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Early life adversity (ELA) is associated with subsequent mental health problems, 
and animal studies provide evidence for a causal role of ELA in the risk for mental 
illness, including persistent brain changes at molecular, cellular, network and 
functional levels. As enduring changes in cell function depend on orchestrated 
expression of genes, a robust body of research has focused on identifying the 
specific epigenetic and transcriptional programs through which ELA might induce 
brain changes. These studies have highlighted that the effects of ELA vary by 
brain region, cell-types and sex. Yet, while major advances were made in the past 
decade, the precise mechanisms through which ELA shapes the maturation and 
function of brain cells and their incorporation into circuits remain incompletely 
understood. Here, we discuss human and animal studies that focus on ELA-induced 
changes of the epigenome and transcriptome and explore recent technological 
advances that allow visualization and manipulation of neurons activated during 
ELA, at later stages of life. One such technology, Targeted Recombination in 
Active Populations (TRAP), enables precise and permanent genetic access to 
cells activated during specific sensitive developmental periods. Coupled with the 
appropriate tools, TRAP can be used to identify cellular transcriptional programs 
that are altered by the ELA experience in specific cell types and circuits, impacting 
cognitive and emotional brain functions enduringly. Understanding how ELA 
changes gene expression, circuit integration and function of neurons that are 
engaged by ELA will advance our understanding of the mechanisms employed 
by ELA to heighten the risk for mental illness later in life.
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1 Introduction

Adverse experiences early in life are associated with vulnerability to cognitive and 
emotional dysfunction, including non-optimal cognitive performance (Kaplan et al., 2001; 
Fors et al., 2009; Marden et al., 2017), anxiety and augmented risk-taking (Nelson et al., 2007; 
Green et al., 2010; Tottenham et al., 2010; Hanson et al., 2015; Davis et al., 2017; Short and 
Baram, 2019). Health risk behaviors in adulthood were increased in children raised in 
dysfunctional households and were proportional to the degree of abuse the subjects had 
experienced (Felitti et al., 1998; Danese et al., 2017). Several studies also point out to alterations 
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of the reward circuitry, emotion regulation and processing, and high 
risk for mood disorders such as depression, following ELA (Gaffrey 
et  al., 2018; Kopala-Sibley et  al., 2018; Novick et  al., 2018; Dixon 
et al., 2020).

ELA is highly prevalent, posing a major social and public health 
challenge. A recent meta-analysis study that included almost half a 
million children from 18 countries, found that 6 out of 10 children 
experienced 1 or more adverse early life experiences (ACEs), and 15% 
experienced 4 or more (Madigan et al., 2025). Higher prevalence of 
ACEs was observed in children from low-income households, 
(Madigan et al., 2025; Farooq et al., 2024) or adolescents who were 
female, multiracial, identifying as indigenous populations or 
non-heterosexual (Swedo et al., 2024). Although ELA is linked to 
adverse physical and mental health outcomes at the population level, 
ACEs show weak associations with negative outcomes at the individual 
level (Baldwin et  al., 2021) making it difficult to identify 
vulnerable individuals.

2 ELA and adverse outcomes—human 
studies

Whereas a large body of human work associates ELA with adverse 
mental health outcomes, human studies are often correlational. A 
unique, controlled, randomized human study investigated Romanian 
infants placed in institutions that then either transitioned to foster 
care or stayed in institutional care (Nelson et al., 2007). The cognitive 
outcomes of children moved to foster care were significantly higher 
compared to those who remained institutionalized, and this was 
predicated on transition to a more nurturing, enriching and stable 
environment by around 2 years of age. These findings support a causal 
role of ELA in neurodevelopmental problems and suggest the 
existence of a sensitive neurodevelopmental period early in postnatal 
life (Duncan et al., 1998; Hensch, 2004; Hackman and Farah, 2009; 
Gee and Cohodes, 2021; Birnie and Baram, 2025).

Thus, the literature on the link between ELA and mental and 
cognitive health vulnerabilities is compelling. In addition, ELA is 
complex and multifaceted, and different dimensions of ELA may have 
diverse consequences on cognitive and emotional functions later in 
life (Sheridan and McLaughlin, 2014). Recently, in addition to the 
well-studied issues of poverty, neglect, abuse and maternal depression, 
unpredictability of signals from the parents and the community has 
been found to be  an understudied ELA dimension, with a major 
impact on memory, executive functions and depression-related 
symptoms such as anhedonia (Davis et al., 2017, 2019; Glynn et al., 
2019, 2025; Spadoni et al., 2022).

