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Background/Context: Vascular Cognitive Impairment and Dementia (VCID)
affects 25-30% of stroke patients and includes cognitive impairments caused by
vascular injury, such as post-stroke dementia. Rehabilitation has the potential to
improve the quality of life for patients at risk of developing dementia. However,
there is currently no reliable method to identify those at risk of dementia after
a stroke. Several biomarkers, including ADRD (Alzheimer’s disease and related
dementias) biomarkers (Ab, tau, NfL, and GFAP) and angiogenic factors (VEGF,
Flt-1, Tie-2, PIGF, and FGF) have been associated with the development of
dementia.

Populations in Appalachia experience a higher incidence of stroke and related
mortality compared to other groups. Given the elevated stroke rates in Appalachian
communities, this study aims to investigate potential proteomic differences between
patients from Appalachian and non-Appalachian counties. The primary goal of
the study is to characterize the expression of post-stroke cognitive dementia
biomarkers and to explore differences in the proteomic profiles of Appalachian
and non-Appalachian populations.

Methods/Approach: Sample Collection: The Blood and Clot Thrombectomy
Registry Collaborative (BACTRAC) protocol, established by Fraser and colleagues,
introduces a novel method for analyzing stroke by collecting intracranial blood
samples from patients undergoing mechanical thrombectomy. During the
procedure the thrombus and blood samples from areas distal and proximal
to the thrombus are collected and undergo proteomic analysis (Fraser et al.).
Additional demographic and clinical information are collected from electronic
health records. The control data was obtained from arterial blood collected
during diagnostic angiograms from patients with cerebrovascular disease.

Data Analysis: Propensity score models were used to perform a one-to-one
match between stroke and control patients on age, sex, BMI, hypertension,
and hyperlipidemia resulting in groups that were balanced on these measured
prognostic characteristics. A Wilcoxon rank sum test was then used to assess
differences in the 12 ADRD biomarkers.

Results: Compared to the controls, stroke patients had significantly higher levels
of GFAP. The control patients had significantly higher levels of AB40, AB42, and
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VEGFA. In the Appalachian patient population, the control patients also had
significantly higher levels of AB40, AB42, and VEGFA. Additionally, the Appalachian
stroke patients had higher GFAP. In the non-Appalachian population only GFAP was
significantly different between stroke and control groups, with it being elevated in
the stroke group.

Conclusion: There was a notable difference in the levels of certain ADRD
biomarkers between stroke patients and control patients. Specifically, in
Appalachian populations, stroke patients showed significant differences in
multiple ADRD biomarkers (AB40, AB42, and GFAP) compared to controls, a
pattern not seen in non-Appalachian stroke patients, where only GFAP levels
increased. This difference in ADRD biomarkers observed in Appalachian
stroke patients could be attributed to a combination of socioeconomic and

environmental factors unique to the Appalachian region.
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1 Introduction

Ischemic stroke is a leading cause of mortality in the United States
with the highest burden of disease concentrated in the southeastern
region of the country known as the “Stroke Belt” (Tsao et al., 2022).
As of 2018, the stroke belt had a 22% higher rate of stroke mortality
compared to non-stroke belt regions (Parcha et al., 2021) Kentucky is
one of multiple states that make up the stroke belt region (Howard and
Howard, 2020). Some of the highest incidences of stroke occur in
several Eastern Kentucky Appalachian counties (K.D.EP. Health,
2024), representing some of the most economically depressed counties
in the state. These Eastern Kentucky counties have low access to
healthcare and high rates of stroke comorbidities such as hypertension,
diabetes, and obesity (Kitzman et al., 2019).

Stroke is also a leading cause of disability in the United States (Stroke
Facts, 2024) with 25-30% of stroke patients developing vascular cognitive
impairment and dementia (VCID), a broad category of cognitive
impairments caused by vascular injury including post-stroke dementia
(Kalaria et al., 2016). A previous study, using a data registry containing
proteomic data gathered from stroke patients at the time of mechanical
thrombectomy (MT), found that Appalachian patients undergoing MT
for emergent large vessel occlusions strokes (ELVO) have worse cognitive
outcomes compared to non-Appalachian patients (McLouth et al., 2024).

