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spike-and-wave activation in 
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report
Chunyan Zhao 1, Jiayi Ma 1, Han Xie 1, Yuying Pan 1, Yuwu Jiang 1,2, 
Lixin Cai 2, Qingzhu Liu 2 and Ye Wu 1,2*
1 Department of Pediatric Neurology, Children’s Medical Center, Peking University First Hospital, 
Beijing, China, 2 Pediatric Epilepsy Center, Children’s Medical Center, Peking University First Hospital, 
Beijing, China

Background: Evidence regarding the efficacy of vagus nerve stimulation (VNS) in 
treating developmental and epileptic encephalopathy/ epileptic encephalopathy 
with spike-and-wave activation in sleep (DEE/EE-SWAS), particularly its impact 
on the SWAS remains limited. We present a boy with EE-SWAS who was treated 
with VNS at 4.8 years of age.
Case presentation: A male patient developed seizures at 2.3 years of age. At 
2.8 years of age, electroencephalography (EEG) showed SWAS, leading to 
regression in cognitive, motor, and language functions. Administration of 
multiple anti-seizure medications (ASMs) achieved poor efficacy, and repeated 
corticosteroids resulted in only transient improvement. He was treated with VNS 
at 4.8 years of age. Seizure freedom was achieved at 1.3 years postoperatively. 
The SWAS pattern was not observed on follow-up EEG 2 years after implantation. 
Concurrently, his neurodevelopment improved. No new ASMs or corticosteroids 
were added during this period. VNS was interrupted due to pulse generator 
battery depletion at 5.6 years after implantation. Increased SWI was showed on 
the EEG 6 months after the interruption of stimulation.
Conclusion: Early VNS intervention should be  considered in addition to 
conventional medication for young children with SWAS who have greater 
distance from the self-limited age.
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1 Introduction

Spike-and-wave activation in sleep (SWAS) is a specific electroencephalographic (EEG) 
pattern characterized by near continuous spikes and waves induced by sleep (Specchio et al., 
2022; Rubboli et  al., 2023). This pattern was first described and termed electrical status 
epilepticus during sleep (ESES) by Patry et al. (1971). In the updated classification of epilepsy 
syndrome by the International League Against Epilepsy (ILAE), ESES was officially renamed 
SWAS. The initial diagnostic criterion proposed by Patry et al. (1971) required a spike–wave 
index (SWI) ≥ 85%. Emerging evidence suggested that cognitive or behavioral regression may 
also occur with lower SWI values. Based on this, de Boer et al. recommended a SWI ≥ 50% as 
the cutoff value for diagnosis of SWAS (Scheltens-de Boer, 2009). Although SWAS may 
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spontaneously resolve around puberty, persistent SWAS can cause 
significant brain impairment, with the duration of SWAS showing a 
strong correlation with the degree of long-term neurocognitive deficits 
(Kramer et al., 2009; Peltola et al., 2011). Early therapeutic intervention 
to control SWAS is therefore crucial for long-term brain function 
outcomes. Current clinical management of SWAS faces dual 
challenges: conventional anti-seizure medications (ASMs) often 
demonstrate limited efficacy, while alternative therapies including 
corticosteroids and benzodiazepines, though showing moderate 
effectiveness, are associated with high relapse rates (41–89%) and 
significant adverse effects (Buzatu et  al., 2009; Wiwattanadittakul 
et al., 2020).

Vagus nerve stimulation (VNS), a well-established 
neuromodulation therapy for drug-resistant epilepsy (DRE), 
demonstrates an overall response rate of 56.4% and a seizure-free 
rate of 11.6% in a meta-analysis involving 3,474 pediatric patients 
with DRE (Jain and Arya, 2021). In pediatric epilepsy syndromes 
such as Lennox–Gastaut syndrome (LGS) and Dravet syndrome, 
the response rates were 58.2 and 44.7%, respectively, (Jain and Arya, 
2021). However, evidence of VNS efficacy remains limited for DEE/
EE-SWAS, particularly its impact on SWAS (Park, 2003; Arhan 
et al., 2015; Carosella et al., 2016). We describe a boy with EE-SWAS 
who underwent VNS implantation at 4.8 years of age. He achieved 
seizure freedom, SWAS resolution and developmental progress. 
Through long-term follow-up, SWI increased was observed after 
stimulation interruption due to pulse generator battery depletion. 
Here, we use SWI ≥ 50% as the criterion for diagnosing SWAS.

