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Introduction: Identifying brain topology alterations in chronic pain is a crucial
step in understanding its pathophysiology. The primary objective of this systematic
review and meta-analysis was to assess alterations in resting-state functional and
structural global network properties in patients with chronic pain.

Methods: Following the preregistration (PROSPERO CRD42024542390), databases
were searched for studies comparing connectivity-based whole-brain global
network properties between patients with chronic pain and healthy controls. Risk
of bias was assessed using an adapted Newcastle-Ottawa scale. Random-effect
meta-analyses were conducted for each global network property separately.
Results: A total of 32 functional topology studies and 17 structural topology
studies were included in the qualitative review, with 27 functional topology studies
and 17 structural topology studies eligible for meta-analysis across nine unique
structural and functional global network properties. The number of participants
per meta-analysis ranged from 178 to 1,592. There was low-certainty evidence
that chronic pain patients showed impairments in local efficiency of resting-state
functional whole-brain topology (SMD: -0.50, 95%-Cl: -0.81 to —0.19, 95%-P!:
—-1.38 to 0.38), and low to very low-certainty evidence that structural whole-brain
topology was not altered in chronic pain across nine global network properties.
The heterogeneity was high in the majority of functional (I>: 1-76%) and structural
(1>: 68—-97%) topology studies. Most functional (50%) and structural (65%) topology
studies showed some concern regarding the risk of bias.

Discussion: The meta-analyses indicate that functional but not structural whole-
brain topological reorganisation is involved in the pathophysiology of chronic pain.

KEYWORDS

functional connectivity, structural connectivity, graph theory, brain topology, network
analysis, chronic pain

1 Introduction

Chronic pain imposes a significant personal and economic burden, affecting over 30% of
the global population (Cohen et al., 2021). Unlike acute pain, which serves an adaptive function,
chronic pain represents not just a prolonged form of pain but is associated with altered
structural and functional neural plasticity across widespread brain regions (Kuner and Flor,
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2016; Brandl et al., 2022). However, the role of these alterations is not
fully understood. Investigating the underlying neuropathophysiology
of chronic pain is crucial to facilitate innovations in the management
of chronic pain disorders.

Advances in neuroimaging techniques and the growing adoption
of network neuroscience have led to an increased focus on brain
network topology in chronic pain research. Brain network topology
refers to both the functional and structural organisation of the brain.
The topology of a network is decisive for its function, as the principles
of its information transfer capability naturally arise from its
organisation (Moon et al., 2015). This is reflected in different brain
topological alterations across neurological and psychological disorders
such as depression, Parkinson’s disease, epilepsy, and traumatic brain
injury (Kambeitz et al., 2016; Farahani et al., 2019; Xu et al., 2021;
Slinger et al., 2022; Zuo et al., 2023). This raises the question whether
brain topology can exhibit alterations characteristic of chronic pain.

Graph theory provides a robust mathematical framework for
quantifying brain network topology (Farahani et al., 2019). In this
approach, the brain network is modelled as a graph, composed of
nodes connected by edges. Nodes represent predefined brain regions,
and edges reflect the physical connection (structural connectivity) or
synchronous neural activity (functional connectivity) between nodes
(Bullmore and Sporns, 2009). Edges are defined by connectivity
strength measures such as streamline count or fractional anisotropy
(FA) in structural connectomes, or correlation coefficients in functional
connectomes (Bullmore and Sporns, 2009). Graph theoretical metrics
can be computed on a global network level, quantifying the topology
of the entire brain network into a single value regarding its properties,
such as integration, segregation, centrality, resilience, or small-
worldness (Rubinov and Sporns, 2010). For a brief description of
common global network properties, please refer to Table 1.

Previous qualitative aggregation efforts reported alterations in global
brain network topology in chronic pain patients compared to healthy
individuals (Lenoir et al., 2021; Xin et al., 2024). Still, the certainty of
evidence remains unknown as a plethora of new studies have been
published, and no quantitative synthesis has been conducted so far.

The primary objective of this study was to assess differences in
functional and structural connectivity-based global network
properties between chronic pain patients and healthy controls.
Secondarily, we examined whether these alterations varied by chronic
pain type, distinguishing between chronic primary pain and chronic
secondary pain. The ICD-11 defines chronic primary pain as a disease
in its own right, whereas chronic secondary pain arises as a symptom
of an underlying disease (Treede et al,, 2019). Additionally, the
influence of psychological comorbidities was explored. By synthesising
existing evidence, our findings refine the current understanding of
brain network topology in chronic pain.

2 Methods

The review was preregistered with PROSPERO (CRD42024542390),
and the reporting used the PRISMA 2020 checklist.
2.1 Search strategy

An electronic database search of MEDLINE via PubMed, Web of
Science, PsychInfo via EBSCO, CINAHL via EBSCO and Scopus was
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conducted. The search string had three domains (chronic pain, brain
connectivity, graph analysis) combined by AND), containing MeSH
categories and simple search terms (Appendix 1). The ‘Polyglot Search
Translater’ was utilised to translate the search strings across databases
(Clark et al., 2020). The initial search was completed from inception
to April 29, 2024 and was updated on February 20, 2025. Additionally,
articles which have been included in two a priori identified relevant
systematic reviews (Lenoir et al., 2021; Xin et al., 2024) were added to
the screening. The ‘Deduplicator’ software was used to remove article
duplicates before screening (Forbes et al., 2024).

2.2 Eligibility criteria

Inclusion criteria followed the population, interventions,
comparators, outcomes and study design (PICOS) framework.

