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Korsakoff syndrome (KS), as a central nervous system disorder caused by
prolonged alcohol exposure, is primarily characterized by cognitive dysfunction,
which has long-term effects on patients’ lives, and there is currently a lack of
effective therapeutic drugs. Eleutherococcus senticosus (ES), as a traditional
medicinal plant, has significant antioxidant, anti-inflammatory, and central
nervous system protective effects, and is widely used as ethnopharmacological
agen. This article elaborates on the main pathogenesis and the latest research
progress of KS, summarizes the mechanisms of central nervous system
protection by ES and its active components, and explores its main mechanisms
and targets for treating KS, aiming to provide drug options for the effective
treatment of KS while promoting the development and utilization of the
medicinal value of ES.

KEYWORDS

korsakoff syndrome, cognitive dysfunction, eleutherococcus senticosus, central
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1 Introduction

Korsakoff syndrome is one of the distinctive symptoms of chronic alcoholism (Pandey
et al, 2017). It typically takes more than 10 years from the onset of drinking to
the manifestation of chronic alcoholism symptoms (Campanella et al., 2009). Chronic
alcoholism causes damage to the central nervous system and has become a prominent
public health issue in Northeast China and Russia. According to 2016 statistics, nearly
8.6% of men and 1.7% of women exhibited characteristics indicative of chronic alcoholism
(Rehm and Shield, 2019). However, only a small proportion of patients seek medical
attention in a timely manner. KS is characterized by specific cognitive impairments, such
as anterograde and retrograde amnesia, limited learning capacity, and deficits in executive
functions. These impairments lead to compromised abilities in judgment, planning, and
problem-solving, as well as a weakened inhibitory control of the central nervous system
(Oudman et al., 2015). KS has been scarcely reported domestically, and its significance is
often underestimated by patients. This has led to an increasing number of comorbidities,
ultimately resulting in irreversible damage to the nervous system. In the prevention
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and treatment of alcohol-induced neurological damage, there has
been little satisfactory progress. Therefore, there is an urgent need
for new and more practical prevention and treatment strategies.
KS is often more prevalent among the aging population, and cases
involving brain and nervous system damage may require long-
term treatment (Kunkle et al., 2019). Long-term alcohol abuse in
KS patients not only leads to persistent vomiting but also causes
abnormal glucose metabolism, resulting in the accumulation of
pyruvic acid and lactic acid, as well as the depletion of vitamin
Bl. Additionally, it inhibits the intestinal absorption of vitamin
B1, making conventional thiamine treatment highly limited. In
addition, thiamine supplementation is limited, some patients
respond poorly to treatment, necessitating the exploration of
new neuroprotective agents to alleviate symptoms or slow disease
progression (Muley et al., 2022).

Eleutherococcus senticosus, also referred to as Siberian ginseng,
is the dried rhizome of the plant ES (Rupr. et Maxim.) Harms,
belonging to the Araliaceae family. It is primarily distributed
in northeastern China, Russia, and South Korea (Tong et al,
2025). Modern pharmacological studies have shown that the
saponins, coumarins, flavonoids, and polysaccharides abundantly
present in ES exhibit pharmacological effects including anti-tumor,
antioxidant, anti-aging, anti-inflammatory, and liver-protective
properties. Studies have shown that the active ingredients rich in
ES possess pharmacological effects that protect the central nervous
system and have significant potential in improving cognitive
dysfunction (Liu et al,, 2018). The abundant eleutheroside B and
E in ES may improve cognitive dysfunction in aged rats by
accelerating the synthesis of acetylcholine in hippocampal neurons
through the activation of cholinesterase or the enhancement of
choline recycling (Huang et al., 2013). Pharmacokinetic results
revealed that components such as hyperoside, quercetin, quercitrin,
and caffeic acid in ES can cross the blood-brain barrier, thereby
achieving therapeutic effects for ischemic stroke (Wang Y. et al.,
2020). The polysaccharide component of ES can significantly
enhance brain’s antioxidant stress capacity, while simultaneously
inhibiting the excessive levels of pro-inflammatory cytokines (IL-
1B), thereby achieving the effect of protecting brain tissue in rats
with brain injury models (Xie et al., 2015). Given the significant
central nervous system protective effects of KS, as well as its
anti-inflammatory and cognitive impairment alleviating effects, we
hypothesize that ES possesses substantial pharmacological potential
for treating KS.

