG (ECoG) 400 Onset at 1 min; offset 10 s before recording Yes
end

Fedele et al. (2017) iEEG-1 (CRCNS) 20 iEEG 4,000 Automated HFO (ripples, fast ripples) Yes
detection using validated algorithm

Andrzejak et al. Bern-Barcelona 5 iEEG 512 Two electroencephalographers labeled “focal” | Yes

(2012) vs “nonfocal” channels by visual review

Bbrinkm et al. UPenn & Mayo Seizure 5 iEEG 400 1's clips labeled “Ictal”; interictal >1h from Yes

(2014) Challenge (Canine) seizure; durations matched to seizure length

Singh and UPenn & Mayo Seizure 2 iEEG 3,000 1s clips labeled “Ictal” (full seizure + latency); Yes

Malhotra (2022) Challenge (Human) interictal >1h from any seizure

Bernabei et al. HUP (Hosp. Univ. 57 ECoG / SEEG 512-1,024 Clinical seizure onset channels + Yes

(2023b) Pennsylvania) resected/ablated zones documented

Andrzejak et al. Bonn Univ. 5 iEEG 173.61 23.6's segments after artifact review; screened Yes

(2001) for weak stationarity

Frauscher et al. Montreal Neurological 106 iEEG (SEEG) 200-2,000 Non-epileptogenic cortex, awake (eyes Yes

(2018) Inst. closed); 60 s artifact-free segments selected

Janca et al. (2014) Spike Detector (CVUT) 30 iEEG 200-1,000 Spikes manually marked by 3 Yes
neurophysiologists; kept if >2 agreed

Maiwald et al. Univ. Freiburg 21 iEEG 256-512 Seizure onsets marked by epileptologists; Yes

(2004) in-focus/out-of-focus electrodes chosen
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TABLE 11 Comparison of datasets used in deep learning based seizure detection and classification methods.

References Dataset Pts Type Rate (Hz)  Annotation Protocol Public
Jaoude et al. (2019) Massachusetts Gen. 46 iEEG (FO) 1,024 Epileptologist labeled No
Hosp./Harvard Med. “definite/indeterminate” ED via GUI; >250
ED/patient; spikes in 250 ms windows
Yamamoto et al. Osaka Univ. Hosp. 21 iEEG 10,000 Onset/interictal visually marked by 2 No
(2021) epileptologists; cross-checked with video,
self-reports, records
Lietal. (2021c) Rensselaer Polytech. Inst. 19 iEEG 512 Onset/offset labeled by epileptologist and No
(RPI) independently verified
Nejedly et al. FNUSA (St. Anne’s Univ. 11 iEEG 25,000 Manual SignalPlant labels; 3 s epochs classed No
(2018) Hosp.) phys./pathol./50-60Hz/noise/artifacts
(power/raw review)
Nejedly et al. Mayo Clinic 25 iEEG 32,000 SignalPlant labels; 3 s epochs incl. 60Hz No
(2018) noise; expert envelope/raw scoring
Liu et al. (2021) Xuanwu Hosp., Capital 5 iEEG (SEEG) 2,048 Manual visual marking by two clinical experts | No
Med. Univ.
Cook et al. (2013) Private 15 iEEG 400 NeuroVista staff + investigators; seizures by No
diaries, audio, auto detection
Wang et al. (2024b) | Private 1 iEEG 256 Preictal/ictal/postictal segmentation; ictal No
further split (1-3) by expert/time criteria
Geng et al. (2021) Univ. of Miami 5 iEEG 256-1,024 Reviewed by 2 EEG experts; most active No
channel per patient marked by neurologist
Medvedev et al. AUH (Augusta Univ. 5 iEEG 500 Auto threshold detection (8 bands) + expert No
(2019) Health) verify; ground truth: 1,000 events/class
(spikes/ripples etc.)
Zhao et al. (2022a) Epilepsy Ctr., Juntendo 6 iEEG 2,000 Expert annotation; sleep, motion-free >1h No
Univ. from seizures; SOZ/non-SOZ via visual +
clinical review
Ren et al. (2021) Beijing Haidian Hosp. 19 iEEG 2,000 HFO auto-detect (5-min interictal); EZ No
confirmed via surgery + MRI/CT + Engel I
(=2y)
Constantino et al. NeuroPace 22 iEEG (RNS) 250 Ictal patterns by neurophysiologist; onset No
(2021) confirmed by epileptologist (cursor mark)
Sietal. (2023) TJU-HH (Tianjin Univ. 12 iEEG (SEEG) 2,048 Full visual review by board-certified No
Huanhu Hosp.) epileptologist; on/offset marked; artifacts
removed
Lietal. (2022) West China Hosp. 5 iEEG 2,560 4042 time-freq maps manually labeled by 2 No
neuroelectrophysiologists via MATLAB GUI