3 Epigenomics and transcriptomics as 
a plausible mechanism—human 
studies

As discussed above, a large body of work links ELA with 
neuropsychiatric disorders later in life; however, the molecular and 
cellular mechanisms through which ELA leads to enduring problems 
remain largely unclear. One potential mechanism to explain the long-
term encoding of ELA is epigenetics. Epigenetic regulation refers to 
the control of gene expression through potentially reversible 

modifications to DNA, chromatin, or associated regulatory molecules 
that do not alter the primary coding sequence, and serves as a key 
interface through which environmental factors influence genomic 
function (Feil and Fraga, 2012). Changes to the epigenome have thus 
been proposed as a potential mechanism through which ELA is 
persistently encoded at the molecular level, leading to lasting 
alterations in gene expression and increased vulnerability to adverse 
phenotypes (Turecki et al., 2014; Short and Baram, 2019; Ochi and 
Dwivedi, 2022).

DNA methylation is one of the first discovered epigenetic 
mechanisms and, as such, one of the most widely cited in the context 
of ELA. Several studies have linked ELA with altered DNA methylation 
of specific genes (e.g., the glucocorticoid receptor gene NR3C1) in both 
peripheral tissues and postmortem brain samples (reviewed at length 
in Turecki and Meaney, 2016; Cecil et al., 2020), and a few studies have 
investigated its impact on genome-wide DNA methylation levels 
(reviewed in Cecil et al., 2020; Parel and Peña, 2022). DNA methylation 
measured from buccal swabs or saliva has been suggested to contain 
signatures of ELA (Marini et al., 2019; Sumner et al., 2022; Short et al., 
2024). A challenge in identifying DNA methylation signatures of ELA 
is due to large inter-individual variation in the human genome and 
hence, in DNA methylation patterns (Bock et al., 2008). This variance 
has hampered detection of common discernible methylation changes 
that associate with ELA or predict its outcomes. To minimize this 
challenge, recent studies have focused on assessing changes in DNA 
methylation over time in a single individual (a within-subject design), 
rather than DNA methylation at a single time point. Indeed, this 
approach has shown strong associations between these methylation 
changes and ELA (Sumner et al., 2022; Short et al., 2024). Of note, in 
Short et al., buccal swabs of infants were collected neonatally and at 1 
year of life for each individual, and the average change in DNA 
methylation between these two times both reflected the degree of ELA 
and predicted cognitive outcome (executive control) at age 5 in a 
sex-dependent manner (Short et al., 2024).

Epigenetic modifications can also govern chromatin accessibility 
and gene transcription. Due to the technical challenges and low yield 
of high-quality RNA from non-invasive sampling methods such as 
buccal swabs, most human studies have relied on blood samples. Red 
blood cells have no nuclei. However, white blood cells may carry a 
durable signature of ELA on the transcriptome, including gene-
expression profiles relating to inflammation (Dieckmann et al., 2020; 
Edelmann et al., 2023; Etzel et al., 2024).

Direct examinations of transcriptomic changes in postmortem 
brain tissue have been limited. Wang et  al. found that depressed 
individuals had elevated expression of CRH, CRHR1, ERa, and 
NR3C2, as well as decreased AR in the paraventricular nucleus of the 
hypothalamus (Wang et al., 2008). Labonte et al. reported decreased 
expression of hippocampal glucocorticoid receptor variants 1B, 1C, 
and 1H in individuals who died by suicide with a history of abuse 
compared to those without abuse history (Labonte et  al., 2012). 
Investigations into DNA methylation, histone modifications, and gene 
expression within the lateral amygdala of individuals who experienced 
ELA revealed converging evidence suggesting changes in immune 
related pathways (Lutz et  al., 2021). Postmortem analyses of the 
anterior cingulate cortex by Lutz et al. revealed that suicide completers 
with a history of abuse exhibit altered myelin-related gene expression 
and methylation in oligodendrocytes (Lutz et al., 2017). Single-nuclei 
sequencing of the cerebral cortex of individuals with a history of 
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childhood abuse revealed that oligodendrocyte precursor cells 
upregulate perineuronal net components, extracellular matrix 
structures that regulate neuronal plasticity, suggesting that childhood 
trauma may impair cortical plasticity (Tanti et al., 2021).