Patients with KS experience direct/indirect neuronal damage
due to long-term alcohol consumption. Alcohol can interfere

Abbreviations: AD, Alzheimer's disease; ALDH, aldehyde dehydrogenase;
ASE, acanthopanax extract; ADL, activities of daily living; BBB, blood-
brain barrier; CNS, central nervous system; Cdk5, cyclin-dependent
kinase 5; DNA, deoxyribonucleic acid; Drpl, dynamin-related protein 1;
ES, eleutherococcus senticosus; Fisl, fission protein 1; GHSR, ghrelin
receptor; HO-1, heme oxygenase-1; IL-1f, Interleukin-18; KS, korsakoff
syndrome; LC3, light chain 3; LC-MS/MS, liquid chromatography-tandem
mass spectrometry; Mid49, mitochondrial dynamics protein of 49 kDa; Mff,
mitochondrial fission factor; MoCA, montreal cognitive assessment; Mfn1,
mitochondrial fusion protein mitofusin 1; Mdivi-1, mitochondrial division
inhibitor 1; NF-«B, nuclear factor kappa B; Opal, optic atrophy 1; OPCs,
oligodendrocyte precursor cells; PINK 1, PTEN-induced putative kinase
1, PD, Parkinson's disease; PECAM-1, platelet endothelial cell adhesion
molecule 1; RAVLT, rey auditory verbal learning test; ROS, reactive oxygen
species; 5-HT, 5-hydroxytryptamine.
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with the normal metabolism of neurons, leading to mitochondrial
dysfunction, disturbances in energy metabolism, and decreased
stability of cell membranes. Acetaldehyde and other oxidative
byproducts generated during alcohol metabolism further
exacerbate neuronal damage. These metabolites trigger oxidative
stress responses, leading to the production of free radicals that
damage lipids, proteins, and deoxyribonucleic acid (DNA) in nerve
cells (Koike and Sobue, 2006). Long-term alcohol intake can also
activate microglia, which release pro-inflammatory factors, thereby
exacerbating neuroinflammation and neuronal damage (Nutt
et al., 2021). Disruption of oligodendrocyte function can also lead
to neuronal damage. The primary role of oligodendrocytes is to
generate the myelin sheath that wraps around neuronal axons. The
myelin sheath serves to cut off and accelerate the transmission of
nerve impulses, enhancing efficiency of neural signal transmission.
Additionally, oligodendrocytes can produce lactate to provide
energy support for neurons (Kuhn et al., 2019). Alcohol exposure
inhibits the proliferation and differentiation of oligodendrocyte
precursor cells (OPCs), affecting oligodendrocyte generation and
leading to a reduction in the number of mature oligodendrocytes,
thereby impairing myelination (Huang et al., 2024). Damage to
the myelin sheath can lead to a slowdown in neuronal conduction
speed, affecting the normal function of neurons (Darbinian and
Selzer, 2022), thereby leading to memory impairment, cognitive
decline, and motor coordination disorders.

In summary, direct/indirect neuronal damage, increased
neuroinflammation, and elevated oxidative stress levels are the
core pathological features of KS, and the antioxidant, anti-
inflammatory, and neuroprotective effects of ES may directly
intervene in these pathological characteristics.

2 Current research progress and
pathogenesis of korsakoff syndrome

2.1 The current research progress of KS

Approximately 2 billion people worldwide consume alcohol,
and chronic alcohol abuse can lead to various diseases and death.
Globally, 3 million people die each year from alcohol consumption.
A survey from the China Kadoorie Biobank study found that
33% of hospitalization incidents among Chinese men are closely
related to alcohol intake (Im et al, 2023). In recent years, the
impact of alcohol on the significant fluctuations in mortality rates
in Russia has now been widely recognized (McKee, 1999). Alcohol
is a significant factor contributing to premature deaths among
Russians, with both the quantity and manner of consumption being
detrimental to health (Neufeld and Rehm, 2013). As the seventh
major risk factor for global mortality and handicapped, the risk of
developing cognitive dysfunction after alcohol cessation remains
unchanged (Schwarzinger et al., 2018).

Some alcoholics may have a genetic predisposition to develop
KS (Arts et al., 2017). Its characteristic neuropathology includes
neuronal loss, microhemorrhages, and gliosis in the periventricular
gray matter and periaqueductal gray matter of the midbrain
(Kopelman et al., 2009). Alcohol and its metabolite acetaldehyde
possess direct neurotoxicity. Furthermore, chronic alcoholics often
develop severe liver diseases, which themselves can lead to
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alterations in thiamine deficiency, cognitive dysfunction, and
central nervous system injury (Butterworth, 1995). A small number
of patients can develop KS without alcohol consumption, such
as those with AIDS, terminal cancer, or chronic infections and
malnutrition (Popa et al., 2021).