Research suggests that ischemic stroke leads to dementia via
chronic upregulation of pro-inflammatory cascades, dysregulation of
angiogenic factors, and enhancement of Alzheimer’s disease (AD)
pathology (Iadecola and Anrather, 2025). Ischemic injury causes
increased permeability of the blood brain barrier (BBB) and
upregulates acute inflammatory proteins such as glial fibrillary acidic
protein (GFAP). GFAP is a nonspecific identifier of vascular injury
and increased plasma levels of GFAP have been found among patients
with AD (Benedet et al., 2021; Verberk et al., 2020). Further
contributions to a pro-inflammatory environment may be caused by
angiogenic factors such as fibroblast growth factor (FGF), vascular
endothelial growth factor (VEGF), placental growth factor (PIGF),
and vascular endothelial growth factor receptor 1 (Flt-1) which have
been implicated in the pathogenesis of VCID (Linton et al., 2021;
Winfree et al, 2025; Hinman et al., 2023). Although generally
regarded as neuroprotective (Fang et al., 2023), some evidence
suggests that post-stroke angiogenesis can result in leaky vasculature
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and create pathways for additional inflammatory mediators to reach
the infarcted tissue (Rust, 2020; Yang and Torbey, 2020; Kanazawa
etal., 2019; Zhang et al., 2000). Another post-stroke change involves
upregulation of Alzheimer’s disease and related dementia (ADRD)
biomarkers including amyloid beta (Af), tubulin associated unit
(tau), and neurofilament light chain (NfL; Gustaw-Rothenberg et al.,
2010). These biomarkers hold potential to be used as predictive
markers of VCID after stroke.

Given the high incidence of stroke and worsened cognitive
outcomes of patients from Eastern Appalachian Kentucky counties,
there is a need to identify biomarkers predictive of post-stroke dementia,
to improve patient care and decrease disease burden. Previous study
analyzed arterial blood samples from Appalachian and non Appalachia
patients to look for differences in inflammatory protein expression and
associated functional outcomes between the two populations. Out of 184
proteins analyzed, 11 were identified as being differentially associated
with post-stroke outcomes based on Appalachian status of the patients.
Of these, 2 proteins, leukemia inhibitory factor receptor (LIFR) and
angiogenin (ANG), were negatively correlated with the Montreal
Cognitive Assessment (MoCA) score at discharge in non-Appalachian
patients (McLouth et al., 2024). To expand upon these previous findings,
this study has 2 aims. The first is to characterize the early time-point
expression of VCID and ADRD biomarkers between stroke and
cerebrovascular disease (CVD) controls. The second aim is to compare
the biomarker expression between Appalachian and non-Appalachian
populations overall and within stroke and CVD control patients.

2 Methods
2.1 Sample collection

The Blood and Clot Thrombectomy Registry and Collaboration
(BACTRAQC) is a continuously enrolling tissue bank that contains
proteomic and demographic data from patients undergoing
cerebrovascular procedures such as mechanical thrombectomy (MT)
and angiography. Demographic data in the registry includes sex, age,
county, and comorbidities. Patients who were pregnant, incarcerated,
had pre-existing inflammatory cerebrovascular disease, or unable to
provide informed consent were excluded from the study. Additional
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information on BACTRAC and its methodology has been previously
published (Fraser et al., 2019).

