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Introduction: Identifying brain topology alterations in chronic pain is a crucial 
step in understanding its pathophysiology. The primary objective of this systematic 
review and meta-analysis was to assess alterations in resting-state functional and 
structural global network properties in patients with chronic pain.
Methods: Following the preregistration (PROSPERO CRD42024542390), databases 
were searched for studies comparing connectivity-based whole-brain global 
network properties between patients with chronic pain and healthy controls. Risk 
of bias was assessed using an adapted Newcastle-Ottawa scale. Random-effect 
meta-analyses were conducted for each global network property separately.
Results: A total of 32 functional topology studies and 17 structural topology 
studies were included in the qualitative review, with 27 functional topology studies 
and 17 structural topology studies eligible for meta-analysis across nine unique 
structural and functional global network properties. The number of participants 
per meta-analysis ranged from 178 to 1,592. There was low-certainty evidence 
that chronic pain patients showed impairments in local efficiency of resting-state 
functional whole-brain topology (SMD: −0.50, 95%-CI: −0.81 to −0.19, 95%-PI: 
−1.38 to 0.38), and low to very low-certainty evidence that structural whole-brain 
topology was not altered in chronic pain across nine global network properties. 
The heterogeneity was high in the majority of functional (I2: 1–76%) and structural 
(I2: 68–97%) topology studies. Most functional (50%) and structural (65%) topology 
studies showed some concern regarding the risk of bias.
Discussion: The meta-analyses indicate that functional but not structural whole-
brain topological reorganisation is involved in the pathophysiology of chronic pain.

KEYWORDS

functional connectivity, structural connectivity, graph theory, brain topology, network 
analysis, chronic pain

1 Introduction

Chronic pain imposes a significant personal and economic burden, affecting over 30% of 
the global population (Cohen et al., 2021). Unlike acute pain, which serves an adaptive function, 
chronic pain represents not just a prolonged form of pain but is associated with altered 
structural and functional neural plasticity across widespread brain regions (Kuner and Flor, 
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2016; Brandl et al., 2022). However, the role of these alterations is not 
fully understood. Investigating the underlying neuropathophysiology 
of chronic pain is crucial to facilitate innovations in the management 
of chronic pain disorders.

Advances in neuroimaging techniques and the growing adoption 
of network neuroscience have led to an increased focus on brain 
network topology in chronic pain research. Brain network topology 
refers to both the functional and structural organisation of the brain. 
The topology of a network is decisive for its function, as the principles 
of its information transfer capability naturally arise from its 
organisation (Moon et al., 2015). This is reflected in different brain 
topological alterations across neurological and psychological disorders 
such as depression, Parkinson’s disease, epilepsy, and traumatic brain 
injury (Kambeitz et al., 2016; Farahani et al., 2019; Xu et al., 2021; 
Slinger et al., 2022; Zuo et al., 2023). This raises the question whether 
brain topology can exhibit alterations characteristic of chronic pain.

Graph theory provides a robust mathematical framework for 
quantifying brain network topology (Farahani et al., 2019). In this 
approach, the brain network is modelled as a graph, composed of 
nodes connected by edges. Nodes represent predefined brain regions, 
and edges reflect the physical connection (structural connectivity) or 
synchronous neural activity (functional connectivity) between nodes 
(Bullmore and Sporns, 2009). Edges are defined by connectivity 
strength measures such as streamline count or fractional anisotropy 
(FA) in structural connectomes, or correlation coefficients in functional 
connectomes (Bullmore and Sporns, 2009). Graph theoretical metrics 
can be computed on a global network level, quantifying the topology 
of the entire brain network into a single value regarding its properties, 
such as integration, segregation, centrality, resilience, or small-
worldness (Rubinov and Sporns, 2010). For a brief description of 
common global network properties, please refer to Table 1.

Previous qualitative aggregation efforts reported alterations in global 
brain network topology in chronic pain patients compared to healthy 
individuals (Lenoir et al., 2021; Xin et al., 2024). Still, the certainty of 
evidence remains unknown as a plethora of new studies have been 
published, and no quantitative synthesis has been conducted so far.

The primary objective of this study was to assess differences in 
functional and structural connectivity-based global network 
properties between chronic pain patients and healthy controls. 
Secondarily, we examined whether these alterations varied by chronic 
pain type, distinguishing between chronic primary pain and chronic 
secondary pain. The ICD-11 defines chronic primary pain as a disease 
in its own right, whereas chronic secondary pain arises as a symptom 
of an underlying disease (Treede et  al., 2019). Additionally, the 
influence of psychological comorbidities was explored. By synthesising 
existing evidence, our findings refine the current understanding of 
brain network topology in chronic pain.

2 Methods

The review was preregistered with PROSPERO (CRD42024542390), 
and the reporting used the PRISMA 2020 checklist.