Patients with KS often suffer from severe physical discomfort
and mental illness, progressing from initial symptoms of
amnesia, confabulation, paramnesia, cognitive dysfunction,
and disorientation, ultimately leading to changes in personality.
The various health issues of these patients severely limit their
ability to perform daily activities and have a negative impact on
their social functioning (van Dam et al., 2020). Therefore, effective
treatment for KS is of great importance.

2.2 The pathogenesis of KS

2.2.1 Alcohol directly damages neuronal cells and
induces mitochondrial dysfunction

Mitochondria are the organelles that provide the energy
required for the brain to maintain neuronal communication,
and their dysfunction is considered a major factor in alcohol-
induced synaptic dysfunction (Mira et al., 2019). In various affected
organizations, the enzyme required for oxidizing ethanol produces
acetaldehyde, which is then converted to acetate by aldehyde
dehydrogenase (ALDH). ALDH is a nicotinamide adenine
dinucleotide (NAD™)-dependent enzyme, and mitochondrial
ALDH?2 is likely the primary contributor to the clearance of
ethanol-derived acetaldehyde in cells. Alcohol metabolism has
several adverse effects on mitochondria, including elevated levels
of free radicals, hyperacetylation of mitochondrial proteins, and
excessive mitochondrial fragmentation (Waddell et al, 2022).
Prolonged exposure to ethanol activates the mitochondrial fission
protein dynamin-related protein 1 (Drpl) and upregulates Drpl
receptors such as fission protein 1 (Fis1), mitochondrial dynamics
protein of 49 kDa (Mid49), and mitochondrial fission factor
(Mff), while reducing the levels of optic atrophy 1 (Opal)
and mitochondrial fusion protein mitofusin 1 (Mfnl). The
mitochondrial division inhibitor 1 (mdivi-1) eliminates ethanol-
induced mitochondrial homeostasis imbalance and improves
cognitive dysfunction in the mouse model. By inhibiting the
abnormal activation of cyclin-dependent kinase 5 (Cdk5), it is
possible to mitigate hippocampal neuronal damage and cognitive
dysfunction induced by mitochondrial fission and mitochondrial
homeostasis imbalance mediated by mitochondrial fission proteins
Drp1 due to prolonged exposure to ethanol (Liu et al., 2022).

After excessive alcohol consumption, acetaldehyde, the most
toxic metabolite of ethanol, impairs mitochondrial function and
induces cytotoxicity in neuronal cells. In acetaldehyde-treated cells,
the levels of light chain 3 (LC3)-II, Beclinl, autophagy-related
proteins (Atg) 5 and Atgl6Ll, PTEN-induced putative kinase
(PINK) 1, and Parkin were significantly increased, while the level
of p62 was decreased. Acetaldehyde significantly increased the
accumulation of PINK1 and Parkin on mitochondria, accompanied
by a decline in mitochondrial quality. Hyperactive mitophagy may
be a core mechanism underlying acetaldehyde-induced neuronal
cytotoxicity. The antioxidant N-acetyl-L-cysteine remarkably
attenuates the mitophagy response and alleviates acetaldehyde-
induced cytotoxicity, suggesting that oxidative stress is the primary
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intermediary of acetaldehyde-induced intense mitophagy (Yan
etal., 2022). The specific mechanism is illustrated in Figure 1.

2.2.2 Alcohol directly damages neuronal cell
death and leads to synaptic injury regeneration
disorder

Alcohol abuse triggers neuroinflammation, leading to neuronal
damage and further memory and cognitive impairment (Guergues
et al., 2020). Stereotypic patterns of synaptic connections between
neurons underlie the ability of the CNS to perform complex
but circuit-specific information processing (D’Orazi et al., 2016).
The loss of excitatory synapses is known to form the cognitive
impairment in AD patients (Bhembre et al, 2023). Research
has found that alcohol exposure can also lead to synaptic
regeneration disorders, which in turn result in the occurrence
of cognitive dysfunction behaviors. Free radicals significantly
promoted the concentration of reactive oxygen and nitrogen
species in the system, thereby elevating overall oxidative stress.
A proper balance between free radicals and antioxidants is crucial
for maintaining physiological functions. Alcohol, as the main
cause of the enhancement of reactive oxygen species (ROS) in
the brain, has an adverse impact on axonal regeneration and
synaptic plasticity, leading to the death of neuronal cells. In
addition, the increase of ROS in the brain alters a variety of
signaling pathways, such as apoptosis, autophagy, inflammation
and microglial activation, DNA damage response, and cell cycle
arrest, thus resulting in deficits in memory and learning abilities
(Tripathi et al,, 2022). Ethanol may disrupt cholesterol homeostasis
during brain development, thereby causing synaptic regeneration
disorders (Guizzetti and Costa, 2005).

