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Early life adversity (ELA) is associated with subsequent mental health problems,
and animal studies provide evidence for a causal role of ELA in the risk for mental
illness, including persistent brain changes at molecular, cellular, network and
functional levels. As enduring changes in cell function depend on orchestrated
expression of genes, a robust body of research has focused on identifying the
specific epigenetic and transcriptional programs through which ELA might induce
brain changes. These studies have highlighted that the effects of ELA vary by
brain region, cell-types and sex. Yet, while major advances were made in the past
decade, the precise mechanisms through which ELA shapes the maturation and
function of brain cells and their incorporation into circuits remain incompletely
understood. Here, we discuss human and animal studies that focus on ELA-induced
changes of the epigenome and transcriptome and explore recent technological
advances that allow visualization and manipulation of neurons activated during
ELA, at later stages of life. One such technology, Targeted Recombination in
Active Populations (TRAP), enables precise and permanent genetic access to
cells activated during specific sensitive developmental periods. Coupled with the
appropriate tools, TRAP can be used to identify cellular transcriptional programs
that are altered by the ELA experience in specific cell types and circuits, impacting
cognitive and emotional brain functions enduringly. Understanding how ELA
changes gene expression, circuit integration and function of neurons that are
engaged by ELA will advance our understanding of the mechanisms employed
by ELA to heighten the risk for mental illness later in life.

KEYWORDS

early life adversity, genetic tagging, TRAP, immediate early genes, transcriptomics,
epigenomics

1 Introduction

Adverse experiences early in life are associated with vulnerability to cognitive and
emotional dysfunction, including non-optimal cognitive performance (Kaplan et al., 2001;
Fors et al., 2009; Marden et al., 2017), anxiety and augmented risk-taking (Nelson et al., 2007;
Green et al., 2010; Tottenham et al., 2010; Hanson et al., 2015; Davis et al., 2017; Short and
Baram, 2019). Health risk behaviors in adulthood were increased in children raised in
dysfunctional households and were proportional to the degree of abuse the subjects had
experienced (Felitti et al., 1998; Danese et al., 2017). Several studies also point out to alterations
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of the reward circuitry, emotion regulation and processing, and high
risk for mood disorders such as depression, following ELA (Gaffrey
et al,, 2018; Kopala-Sibley et al., 2018; Novick et al., 2018; Dixon
et al., 2020).

ELA is highly prevalent, posing a major social and public health
challenge. A recent meta-analysis study that included almost half a
million children from 18 countries, found that 6 out of 10 children
experienced 1 or more adverse early life experiences (ACEs), and 15%
experienced 4 or more (Madigan et al., 2025). Higher prevalence of
ACEs was observed in children from low-income households,
(Madigan et al., 2025; Farooq et al., 2024) or adolescents who were
female, multiracial, identifying as indigenous populations or
non-heterosexual (Swedo et al., 2024). Although ELA is linked to
adverse physical and mental health outcomes at the population level,
ACEs show weak associations with negative outcomes at the individual
level (Baldwin et al, 2021) making it difficult to identify
vulnerable individuals.

2 ELA and adverse outcomes—human
studies

Whereas a large body of human work associates ELA with adverse
mental health outcomes, human studies are often correlational. A
unique, controlled, randomized human study investigated Romanian
infants placed in institutions that then either transitioned to foster
care or stayed in institutional care (Nelson et al., 2007). The cognitive
outcomes of children moved to foster care were significantly higher
compared to those who remained institutionalized, and this was
predicated on transition to a more nurturing, enriching and stable
environment by around 2 years of age. These findings support a causal
role of ELA in neurodevelopmental problems and suggest the
existence of a sensitive neurodevelopmental period early in postnatal
life (Duncan et al., 1998; Hensch, 2004; Hackman and Farah, 2009;
Gee and Cohodes, 2021; Birnie and Baram, 2025).

Thus, the literature on the link between ELA and mental and
cognitive health vulnerabilities is compelling. In addition, ELA is
complex and multifaceted, and different dimensions of ELA may have
diverse consequences on cognitive and emotional functions later in
life (Sheridan and McLaughlin, 2014). Recently, in addition to the
well-studied issues of poverty, neglect, abuse and maternal depression,
unpredictability of signals from the parents and the community has
been found to be an understudied ELA dimension, with a major
impact on memory, executive functions and depression-related
symptoms such as anhedonia (Davis et al., 2017, 2019; Glynn et al.,
2019, 2025; Spadoni et al., 2022).