2 Case presentation

A 11-year-old boy had an unremarkable birth history. At 5 months 
of age, he developed impaired consciousness and generalized tonic–
clonic seizures during a febrile illness. Cerebrospinal fluid (CSF) 
analysis revealed a white blood cell count of 10 × 10⁶/L and a protein 
level of 0.46 g/L, leading to a diagnosis of viral encephalitis. His 
symptoms resolved within 2 days. He remained well until 2.3 years of 
age. At 2.3 years of age, he began experiencing monthly focal preserved 
consciousness seizures, characterized by either the left leg twitching 
or left-sided facial twitching. Subsequently, seizure frequency 
increased progressively. At 2.8 years of age, EEG revealed SWAS and 
atypical absence seizures. Concurrently, he  manifested 
neurodevelopmental regression, including an inability to stand or walk 
independently, language regression, and cognitive decline. He was 
treated with multiple anti-seizure medications (ASMs), including 
levetiracetam, sodium valproate, lamotrigine, topiramate, clonazepam, 
sultiame, and clobazam, but with poor efficacy. Three courses of 
pulsed corticosteroids at 2.9, 3.3, and 4 years of age produced transient 
efficacy. However, all gains were followed by relapse.

Preoperative VNS assessment revealed that the patient exhibited 
approximately 30 focal motor seizures monthly, inability to stand or 
walk independently, markedly reduced speech output, and impaired 
cognition. Brain MRI showed bilateral atrophy of the putamen and 
caudate nucleus. Ambulatory 4-h EEG revealed spike-and-wave 
complexes in the centroparietal midline and Rolandic regions, with a 
SWI of 80% (Figure  1A). Griffiths mental development scales 
confirmed severe global developmental delay (DQ/IQ ≤ 35). 
Concurrent ASMs included valproate, clobazam, and levetiracetam.

VNS implantation was performed successfully at 4.8 years of age. 
The vagus nerve stimulator was turned on 14 days after implantation. 
VNS was initially started at: output current 0.5 mA, pulse width 500 μs, 
frequency 30 Hz, on time 30 s, and off time 5 min. At 6 months 
postoperatively, the output current was increased to 1.5 mA, with the 
remaining parameters unchanged. The patient’s seizure frequency 
decreased to 15 times monthly (a 50% reduction), with SWAS (SWI 
80%) persisting on the repeated ambulatory 4-h EEG (Figure 1B). At 
1 year postoperatively, the output current was further titrated to 
2.0 mA. His seizure frequency decreased to 10 times monthly, with 
SWAS (SWI 75%) remained (Figure 1C). At 2 years postoperatively, 
the parameters were optimized to: output current 1.8 mA, pulse width 
500 μs, frequency 30 Hz, on time 30 s, and off time 3 min. He had 
maintained seizure freedom for 7 months, with resolution of SWAS on 
repeat EEG (Figure 1D). The SWI decreased to 20%. No new ASMs or 
corticosteroids were introduced during VNS. The parameters remained 
stable thereafter. He maintained seizure freedom, with decreased spike-
and-wave discharges on subsequent EEG (Figures 1E–G).

At 5.6 years postoperatively, the pulse generator battery was depleted. 
The patient remained seizure freedom. However, the SWI had increased 
to 30% on the ambulatory 4-h EEG 6 months after the interruption of 
stimulation (Figure 1H). Given his current age of 11 years, we decided to 
continue close follow-up without replacing the battery. The timeline of 
key events in the patient’s clinical course is presented in Figure 2.

3 Discussion

SWAS is an EEG phenomenon characterized by nearly continuous 
spikes and waves during non-rapid eye movement (NREM) sleep, 
typically observed in pediatric epilepsy syndromes associated with 
regression of cognitive, behavioral, linguistic, and motor functions. In 
2022, ILAE reclassified this syndrome as DEE/EE-SWAS, including 
previously recognized entities such as epilepsy with continuous spike–
wave during slow-wave sleep (CSWS), variants of self-limited epilepsy 
with centrotemporal spikes (SeLECTS), and Landau–Kleffner syndrome 
(LKS) (Specchio et al., 2022). DEE/EE-SWAS accounts for approximately 
0.2–1% of all pediatric epilepsy cases (Nickels and Wirrell, 2008). The 
underlying mechanisms of SWAS remain incompletely elucidated. 
SWAS has been associated with diverse etiologies, including structural, 
genetic, and immune-mediated epilepsies. Structural etiologies 
predominate, encompassing thalamic lesions and malformations of 
cortical development such as polymicrogyria (Andrade-Machado, 2012; 
Sonnek et al., 2021). Genetic etiologies involve pathogenic variants in 
GRIN2A, SCN2A, KCNA2, KCNQ2, SLC6A1, SLC9A6, and copy 
number variations linked to 15q13.3 and 16p11.2 microdeletion 
syndromes (Dimassi et al., 2014; Gong et al., 2021). The therapeutic 
response to corticosteroids further suggests potential involvement of 
inflammatory mechanisms in the pathogenesis.