2.1 Search strategy

An electronic database search of MEDLINE via PubMed, Web of 
Science, PsychInfo via EBSCO, CINAHL via EBSCO and Scopus was 

conducted. The search string had three domains (chronic pain, brain 
connectivity, graph analysis) combined by ‘AND’, containing MeSH 
categories and simple search terms (Appendix 1). The ‘Polyglot Search 
Translater’ was utilised to translate the search strings across databases 
(Clark et al., 2020). The initial search was completed from inception 
to April 29, 2024 and was updated on February 20, 2025. Additionally, 
articles which have been included in two a priori identified relevant 
systematic reviews (Lenoir et al., 2021; Xin et al., 2024) were added to 
the screening. The ‘Deduplicator’ software was used to remove article 
duplicates before screening (Forbes et al., 2024).

2.2 Eligibility criteria

Inclusion criteria followed the population, interventions, 
comparators, outcomes and study design (PICOS) framework.

Population. The population group of interest was adults 
(>18 years) with chronic pain, including chronic primary pain (i.e., 
chronic widespread, complex regional pain syndrome, headache or 
orofacial, visceral, musculoskeletal) and chronic secondary pain (i.e., 
cancer-related, postsurgical or posttraumatic, musculoskeletal, 
visceral, neuropathic, headache or orofacial) diagnoses. Chronic pain 
was defined as pain that persists or recurs for more than 3 months, 
following the ICD-11 (Treede et al., 2019). Pain duration of >3 months 
had to be  reported in the sample eligibility criteria, sample 
characteristics or the diagnosis criteria. Articles investigating diseases 
associated with chronic secondary pain had to report the existence of 
pain in their population, either defined in the participants’ inclusion 
criteria or reported as a pain-specific measure.

Intervention. Studies had to assess resting-state functional 
connectivity of grey matter or structural connectivity of white matter 
using neuroimaging techniques such as resting-state functional MRI 
(rs-fMRI), rs-EEG, rs-MEG or diffusion-weighted MRI (dMRI). 
Functional connectivity had to be computed as a form of correlation 
between neural activity measures of brain regions at rest, irrespective 
of neuroimaging technique. Structural connectivity had to 
be computed based on diffusion MRI fibre tractography, irrespective 
of the diffusion tensor model used.

Comparator. The chronic pain group had to be compared with a 
healthy control group without chronic pain.

Outcome. Included studies had to examine graph-theoretical 
global network metrics of whole-brain functional or structural 
connectivity. Structural covariance networks based on T1-weighted 
MRI data and articles solely reporting region-of-interest or 
subnetwork analysis were excluded.

Study design. Any study with a comparative design of chronic 
pain and healthy controls that was published in a peer-reviewed 
journal in English or German was included. Longitudinal studies were 
included if baseline comparison was reported.

The synthesis was conducted separately for functional and 
structural topology.

2.3 Screening

Each record was assessed by two independent reviewers (LB and 
one of AI, LS, RR or SE) using the Systematic Review Facility (SyRF; 
Bahor et al., 2021). First, the title/abstract was screened, then the full 
text was screened to assess eligibility. Disagreements were resolved by 
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EEK and by discussion between the assessors in the title/abstract 
phase and full text phase, respectively.

2.4 Data extraction

Data extraction was performed independently by two reviewers 
(LB, JT). The following information was extracted from the full texts 
of eligible articles: Relevant publication information (author, title, 
year), study demographics (sample size, sex ratio, age, pain duration, 
pain intensity), pain diagnosis, type of chronic pain (primary, 
secondary, both), assessment of psychological comorbidities, 
neuroimaging information (imaging modality, MRI field strength, 
voxel size, number of channels, frequency bandwidth, number of 
diffusion-gradient directions, b-value, tractography type), connectivity 
matrix information (type of connectivity, parcellation scheme, type 
and metric of edges, network thresholding, software used for global 
network property computation), main results (mean and standard 
deviation of connectivity-based global network metrics or p-value). 
Conflicts were resolved by discussion. In longitudinal studies, only 
baseline data were extracted. If studies reported multiple values of an 
outcome across different network thresholding levels or dynamic 
functional connectivity states, the data were pooled. In cases where 
data was reported as median and interquartile range, the mean and 
standard deviation were estimated using a widely used formula 
(Appendix 2; Wan et al., 2014). If outcome measures were reported 
solely in figures, WebPlotDigitizer v5.2 was utilised to extract the data. 
Although a standardised extraction protocol was employed to 
minimise plot digitalisation errors (Appendix 2), small variability in 
the digitalised plot data was expected. Therefore, this data was pooled 
across the two independent extractors. If outcome data could not 
be  extracted, the corresponding author was contacted two times 
within 4 weeks.