During MT, samples of thrombus, blood distal to the thrombus,
and blood proximal to the thrombus are collected from the patient and
processed in a laboratory space adjacent to the Neurointerventional
Radiology (NIR) angiography suite per the BACTRAC protocol
(Fraser et al., 2019). The blood samples were divided into 500 ul
aliquots and inverted 10 times to ensure thorough mixing and prevent
clotting. The samples were then centrifuged at 2000 g for 15 min in a
22R centrifuge (Beckman Coulter Inc.; Indianapolis Indiana). After
centrifugation 200 ul of plasma was extracted from the sample and
placed in separate cryogenic storage tubes which were then stored at
—80° C until analysis. The analysis was done using several methods for
each protein: Meso Scale Discovery V PLEX Angiogenesis Panel 1
(human), Quanterix (Simoa Technology) Neurology 3-Plex A
Advantage Kit (AB40, AB42, Tau), Neurology 2-Plex B (GFAP, NF-1)
Assay kit, pTau-181 Advantage V2.1 kit. Intra- and inter-assay
coefficients of variation (CV) were not assessed for this analysis. The
resulting proteomic data was then input into the secure BACTRAC
REDCap Database (Gustaw-Rothenberg et al., 2010). Although blood
samples proximal and distal to the blood clot were collected, this study
focuses on data from the blood proximal to the thrombus. The quantity
of blood collected distal to the thrombus was not adequate for analysis.

Control samples were obtained from individuals undergoing
diagnostic angiograms for CVD such as arteriovenous malformations
(AVM), arteriovenous fistulas, carotid stenosis, or aneurysms. The
same exclusion criteria used for the stroke patients were used in the
control patient population. Arterial blood was processed using
identical methodology as described for the stroke samples. Biomarkers
analyzed are listed in Table 1.

2.2 Statistical analysis

Propensity scores were employed to match stroke and control
patients using the following predictors in the propensity model: age, sex,
body mass index, hypertension, and hyperlipidemia. An exact match was
performed on sex, and the propensity score was used to match stroke
and control patients using a conservative caliper size of 0.2. Following
the propensity score match, between-group differences in the 12 ADRD
biomarkers were assessed using a Wilcoxon rank sum test. Due to the
biomarkers’ non-normal distribution Cliff’s delta, a non-parametric
effect size, was used to quantify the magnitude of between group

TABLE 1 Biomarkers and rationale for selection.

10.3389/fnins.2025.1672803

differences, and is a common language effect size interpreted as the
probability that a randomly sampled observation from one group is
larger than a randomly sampled observation from the other (Cliff, 1993)
All statistical analyses were performed using SAS v 9.4 (SAS Institute,
Inc., Cary, NC). A p-value < 0.05 was used for statistical significance.

3 Results
3.1 Matched patient demographic data

Table 2 and Figure 1 present the demographic and clinical
characteristics of the stroke and control patients after matching. There
were 87 stroke and 77 control patients in the original data. The
propensity score match was able to match 40 stroke patients to 40
control patients using a one-to-one match. There were no significant
between-group differences in the matching characteristics or their
Appalachian status. Figure 1 shows how, as a result of matching, the
two groups became similar. The blue X’s and red diamonds represent
differences prior to matching, and the green circles are differences
after matching. The shaded region denotes differences that
are negligible.

3.2 Expression of VCID biomarkers among
stroke and control patients

Expression of VCID biomarkers between stroke and control
patients are shown in Table 3. GFAP (p < 0.001, Cliff’s d = 0.505) was
increased in the stroke patients while AB 40 (p =0.006, Cliff’s
d=0363), AB 42 (p<0.001, Clif’s d=0.450), and VEGFA
(p =0.005, Clift’s d = 0.413) where increased in the control patients.

3.3 Expression of VCID biomarkers among
Appalachian and non-Appalachian patients

Table 4 displays ADRD biomarkers expression for Appalachian
and non-Appalachian control patients. No biomarkers were
significantly different between the control groups. The expression
of four biomarkers were significantly different between stroke and
control patients within the Appalachian population (Table 5). A
40 (p=0.005, Cliff’s d=0.448), Ap 42 (p<0.001, Cliff’s

Biomarkers Effect

AB 40and Af 42 Aggregates result in neurodegeneration in AD and levels are elevated in patients with cognitive impairment (Chen et al., 2017;
Olsson et al., 2016).

Tau and pTaul81 Elevated tau has also been implicated in cognitive dysfunction following stroke and AD (Olsson et al., 2016; Grande et al., 2025).