Population. The population group of interest was adults
(>18 years) with chronic pain, including chronic primary pain (i.e.,
chronic widespread, complex regional pain syndrome, headache or
orofacial, visceral, musculoskeletal) and chronic secondary pain (i.e.,
cancer-related, postsurgical or posttraumatic, musculoskeletal,
visceral, neuropathic, headache or orofacial) diagnoses. Chronic pain
was defined as pain that persists or recurs for more than 3 months,
following the ICD-11 (Treede et al., 2019). Pain duration of >3 months
had to be reported in the sample eligibility criteria, sample
characteristics or the diagnosis criteria. Articles investigating diseases
associated with chronic secondary pain had to report the existence of
pain in their population, either defined in the participants’ inclusion
criteria or reported as a pain-specific measure.

Intervention. Studies had to assess resting-state functional
connectivity of grey matter or structural connectivity of white matter
using neuroimaging techniques such as resting-state functional MRI
(rs-fMRI), rs-EEG, rs-MEG or diffusion-weighted MRI (dMRI).
Functional connectivity had to be computed as a form of correlation
between neural activity measures of brain regions at rest, irrespective
of neuroimaging technique. Structural connectivity had to
be computed based on diffusion MRI fibre tractography, irrespective
of the diffusion tensor model used.

Comparator. The chronic pain group had to be compared with a
healthy control group without chronic pain.

Outcome. Included studies had to examine graph-theoretical
global network metrics of whole-brain functional or structural
connectivity. Structural covariance networks based on T1-weighted
MRI data and articles solely reporting region-of-interest or
subnetwork analysis were excluded.

Study design. Any study with a comparative design of chronic
pain and healthy controls that was published in a peer-reviewed
journal in English or German was included. Longitudinal studies were
included if baseline comparison was reported.

The synthesis was conducted separately for functional and
structural topology.

2.3 Screening

Each record was assessed by two independent reviewers (LB and
one of AL, LS, RR or SE) using the Systematic Review Facility (SyRF;
Bahor et al., 2021). First, the title/abstract was screened, then the full
text was screened to assess eligibility. Disagreements were resolved by
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TABLE 1 Description of common global network properties.
Global network properties = Definition

Measures of integration

10.3389/fnins.2025.1672542

Interpretation

Characteristic path length (L)

Average shortest path length between all pairs of nodes in a network

Lower values indicate greater overall connectedness

(integration)

Global efficiency (Egq,)

Average of the inverse shortest path length between all pairs of nodes

Higher values indicate greater integration

Measures of segregation

Clustering coefficient (CC)
neighbourhood of a node (*)

Fraction of triangles that actually exist over all possible triangles in the

Higher values indicate greater local connectedness

Modularity (Q) dul
modules

Degree to which a network can be partitioned into densely connected

Higher values indicate stronger modular structure

(segregation)

Local efficiency (E,,c)
(similar to Ey, but for nodes) (*)

Efficiency of information transfer within a node’s neighbourhood

Higher values indicate greater efficiency in local

communities

Measures of centrality

Average degree (Deg) Number of edges connected to a node (*)

Higher values indicate a denser network

Other measures

Small-worldness (SW)

Ratio comparing CC and L to a random network

Higher values indicate a simultaneously highly

segregated and integrated network

Normalised mutual information (NMI) | Similarity between network partitions

Higher values indicate greater similarity

* Average across all nodes of a network.

EEK and by discussion between the assessors in the title/abstract
phase and full text phase, respectively.

2.4 Data extraction

Data extraction was performed independently by two reviewers
(LB, JT). The following information was extracted from the full texts
of eligible articles: Relevant publication information (author, title,
year), study demographics (sample size, sex ratio, age, pain duration,
pain intensity), pain diagnosis, type of chronic pain (primary,
secondary, both), assessment of psychological comorbidities,
neuroimaging information (imaging modality, MRI field strength,
voxel size, number of channels, frequency bandwidth, number of
diffusion-gradient directions, b-value, tractography type), connectivity
matrix information (type of connectivity, parcellation scheme, type
and metric of edges, network thresholding, software used for global
network property computation), main results (mean and standard
deviation of connectivity-based global network metrics or p-value).
Conflicts were resolved by discussion. In longitudinal studies, only
baseline data were extracted. If studies reported multiple values of an
outcome across different network thresholding levels or dynamic
functional connectivity states, the data were pooled. In cases where
data was reported as median and interquartile range, the mean and
standard deviation were estimated using a widely used formula
(Appendix 2; Wan et al., 2014). If outcome measures were reported
solely in figures, WebPlotDigitizer v5.2 was utilised to extract the data.
Although a standardised extraction protocol was employed to
minimise plot digitalisation errors (Appendix 2), small variability in
the digitalised plot data was expected. Therefore, this data was pooled
across the two independent extractors. If outcome data could not
be extracted, the corresponding author was contacted two times
within 4 weeks.
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2.5 Risk of bias and certainty in evidence
assessment

There is no gold standard in assessing risk of bias in cross-
sectional studies (Kelly et al., 2024). This review utilised an adapted
Newcastle-Ottawa Scale for case—control studies (Stang, 2010), which
has been employed in previous systematic reviews of global network
properties (Lenoir et al., 2021; Slinger et al., 2022; Gao et al,, 2023). It
assesses the following domains: participant selection (max. 4 points),
group comparability (max. 2 points) and outcome (max. 3 points;
Appendix 2). A study can score between 0 and 9 points, with a higher
score indicating a lower risk of bias. The points were converted to
percentages and grouped into low risk of bias (71.6-100%), some
concerns (28.6-71.5%) and high risk of bias (0-28.5%). The grouping
thresholds ensure that only studies with relatively minor or major
methodological issues are considered low or high risk of bias,
respectively. Each included study was assessed by two independent
assessors (LB, JT), and conflicts were resolved by discussion.