The duration of SWAS correlates with cognitive impairment 
(Seegmüller et al., 2012; Pera et al., 2013). There is no universally 
recommended treatment regimen. ASMs are generally ineffective. 
Although benzodiazepines and corticosteroids exhibit partial clinical 
responsiveness, their utility is constrained by significant adverse 
effects and high SWAS relapse rates. Surgery may resolve SWAS, but 
is effective only in children who have failed medical therapy and have 
a resectable structural etiology. However, surgery carries the risk of 
causing hemiplegia, hemianopia, and permanent hand dysfunction 
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(van den Munckhof et al., 2015; Sonnek et al., 2021; Wu et al., 2024). 
To optimize cognitive preservation, early alternative therapeutic 
strategies are strongly recommended for younger children with 
persisting clinical seizures and SWAS despite adequate ASMs and 
corticosteroids therapy.

The therapeutic role of VNS in DEE/EE-SWAS remains 
inadequately defined, especially on SWAS pattern, with only few 
cases reported to date. Carosella et al. (2016) reported a 12 years 
EE-SWAS girl with structural etiology achieving seizure freedom 
at 5 months and SWAS resolution at 8 months post-VNS. Given 

FIGURE 1

Evolution of spike-and-wave activation in sleep (SWAS) after VNS implantation. (A) Baseline sleep EEG before VNS implantation showing SWAS pattern. 
(B,C) SWAS remained on follow-up sleep EEG at 0.5 and 1 year after VNS. (D–G) SWAS resolved on follow-up sleep EEG at 2, 3, 4, and 5 years after 
VNS. (H) Increased spike-wave index was showed on the EEG 6 months after the interruption of stimulation.

FIGURE 2

Timeline of the patient’s clinical course.

https://doi.org/10.3389/fnins.2025.1675783
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al.� 10.3389/fnins.2025.1675783

Frontiers in Neuroscience 04 frontiersin.org

that she was close to the self-limited age, it was difficult to 
distinguish whether the improvement was attributed to the 
efficacy of VNS or the natural course. In a cohort of 6 children 
with LKS treated with VNS, the mean implantation age was 
10.3 ± 4.2 years (range 6–16 years). Park (2003) observed that 2 
children experienced a reduction ≥ 50% in seizure frequency at 
3 months post-VNS, 3 children experienced a reduction ≥ 50% in 
seizure frequency at 6 months post-VNS, though SWAS outcomes 
were unreported. Arhan et al. (2015) reported two children with 
DEE/EE-SWAS treated with VNS, one achieved a > 75% reduction 
in seizure frequency at 4 months after VNS implantation, 
maintained to the final follow-up at 3 years post-VNS. And the 
other patient achieved a 50% reduction in seizure frequency at 
6 months post-VNS, but seizure frequency increased during 
follow-up. However, the age of implantation and the SWAS 
outcomes were not specified (Arhan et al., 2015).

DEE/EE-SWAS is age-dependent and usually self-limited 
around puberty. Seizure control is typically achieved after 12 years 
of disease course, while SWAS persists until a mean age of 11.1 years 
(Tassinari et al., 2000). In this case, the patient underwent VNS 
implantation at 4.8 years of age. The seizure frequency decreased 
rapidly and eventually achieved seizure freedom after VNS. The 
SWAS pattern resolved on repeated EEG at 2 years after VNS, 
accompanied by developmental progress. The age of SWAS 
resolution was earlier than the self-limited age. No new ASMs or 
corticosteroids were introduced during VNS. Therefore, the 
therapeutic effects may be reasonably attributed to VNS. Notably, 
we also observed a rebound in SWI after termination of stimulation 
due to generator battery depletion. This finding strengthens the 
evidence for VNS effects on SWAS.

The pathogenesis of SWAS is unclear. Some studies suggest that it 
is associated with thalamocortical system hyperactivation (Japaridze 
et al., 2016), while others implicate an imbalance between inhibitory 
neurons in the thalamic reticular nucleus and glutamatergic excitatory 
neurons in the dorsal thalamus (Beenhakker and Huguenard, 2009; 
Sánchez Fernández et al., 2012). Previous studies on the mechanism 
of VNS have also involved these pathways (Ricardo and Koh, 1978; 
Marrosu et al., 2003). However, the specific mechanism by which VNS 
directly effects on SWAS remains unclear.

In conclusion, the efficacy to VNS observed on the pediatric 
patient supports the consideration of early VNS intervention in 
addition to conventional medication for young children who have 
greater distance from the self-limited age. Future studies with larger 
sample sizes are warranted to confirm these findings.
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