NfLight Elevated NfL is linked to cognitive decline and neurodegeneration (Olsson et al., 2016; Grande et al., 2025)

GFAP Biomarker of neuroinflammation that is upregulated AD patients (Grande et al., 2025)

bFGF Increased levels associated with cognitive impairment and AD (Zhao et al., 2025).

FIT1 A VEGF receptor that has been elevated in AD patients (Winfree et al., 2025).

PIGF Elevation associated with cognitive impairment (Hinman et al., 2023; Yang et al., 2024).

VEGF-A Decreased plasma levels associated with dementia (Yang et al., 2024)

Frontiers in Neuroscience
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TABLE 2 Matched patient demographic data.

Control Effect Size!

n =40

Stroke
n =40

Demographics

Age in years, mean (+SD) 63.8 (16.9) 61.9 (11.6) 0.555 0.131
BMI, mean (+SD) 29.3(7.7) 30.5(10.2) 0.569 0.133
Gender, n (%) Female 27 (67.5%) 27 (67.5%) 1 0
HTN, 7 (%) 33 (82.5%) 34 (85.0%) 0.762 0.034
HLD, n (%) 20 (50.0%) 18 (45.0%) 0.654 0.050
Appalachia, 1 (%) 27 (67.5%) 29 (72.5%) 0.626 0.055
'Cohen’s d was used for continuous variables and ¢ (phi) for categorical.
Standardized Mean Differences
HLD -~ » o
HTN — »w o
Gender - » o
Age_at_stroke - o X
BMI | » o
Prop Score - o <X
T T T T T T T
-15 -10 05 00 05 10 15
Difference (Treated - Control)
X AllObs ¢ Region Obs © Matched Obs
O Negligible differences
FIGURE 1
Matched patient demographic data.

d=0.554), and VEGFA (p=0.008, Cliff’s d =0.459) were
significantly elevated in control patients compared to stroke
patients. GFAP (p =0.010, Cliff’s d = 0.409) was significantly
increased in stroke patients. Table 6 shows that within the
non-Appalachian population only GFAP expression differed
significantly between stroke and control patients. GFAP (p = 0.001,
Cliff’s d=0.818) was expressed significantly higher in
stroke patients.

4 Discussion

Dementia continues to be one of the leading causes of disability
after ischemic stroke and research aims to elucidate the molecular
mechanisms connecting stroke to dementia. Identifying key
biomarkers that are associated with dementia after stroke is essential
for pinpointing patients at high risk for dementia and providing them

Frontiers in Neuroscience

with early and intensive cognitive rehabilitation therapy or
pharmacological interventions. This study aimed to identify early-
timepoint changes in arterial expression of proteins previously linked
to Alzheimer’s dementia and VCID. Using CVD controls, we were able
to compare the expression of several dementia biomarkers in stroke
patients compared to controls matched via propensity scoring.
Allowing for a clearer understanding of how the molecular response
to stroke may lead to worsened cognitive outcomes.

A B 40, AP 42, GFAP, and VEGFA expression differed between
stroke and control patients. Expression of A 8 40, A B 42, and VEGFA
were decreased in stroke patients compared to CVD controls, while
GFAP was elevated in the stroke patients. The decrease in A B 40 and
AP 42 was unexpected, especially when compared to previous
literature that found Ap elevated after acute stroke (Sriram et al., 2022;
Lee et al., 2005). AB40 and A B 42, as stated in the cerebral amyloid
hypothesis, accumulate to form plaques and cause neurodegeneration
in AD. This accumulation could be an important connection between
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stroke and VCID. Sriram et al. proposed that higher accumulation of
AP post-stroke could be because of impaired AP clearance due to
dysregulation and increased permeability of the Blood Brain Barrier
(BBB) after ischemic stroke (Sriram et al., 2022). Thus elevated Ap has
been associated with worsened cognitive impairment post-stroke
(Chen et al., 2022; Chi et al., 2019).