4 ELA and adverse outcomes—animal 
models

Human studies demonstrate associations between ELA and 
outcomes later in life. However, it is difficult to infer causality from 
such correlational studies. In addition, in human studies it is almost 
impossible to distinguish between genetic and environmental factors 
(Short and Baram, 2019; Birnie and Baram, 2025). Animal models 
overcome these issues: genetic variability between subjects is 
minimized, environmental conditions are kept stable, and, most 
importantly, experiments can be designed to show causality between 
ELA and cognitive and emotional functions later in life.

Several animal models have been developed to simulate ELA and 
have demonstrated cognitive deficits and altered responses to stress 
and to reward cues, among other outcomes. Among the most widely 
used are maternal separation (Biagini et al., 1998; Plotsky et al., 2005; 
Nishi et al., 2013), the limited bedding and nesting (LBN) model (Rice 
et al., 2008), and numerous related variations (Molet et al., 2014). Here 
we discuss LBN as a prevalent naturalistic model of ELA developed by 
our lab (Gilles et al., 1996; Brunson et al., 2005; Rice et al., 2008; Birnie 
et al., 2023) and widely adopted throughout the world (Walker et al., 
2017; O’Neill et al., 2025). This simulated poverty model employs 
limiting the bedding and nesting materials in the rearing cages during 
a sensitive developmental period (Ivy et al., 2008; Molet et al., 2014; 
Birnie et al., 2023). Mouse or rat pups are raised in these cages from 
postnatal day (P) 2 to 10. During this time, maternal behavior is 
altered likely because of the stress induced in the dam by the limited 
resources (Ivy et  al., 2008). Chaotic and unpredictable caring 
behaviors are observed, with inconsistent and fragmented bouts of 
care (Molet et  al., 2016; Davis et  al., 2017). Using this model, 
we showed that ELA directly causes deficits in memory (Brunson 
et al., 2005; Ivy et al., 2010), in a way comparable to the decreased 
cognitive performance observed in children raised by mothers with 
high unpredictability (Davis et  al., 2017). Thus, the findings in 
experimental animals are directly relevant to humans. In addition to 
cognitive deficits, reward behaviors are impacted in mice and rats that 
are raised in this ELA model: males exhibit decreased motivation for 
palatable food and sex cues (Molet et al., 2016; Bolton et al., 2018b; 
Birnie et al., 2023; Kooiker et al., 2024). In contrast, female mice and 
rats exhibit increased motivation and consumption for palatable 
foods, sex cues, and non-natural rewards including opioids (Levis 
et al., 2021; Birnie et al., 2023; Kooiker et al., 2024).

5 Epigenomics and transcriptomics as 
a plausible mechanism—animal 
studies

A potential mechanism through which transient ELA may induce 
deficits later in life involves epigenetic and transcriptional 
reprogramming that, in turn, govern neuronal functions and 
responses to stimuli (Nestler, 2014; Bale, 2015; Birnie and Baram, 

2025; Peña, 2025; Torres-Berrío et al., 2025). Approaches to study 
ELA’s epigenetic effects have included both locus-specific analyses and 
genome wide surveys. In targeted studies, reduced maternal care led 
to both DNA hypermethylation and decreased H3K9 histone 
acetylation at the Nr3c1 locus in the rat hippocampus, coinciding with 
decreased gene expression (Weaver et al., 2004; McGowan et al., 2011).

Parallel work in the medial prefrontal cortex of rats exposed to 
caregiver maltreatment found sex specific methylation at the Bdnf 
locus, and female specific decrease in histone acetylation at Bdnf exon 
IV during adulthood, indicating enduring epigenetic priming 
established during development (Blaze et  al., 2013, 2015). DNA 
methylation profiling of buccal-cell DNA at two timepoints from rats 
raised under the limited bedding and nesting paradigm revealed an 
epigenetic signature differentiating ELA rats from control (Jiang 
et al., 2019).