The certainty in evidence was assessed using the GRADE
approach (very low-certainty to high-certainty). Risk of bias,
inconsistency, imprecision and publication bias were considered to
determine the certainty in each meta-analysis. A detailed description
of the rating is presented in Appendix 2.

2.6 Statistical analysis

All analyses were performed in R v4.4.1 with the meta v8.0-2 R
package (Balduzzi et al., 2019). Each global network property with at
least three included studies was analysed separately for structural and
functional brain topology, comparing the chronic pain group with the
healthy control group. Subgroup analysis was conducted by
segregating the chronic pain group into chronic primary pain and
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chronic secondary pain to explore sources of heterogeneity. In
functional topology meta-analyses, only studies examining
low-frequency fluctuations (< 0.1 Hz) were included to ensure
comparability among the studies. To account for expected
heterogeneity in study characteristics, random-effects meta-analyses
with a restricted maximum-likelihood approach were performed
using sample-bias corrected standardised mean difference (SMD;
Hedges’g) and standard error (Viechtbauer, 2005). The 95% confidence
intervals (CIs) for the random effects estimates were computed using
the Hartung-Knapp method with adhoc variance correction (IQWiG6;
Knapp and Hartung, 2003; IQWiG, 2022). The Hartung-Knapp-
Partlett-Riley method with ad hoc variance correction was applied to
estimate the 95% prediction intervals (PIs) if at least four studies were
included in the meta-analysis (Partlett and Riley, 2017). Hedge’s g was
calculated using the R package esc v0.5.1 (Liidecke, 2019), based on
the mean, standard deviation (SD) and sample size. When SDs or
other measures of uncertainty were unavailable, and the authors were
non-responsive, we imputed the SD by using the pooled coefficient of
variation from other studies on the same outcome and converting it
back to an SD. For studies that only reported p-values, Hedge’s g was
estimated from the t- or F-statistic. In cases where non-significant
p-values were reported without sufficient information to determine
the direction of the effect, Hedge’s g was set to zero (Van Aert et al,,
2016). This approach avoids making arbitrary assumptions about the
effect size direction while ensuring that such studies contribute to the
overall analysis through their standard error. When a study compared
healthy controls to two or more chronic pain groups, the data were
pooled to avoid sample overlap (Higgins et al., 2019). Heterogeneity
was assessed using the I2 statistic (Higgins et al., 2019). Publication
bias was assessed by funnel plot asymmetry, tested with an adapted
Egger’s test (Pustejovsky and Rodgers, 2019). Sensitivity analysis was
performed by removing statistical outliers and by removing studies
with p-value-based imputed SMDs. The alpha level for statistical
significance for all analyses was set to p < 0.05. The results of each
meta-analysis were visualised in a forest plot and an overview plot
containing the pooled SMD and PI of each meta-analysis.

2.7 Deviations from the study protocol

We intended to perform multilevel random-effects meta-analyses
with neuroimaging information and connectivity matrix information
included as covariates. Due to substantial missing data in study
characteristics, we opted to forgo the multilevel meta-regression approach
in favour of random-effect meta-analyses. Additionally, we intended to
conduct subgroup analyses based on pain duration and psychological
comorbidities, but this was not feasible due to the same reason.

3 Results
3.1 Study selection and characteristics

Overall, 1,185 articles were screened at the title/abstract phase,
and 130 full texts were assessed (Figure 1). Finally, 47 studies were
included in qualitative synthesis (Balenzuela et al., 2010; Liu et al,,
2011, 2012, 2013, 2017, 2018; Zhang et al., 2014, 2017; Zhang et al,,
2022b; Zhang et al., 2022a; Mansour et al., 2016; Pijnenburg et al.,
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2016; Wu et al,, 2016, 2020; Li et al., 2017; Wada et al,, 2017; Huang
etal., 2019, 2021; Kaplan et al., 2019; Shi et al., 2019, 2020; Ta Dinh
etal., 2019; Tu et al., 2019, 2023; De Pauw et al., 2020; Nieboer et al.,
2020; Barroso et al., 2021; Dai et al., 2021; Duan et al., 2021; Fauchon
et al., 2021; Kurokawa et al., 2021; Larkin et al., 2021; Silvestro et al.,
2021; Chao et al., 2022; Lin et al., 2022; Wang et al., 2022, 2024; Lee
etal., 2023; Qiu et al., 2023; Yang et al., 2023, 2024, 2025; Kang et al.,
2024; Mao et al., 2024; Matoso et al., 2024; Mei et al., 2024; Zhou et al.,
2024). Excluded studies with the reason for exclusion are provided in
Appendix 3. Two studies examined both functional and structural
topology (Zhang et al., 2022a; Yang et al., 2024).