2.5 Risk of bias and certainty in evidence 
assessment

There is no gold standard in assessing risk of bias in cross-
sectional studies (Kelly et al., 2024). This review utilised an adapted 
Newcastle-Ottawa Scale for case–control studies (Stang, 2010), which 
has been employed in previous systematic reviews of global network 
properties (Lenoir et al., 2021; Slinger et al., 2022; Gao et al., 2023). It 
assesses the following domains: participant selection (max. 4 points), 
group comparability (max. 2 points) and outcome (max. 3 points; 
Appendix 2). A study can score between 0 and 9 points, with a higher 
score indicating a lower risk of bias. The points were converted to 
percentages and grouped into low risk of bias (71.6–100%), some 
concerns (28.6–71.5%) and high risk of bias (0–28.5%). The grouping 
thresholds ensure that only studies with relatively minor or major 
methodological issues are considered low or high risk of bias, 
respectively. Each included study was assessed by two independent 
assessors (LB, JT), and conflicts were resolved by discussion.

The certainty in evidence was assessed using the GRADE 
approach (very low-certainty to high-certainty). Risk of bias, 
inconsistency, imprecision and publication bias were considered to 
determine the certainty in each meta-analysis. A detailed description 
of the rating is presented in Appendix 2.

2.6 Statistical analysis

All analyses were performed in R v4.4.1 with the meta v8.0–2 R 
package (Balduzzi et al., 2019). Each global network property with at 
least three included studies was analysed separately for structural and 
functional brain topology, comparing the chronic pain group with the 
healthy control group. Subgroup analysis was conducted by 
segregating the chronic pain group into chronic primary pain and 

TABLE 1  Description of common global network properties.

Global network properties Definition Interpretation

Measures of integration

Characteristic path length (L) Average shortest path length between all pairs of nodes in a network
Lower values indicate greater overall connectedness 

(integration)

Global efficiency (Eglob) Average of the inverse shortest path length between all pairs of nodes Higher values indicate greater integration

Measures of segregation

Clustering coefficient (CC)
Fraction of triangles that actually exist over all possible triangles in the 

neighbourhood of a node (*)
Higher values indicate greater local connectedness

Modularity (Q)
Degree to which a network can be partitioned into densely connected 

modules

Higher values indicate stronger modular structure 

(segregation)

Local efficiency (Eloc)
Efficiency of information transfer within a node’s neighbourhood 

(similar to Eglob but for nodes) (*)

Higher values indicate greater efficiency in local 

communities

Measures of centrality

Average degree (Deg) Number of edges connected to a node (*) Higher values indicate a denser network

Other measures

Small-worldness (SW) Ratio comparing CC and L to a random network
Higher values indicate a simultaneously highly 

segregated and integrated network

Normalised mutual information (NMI) Similarity between network partitions Higher values indicate greater similarity

*Average across all nodes of a network.
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chronic secondary pain to explore sources of heterogeneity. In 
functional topology meta-analyses, only studies examining 
low-frequency fluctuations (≤ 0.1 Hz) were included to ensure 
comparability among the studies. To account for expected 
heterogeneity in study characteristics, random-effects meta-analyses 
with a restricted maximum-likelihood approach were performed 
using sample-bias corrected standardised mean difference (SMD; 
Hedges’g) and standard error (Viechtbauer, 2005). The 95% confidence 
intervals (CIs) for the random effects estimates were computed using 
the Hartung-Knapp method with adhoc variance correction (IQWiG6; 
Knapp and Hartung, 2003; IQWiG, 2022). The Hartung-Knapp-
Partlett-Riley method with ad hoc variance correction was applied to 
estimate the 95% prediction intervals (PIs) if at least four studies were 
included in the meta-analysis (Partlett and Riley, 2017). Hedge’s g was 
calculated using the R package esc v0.5.1 (Lüdecke, 2019), based on 
the mean, standard deviation (SD) and sample size. When SDs or 
other measures of uncertainty were unavailable, and the authors were 
non-responsive, we imputed the SD by using the pooled coefficient of 
variation from other studies on the same outcome and converting it 
back to an SD. For studies that only reported p-values, Hedge’s g was 
estimated from the t- or F-statistic. In cases where non-significant 
p-values were reported without sufficient information to determine 
the direction of the effect, Hedge’s g was set to zero (Van Aert et al., 
2016). This approach avoids making arbitrary assumptions about the 
effect size direction while ensuring that such studies contribute to the 
overall analysis through their standard error. When a study compared 
healthy controls to two or more chronic pain groups, the data were 
pooled to avoid sample overlap (Higgins et al., 2019). Heterogeneity 
was assessed using the I2 statistic (Higgins et al., 2019). Publication 
bias was assessed by funnel plot asymmetry, tested with an adapted 
Egger’s test (Pustejovsky and Rodgers, 2019). Sensitivity analysis was 
performed by removing statistical outliers and by removing studies 
with p-value-based imputed SMDs. The alpha level for statistical 
significance for all analyses was set to p < 0.05. The results of each 
meta-analysis were visualised in a forest plot and an overview plot 
containing the pooled SMD and PI of each meta-analysis.