2.2.3 Alcohol-induced oligodendrocyte death
and demyelination

Oligodendrocytes are myelin-forming cells of CNS, which
are generated from oligodendrocyte precursor cells (OPCs)
that express neurotransmitter receptors (Lu et al., 2023). Their
main function is to wrap around axons to form a shielding
myelin sheath structure, thereby promoting the saltatory and
efficient transmission of bioelectrical signals, and maintaining and
protecting the normal functions of neurons (Bansal and Zinkus,
2019). Chronic ethanol intoxication can induce oxidative stress
and neuroinflammation, partially mediated by platelet endothelial
(PECAM-1). Alcohol intoxication
may lead to BBB damage, bringing about demyelination of

cell adhesion molecule 1

oligodendrocytes and cognitive dysfunction. The increased
expression of oligodendrocytes and myelin-related proteins has
been associated with improvements in certain cognitive function
impairments in various aspects (Lu et al., 2024). These changes and
the upregulation of PECAM-1 may constitute the pharmacological
mechanism of recovery in ethanol-induced oxidative damage.
Activation of calpain, a calcium-activated neutral protease, has
been found to cause detrimental alterations in spinal motor
neurons following in vitro exposure to ethanol. Studies have shown
that axonal proteins and myelin basic protein are significantly
reduced in multiple brain regions after alcohol intoxication
(Hyatt et al, 2022). Calpain inhibitors can markedly protect
the ultrastructural integrity of oligodendrocytes, and it has been
confirmed that calpain inhibitors serve as protective agents against
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Alcohol and its metabolite ethanol directly damage neuronal cells, leading to mitochondrial dysfunction and the pathogenesis of KS. Alcohol
metabolism has several adverse effects on mitochondria, including elevated levels of free radicals, hyperacetylation of mitochondrial proteins, and
excessive mitochondrial fragmentation. [Arrows (—) indicate positive regulations, and the symbol (T) represents negative regulations].

central nervous system neurodegeneration (Samantaray et al,
2015). Ethanol can influence microglia in the brain, indirectly
altering myelination. Activation of the glial cell Toll-like receptor 4
(TLR4) can activate microglia, resulting in oligodendrocyte death
and demyelination. Specifically, Research has found that ethanol
activates TLR4, which is involved in reducing the expression of
proteins related to myelination, including proteolipid protein
(PLP), myelin basic protein (MBP), myelin oligodendrocyte
glycoprotein, 2',3'-cyclic nucleotide 3’-phosphodiesterase, and
myelin-associated glycoprotein. However, in TLR4 receptor
knockout mice, most of the alterations in myelin were not directly
observed (Alfonso-Loeches et al., 2012).