3.1.1 Functional topology studies

Overall, 32 studies examined functional brain topology. A
qualitative summary of the included functional topology studies is
provided in Table 2. Notably, a considerable number of studies did not
report basic population characteristics such as sex, exact pain duration
or pain intensity. Twenty-eight studies used rs-fMRI, three used
rs-MEG, and one used rs-EEG. Of the 27 studies using an atlas-based
parcellation approach, 15 (56%) chose a version of the AAL atlas. The
existence of psychological comorbidities was an exclusion criterion in
20 (63%) studies, 15 (47%) studies assessed psychological
comorbidities using patient-reported outcome measures (eight [25%]
studies only in the chronic pain group), and eight (25%) studies did
not report them at all. A detailed overview of all functional topology
studies is presented in Appendix 4.

3.1.2 Structural topology studies

Structural brain topology was investigated by 17 studies. A
qualitative summary of the included structural topology studies is
provided in Table 1. Notably, a considerable number of studies did not
report basic population characteristics such as sex, exact pain duration
or pain intensity. Twelve (71%) studies employed a version of the AAL
atlas. A single-shell dMRI acquisition protocol was used in 15 (88%)
of included studies. The existence of psychological comorbidities was
an exclusion criterion in six (35%) studies, seven (41%) studies
assessed psychological comorbidities using patient-reported outcome
measures (five [29%] only in the chronic pain group), and seven (41%)
studies did not report psychological comorbidities at all. A detailed
overview of all structural topology studies is presented in Appendix 4.

3.1.3 Risk of bias

The results of the risk of bias assessment are illustrated in Figure 2.
Among the 32 studies that assessed functional brain topology, 11
(34%) were deemed to have low risk of bias, 16 (50%) had some
concerns, and five (16%) were classified as having a high risk of bias.
Of the 17 studies that examined structural brain topology, five (29%)
scored low risk of bias, 11 (65%) had some concerns, and one (6%)
had high risk of bias. When examining domain-specific risk of bias,
14 (44%) and 10 (59%) of functional and structural topology studies
exhibited a high risk of bias in participant selection.

3.2 Meta-analysis
3.2.1 Data handling

For at least one outcome, the mean and standard deviation were
extracted directly in 16 studies (Zhang et al., 2014; Liu et al., 2017,
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Database search (April 29, 2024): Database search (February 20, 2025):
- Scopus (n = 831) - Scopus (n =102)
- Web of Science (n = 698) - Web of Science (n = 99) Records identified from:
5 - MEDLINE (n =515) - MEDLINE (n = 88) - Citation searching (n = 35)
= - Psycinfo (n = 128) - Psycinfo (n = 12)
2 - CINAHL (n = 109) - CINAHL (n = 10)
5 | [ ]
3 s
Total records identified Records removed before screening:
(n =2627) - Duplicates removed (n = 1442)
Records screened ! Records excluded:
(n=1185) "1 (n=1055)
Full-texts assessed for eligibility: Full-text articles excluded (n = 83):
> (n=130) - No chronic pain (n = 26)
= - No outcome of interest (n = 25)
g_? - Structural covariance network (n = 11)
& - Only task-based imaging (n = 8)
- No healthy control group (n = 4)
- No whole brain analysis (n = 4)
- No comparative design (n = 2)
- Animal study (n = 1)
- Subjects <18 years old (n = 1)
- Not in English or German (n = 1)
S Y
Studies included in narrative synthesis Studies excluded:
(n=47) - Frequency band >0.1 Hz (n = 4)
°
)
;i |
©
£ Studies included in meta-analyses:
- Functional topology (n = 27)
- Structural topology (n = 17)
FIGURE 1

2018; Kaplan et al., 2019; Wu et al., 2020; Dai et al., 2021; Fauchon et al.,
2021; Huang et al., 2021; Kurokawa et al., 2021; Chao et al., 2022; Wang
et al, 2022, 2024; Lee et al., 2023; Yang et al., 2023, 2024; Mao et al.,
2024) WebPlotDigitizer was used in 24 studies (Balenzuela et al., 20105
Liu et al., 2011, 2012, 2013; Mansour et al., 2016; Pijnenburg et al.,
2016; Li et al,, 2017; Zhang et al., 2017, 2022a,b; Huang et al., 2019; Shi
etal.,, 2019; De Pauw et al., 2020; Barroso et al., 2021; Duan et al., 2021;
Fauchon et al., 2021; Larkin et al., 2021; Lin et al., 2022; Tu et al., 2023;
Kang et al., 2024; Matoso et al., 2024; Mei et al., 2024; Zhou et al., 2024;
Yang et al., 2025), and the standard deviation was imputed in five
studies (Balenzuela et al., 2010; Shi et al., 2019; Silvestro et al., 2021;
Zhang et al.,, 2022b; Kang et al., 2024). Pooling of multiple groups was
performed in 10 studies (Liu et al., 2011; Mansour et al., 2016; De Pauw
etal., 2020; Wu et al., 2020; Dai et al., 2021; Duan et al., 2021; Fauchon
etal., 2021; Mei et al., 2024; Yang et al., 2024; Zhou et al., 2024). Two of
these studies included both a chronic primary and secondary pain
group, which were handled separately for the subgroup analysis (De
Pauw et al., 2020; Mansour et al., 2016). In 40 studies, the SMD was
computed based on the mean and standard deviation for at least one
outcome (Balenzuela et al., 2010; Liu et al., 2011, 2012, 2013, 2017,
2018; Zhang et al., 2014, 2017, 2022a,b;Mansour et al., 2016; Pijnenburg
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etal, 2016; Li et al,, 2017; Huang et al., 2019, 2021; Kaplan et al., 2019;
Shi et al., 2019; De Pauw et al., 2020; Wu et al., 2020; Barroso et al.,
2021; Dai et al., 2021; Duan et al., 2021; Fauchon et al., 2021; Kurokawa
et al., 2021; Larkin et al., 2021; Silvestro et al., 2021; Chao et al., 2022;
Lin et al., 2022; Wang et al., 2022, 2024; Lee et al., 2023; Tu et al., 2023;
Yang et al., 2023, 2024, 2025; Kang et al., 2024; Mao et al., 2024; Matoso
et al,, 2024; Mei et al., 2024; Zhou et al., 2024). In four studies, the SMD
was estimated based on the p-value (Wada et al., 2017; Shi et al., 2019;
Silvestro et al., 2021; Tu et al., 2023), and in one study, the F-value was
used (Tu et al., 2019). The SMD could not be estimated for at least one
outcome in four studies due to insufficient reporting (Balenzuela et al.,
2010; Shi et al., 2020; Barroso et al., 2021; Lin et al., 2022). The authors
were contacted in 12 cases, with a response rate of 8% (1 = 1).