2.7 Deviations from the study protocol

We intended to perform multilevel random-effects meta-analyses 
with neuroimaging information and connectivity matrix information 
included as covariates. Due to substantial missing data in study 
characteristics, we opted to forgo the multilevel meta-regression approach 
in favour of random-effect meta-analyses. Additionally, we intended to 
conduct subgroup analyses based on pain duration and psychological 
comorbidities, but this was not feasible due to the same reason.

3 Results

3.1 Study selection and characteristics

Overall, 1,185 articles were screened at the title/abstract phase, 
and 130 full texts were assessed (Figure 1). Finally, 47 studies were 
included in qualitative synthesis (Balenzuela et al., 2010; Liu et al., 
2011, 2012, 2013, 2017, 2018; Zhang et al., 2014, 2017; Zhang et al., 
2022b; Zhang et al., 2022a; Mansour et al., 2016; Pijnenburg et al., 

2016; Wu et al., 2016, 2020; Li et al., 2017; Wada et al., 2017; Huang 
et al., 2019, 2021; Kaplan et al., 2019; Shi et al., 2019, 2020; Ta Dinh 
et al., 2019; Tu et al., 2019, 2023; De Pauw et al., 2020; Nieboer et al., 
2020; Barroso et al., 2021; Dai et al., 2021; Duan et al., 2021; Fauchon 
et al., 2021; Kurokawa et al., 2021; Larkin et al., 2021; Silvestro et al., 
2021; Chao et al., 2022; Lin et al., 2022; Wang et al., 2022, 2024; Lee 
et al., 2023; Qiu et al., 2023; Yang et al., 2023, 2024, 2025; Kang et al., 
2024; Mao et al., 2024; Matoso et al., 2024; Mei et al., 2024; Zhou et al., 
2024). Excluded studies with the reason for exclusion are provided in 
Appendix 3. Two studies examined both functional and structural 
topology (Zhang et al., 2022a; Yang et al., 2024).

3.1.1 Functional topology studies
Overall, 32 studies examined functional brain topology. A 

qualitative summary of the included functional topology studies is 
provided in Table 2. Notably, a considerable number of studies did not 
report basic population characteristics such as sex, exact pain duration 
or pain intensity. Twenty-eight studies used rs-fMRI, three used 
rs-MEG, and one used rs-EEG. Of the 27 studies using an atlas-based 
parcellation approach, 15 (56%) chose a version of the AAL atlas. The 
existence of psychological comorbidities was an exclusion criterion in 
20 (63%) studies, 15 (47%) studies assessed psychological 
comorbidities using patient-reported outcome measures (eight [25%] 
studies only in the chronic pain group), and eight (25%) studies did 
not report them at all. A detailed overview of all functional topology 
studies is presented in Appendix 4.

3.1.2 Structural topology studies
Structural brain topology was investigated by 17 studies. A 

qualitative summary of the included structural topology studies is 
provided in Table 1. Notably, a considerable number of studies did not 
report basic population characteristics such as sex, exact pain duration 
or pain intensity. Twelve (71%) studies employed a version of the AAL 
atlas. A single-shell dMRI acquisition protocol was used in 15 (88%) 
of included studies. The existence of psychological comorbidities was 
an exclusion criterion in six (35%) studies, seven (41%) studies 
assessed psychological comorbidities using patient-reported outcome 
measures (five [29%] only in the chronic pain group), and seven (41%) 
studies did not report psychological comorbidities at all. A detailed 
overview of all structural topology studies is presented in Appendix 4.

3.1.3 Risk of bias
The results of the risk of bias assessment are illustrated in Figure 2. 

Among the 32 studies that assessed functional brain topology, 11 
(34%) were deemed to have low risk of bias, 16 (50%) had some 
concerns, and five (16%) were classified as having a high risk of bias. 
Of the 17 studies that examined structural brain topology, five (29%) 
scored low risk of bias, 11 (65%) had some concerns, and one (6%) 
had high risk of bias. When examining domain-specific risk of bias, 
14 (44%) and 10 (59%) of functional and structural topology studies 
exhibited a high risk of bias in participant selection.