explanations align with established medical knowledge and
practical decision making processes.

5.4 Technical details and hardware
constraints

Implementing deep learning for seizure detection in real-world
clinical environments imposes strict requirements on both data
acquisition and computational infrastructure. First, sampling rates
must be sufficiently high to capture the rapid transient events
often characterizing seizure onset or HFO (Lee et al, 2019).
While moderate sampling frequencies (e.g., 500 Hz to 1 kHz)
may be sufficient for slower seizure activities, detecting higher
frequency phenomena (e.g., fast ripples at 250-500 Hz) typically
requires sampling rates exceeding 2 kHz, and very high frequency
oscillations (VHFO) require sampling above 5 kHz (Lee et al,

Frontiersin Neuroscience

2019). Lower sampling rates increase the possibility of noise and
the potential loss of crucial temporal details thereby reducing the
model accuracy and reliability.

Second, deploying deep learning models in real-time
clinical settings is challenged by limited hardware resources
and the energy constraints related to neuromorphic and
embedded platforms (Xu et al, 2025; Schuman et al, 2022;
Van Albada et al, 2018). These systems often have restricted
memory footprints and computational throughput, necessitating
careful optimization of network architectures (Li and Meng,
2023). Techniques such as model quantization and custom
architecture design can reduce computational cost and memory
usage while maintaining robust detection performance (Liang
et al, 2021). Consequently, the choice of hardware platform
combined with algorithmic efficiency remains critical for
achieving real-time seizure detection and classification in
clinical practice.
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TABLE 12 Future research directions and open questions in deep learning
based seizure detection and classification methods.

Research Open questions and future directions

area

Data collection | How can multicenter collaborations produce larger,
standardized datasets, including diverse epilepsy subtypes
and recording paradigms?

Preprocessing Which standardized filtering, artifact removal, and
normalization protocols ensure reproducibility across
institutions and hardware setups?

Model Which novel visualization or explainable AI (XAI)

interpretability | techniques e.g., EI-like scores for resection margin guidance
and postoperative outcome prediction (seizure freedom via
survival models) can clarify deep learning decisions and
improve clinician trust in automated seizure detection and
EZ localization?

Ethical and How can we address data privacy, bias, and cost barriers to

equitable ensure wide adoption, especially in low-resource settings?

deployment

6 Future directions

Ongoing advances in deep learning for iEEG analysis have
greatly expanded the range of computational tools available
for epilepsy diagnosis and surgical planning. Addressing
persistent methodological challenges such as robust algorithmic
performance, model interpretability, and standardization of
evaluation remains a priority. Table 12 outlines the open questions
and future research directions in the field of deep learning based
seizure detection.