3 E[)igenomics and transcriptomics as
a plausible mechanism—human
studies

As discussed above, a large body of work links ELA with
neuropsychiatric disorders later in life; however, the molecular and
cellular mechanisms through which ELA leads to enduring problems
remain largely unclear. One potential mechanism to explain the long-
term encoding of ELA is epigenetics. Epigenetic regulation refers to
the control of gene expression through potentially reversible
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modifications to DNA, chromatin, or associated regulatory molecules
that do not alter the primary coding sequence, and serves as a key
interface through which environmental factors influence genomic
function (Feil and Fraga, 2012). Changes to the epigenome have thus
been proposed as a potential mechanism through which ELA is
persistently encoded at the molecular level, leading to lasting
alterations in gene expression and increased vulnerability to adverse
phenotypes (Turecki et al., 2014; Short and Baram, 2019; Ochi and
Dwivedi, 2022).

DNA methylation is one of the first discovered epigenetic
mechanisms and, as such, one of the most widely cited in the context
of ELA. Several studies have linked ELA with altered DNA methylation
of specific genes (e.g., the glucocorticoid receptor gene NR3CI) in both
peripheral tissues and postmortem brain samples (reviewed at length
in Turecki and Meaney, 2016; Cecil et al., 2020), and a few studies have
investigated its impact on genome-wide DNA methylation levels
(reviewed in Cecil et al., 2020; Parel and Pefia, 2022). DNA methylation
measured from buccal swabs or saliva has been suggested to contain
signatures of ELA (Marini et al., 2019; Sumner et al., 2022; Short et al.,
2024). A challenge in identifying DNA methylation signatures of ELA
is due to large inter-individual variation in the human genome and
hence, in DNA methylation patterns (Bock et al., 2008). This variance
has hampered detection of common discernible methylation changes
that associate with ELA or predict its outcomes. To minimize this
challenge, recent studies have focused on assessing changes in DNA
methylation over time in a single individual (a within-subject design),
rather than DNA methylation at a single time point. Indeed, this
approach has shown strong associations between these methylation
changes and ELA (Sumner et al., 2022; Short et al., 2024). Of note, in
Short et al., buccal swabs of infants were collected neonatally and at 1
year of life for each individual, and the average change in DNA
methylation between these two times both reflected the degree of ELA
and predicted cognitive outcome (executive control) at age 5 in a
sex-dependent manner (Short et al., 2024).

Epigenetic modifications can also govern chromatin accessibility
and gene transcription. Due to the technical challenges and low yield
of high-quality RNA from non-invasive sampling methods such as
buccal swabs, most human studies have relied on blood samples. Red
blood cells have no nuclei. However, white blood cells may carry a
durable signature of ELA on the transcriptome, including gene-
expression profiles relating to inflammation (Dieckmann et al., 20205
Edelmann et al., 2023; Etzel et al., 2024).

Direct examinations of transcriptomic changes in postmortem
brain tissue have been limited. Wang et al. found that depressed
individuals had elevated expression of CRH, CRHRI, ERa, and
NR3C2, as well as decreased AR in the paraventricular nucleus of the
hypothalamus (Wang et al., 2008). Labonte et al. reported decreased
expression of hippocampal glucocorticoid receptor variants 1B, 1C,
and 1H in individuals who died by suicide with a history of abuse
compared to those without abuse history (Labonte et al., 2012).
Investigations into DNA methylation, histone modifications, and gene
expression within the lateral amygdala of individuals who experienced
ELA revealed converging evidence suggesting changes in immune
related pathways (Lutz et al., 2021). Postmortem analyses of the
anterior cingulate cortex by Lutz et al. revealed that suicide completers
with a history of abuse exhibit altered myelin-related gene expression
and methylation in oligodendrocytes (Lutz et al., 2017). Single-nuclei
sequencing of the cerebral cortex of individuals with a history of
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childhood abuse revealed that oligodendrocyte precursor cells
upregulate perineuronal net components, extracellular matrix
structures that regulate neuronal plasticity, suggesting that childhood
trauma may impair cortical plasticity (Tanti et al., 2021).