3.2.2 Functional topology

Meta-analysis was eligible for nine unique global network
properties of functional topology (across 27 rs-fMRI studies). A
qualitative synthesis of studies excluded from the meta-analysis is
presented in Appendix 5. There was low-certainty evidence that
chronic pain patients showed lower local efficiency in functional
whole-brain topology (Figure 3). Additionally, there was low to
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TABLE 2 Summary of study characteristics.

Functional topology studies (k = 32)

Structural topology studies (k = 17)

Population characteristics

Pain duration (months)

Missing (k = 10)*

Study size (n) 24-185 25-185
CPP (k=17) CPP (k=13)

Pain type (k) CSP (k=15) CSP (k= 4)
Mixed (k= 1) N
0-100% 0-100%

Sex (% of 3) - o
Missing (k = 4) Missing (k = 2)

M (years) 273 22-60

ean age (years -
gty Missing (k=1)

5-228 35-241

Missing (k = 3)*

Pain intensity (NRS)

3.7-8.2
Missing (k =7)

4.1-8.1
Missing (k = 2)

Imaging characteristics

rs-fMRI (k = 28)

Imaging modality rs-MEG (k = 3) dMRI (k =17)
rs-EEG (k=1)
MRI-specific characteristics
3T (k=26) 3T (k=16)
MRI field strength
15T (k=1) 15T (k=1)

Voxel dimensions

Isotropic (k =9)
Anisotropic (k = 18)

2-8 mm

Isotropic (k = 9)
Anisotropic (k = 8)
1.1-3.3 mm

Modality-specific

Resting-state frequency:
0.008-0.1 Hz

(one exception with low-pass

filter of 0.15 Hz)

Unique diffusion

gradient directions:
30-124

b-value:

1,000-3,000
Tractography:
Deterministic (k = 7)
Probabilistic (k = 7)
Missing (k = 3)

Network characteristics

Parcellation approach

Atlas-based (k = 27)
ICA-based (k =2)
Voxel-based (k = 2)
Channel-based (k = 1)

Atlas-based (k= 17)

Node size (n)

8-400
(Two exceptions with 2020 and 5,828)

15-300

Density (k = 27)
Absolute (k=1)

Density (k = 5)
Absolute (k= 1)

Missing (k =7)

Network thresholding MST (k=1) Statistical sig. (k = 1)
None (k=1) None (k = 5)
Missing (k = 2) Missing (k = 5)
Binary (k = 20) Binary (k=7)

Edge type Weighted (k = 5) Weighted (k = 8)

Missing (k = 3)
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TABLE 2 (Continued)

Functional topology studies (k = 32)

10.3389/fnins.2025.1672542

Structural topology studies (k = 17)

Full correlation (k = 25)
SLC (k = 11)
Edge metric Partial correlation (k = 2)
FA (k= 6)
Other (k =5)
Network properties (n) 21 14

*No exact pain duration was reported but inclusion criteria specified pain duration of >3 months. CPP, Chronic primary pain. CSP, Chronic secondary pain. dMRI, Diffusion-weighted
magnetic resonance imaging. FA, Fractional anisotropy. ICA, Independent component analysis. MST, Minimum spanning tree. NRS, Numeric rating scale. rs-EEG, Resting-state
electroencephalogram. rs-fMRI, Resting-state functional magnetic resonance imaging. rs-MEG, Resting-state magnetoencephalography. SLC, Streamline count.

very low-certainty evidence that chronic pain patients exhibited
no difference in functional whole-brain topology assessed by
clustering coefficient, normalised clustering coefficient, global
efficiency, characteristic path length, normalised characteristic
path length, normalised mutual information, modularity and
small-worldness (Figure 3). The heterogeneity in overall chronic
pain meta-analysis was high, ranging from 67 to 76%, except for
the normalised characteristic path length, with 1%. Subgroup
analysis showed similar results, with low-certainty evidence of
lower local efficiency in chronic primary pain and chronic
secondary pain compared to healthy controls (Figure 3). All
accompanying forest plots are presented in Appendix 6. The
results were robust to outlier removal sensitivity analysis
(Appendix 6). When removing studies with p-value-based
imputed SMDs, the significant difference in local efficiency
between chronic primary pain and healthy controls disappeared
(SMD, —0.51; 95%-CI: —1.47, 0.45; Appendix 6). All other results
were robust to this sensitivity analysis (Appendix 6).