One promising research focus lies in predictive modeling and
outcome predictions. Although current deep learning systems
can reliably detect and classify seizures, they increasingly aim
to predict them and guide surgical interventions. By examining
diverse iEEG biomarkers including HFO, ED, and connectivity
metrics models can identify diagnostic signals associated with
either favorable or unfavorable surgical outcomes (Zhang et al.,
2021; Qing et al., 2024; Dimakopoulos et al., 2024). This capacity
to predict postsurgical outcomes is especially valuable for refining
patient selection and customizing resection strategies as shown
by Dimakopoulos et al. (2024) who reported significant gains
in seizure freedom rates when the epileptogenic zone was
fully removed.

Multimodal data integration represents an additional approach
for improving the sensitivity and specificity of automated seizure
detection and localization. Incorporating MRI, fMRI, and MEG
data provides a more deeper insight on the cortical and subcortical
networks that cause seizure generation (Jeong et al, 2022;
Makaram et al., 2023). However, the integration of multimodal
data and neuromorphic computing introduces several practical
limitations that must be addressed for widespread clinical adoption.
High-resolution neuroimaging modalities such as fMRI and
MEG are resource intensive with significant costs associated
with acquisition equipment and specialized personnel, limiting
accessibility in low-resource or rural settings (Ooi et al., 2025).
Moreover, the computational demands of fusing heterogeneous
data streams iEEG with volumetric MRI or dynamic fMRI
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TABLE 13 Clinical implications and ethical considerations in deep
learning based seizure detection and classification methods.

Aspect Key points and considerations

Clinical efficacy and outcome
prediction (Burelo et al., 2022;
Dimakopoulos et al., 2024;
Zhang et al,, 2021; Qing et al.,
2024)

Deep learning-based seizure analysis shows
high accuracy in localizing epileptogenic
zones and predicting outcomes. Complete
resection of seizure-generating regions
correlates with improved seizure freedom.

Regional access and
infrastructure barriers (Fong
etal., 2024)

Severe regional disparities in access to iEEG
remain. Non-institution-centric training,
better resource allocation, and cost-effective
solutions are needed.

Ethical, transparency, and
safety considerations (Singh
et al,, 2023; Zhang et al., 2021)

Deep learning models must be validated,
explainable, and fair. Data privacy is critical.
Clinicians require clear, interpretable
predictions, minimal black-box behavior, and
robust consent protocols.

Clinical validation (Lee et al.,
2021; Kerr et al., 2024; FDA,
2021)

Prospective multi-center trials and FDA
approvals are vital to validate deep learning
efficacy, addressing patient variability and
electrode coverage limitations for clinical
integration.

Enhanced localization
through multimodal
integration (Jeong et al., 2022;

Combining iEEG with multimodal MRI or
fMRI can improve epileptogenic zone
localization and reduce surgical uncertainties.

Makaram et al., 2023)

require substantial processing power, potentially necessitating
cloud based infrastructure that raises data privacy concerns and
latency issues in real-time applications. Neuromorphic hardware
while promising for low-power edge computing in implantable
devices remains in early stages with limited scalability, high
development costs, and compatibility challenges with existing
clinical workflows (Sun et al., 2025). Future efforts should prioritize
cost-effective hybrid solutions such as federated learning for
distributed multimodal training to overcome these challenges
and enhance equitable deployment. As these innovations move
closer to clinical implementation, ethical, practical, and equity
concerns demand careful attention. Ensuring patient privacy in
the era of cloud based analytics is essential while issues such as
algorithmic bias and uneven data representation can adversely
impact diagnostic outcomes for specific demographic groups
(Singh etal., 2023; Fong et al., 2024). Efforts to expand data diversity
and establish transparent, fair model training protocols must
align with ongoing initiatives to standardize clinical validation.
Moreover, cost-effectiveness analyses, regulatory pathways, and
user acceptance among clinicians and patients are all crucial
elements in determining whether new AI driven solutions will be
widely adopted.