2.2.4 Alcohol-induced microglial activation leads
to neuroinflammation

Microglia are the resident immune cells in the brain and
are capable of showing a wide variety of activation phenotypes.
Many of these phenotypes are associated with various diseases
of the central nervous system, including those related to chronic
alcohol abuse (Guergues et al., 2020). Microglial cells are believed
to play the role of the brain’s resident immune defense system
(Poh et al,, 2019). As representatives of macrophages in CNS,
microglial cells have the ability to clear cellular debris. The
signaling of microglial cells is one of the main targets of the
action of ethanol in the brain: Exposure to ethanol selectively
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modulates the intracellular signaling in microglial cells instead
of broadly suppressing signaling pathways in a non-specific way.
The dysregulation of the inflammatory activation signaling of
microglial cells induced by ethanol may lead to disorders of the
immune and inflammatory responses in CNS (Suk, 2007). The
activation of microglia leads to the release of pro-inflammatory
mediators, and microglia-mediated neuroinflammation has been
recognized as one of the neuropathological mechanisms induced
by alcohol. Interleukin-15 (IL-15) is a cytokine, and its expression
will increase when astrocytes and microglia are activated under
the condition of long-term alcohol exposure (Waldmann et al,
2020). Importantly, the partial activation of microglia induced
by ethanol cannot be reversed by prolonged abstinence. Chronic
alcohol exposure induces a microglial phenotype consistent
with partial activation, without a significant increase in the
classical cytokine markers of neuroinflammation in hippocampus.
Moreover, abstinence after long-term alcohol abuse is insufficient
to change the ethanol-induced partially activated phenotype of
microglia (Cruz et al., 2017). Alcohol exposure can lead to cognitive
dysfunction in mPFC and excessive activation of the NLRP3
inflammasome. Adolescent ethanol exposure triggers microglia-
mediated neuroinflammation through TLR4 activation, while
SUMO-specific protease 6 (SENP6) is crucial for inhibiting NF-
kB pathway activation and neuroinflammation (Li et al., 2019).
The excessive activation of microglia is the main cause of cognitive
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dysfunction. Alcohol promotes mitochondrial dysfunction and the
generation of ROS, and accelerates the excessive activation of the
NLRP3 inflammasome, leading to the production of inflammatory
factors. Alcohol exposure increases the initiation of the NLRP3
inflammasome, enhancing the secretion of cytokines by activated
microglia. Excessive alcohol intake will cause damage to mPEC,
thus leading to cognitive dysfunction (Li J. et al., 2023). Following
alcohol exposure, an increase in the synthesis and excretion of AGE
albumin was also observed in activated microglia. AGE-albumin
significantly increases the expression levels of receptor for AGE
(RAGE)-positive neurons via the mitogen-activated protein kinase
pathway. This elevation in RAGE expression also exacerbates
RAGE-dependent neuronal death. However, in animal models,
treatment with soluble RAGE or AGE inhibitors can notably
reduce the neuronal damage caused by AGE, suggesting that
AGE has a detrimental effect on neurons through the activation
of the RAGE pathway, and interventions targeting this pathway
can mitigate such damage. The increase in AGE albumin in
activated microglia induces neuronal cell death, thereby leading to
cognitive dysfunction (Byun et al., 2014). The specific mechanism
is illustrated in Figure 2.

2.2.5 Alcohol induces cognitive dysfunction
through the gut-brain axis

Alcohol consumption has a direct impact on the gut
microbiota, altering bacterial diversity and leading to bacterial
overgrowth. Increasing evidence suggests that the effects of
alcohol on the gut microbiome may contribute to increased the
development of alcohol-related diseases such as KS (Wolstenholme
et al., 2024). Alcohol use impairs the intestinal barrier and causes
changes to the intestinal permeability as well as the gut microbiota
composition (Wang S. et al., 2020). Chronic alcohol abuse leads to
the overactivation of enteric glial cells in addition to the excessive
activation of microglia (Khan and Chang, 2023). Therapeutic
interventions targeting the gut-brain axis as a novel strategy for
treating KS-associated cognitive dysfunction (Li et al., 2022). The
gut-brain axis harbors an abundance of peptides, such as the
orexigenic peptide ghrelin. In animal models, agonists of the GLP-
1 or amylin receptor and ghrelin receptor (GHSR) antagonists
reduce alcohol drinking, relapse drinking, and alcohol-seeking
(Tufvesson-Alm et al., 2022). After prolonged alcohol abuse,
alcohol not only damages the intestinal barrier in KS patients
but also further affects the brain via the gut-brain axis, leading
to occurrence of cognitive dysfunction. By restoring the intestinal
barrier and inhibiting alcohol metabolism, the goal of treating KS
is achieved (Wu et al., 2024).

After alcohol withdrawal, the concentrations of tryptophan
metabolites, norepinephrine, dopamine, and y-aminobutyric acid
in the prefrontal cortex and hippocampus are related to the
changes in bacterial abundance, and this relationship is related to
gender (Pizarro et al., 2021). In the rat model induced by alcohol,
changes occurred in intestinal permeability and blood metabolic
levels. Biosynthetic pathways such as those of valine, leucine, and
isoleucine, as well as the metabolism of arginine and proline,
were affected by alcohol (Yang et al., 2021). The extracellular
vesicles secreted by the gut microbiota mainly affect the central
nervous system through the gut-brain axis (Pei et al., 2024). Fecal
microbiota transplantation may alter the gut microbiota, improve
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intestinal permeability, and reduce the inflammatory response,
thereby treating the cognitive dysfunction behaviors caused by
alcohol (Docherty, 2025).