Similarly to AP, VEGFA expression was lower in the stroke
population compared to the control population. VEGF is a group
of growth factors that are dysregulated after stroke. VEGF includes
VEGF-A, B, C, and D. Typically, VEGF-A is involved in promoting
angiogenesis and neurogenesis, acting as a neuroprotective agent
post-ischemic stroke (Greenberg and Jin, 2013). The decrease in
VEGFA within stroke patients is contrary to the existing literature

TABLE 3 Stroke vs. control comparison of VCID biomarkers.

Biomarker

10.3389/fnins.2025.1672803

which shows evidence of VEGFA increase after stroke (Slevin et al.,
2000; Matsuo et al., 2013; Qi et al., 2007). The reduction rather
than increase in A B 40, A B 42, and VEGFA within this cohort
could be explained by the acute time-point at which the patient
sample was obtained.

GFAP
intermediate filament protein found on astrocyte cytoskeletons

is a biomarker of neuroinflammation and an

that is upregulated around Ap plaques in AD patients (Kim et al,,
2023). This study found GFAP elevated in stroke patients at an
acute time point, consistent with previous literature. GFAP
typically increases after stroke, reaching peak levels 48 h after
stroke as a result of neural damage (Amalia, 2021). An increase in
GFAP could indicate an increase in the presence of reactive

Effect size!

AB 40 200.4 [153-256] 254 [214-319] 0.006 0363
AR 42 13 [10.9-16] 17.6 [14.3-19.8] <0.001 0.450
tau 9.1[6.1-12.4] 8.4 [5.8-11.1] 0.453 0.098
NfLight 11.8 [8.2-33.3] 14.3 [7.8-38] 0.824 0.030
GFAP 400 [204.4-1259.6] 166.6 [109.4-230.8] <0.001 0.505
pTaul8l 18.6 [12.3-25] 17.9 [14.2-21.5] 0.996 0.001
bFGF 13.3 [6.9-30.6] 17.4 [5.5-38.7] 0.596 0.072
FIT1 7.4[2.1-13.5] 6.1[2.1-11.3] 0.738 0.044
PIGF 5.7 [2.6-16.3] 7.9 [3.7-21.5] 0.214 0.165
VEGFA 16.6 [3.4-45.4] 46.6 [25.1-105.7) 0.005 0.413
VEGFC 24.3 [11.2-36.6] 244 [7.6-54.6] 0.763 0.040
VEGFD 7.3 [4.5-12.2] 8.5 [5.9-14.9] 0.192 0.172

Values represent median and interquartile range.
'Cliff’s d.

TABLE 4 Baseline expression of VCID biomarkers between Appalachian and Non-Appalachian control populations.

Biomarker Appalachian control Non-Appalachian Effect size!
control
n=29 n=11
ApB 40 250 [214-320] 264 [224-318] 0.739 0.069
AB 42 18 [14-19] 18 [13-21] 0.820 0.047
Tau 8 [5-11] 9 [6-11] 0.467 0.150
NfLight 14 [8-31] 19 [11-40] 0.640 0.097
GFAP 154 [105-218] 225 [124-243] 0.224 0.253
pTaul81 18 [14-19] 20 [14-22] 0.269 0.229
bFGF 17 [11-40] 14 [3-37] 0.525 0.138
FIT1 6[2-11] 8 [2-11] 0.662 0.091
PIGF 7 [3-26] 8 [5-20] 0.760 0.064
VEGFA 40 [27-107] 53 [25-86] 1 0.056
VEGEC 20 [6-53] 34 [15-106] 0.798 0.193
VEGFD 8 [6-14] 10 [6-16] 0.371 0.110
Values represent median and interquartile range.
'Cliff’s d.
Frontiers in Neuroscience 05 frontiersin.org
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TABLE 5 Appalachian stroke vs. control comparison of VCID biomarkers.

Biomarker

Appalachian stroke

n =27

Appalachian control

n=29

10.3389/fnins.2025.1672803

Effect size!