Table 13 summarizes several ethical and clinical considerations
important for effective integration of deep learning in epilepsy
care. Ultimately, the way forward necessitates establishing
closer relationships between engineers, clinicians, and other
stakeholders. By coordinating strict technical development
with robust patient centered evaluation, the next generation
of deep learning based seizure detection and localization tools
can be helpful in enhancing results for individuals with drug
resistant epilepsy.
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7 Discussion and conclusion

In this study, we reviewed recent advances in deep learning for
the analysis of intracranial EEG (iEEG) data, focusing on seizure
detection and epileptogenic zone (EZ) localization. We studied
many different types of deep learning architectures including
convolutional neural networks (CNN), recurrent neural networks
(RNN), and transformer based models highlighting their ability to
automate feature extraction and improve classification accuracy.
Although deep learning architectures are proficient in seizure
detection and offer temporal anchors for iEEG analysis, their
clinical efficacy depends on the incorporation of localization
metrics (such as HFO and SOZ mapping) to inform surgical
decisions, as inaccurate EZ delineation may lead to incomplete
resection or functional impairments. Additionally, we discussed
the integration of hybrid models that combine CNN for spatial
feature extraction with LSTM for temporal modeling enhancing the
performance of seizure detection systems.

Despite these advancements, several challenges remain
for the clinical adoption of deep learning based seizure

detection systems. One of the primary limitations is
the heterogeneity of the data as iEEG signals vary
significantly ~ between patients due to differences in

electrode placement, acquisition protocols, and epilepsy

pathology. The performance of deep learning models often
declines when unseen datasets,
the need for

generalization techniques.

applied to emphasizing

cross-institutional validation and improved

Another critical challenge is the interpretability of deep
learning models in clinical decision making. Unlike traditional
machine learning approaches that rely on explicitly defined
features, deep networks function as black-box models, making it
difficult for clinicians to trust their predictions. Techniques such as
Grad-CAM and saliency mapping have been explored to improve
interpretability but further work is needed to ensure that these
methods align with clinical expectations.

Realistically, deep learning can guide resectable areas by
generating epileptogenicity index (EI) heatmaps that delineate SOZ
and HFO rich regions from margin buffers, addressing localization
ambiguity in epilepsy cases. By utilizing federated learning across
multi-center datasets, these models predict postoperative seizure
freedom aligning with the primary iEEG objective of optimizing
surgical resection while minimizing functional deficits.

Additionally, real-time application limitations
present an additional significant challenge. Many state-
of-the-art  deep learning models require substantial
computational resources, making them impractical for
real-time seizure monitoring in implantable or portable
devices. Exploring lightweight architectures, neuromorphic
computing strategies, and hardware optimization

techniques could bridge this gap and facilitate real-time
clinical deployment.

Future research should focus on improving the diversity
and standardization of the data sets. The development of large-
scale publicly available datasets that combine multiple recording
environments, seizure types, and demographic variations is
essential to improve model robustness. Transfer learning and
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domain adaptation techniques may also help reduce inter-subject
variability and facilitate generalization across different datasets.
Another promising direction involves multi-modal data
integration, combining iEEG with additional neuroimaging
MRI  (fMRI),
magnetoencephalography

such as functional diffusion
(DTI), and

(MEG). These approaches have demonstrated potential in

modalities
tensor  imaging
refining EZ localization by providing additional spatial and
iEEG derived features.
regulatory
epilepsy
data privacy, developing explainable AI frameworks, and

functional context to Furthermore,
ethical and

learning in

considerations  surrounding deep

care must be addressed. Ensuring

establishing standardized clinical validation protocols are
necessary steps for regulatory approval and adoption in
clinical practice.

Deep learning has emerged as a transformative tool for
seizure detection and EZ localization,
methods.

related to model generalization, interpretability, and real-time

offering significant

advantages over traditional However, challenges
deployment must be overcome to enable successful clinical
integration. Future research should emphasize cross-institutional
validation, multi-modal approaches, and neuromorphic computing
solutions to advance Al-driven epilepsy diagnostics. With
continued collaboration between machine learning researchers
and clinicians, deep learning holds the potential to improve

epilepsy care.
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