4 ELA and adverse outcomes—animal
models

Human studies demonstrate associations between ELA and
outcomes later in life. However, it is difficult to infer causality from
such correlational studies. In addition, in human studies it is almost
impossible to distinguish between genetic and environmental factors
(Short and Baram, 2019; Birnie and Baram, 2025). Animal models
overcome these issues: genetic variability between subjects is
minimized, environmental conditions are kept stable, and, most
importantly, experiments can be designed to show causality between
ELA and cognitive and emotional functions later in life.

Several animal models have been developed to simulate ELA and
have demonstrated cognitive deficits and altered responses to stress
and to reward cues, among other outcomes. Among the most widely
used are maternal separation (Biagini et al., 1998; Plotsky et al., 2005;
Nishi et al., 2013), the limited bedding and nesting (LBN) model (Rice
et al., 2008), and numerous related variations (Molet et al., 2014). Here
we discuss LBN as a prevalent naturalistic model of ELA developed by
our lab (Gilles et al., 1996; Brunson et al., 2005; Rice et al., 2008; Birnie
etal., 2023) and widely adopted throughout the world (Walker et al.,
2017; O'Neill et al., 2025). This simulated poverty model employs
limiting the bedding and nesting materials in the rearing cages during
a sensitive developmental period (Ivy et al., 2008; Molet et al., 2014;
Birnie et al., 2023). Mouse or rat pups are raised in these cages from
postnatal day (P) 2 to 10. During this time, maternal behavior is
altered likely because of the stress induced in the dam by the limited
resources (Ivy et al, 2008). Chaotic and unpredictable caring
behaviors are observed, with inconsistent and fragmented bouts of
care (Molet et al,, 2016; Davis et al, 2017). Using this model,
we showed that ELA directly causes deficits in memory (Brunson
et al., 2005; Ivy et al., 2010), in a way comparable to the decreased
cognitive performance observed in children raised by mothers with
high unpredictability (Davis et al., 2017). Thus, the findings in
experimental animals are directly relevant to humans. In addition to
cognitive deficits, reward behaviors are impacted in mice and rats that
are raised in this ELA model: males exhibit decreased motivation for
palatable food and sex cues (Molet et al., 2016; Bolton et al., 2018b;
Birnie et al., 2023; Kooiker et al., 2024). In contrast, female mice and
rats exhibit increased motivation and consumption for palatable
foods, sex cues, and non-natural rewards including opioids (Levis
et al., 2021; Birnie et al., 2023; Kooiker et al., 2024).

5 Epigenomics and transcriptomics as
a plausible mechanism—animal
studies

A potential mechanism through which transient ELA may induce
deficits later in life involves epigenetic and transcriptional
reprogramming that, in turn, govern neuronal functions and
responses to stimuli (Nestler, 2014; Bale, 2015; Birnie and Baram,
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2025; Pena, 2025; Torres-Berrio et al., 2025). Approaches to study
ELAS epigenetic effects have included both locus-specific analyses and
genome wide surveys. In targeted studies, reduced maternal care led
to both DNA hypermethylation and decreased H3K9 histone
acetylation at the Nr3cI locus in the rat hippocampus, coinciding with
decreased gene expression (Weaver et al., 2004; McGowan et al., 2011).

Parallel work in the medial prefrontal cortex of rats exposed to
caregiver maltreatment found sex specific methylation at the Bdnf
locus, and female specific decrease in histone acetylation at Bdnf exon
IV during adulthood, indicating enduring epigenetic priming
established during development (Blaze et al., 2013, 2015). DNA
methylation profiling of buccal-cell DNA at two timepoints from rats
raised under the limited bedding and nesting paradigm revealed an
epigenetic signature differentiating ELA rats from control (Jiang
etal., 2019).