AB 40 182.4 [159.2-224] 250 [214-320] 0.005 0.448
AR 42 12.5[9.9-14.1] 17.6 [14.3-18.6] <0.001 0.554
tau 8.8[6.2-12.2] 8.3 [5.5-10.5] 0.550 0.094
NfLight 11.8 [7.4-31.8] 142 [7.6-31.5] 0.883 0.023
GFAP 244.6 [142.2-1820.4] 153.8 [104.6-217.9] 0.010 0.409
pTaul81 18.5 [12.3-25.2] 17.7 [14-19.2] 0711 0.058
bFGF 12.7 [7.3-25.9] 17.4[10.8-39.9] 0332 0.160
FIT1 8.2[3.5-14.7] 6.1 [22-11] 0.261 0.179
PIGF 5.1[2.7-8.5] 7.5 [3.4-25.9] 0.248 0.185
VEGFA 111 [2.9-31.1] 403 [26.5-106.9] 0.008 0.459
VEGFC 21 [11.4-31.7] 20.5 [6.4-52.7] 0.901 0.020
VEGED 7.7 [3.5-11.7] 8.1[5.5-13.7] 0.350 0.148

Values represent median and interquartile range.

'Cliff’s d.

TABLE 6 Non-Appalachian stroke vs. control comparisons of VCID biomarkers.

Biomarker Non-Appalachian Non-Appalachian Effect size!

Stroke Control

n=13 n=11
AB 40 240 [144.6-330] 264 [224-318] 0.543 0.147
AB 42 13.1 [11.4-19.4] 17.7 [13.1-21.2] 0271 0266
tau 10.3 [6.1-14.6] 9.1[6.2-11.3] 0.750 0.077
NfLight 16.9 [8.4-39.1] 18.6 [11.4-39.8] 0.778 0.073
GFAP 878 [552-1259.6] 224.7 [124.2-242.8] 0.001 0.818
pTaul8l 18.7 [15.3-20.4] 20.2 [14.4-21.8] 0.543 0.147
bEGF 18.1 [2.7-42.8] 14 [3.2-374] 1 0.000
FIT1 2.7 [1.9-8.5] 8.2[2.1-11.3] 0.259 0273
PIGF 7.9 [1.7-25.1] 8.3[5.3-19.9] 0.794 0.063
VEGFA 21.6 [14.1-103.8] 53.5 [25.1-86.1] 0477 0.200
VEGEC 34.2 [10.1-41.1] 33.8 [15.2-105.9] 0.664 0.108
VEGED 7.3 [4.9-12.2] 10 [6.3-16.3] 0.369 0217

Values represent median and interquartile range.
'Cliff’s d.

astrocytes which overexpress GFAP (Kim et al., 2023). Reactive
astrocytes have been linked to neuroinflammation in AD patients
that precedes AP plaques, with clinical studies showing a significant
increase in peripheral blood GFAP levels in dementia patients
compared to healthy controls (Kim et al., 2023). Researchers have
identified a positive correlation between increasing GFAP and
functional deficits post ischemic stroke (Amalia, 2021).

The second aim of this study compared the expression of
dementia biomarkers between stroke and control patients in
Appalachian populations and those in non-Appalachian
populations. In the Appalachian population stroke patients A B 40,
AB 42, and VEGFA were decreased, while GFAP was elevated
compared to CVD controls. In the groups of patients from

Frontiers in Neuroscience

non-Appalachian counties only GFAP was significantly altered
between stroke and control patients, with its expression being
elevated in the stroke patients. There were no significant baseline
differences in the expression of A B 40, A B 42, or GFAP between
the CVD controls of Appalachian and non-Apalachin patients.
There was an elevation in VEGFA within the Appalachian
population controls compared to non-Appalachian.