3.2 Meta-analysis

3.2.1 Data handling
For at least one outcome, the mean and standard deviation were 

extracted directly in 16 studies (Zhang et al., 2014; Liu et al., 2017, 
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2018; Kaplan et al., 2019; Wu et al., 2020; Dai et al., 2021; Fauchon et al., 
2021; Huang et al., 2021; Kurokawa et al., 2021; Chao et al., 2022; Wang 
et al., 2022, 2024; Lee et al., 2023; Yang et al., 2023, 2024; Mao et al., 
2024) WebPlotDigitizer was used in 24 studies (Balenzuela et al., 2010; 
Liu et al., 2011, 2012, 2013; Mansour et al., 2016; Pijnenburg et al., 
2016; Li et al., 2017; Zhang et al., 2017, 2022a,b; Huang et al., 2019; Shi 
et al., 2019; De Pauw et al., 2020; Barroso et al., 2021; Duan et al., 2021; 
Fauchon et al., 2021; Larkin et al., 2021; Lin et al., 2022; Tu et al., 2023; 
Kang et al., 2024; Matoso et al., 2024; Mei et al., 2024; Zhou et al., 2024; 
Yang et al., 2025), and the standard deviation was imputed in five 
studies (Balenzuela et al., 2010; Shi et al., 2019; Silvestro et al., 2021; 
Zhang et al., 2022b; Kang et al., 2024). Pooling of multiple groups was 
performed in 10 studies (Liu et al., 2011; Mansour et al., 2016; De Pauw 
et al., 2020; Wu et al., 2020; Dai et al., 2021; Duan et al., 2021; Fauchon 
et al., 2021; Mei et al., 2024; Yang et al., 2024; Zhou et al., 2024). Two of 
these studies included both a chronic primary and secondary pain 
group, which were handled separately for the subgroup analysis (De 
Pauw et al., 2020; Mansour et al., 2016). In 40 studies, the SMD was 
computed based on the mean and standard deviation for at least one 
outcome (Balenzuela et al., 2010; Liu et al., 2011, 2012, 2013, 2017, 
2018; Zhang et al., 2014, 2017, 2022a,b;Mansour et al., 2016; Pijnenburg 

et al., 2016; Li et al., 2017; Huang et al., 2019, 2021; Kaplan et al., 2019; 
Shi et al., 2019; De Pauw et al., 2020; Wu et al., 2020; Barroso et al., 
2021; Dai et al., 2021; Duan et al., 2021; Fauchon et al., 2021; Kurokawa 
et al., 2021; Larkin et al., 2021; Silvestro et al., 2021; Chao et al., 2022; 
Lin et al., 2022; Wang et al., 2022, 2024; Lee et al., 2023; Tu et al., 2023; 
Yang et al., 2023, 2024, 2025; Kang et al., 2024; Mao et al., 2024; Matoso 
et al., 2024; Mei et al., 2024; Zhou et al., 2024). In four studies, the SMD 
was estimated based on the p-value (Wada et al., 2017; Shi et al., 2019; 
Silvestro et al., 2021; Tu et al., 2023), and in one study, the F-value was 
used (Tu et al., 2019). The SMD could not be estimated for at least one 
outcome in four studies due to insufficient reporting (Balenzuela et al., 
2010; Shi et al., 2020; Barroso et al., 2021; Lin et al., 2022). The authors 
were contacted in 12 cases, with a response rate of 8% (n = 1).

3.2.2 Functional topology
Meta-analysis was eligible for nine unique global network 

properties of functional topology (across 27 rs-fMRI studies). A 
qualitative synthesis of studies excluded from the meta-analysis is 
presented in Appendix 5. There was low-certainty evidence that 
chronic pain patients showed lower local efficiency in functional 
whole-brain topology (Figure 3). Additionally, there was low to 

FIGURE 1

PRISMA-flowchart of study selection.
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TABLE 2  Summary of study characteristics.

Functional topology studies (k = 32) Structural topology studies (k = 17)

Population characteristics

Study size (n) 24–185 25–185

Pain type (k)

CPP (k = 17)

CSP (k = 15)

Mixed (k = 1)

CPP (k = 13)

CSP (k = 4)

Sex (% of ♂)
0–100%

Missing (k = 4)

0–100%

Missing (k = 2)

Mean age (years)
22–73

Missing (k = 1)
22–60

Pain duration (months)
5–228

Missing (k = 10)*

35–241

Missing (k = 3)*

Pain intensity (NRS)
3.7–8.2

Missing (k = 7)

4.1–8.1

Missing (k = 2)

Imaging characteristics

Imaging modality

rs-fMRI (k = 28)

rs-MEG (k = 3)

rs-EEG (k = 1)

dMRI (k = 17)

MRI-specific characteristics

MRI field strength
3 T (k = 26)

1.5 T (k = 1)

3 T (k = 16)

1.5 T (k = 1)

Voxel dimensions

Isotropic (k = 9)

Anisotropic (k = 18)

2–8 mm

Isotropic (k = 9)

Anisotropic (k = 8)