In addition to these persistent epigenetic alterations of single 
genes, ELA reconfigures large-scale transcriptional programs in key 
brain regions. For example, Peña et  al. described, in the ventral 
tegmental area of mice, ELA-induced transcriptional reprogramming, 
and manipulation of the upstream regulator of this reprogramming 
modulated depression-like behaviors (Peña et al., 2017). A similar 
transcriptional reprogramming was found in the hippocampus of rats 
that experienced ELA (Bolton et al., 2020). In this study, blocking of 
the upstream regulator (the neuron-restrictive silencer factor or 
NRSF) rescued spatial memory deficits observed after ELA. Priming 
of sets of genes by ELA has recently been identified (Peña et al., 2019; 
Kos et al., 2023), which sets the stage for the differential expression of 
these genes only after an additional stress later in life, defining a state 
of ELA-induced vulnerability. While these investigations have focused 
on bulk changes in heterogeneous brain regions, sequencing of 
specific neuronal populations or single cells allowed better resolution 
of the epigenomic effects of ELA. For example, ELA induced gene 
expression changes in specific subpopulations of corticotropin-
releasing hormone-expressing neurons in the hypothalamic 
paraventricular nucleus (Short et al., 2023), persistent epigenetic and 
translational changes in the stress-sensitive CA3 neuronal population 
(Marrocco et al., 2019) and overexpression of enzymes associated with 
stress-susceptibility in D2-type medium spiny neurons (Kronman 
et  al., 2021). Even though high-throughput data studies in 
non-neuronal cell populations in the context of ELA are limited, there 
is evidence that ELA changes gene expression in microglia (Réus et al., 
2019; Bolton et  al., 2022), astrocytes (Abbink et  al., 2020) and 
oligodendrocytes (Lutz et  al., 2017; Treccani et  al., 2021; Sharma 
et al., 2023).

6 Probing epigenomic mechanisms 
specifically in neurons engaged by 
ELA using TRAP

Studies investigating the mechanisms through which ELA might 
change the brain have so far focused on specific brain areas and their 
connections (Peña et al., 2017; Bolton et al., 2018a; Bolton et al., 2020; 
Birnie et al., 2023) or specific cell types (Kos et al., 2023; Short et al., 2023; 
Warhaftig et  al., 2023). However, an additional factor that might 
be pertinent is the activation status of cells during the ELA period, since 
neuronal activity is critical to the maturation, synaptic and circuit 
integration, and transcriptional transitions of neurons throughout 
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FIGURE 1

Interrogating gene expression changes selectively and specifically in neurons engaged during early-life adversity: combining activity-dependent 
genetic tagging with molecular tools. The activity-dependent genetic labeling approach (TRAP) allows expression of inducible CreERT2 recombinase 
under the promoter of an immediate early gene (IEG, e.g., Fos, Arc etc.). This mouse line is crossed with a Cre-dependent reporter line, expressing a 
tag (e.g., GFP, mCHERRY). In the offspring, CreERT2 is induced early in life, when mice are raised in typical conditions or in simulated ELA, and any cells 
expressing the IEG during this time will be labeled permanently with the tag. The tag can be attached to a ribosomal or nuclear protein, to allow 
isolation of ribosomal or nuclear RNA for high-throughput analyses.

development (Reh et al., 2020; Stroud et al., 2020; Birnie and Baram, 
2022). In addition, neurons that were active during specific 
developmental times showed hub-like connectivity and their activity led 
to population bursts at later developmental stages (Wang et al., 2024).

With the advent of new tools and transgenic mouse lines we can 
now gain permanent genetic access to neurons that were previously 
activated at a certain time period (Guenthner et al., 2013; DeNardo 
et al., 2019). This method, called Targeted Recombination in Active 
Populations (TRAP), relies on the rapid expression of immediate early 
genes (IEGs) such as Arc and Fos in activated cells (DeNardo and Luo, 
2017; Franceschini et al., 2020). The timing and duration of the period 
is controlled through the administration of tamoxifen, which initiates 
a ~ 36-h time window when activated neurons undergo Cre-mediated 
recombination and start expressing a permanent, visible cell marker. 
This way TRAP allows genetic access to tagged (TRAPed) neurons 
that might be molecularly distinct and spatially distributed but are 
functionally similar or organized in ensembles (Guenthner et  al., 
2013; DeNardo et al., 2019; Wang et al., 2024).