In a previous study, McLouth et al. found worsened functional
outcomes based on NIHSS in Appalachian patients associated with
several plasma proteins (ANG, LIF R, IL15RA, CXCL9, CXCL10,
IL-13, IL-6, and THBS4) at the time of MT, despite no significant
differences in risk factors for stroke between Appalachian and
non-Appalachian stroke patients tested (McLouth et al., 2024). Many
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of the proteins identified in this study have been associated with poor
outcomes and increased stroke severity. Given these findings the
authors suggest that a contributing factor to the worsened cognitive
outcomes in Appalachian patients could be delayed presentation for
treatment within the Appalachian population (McLouth et al., 2024).

The differences found in biomarker expression among
Appalachian and Non-Appalachian populations in this study could
also be explained by the delayed time to treatment experienced by
patients from Appalachia. The decreased levels of A B 40, AP 42,
and VEGFA in the Appalachian stroke patients in this study are
unexpected and not in alignment with the literature. As stated
before, A B 40 and A P 42 elevations have been strongly associated
with worsened cognitive outcomes and would be expected to
elevate in the Appalachian stroke population. However, this
discrepancy may be explained by the early time-point at which
these proteins were measured.

The role of factors such as environmental, socioeconomic, and
behavioral factors may influence differential protein expression
between Appalachian and Non-Appalachian populations. The
Appalachian region relied heavily on coal mining to support its
economy, the process of mining pollutes both the water supply and
air in the region (Zipper and Skousen, 2021). Appalachian counties
also have increased food insecurity, poverty, and reduced access to
healthcare (Appalachian Regional Commission, 2021). People in
Appalachian have higher rates of obesity, higher tobacco usage
(Horn et al., 2022), and lower rates of physical activity compared
to national average (Hoogland et al., 2019). All these factors
contribute to a population at increased risk for stroke (Dong
et al., 2024).

Future directions of this study could explore the expression of
other biomarkers connected to dementia. Current clinical practice
guidelines set by Alzheimer’s Association recommend the use of
blood based biomarkers (BBM) testing as part of diagnostic
workup for AD in conjunction with comprehensive clinical
evaluation, they are not yet used in a predictive capacity in the
United States (Palmqvist et al., 2025). Metanalysis by Grande et al.
underscores GFAP, ptau217, and NfL as emerging predictive
biomarkers for dementia (Grande et al., 2025). Although this
paper explored the expression of GFAP, NfL, and pTaul81 in the
acute time frame of ischemic stroke, ptau217 should be investigate
in future studies. Literature suggests that pTau2l7 is a strong
predictor of AD (Janelidze et al., 2023; Pandey et al., 2025; Xiao
et al., 2024). Furthermore, Barthelemy et al. finds that pTau217
outperforms pTaul8l as a biomarker for AD (Barthelemy et al.,
2020). Another emerging field is the use of extracellular vesicles
(EV) expression to predict dementia. Increased expression of EVs
containing molecular biomarkers such as pTau and A B have been
found to predict AD up to 10 years before clinical onset (Fiandaca
et al., 2015). Recent metanalysis by Taha finds that EVs showed
high diagnostic accuracy in differentiating AD and VCID (Taha,
2025). Given the diagnostic and predictive value of EVs, future
studies are warranted to quantify the expression of EVs
after stroke.

The study is limited by small sample size and absence of Intra and
inter assay CV measurements. Future studies will also need to include
more patients and controls, which will be made possible as the
BACTRAC registry gathers more patient data. Currently, additional
biomarker and data are collected  via

cognitive being
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BACTRAC. Additional timepoints to determine long-term changes in
patient proteomic expression and cognitive consequences will also
be explored.

5 Conclusion

This study demonstrates A B 40, A B 42, GFAP, and VEGFA
are differentially expressed in stroke and CVD controls during
mechanical thrombectomy. Furthermore, we present
evidence demonstrating that there are proteomic differences
between stroke and CVD controls based on the patients’
geographic region. The results of this study add to ongoing
research to identify the expression of markers that can predict
cognitive decline in stroke patients at an early time-point.
Additionally, the investigation into the expression of ADRD and
VCID biomarkers in Appalachian patients demonstrates that
there may be molecular factors that influence stroke outcomes in

this patient population.
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