1.1–3.3 mm

Modality-specific

Resting-state frequency:

0.008–0.1 Hz

(one exception with low-pass

filter of 0.15 Hz)

Unique diffusion

gradient directions:

30–124

b-value:

1,000–3,000

Tractography:

Deterministic (k = 7)

Probabilistic (k = 7)

Missing (k = 3)

Network characteristics

Parcellation approach

Atlas-based (k = 27)

ICA-based (k = 2)

Voxel-based (k = 2)

Channel-based (k = 1)

Atlas-based (k = 17)

Node size (n)
8–400

(Two exceptions with 2020 and 5,828)
15–300

Network thresholding

Density (k = 27)

Absolute (k = 1)

MST (k = 1)

None (k = 1)

Missing (k = 2)

Density (k = 5)

Absolute (k = 1)

Statistical sig. (k = 1)

None (k = 5)

Missing (k = 5)

Edge type

Binary (k = 20)

Weighted (k = 5)

Missing (k = 7)

Binary (k = 7)

Weighted (k = 8)

Missing (k = 3)

(Continued)
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very low-certainty evidence that chronic pain patients exhibited 
no difference in functional whole-brain topology assessed by 
clustering coefficient, normalised clustering coefficient, global 
efficiency, characteristic path length, normalised characteristic 
path length, normalised mutual information, modularity and 
small-worldness (Figure 3). The heterogeneity in overall chronic 
pain meta-analysis was high, ranging from 67 to 76%, except for 
the normalised characteristic path length, with 1%. Subgroup 
analysis showed similar results, with low-certainty evidence of 
lower local efficiency in chronic primary pain and chronic 
secondary pain compared to healthy controls (Figure  3). All 
accompanying forest plots are presented in Appendix 6. The 
results were robust to outlier removal sensitivity analysis 
(Appendix 6). When removing studies with p-value-based 
imputed SMDs, the significant difference in  local efficiency 
between chronic primary pain and healthy controls disappeared 
(SMD, −0.51; 95%-CI: −1.47, 0.45; Appendix 6). All other results 
were robust to this sensitivity analysis (Appendix 6).

3.2.3 Structural topology
Meta-analysis was eligible for nine unique global network 

properties of structural topology (across 17 dMRI studies). 
There was low to very low-certainty evidence that chronic pain 
patients showed no difference in structural whole-brain topology 
assessed by average degree, clustering coefficient, normalised 
clustering coefficient, global efficiency, local efficiency, 
characteristic path length, normalised characteristic path length, 
modularity, and small-worldness (Figure 4). The heterogeneity 
in chronic pain overall meta-analyses was substantial, ranging 
from 68 to 97%. Subgroup analysis also revealed no alterations 
in structural brain topology in chronic primary and secondary 
pain (Figure  4). In outlier-removal-sensitivity analysis, the 
results remained non-significant (Appendix 7). The results were 
robust when removing studies with p-value-based imputed 
SMDs (Appendix 7).

4 Discussion

The primary aim of this study was to quantitatively synthesise 
alterations in functional and structural connectivity-based global 
network properties of whole-brain topology in chronic pain. There 
was low-certainty evidence that chronic pain patients showed 
impairments in local efficiency of resting-state functional whole-brain 
topology, and low to very low-certainty evidence that structural 
whole-brain topology was not altered in chronic pain.

4.1 Lower local efficiency in resting-state 
functional network in chronic pain

Local efficiency quantifies how effectively information is 
transferred within local neighbourhoods of a network (Figure 5). 
It is therefore a measure of segregation, reflecting the brain’s 
capacity for specialised processing within densely interconnected 
groups of brain regions (Rubinov and Sporns, 2010). Patients with 
chronic pain showed lower local efficiency in their resting-state 
functional network, indicating reduced local specialisation and 
suggesting a shift towards greater global integration. Both chronic 
primary pain and chronic secondary pain exhibited impairments 
in local efficiency, suggesting that chronic pain, regardless of its 
origin, is associated with similar reorganisation of functional 
whole-brain topology.

In healthy individuals, the resting state is dominated by 
activity in the default mode network (DMN), associated with self-
referential thought. A recent meta-analysis of resting-state fMRI 
studies concluded that patients with chronic pain exhibit altered 
intra-DMN connectivity and increased connectivity between 
DMN and somatosensory regions (Fiúza-Fernandes et al., 2025). 
This pattern further supports a shift towards global integration 
through stronger interconnectedness of self-referential processes 
and pain processing.

Impairments in local efficiency of the functional whole-brain 
network have also been reported in a meta-analysis of patients 
with depression (Xu et  al., 2021), a common comorbidity in 
chronic pain (De La Rosa et  al., 2024). Due to inconsistent 
reporting of psychological comorbidities in the included studies, 
we  were unable to determine their influence on functional 
topology alterations in chronic pain. Therefore, it is unclear 
whether local efficiency impairments are characteristic of chronic 
pain, are conditional on the presence of psychological 
comorbidities such as depression, or are a shared neural principle 
across conditions.