In the last decade, TRAP has been improved (TRAP2 version in 
DeNardo et  al., 2019) and used extensively for tagging and 
characterization of neuronal ensembles linked to specific behaviors 
(DeNardo et al., 2019; Herzog et al., 2020; Xing et al., 2021; Kooiker 
et al., 2023; Kitagawa et al., 2024), for characterizing neuronal circuits 
(Gongwer et al., 2023) and for circuit manipulation, by combining 
TRAP-mediated effector expression with opto- or chemogenetic 
receptors (Clawson et al., 2021; Imoto et al., 2021; Xing et al., 2021; 
Kitagawa et al., 2024). TRAP was recently used to permanently tag 
cells activated as early as embryonic day E18, and in two recent studies 
TRAP revealed cells that were activated during the ELA period 

(P2-P10  in Kooiker et al., 2023; P10-P17  in Balouek et al., 2023). 
Importantly, aberrant behaviors—the outcome measures of the effects 
of ELA on brain function—were ameliorated when the TRAPed cells 
were chemogenetically inhibited (Balouek et al., 2023; Kooiker et al., 
2024). More specifically, in the first study, inhibition of cells activated 
by ELA ameliorated social avoidance following adult stress (Balouek 
et al., 2023), and in the second study inhibition of ELA-TRAPed cells 
normalized an anhedonia-like phenotype in males and a hyper-
motivated phenotype in females (Kooiker et al., 2024).

Beyond circuit delineation and manipulation, TRAP also offers 
permanent access to the molecular makeup of TRAPed cells. Indeed, 
using immunohistochemistry, Dirven et al. recently tested for the 
histone modifier HDAC2 and methylation/hydroxymethylation in 
cells activated and TRAPed during stress, in mice that were categorized 
as resilient or susceptible to depression (Dirven et al., 2024). TRAPed 
cells have also been sorted based on the expression of their permanent 
tag, and their RNA was isolated and sequenced (Imoto et al., 2021). In 
the future, TRAP could be combined with a ribosomal or nuclear tag 
and translating ribosome affinity purification or nuclear affinity 
purification (Heiman et al., 2014; Roh et al., 2017), to provide access 
to the TRAPed cells’ translatome or nuclear transcriptome respectively, 
without the need for sorting. The expression of a tag, if strong enough, 
could also be used to identify TRAPed cells during the analysis of 
single cell or single nucleus RNA sequencing data. The idea of 
performing omics in populations of cells that were activated together 
or at the same time could help understand how stimuli or events 
during a specific time period (especially sensitive developmental times 
such as early life) affect gene expression and cell function (Figure 1). 
Finally, permanent genetic access can also enable targeted gene 
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editing. One important consideration is that since the genetic labeling 
depends on neuronal activation and not any other specific 
characteristics, TRAPed cells most likely encompass subpopulations 
of cells with different properties. For omics studies, this heterogeneity 
may necessitate larger sample sizes to overcome inter-sample 
variability and achieve sufficient statistical power.

7 Conclusion

Understanding how transient ELA changes the brain enduringly 
requires elucidating the underlying mechanisms, most prominently, 
epigenetic changes in specific brain cell populations. Such studies, 
which are crucial for our understanding of how ELA can result in 
mental illness, cannot be conducted in humans, in cell lines or in 
organoids. Therefore, animal models are essential in the quest to 
identify the relevant brain circuits and molecular mechanisms 
bridging ELA and human disease, information that is required for 
designing therapies and interventions. In experimental models, we 
need to further embrace the complexity of the brain, and probe 
distinct cell populations in brain regions and circuits that execute the 
many types of behaviors that are impacted by ELA. The rise of new 
technologies is now allowing a focus on specific cell types and single 
cells. TRAP allows us to explore the effects of ELA taking into account 
another crucial factor; the cells’ activation status during a sensitive 
developmental time. This honed approach will eliminate dilution of 
engaged cells in large neuronal populations that are not influenced by 
ELA and hold promise to further advance our understanding of the 
complex, fascinating and highly important mechanisms by which ELA 
“gets under the skin.”
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