3.2.3 Structural topology

Meta-analysis was eligible for nine unique global network
properties of structural topology (across 17 dMRI studies).
There was low to very low-certainty evidence that chronic pain
patients showed no difference in structural whole-brain topology
assessed by average degree, clustering coefficient, normalised
clustering coefficient, global efficiency, local efficiency,
characteristic path length, normalised characteristic path length,
modularity, and small-worldness (Figure 4). The heterogeneity
in chronic pain overall meta-analyses was substantial, ranging
from 68 to 97%. Subgroup analysis also revealed no alterations
in structural brain topology in chronic primary and secondary
pain (Figure 4). In outlier-removal-sensitivity analysis, the
results remained non-significant (Appendix 7). The results were
robust when removing studies with p-value-based imputed
SMDs (Appendix 7).

4 Discussion

The primary aim of this study was to quantitatively synthesise
alterations in functional and structural connectivity-based global
network properties of whole-brain topology in chronic pain. There
was low-certainty evidence that chronic pain patients showed
impairments in local efficiency of resting-state functional whole-brain
topology, and low to very low-certainty evidence that structural
whole-brain topology was not altered in chronic pain.

Frontiers in Neuroscience

4.1 Lower local efficiency in resting-state
functional network in chronic pain

Local efficiency quantifies how effectively information is
transferred within local neighbourhoods of a network (Figure 5).
It is therefore a measure of segregation, reflecting the brain’s
capacity for specialised processing within densely interconnected
groups of brain regions (Rubinov and Sporns, 2010). Patients with
chronic pain showed lower local efficiency in their resting-state
functional network, indicating reduced local specialisation and
suggesting a shift towards greater global integration. Both chronic
primary pain and chronic secondary pain exhibited impairments
in local efficiency, suggesting that chronic pain, regardless of its
origin, is associated with similar reorganisation of functional
whole-brain topology.

In healthy individuals, the resting state is dominated by
activity in the default mode network (DMN), associated with self-
referential thought. A recent meta-analysis of resting-state fMRI
studies concluded that patients with chronic pain exhibit altered
intra-DMN connectivity and increased connectivity between
DMN and somatosensory regions (Fitiza-Fernandes et al., 2025).
This pattern further supports a shift towards global integration
through stronger interconnectedness of self-referential processes
and pain processing.

Impairments in local efficiency of the functional whole-brain
network have also been reported in a meta-analysis of patients
with depression (Xu et al., 2021), a common comorbidity in
chronic pain (De La Rosa et al., 2024). Due to inconsistent
reporting of psychological comorbidities in the included studies,
we were unable to determine their influence on functional
topology alterations in chronic pain. Therefore, it is unclear
whether local efficiency impairments are characteristic of chronic
pain, are conditional on the presence of psychological
comorbidities such as depression, or are a shared neural principle
across conditions.

4.2 No structural whole-brain topology
alterations in chronic pain

Our meta-analyses concluded that the structural whole-brain
topology remains unaltered in chronic pain. This contrasts with
neurological diseases with substantial anatomical changes, such
as epilepsy, Parkinson’s disease, or traumatic brain injury, which
have demonstrated impairments in structural whole-brain
topology (Imms et al., 2019; Slinger et al., 2022; Zuo et al., 2023).
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FIGURE 2
Risk of bias assessment grouped by functional and structural topology, chronic primary pain (CPP), and chronic secondary pain (CSP).
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Metric Pain type k n GRADE Lowerin CP | Higher in CP SMD 95%-CI 95%-PI P Egger's p
Overall 17 1378 Low -0.04 [-0.30; 0.23] [-0.97;0.90] 0.74 0.618
cc CPP 7 513 Very low 0.12 [-0.39; 0.62] [-1.20;1.43] 0.77 NA
CSP 12 975 Low -0.09 [-0.38; 0.19] [-0.89; 0.70] 0.66 0.829
Overall 1 753  Low 0.02 [-0.31; 0.34] [-0.99;1.02] 0.76  0.601
CCrom |CPP 4 252 Very low 0.10 [-0.89; 1.09] [-2.71;2.91] 0.84 NA
CSP 7 501  Low -0.04 [-0.43; 0.36] [-1.07;0.99] 0.72 NA
Overall 18 1592  Low -0.19 [-0.44; 0.06] [-1.11;0.73] 0.76 0.594
Egob  [CPP 8 755  Very low -0.21 [-0.58; 0.15] [-1.21;0.78]  0.76 NA
CSP 12 947  Very low -0.20 [-0.55; 0.15] [-1.29; 0.89] 0.75 0.388
Overall 12 832  Low -0.50 [-0.81;-0.19] [-1.38;0.38] 0.67 0.123
Ejoc CPP 4 325  Low -0.52 [-0.96;-0.08] [-1.25;0.21] 0.26 NA
CSP 8 507 Low -0.51 [-1.01;-0.02] [-1.82;0.79] 0.75 NA
Overall 12 799  Very low 0.28 [-0.07; 0.63] [-0.77;1.34] 0.72 0.258
L CPP 5 338  Very low 021 [-0.33; 0.76] [-1.09;1.51] 0.67 NA
CSP 7 461 Very low 0.34 [-0.27; 0.95] [-1.25;1.94] 0.78 NA
Overall 1 753 Low 0.10 [-0.06; 0.27] [-0.07; 0.27] 0.01 0.259
Loom |CPP 4 252 Very low 0.16 [-0.36; 0.69] [-0.98;1.31]  0.40 NA
CcSP 7 501  Low 0.07 [-0.13; 0.26] [-0.14;0.27]  0.00 NA
NMI 10verall 3 327  Very low -0.77 [-1.80; 0.25] [ NA; NA] 0.65 NA
Overall 8 737  Very low -0.24 [-0.74; 0.25] [-1.54;1.05] 0.74 NA
Q CPP 7 550  Very low -0.32 [-0.90; 0.26] [-1.81;1.16] 0.75 NA
CcSsP 3 297  Low —0.05 [-0.71; 0.61] [ NA; NA] 0.34 NA
Overall 18 1500 Low -0.03 [-0.26; 0.21] [-0.91;0.86] 0.74  0.593
SW CPP 7 484 Very low 0.07 [-0.47; 0.60] [-1.39;1.52]  0.81 NA
CSP 13 1126  Low -0.09 [-0.32; 0.14] [-0.80; 0.62] 0.64 0.674