4.2 No structural whole-brain topology 
alterations in chronic pain

Our meta-analyses concluded that the structural whole-brain 
topology remains unaltered in chronic pain. This contrasts with 
neurological diseases with substantial anatomical changes, such 
as epilepsy, Parkinson’s disease, or traumatic brain injury, which 
have demonstrated impairments in structural whole-brain 
topology (Imms et al., 2019; Slinger et al., 2022; Zuo et al., 2023). 

TABLE 2  (Continued)

Functional topology studies (k = 32) Structural topology studies (k = 17)

Edge metric

Full correlation (k = 25)

Partial correlation (k = 2)

Other (k = 5)

SLC (k = 11)

FA (k = 6)

Network properties (n) 21 14

*No exact pain duration was reported but inclusion criteria specified pain duration of >3 months. CPP, Chronic primary pain. CSP, Chronic secondary pain. dMRI, Diffusion-weighted 
magnetic resonance imaging. FA, Fractional anisotropy. ICA, Independent component analysis. MST, Minimum spanning tree. NRS, Numeric rating scale. rs-EEG, Resting-state 
electroencephalogram. rs-fMRI, Resting-state functional magnetic resonance imaging. rs-MEG, Resting-state magnetoencephalography. SLC, Streamline count.
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FIGURE 2

Risk of bias assessment grouped by functional and structural topology, chronic primary pain (CPP), and chronic secondary pain (CSP).
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FIGURE 3

Functional topology: Summary of all meta-analyses ordered by global network property (clustering coefficient [CC]; normalised clustering coefficient 
[CCnorm]; global efficiency [Eglob]; local efficiency [Eloc]; characteristic path length [L]; normalised characteristic path length [Lnorm]; normalised mutual 
information [NMI]; modularity [Q]; small-worldness [SW]) and pain type (overall; chronic primary pain [CPP]; chronic secondary pain [CSP]). The 
diamond depicts the pooled SMD and the error bar its 95% prediction interval; CP, Chronic pain.

FIGURE 4

Structural topology: Summary of all meta-analyses ordered by global network property (clustering coefficient [CC]; normalised clustering coefficient 
[CCnorm]; degree [deg]; global efficiency [Eglob]; local efficiency [Eloc]; characteristic path length [L]; normalised characteristic path length [Lnorm]; 
modularity [Q]; small-worldness [SW]) and pain type (Overall, chronic primary pain [CPP], chronic secondary pain [CSP]). The diamond depicts the 
pooled SMD and the error bar its 95% prediction interval; CP, Chronic pain.
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Interestingly, dMRI-based alterations of various white matter 
bundles have been documented in chronic pain, including the 
corpus callosum, thalamic radiations, internal capsule and corona 
radiata (Bautin et  al., 2025). However, these microstructural 
changes do not necessarily affect the global organisation of the 
structural connectome, suggesting preserved large-scale brain 
architecture despite local white matter disruptions.

4.3 Heterogeneity and risk of bias

The heterogeneity was with I2 values of more than 50% in 
most meta-analyses, and wide prediction intervals, considered to 
be high. Although no meta-regression was performed to evaluate 
heterogeneity, the qualitative synthesis showed a wide range in 
population and methodological characteristics of the included 
studies. For example, included studies investigated different 
chronic pain syndromes, including headache, orofacial pain, 
visceral pain, musculoskeletal pain, widespread pain, complex 
regional pain syndromes and neuropathic pain. Notably, half of 
the structural topology studies and about one-third of functional 
topology studies examined migraine, indicating a bias in the 
meta-analyses.

The methodological characteristics of the included studies 
reflect the current lack of a gold standard in graph-theoretical 
brain network analysis (Fornito et al., 2013; Bahrami et al., 2023). 
Differences in parcellation scheme, network thresholding, and 
edge definition may have influenced the results of our meta-
analysis. While several global network properties remain robust 
across different parcellation schemes at a consistent resolution 
(number of nodes), altering the parcellation resolution 
significantly impacts these global metrics (Zalesky et al., 2010). 
Since the number of nodes (84–264) of most studies was on a 
similar scale, parcellation was less likely to influence the results. 
However, it must be  noted that in functional networks, larger 