In addition to these persistent epigenetic alterations of single
genes, ELA reconfigures large-scale transcriptional programs in key
brain regions. For example, Pefia et al. described, in the ventral
tegmental area of mice, ELA-induced transcriptional reprogramming,
and manipulation of the upstream regulator of this reprogramming
modulated depression-like behaviors (Pena et al., 2017). A similar
transcriptional reprogramming was found in the hippocampus of rats
that experienced ELA (Bolton et al., 2020). In this study, blocking of
the upstream regulator (the neuron-restrictive silencer factor or
NRSF) rescued spatial memory deficits observed after ELA. Priming
of sets of genes by ELA has recently been identified (Pena et al., 2019;
Kos et al., 2023), which sets the stage for the differential expression of
these genes only after an additional stress later in life, defining a state
of ELA-induced vulnerability. While these investigations have focused
on bulk changes in heterogeneous brain regions, sequencing of
specific neuronal populations or single cells allowed better resolution
of the epigenomic effects of ELA. For example, ELA induced gene
expression changes in specific subpopulations of corticotropin-
releasing hormone-expressing neurons in the hypothalamic
paraventricular nucleus (Short et al., 2023), persistent epigenetic and
translational changes in the stress-sensitive CA3 neuronal population
(Marrocco et al., 2019) and overexpression of enzymes associated with
stress-susceptibility in D2-type medium spiny neurons (Kronman
et al, 2021). Even though high-throughput data studies in
non-neuronal cell populations in the context of ELA are limited, there
is evidence that ELA changes gene expression in microglia (Réus et al.,
2019; Bolton et al., 2022), astrocytes (Abbink et al., 2020) and
oligodendrocytes (Lutz et al., 2017; Treccani et al., 2021; Sharma
etal., 2023).

6 Probing epigenomic mechanisms
specifica l%_m neurons engaged by
ELA using TRAP

Studies investigating the mechanisms through which ELA might
change the brain have so far focused on specific brain areas and their
connections (Pefa et al., 2017; Bolton et al., 2018a; Bolton et al., 2020;
Birnie et al., 2023) or specific cell types (Kos et al., 2023; Short et al., 2023;
Warhaftig et al, 2023). However, an additional factor that might
be pertinent is the activation status of cells during the ELA period, since
neuronal activity is critical to the maturation, synaptic and circuit
integration, and transcriptional transitions of neurons throughout
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development (Reh et al., 2020; Stroud et al., 2020; Birnie and Baram,
2022). In addition, neurons that were active during specific
developmental times showed hub-like connectivity and their activity led
to population bursts at later developmental stages (Wang et al., 2024).

With the advent of new tools and transgenic mouse lines we can
now gain permanent genetic access to neurons that were previously
activated at a certain time period (Guenthner et al., 2013; DeNardo
et al,, 2019). This method, called Targeted Recombination in Active
Populations (TRAP), relies on the rapid expression of immediate early
genes (IEGs) such as Arc and Fos in activated cells (DeNardo and Luo,
2017; Franceschini et al., 2020). The timing and duration of the period
is controlled through the administration of tamoxifen, which initiates
a ~ 36-h time window when activated neurons undergo Cre-mediated
recombination and start expressing a permanent, visible cell marker.
This way TRAP allows genetic access to tagged (TRAPed) neurons
that might be molecularly distinct and spatially distributed but are
functionally similar or organized in ensembles (Guenthner et al.,
2013; DeNardo et al., 2019; Wang et al., 2024).

In the last decade, TRAP has been improved (TRAP2 version in
DeNardo et al., 2019) and used extensively for tagging and
characterization of neuronal ensembles linked to specific behaviors
(DeNardo et al., 2019; Herzog et al., 2020; Xing et al., 2021; Kooiker
etal., 2023; Kitagawa et al., 2024), for characterizing neuronal circuits
(Gongwer et al., 2023) and for circuit manipulation, by combining
TRAP-mediated effector expression with opto- or chemogenetic
receptors (Clawson et al.,, 2021; Imoto et al.,, 2021; Xing et al., 2021;
Kitagawa et al., 2024). TRAP was recently used to permanently tag
cells activated as early as embryonic day E18, and in two recent studies
TRAP revealed cells that were activated during the ELA period

10.3389/fnins.2025.1671495

(P2-P10 in Kooiker et al., 2023; P10-P17 in Balouek et al., 2023).
Importantly, aberrant behaviors—the outcome measures of the effects
of ELA on brain function—were ameliorated when the TRAPed cells
were chemogenetically inhibited (Balouek et al., 2023; Kooiker et al.,
2024). More specifically, in the first study, inhibition of cells activated
by ELA ameliorated social avoidance following adult stress (Balouek
etal, 2023), and in the second study inhibition of ELA-TRAPed cells
normalized an anhedonia-like phenotype in males and a hyper-
motivated phenotype in females (Kooiker et al., 2024).