2 -1 0 1 2
Hedges g

FIGURE 3

Functional topology: Summary of all meta-analyses ordered by global network property (clustering coefficient [CC]; normalised clustering coefficient
[CCroml; global efficiency [Eqqpl; local efficiency [E,l; characteristic path length [L]; normalised characteristic path length [Lnorml]; normalised mutual
information [NMI]; modularity [Q]; small-worldness [SW]) and pain type (overall; chronic primary pain [CPP]; chronic secondary pain [CSPI]). The
diamond depicts the pooled SMD and the error bar its 95% prediction interval; CP, Chronic pain.

Metric Pain type k n GRADE Lower in CP | Higher in CP SMD  95%-ClI 95%-PI P Egger's p
cc Overall 13 983  Very low -0.09 [-0.58;0.40] [-1.86; 1.68] 0.92 0.129
CPP 1 853  Very low -0.03 [-0.62;0.56] [-2.02; 1.96] 0.93 0.153
Overall 7 510 Very low -0.16  [-0.62;0.29] [-1.29; 0.97] 0.68 NA
CCrom |CPP 4 332  Very low -0.03 [-0.83;0.77] [-2.18; 2.13] 0.74 NA
CSP 3 178  Very low -0.34 [-1.62;0.93] [ NA; NA] 0.70 NA
Deg ICPP 3 242 Very low 0.13  [-1.82;2.09] [ NA; NA] 0.85 NA
Overall 15 1163  Very low 0.81 [-0.93; 2.54] [-6.00; 7.61] 0.97 0.401
Egiob CPP 1 934  Very low 1.31 [-1.09; 3.72] [-6.99; 9.61] 0.98 0.349
CSP 4 229  Very low -0.53 [-1.25;0.18] [-2.27; 1.21] 0.59 NA
Overall 1 832 Very low 0.30 [-1.04;1.65] [-4.32; 4.93] 0.96 0.347
Eioc CPP 7 603  Very low 0.72  [-1.55;2.99] [-5.94; 7.39] 0.97 NA
CSpP 4 229 Very low -0.42 [-1.16;0.33] [-2.29; 1.46] 0.63 NA
L Overall 1" 1014 Very low -0.54 [-1.42;0.33] [-3.56; 2.47] 0.96 0.823
CPP 9 884  Very low -0.80 [-1.81;0.21] [-4.01; 2.41] 0.96 NA
Overall 8 550  Very low 0.60 [-1.23;2.43] [-4.80; 5.99] 0.92 NA
Lnorm CPP 5 372 Very low 0.95 [-2.62;4.52] [-8.82;10.72]  0.95 NA
CSP 3 178  Very low 0.12  [-1.15;1.38] [ NA; NA] 0.72 NA
Q ICPP 3 297 Low -0.68 [-2.40;1.03] [ NA; NA] 0.90 NA
Overall 15 922 Low 0.05 [-0.39;0.49] [-1.57; 1.67] 0.84 0.381
SwW CPP 1 693  Very low 0.23  [-0.34;0.79] [-1.63; 2.08] 0.87 0.327
CSpP 4 229 Very low -0.40 [-1.05;0.26] [-1.90; 1.11] 0.52 NA
-4 -2 0 2 4
Hedges g
FIGURE 4

Structural topology: Summary of all meta-analyses ordered by global network property (clustering coefficient [CC]; normalised clustering coefficient
[CComl; degree [deg]; global efficiency [Ey.l; local efficiency [Eil; characteristic path length [L]; normalised characteristic path length [Lnorm];
modularity [Q]; small-worldness [SW]) and pain type (Overall, chronic primary pain [CPP], chronic secondary pain [CSPI). The diamond depicts the
pooled SMD and the error bar its 95% prediction interval; CP, Chronic pain.
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Schematic representation of local efficiency. (A) Local efficiency of a
node is increased as the number of connections between its
neighbouring nodes increases. (B) Local efficiency as a global
network property is determined by the average local efficiency of all
nodes within a given network.

Interestingly, dMRI-based alterations of various white matter
bundles have been documented in chronic pain, including the
corpus callosum, thalamic radiations, internal capsule and corona
radiata (Bautin et al., 2025). However, these microstructural
changes do not necessarily affect the global organisation of the
structural connectome, suggesting preserved large-scale brain
architecture despite local white matter disruptions.

4.3 Heterogeneity and risk of bias

The heterogeneity was with I* values of more than 50% in
most meta-analyses, and wide prediction intervals, considered to
be high. Although no meta-regression was performed to evaluate
heterogeneity, the qualitative synthesis showed a wide range in
population and methodological characteristics of the included
studies. For example, included studies investigated different
chronic pain syndromes, including headache, orofacial pain,
visceral pain, musculoskeletal pain, widespread pain, complex
regional pain syndromes and neuropathic pain. Notably, half of
the structural topology studies and about one-third of functional
topology studies examined migraine, indicating a bias in the
meta-analyses.