parcellation units yield smoother, less specific time courses, which 
in turn reduce the specificity of the resulting network topology 
(De Reus and Van Den Heuvel, 2013). Different thresholding 
methods are applied to networks to account for spurious 
connections, but they introduce specific limitations (van Wijk 
et al., 2010). Although most included studies employed density-
based thresholding, which retains a specific percentage of the 
strongest connections, the range of the used thresholds varied 
widely, adding heterogeneity to the meta-analyses as the choice of 
a density threshold influences the graph measures (van Wijk et al., 
2010). Additionally, structural topology studies showed higher 
heterogeneity in network binarisation and edge metric, adding 
further variability, while functional topology studies showed 
higher concordance in these characteristics. Many rs-fMRI and 
some dMRI studies acquired anisotropic voxels, potentially 
introducing anatomical inaccuracies, partial volume effects, and 
other directional biases (Mulder et  al., 2019). Most structural 
topology studies used the simple DTI model with a one-shell 
diffusion acquisition scheme with 30 to 64 directions, yielding 
high residuals in the tensor model. Future studies should embrace 
the advancements made in dMRI acquisition and processing over 
the last 15 years by utilising multi-shell acquisitions, which enable 
state-of-the-art dMRI analysis (Bautin et al., 2025).

The risk of bias assessment of this review indicates a considerable 
risk in the selection of study participants, a common pitfall of cross-
sectional studies. Future studies should improve this by clearly 
defining their control group and by investigating more representative 
study samples. Strikingly, many studies showed poor reporting, 
missing basic population and methodological information such as 
sex, exact pain duration, pain intensity, edge type, network 
thresholding or tractography algorithm. Additionally, some studies 
lacked sufficient outcome data for cross-study pooling. Overall, the 
methodological heterogeneity and concerning reporting quality 
complicate the interpretation of cross-study comparisons of global 
network properties and call for standardisation in graph theoretical 
analysis of brain networks.

4.4 Limitations

The findings of this review should be considered with several 
methodological limitations in mind. First, as the meta-analyses 
only included functional topology studies investigating 
low-frequency fluctuations (≤ 0.1 Hz), no quantitative statement 
about other frequency bands (investigated in four studies) can 
be  made. Second, four studies were excluded from the meta-
analyses because their results could not be extracted due to poor 
reporting. As their results showed no alterations in brain 
topology, they would likely not alter the overall results of this 
review. Third, not all reported global network properties could 
be  pooled due to limitations in the number of studies 
investigating them, as not all studies reported all metrics. Fourth, 
the review excluded studies investigating structural covariance 
networks as they do not analyse white matter topology but 
analyse structural topology based on the correlation of 
morphology parameters of grey matter regions. It remains 
unclear whether this approach can identify structural whole-
brain topology alterations in chronic pain. Additionally, 

FIGURE 5

Schematic representation of local efficiency. (A) Local efficiency of a 
node is increased as the number of connections between its 
neighbouring nodes increases. (B) Local efficiency as a global 
network property is determined by the average local efficiency of all 
nodes within a given network.
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systematic differences in brain topology alteration may exist 
among different pain diagnoses. Pooling data across all diagnoses 
may have introduced sufficient variance to obscure any 
difference between healthy controls and chronic pain patients.

4.5 Implications for clinic and research

Our meta-analysis showed that impairments in local efficiency 
within the resting-state whole-brain network are associated with 
both chronic primary and secondary pain diagnoses. However, it 
remains unclear whether the functional topology reorganisation is 
a consequence of chronic pain or if it contributes to its development. 
Future studies may focus on determining the time course of 
functional topology reorganisation, its modulation by therapeutic 
interventions and consider psychological comorbidities as a 
possible influencing factor.

While the whole-brain approach captures essential 
characteristics of the entire macroscale brain organisation, it may 
lack sensitivity to detect subtle disease-related changes in network 
topology. Investigations of subnetworks such as large-scale brain 
networks (Uddin et al., 2019), or the ‘pain matrix’ (Legrain et al., 
2011) could reveal structural and functional topology alterations 
confined to specific subnetworks previously masked by the whole-
brain approach. Additionally, future studies could use further global 
network properties such as the hub disruption index, which captures 
changes at the nodal level, shows high reliability and sensitivity 
(Termenon et al., 2016), and has already been used in some pain 
studies (Huang et  al., 2019; De Pauw et  al., 2020; Barroso 
et al., 2021).

5 Conclusion

This is the first study to quantitatively synthesise connectivity-
based global network properties of functional and structural brain 
topology in chronic pain. There was low-certainty evidence that 
chronic pain patients showed impairments in  local efficiency of 
resting-state functional whole-brain topology, and low to very 
low-certainty evidence that structural whole-brain topology was 
not altered in chronic pain. This indicates that functional but not 
anatomical whole-brain topological reorganisation is involved in 
the pathophysiology of chronic pain. This review highlights the 
need for standardisation in graph-theoretical brain network 
analyses and reporting of methods and results. Additionally, future 
studies should consider psychological comorbidities and expand 
the analyses to specific subnetworks when investigating brain 
topology in chronic pain.
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