Beyond circuit delineation and manipulation, TRAP also offers
permanent access to the molecular makeup of TRAPed cells. Indeed,
using immunohistochemistry, Dirven et al. recently tested for the
histone modifier HDAC2 and methylation/hydroxymethylation in
cells activated and TRAPed during stress, in mice that were categorized
as resilient or susceptible to depression (Dirven et al., 2024). TRAPed
cells have also been sorted based on the expression of their permanent
tag, and their RNA was isolated and sequenced (Imoto et al., 2021). In
the future, TRAP could be combined with a ribosomal or nuclear tag
and translating ribosome affinity purification or nuclear affinity
purification (Heiman et al., 2014; Roh et al., 2017), to provide access
to the TRAPed cells translatome or nuclear transcriptome respectively,
without the need for sorting. The expression of a tag, if strong enough,
could also be used to identify TRAPed cells during the analysis of
single cell or single nucleus RNA sequencing data. The idea of
performing omics in populations of cells that were activated together
or at the same time could help understand how stimuli or events
during a specific time period (especially sensitive developmental times
such as early life) affect gene expression and cell function (Figure 1).
Finally, permanent genetic access can also enable targeted gene

Activity-dependent
driver line
(TRAP)

— 1 IEG | 2A | iCreER™ |~

IEG

promoter

T E Cre induction
—) at sensitive
neurodevelopmental time

Cre-dependent
reporter line

——={ sToP M 1/n gene
promoterl |

loxP loxP

FIGURE 1

isolation of ribosomal or nuclear RNA for high-throughput analyses.

Cells activated early in life
are labeled permanently

) Immunopurification,

high throughput
analysis of
biomolecule of interest

Tag on ribosome/
nucleus etc.

1
1
1
1
1
|
1
! isolation &
1
1
1
:
1

Interrogating gene expression changes selectively and specifically in neurons engaged during early-life adversity: combining activity-dependent
genetic tagging with molecular tools. The activity-dependent genetic labeling approach (TRAP) allows expression of inducible CreER™ recombinase
under the promoter of an immediate early gene (IEG, e.g., Fos, Arc etc.). This mouse line is crossed with a Cre-dependent reporter line, expressing a
tag (e.g., GFP, mCHERRY). In the offspring, CreER™ is induced early in life, when mice are raised in typical conditions or in simulated ELA, and any cells
expressing the IEG during this time will be labeled permanently with the tag. The tag can be attached to a ribosomal or nuclear protein, to allow
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editing. One important consideration is that since the genetic labeling
depends on neuronal activation and not any other specific
characteristics, TRAPed cells most likely encompass subpopulations
of cells with different properties. For omics studies, this heterogeneity
may necessitate larger sample sizes to overcome inter-sample
variability and achieve sufficient statistical power.

7 Conclusion

Understanding how transient ELA changes the brain enduringly
requires elucidating the underlying mechanisms, most prominently,
epigenetic changes in specific brain cell populations. Such studies,
which are crucial for our understanding of how ELA can result in
mental illness, cannot be conducted in humans, in cell lines or in
organoids. Therefore, animal models are essential in the quest to
identify the relevant brain circuits and molecular mechanisms
bridging ELA and human disease, information that is required for
designing therapies and interventions. In experimental models, we
need to further embrace the complexity of the brain, and probe
distinct cell populations in brain regions and circuits that execute the
many types of behaviors that are impacted by ELA. The rise of new
technologies is now allowing a focus on specific cell types and single
cells. TRAP allows us to explore the effects of ELA taking into account
another crucial factor; the cells’ activation status during a sensitive
developmental time. This honed approach will eliminate dilution of
engaged cells in large neuronal populations that are not influenced by
ELA and hold promise to further advance our understanding of the
complex, fascinating and highly important mechanisms by which ELA
“gets under the skin”
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