The methodological characteristics of the included studies
reflect the current lack of a gold standard in graph-theoretical
brain network analysis (Fornito et al., 2013; Bahrami et al., 2023).
Differences in parcellation scheme, network thresholding, and
edge definition may have influenced the results of our meta-
analysis. While several global network properties remain robust
across different parcellation schemes at a consistent resolution
(number of nodes), altering the parcellation resolution
significantly impacts these global metrics (Zalesky et al., 2010).
Since the number of nodes (84-264) of most studies was on a
similar scale, parcellation was less likely to influence the results.
However, it must be noted that in functional networks, larger
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parcellation units yield smoother, less specific time courses, which
in turn reduce the specificity of the resulting network topology
(De Reus and Van Den Heuvel, 2013). Different thresholding
methods are applied to networks to account for spurious
connections, but they introduce specific limitations (van Wijk
et al,, 2010). Although most included studies employed density-
based thresholding, which retains a specific percentage of the
strongest connections, the range of the used thresholds varied
widely, adding heterogeneity to the meta-analyses as the choice of
a density threshold influences the graph measures (van Wijk et al.,
2010). Additionally, structural topology studies showed higher
heterogeneity in network binarisation and edge metric, adding
further variability, while functional topology studies showed
higher concordance in these characteristics. Many rs-fMRI and
some dMRI studies acquired anisotropic voxels, potentially
introducing anatomical inaccuracies, partial volume effects, and
other directional biases (Mulder et al., 2019). Most structural
topology studies used the simple DTI model with a one-shell
diffusion acquisition scheme with 30 to 64 directions, yielding
high residuals in the tensor model. Future studies should embrace
the advancements made in dMRI acquisition and processing over
the last 15 years by utilising multi-shell acquisitions, which enable
state-of-the-art dMRI analysis (Bautin et al., 2025).

The risk of bias assessment of this review indicates a considerable
risk in the selection of study participants, a common pitfall of cross-
sectional studies. Future studies should improve this by clearly
defining their control group and by investigating more representative
study samples. Strikingly, many studies showed poor reporting,
missing basic population and methodological information such as
sex, exact pain duration, pain intensity, edge type, network
thresholding or tractography algorithm. Additionally, some studies
lacked sufficient outcome data for cross-study pooling. Overall, the
methodological heterogeneity and concerning reporting quality
complicate the interpretation of cross-study comparisons of global
network properties and call for standardisation in graph theoretical
analysis of brain networks.

4.4 Limitations

The findings of this review should be considered with several
methodological limitations in mind. First, as the meta-analyses
only included functional topology studies investigating
low-frequency fluctuations (< 0.1 Hz), no quantitative statement
about other frequency bands (investigated in four studies) can
be made. Second, four studies were excluded from the meta-
analyses because their results could not be extracted due to poor
reporting. As their results showed no alterations in brain
topology, they would likely not alter the overall results of this
review. Third, not all reported global network properties could
be pooled due to limitations in the number of studies
investigating them, as not all studies reported all metrics. Fourth,
the review excluded studies investigating structural covariance
networks as they do not analyse white matter topology but
analyse structural topology based on the correlation of
morphology parameters of grey matter regions. It remains
unclear whether this approach can identify structural whole-
brain topology alterations in chronic pain. Additionally,
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systematic differences in brain topology alteration may exist
among different pain diagnoses. Pooling data across all diagnoses
may have introduced sufficient variance to obscure any
difference between healthy controls and chronic pain patients.

4.5 Implications for clinic and research

Our meta-analysis showed that impairments in local efficiency
within the resting-state whole-brain network are associated with
both chronic primary and secondary pain diagnoses. However, it
remains unclear whether the functional topology reorganisation is
a consequence of chronic pain or if it contributes to its development.
Future studies may focus on determining the time course of
functional topology reorganisation, its modulation by therapeutic
interventions and consider psychological comorbidities as a
possible influencing factor.

While  the
characteristics of the entire macroscale brain organisation, it may

whole-brain approach captures essential
lack sensitivity to detect subtle disease-related changes in network
topology. Investigations of subnetworks such as large-scale brain
networks (Uddin et al., 2019), or the ‘pain matrix’ (Legrain et al.,
2011) could reveal structural and functional topology alterations
confined to specific subnetworks previously masked by the whole-
brain approach. Additionally, future studies could use further global
network properties such as the hub disruption index, which captures
changes at the nodal level, shows high reliability and sensitivity
(Termenon et al., 2016), and has already been used in some pain
studies (Huang et al, 2019; De Pauw et al, 2020; Barroso

etal., 2021).

5 Conclusion

This is the first study to quantitatively synthesise connectivity-
based global network properties of functional and structural brain
topology in chronic pain. There was low-certainty evidence that
chronic pain patients showed impairments in local efficiency of
resting-state functional whole-brain topology, and low to very
low-certainty evidence that structural whole-brain topology was
not altered in chronic pain. This indicates that functional but not
anatomical whole-brain topological reorganisation is involved in
the pathophysiology of chronic pain. This review highlights the
need for standardisation in graph-theoretical brain network
analyses and reporting of methods and results. Additionally, future
studies should consider psychological comorbidities and expand
the analyses to specific subnetworks when investigating brain
topology in chronic pain.
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