3 Neuroprotective mechanisms of
ES in KS

In traditional medicine, ES is an effective medicinal plant
for the treatment of hypertension, thrombosis, inflammation
and cancer (Wu et al, 2019). As a typical medicinal plant in
the northeastern region of China, it is primarily distributed
in Heilongjiang, Jilin, Liaoning, and Hebei provinces (Wang
et al, 2014). Research has found that it is rich in chemical
components such as eleutheroside, phytosterols, triterpenoid
saponins, dihydrodehydrodiconiferyl alcohol monopyranoside,
glycosides, 5'-O-caffeoylquinic acid isomers, glucopyranosides, and
lignans (Deyama et al., 2001). As a medicinal plant traditionally
used in Far Eastern Russia and East Asian medicine, ES is classified
as an adaptogen-a category of herbal products with non-specific,
systemic anti-stress effects that impact the entire human body.
Initially recognized as a medicinal plant in the pharmacopeia of
the USSR in 1962, it is currently recommended by the European
Medicines Agency for the treatment of conditions such as fatigue
and weakness. A safe and well-tolerated herbal remedy, it is suitable
for use by adults, children, and pregnant women (Gerontakos et al.,
2021).

3.1 ES possesses clinical application and
efficacy advantages in targeted
treatment of central nervous system
diseases

Eleutherococcus senticosus possesses pharmacological effects
including anti-fatigue, anti-stress, immune enhancement, central
nervous system activity, and antidepressant properties (Chen et al.,
2023), Rich in active ingredients in addition saponins, flavonoids,
lignans, and polysaccharides (Ma et al., 2025). Clinically, ES is
commonly used to improve nerve damage and treat conditions
such as insomnia and depression (Wu et al., 2025). Lee et al.
(2017) discovered that the ethanol extract of Acanthopanax
improves cognitive dysfunction induced by cholinergic blockade by
modulating memory-related signaling molecules. ES can effectively
alleviate behavioral symptoms in PD mice, reduce oxidative stress
in hippocampal neurons of brain tissue, and is closely related to
pathways such as glutathione metabolism and glutamate-aspartate
and glutamate metabolism (Fu et al., 2024). ES extract has the effect
of alleviating reperfusion injury in neuronal cells following oxygen-
glucose deprivation, and it has been demonstrated to protect
neural cells by inhibiting oxidative stress, preserving mitochondrial
homeostasis, and suppressing cell apoptosis (Wang et al., 2022).
The extract of ES effectively controlled the neuronal cell swelling,
protein loss, and liquefaction of necrotic tissue observed in the
brains of radiotherapy model mice (Zhou A. et al.,, 2018). Sixty
active substances in ES be recognized using the UPLC-Q-TOF-
MS method. The research findings of systems pharmacology
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The mechanism by which alcohol induces the activation of the NLRP3 inflammasome, resulting in the activation of microglia and the pathogenesis
of KS. Alcohol exposure increases the initiation of the NLRP3 inflammasome, enhancing the secretion of cytokines by activated microglia. [Arrows
(—) indicate positive regulations, and the symbol (T) represents negative regulations].

have revealed that ES treats cognitive impairment through the
acetylcholinesterase and apoptosis signaling pathways. Fifteen
potential anti-AD components in ES protect against cholinergic
nervous system damage and reduce scopolamine-induced neuronal
apoptosis (Zhuo et al., 2023). The aqueous extract of ES leaves
exerted a beneficial effect on the restoration of neurite outgrowth
in AB25-35-induced degeneration, as determined by axonal density
measurement. The findings demonstrated that compounds 2 and
3 in the aglycone inhibited APB25-35-induced degeneration and
significantly rehabilitated axonal growth (Ge et al., 2016).

3.2 Potential effective components for
the treatment of KS exist in ES

3.2.1 The active components of Acanthopanax
senticosus target and inhibit neuronal cell
apoptosis

As a psychoactive substance widely used worldwide, the
excessive use of alcohol is bound to cause cognitive impairment
and central nervous system damage (Garcia-Baos et al, 2021).
Alcohol affects the activity of neuronal circuits (Egervari et al,
2021). Identifying the molecular effects within specific neurons in
brain regions that lead to behavioral changes during acute and
chronic ethanol exposure is one of the core aspects in treating KS
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(Abrahao et al., 2017). The drinking behavior of pregnant women
can cause continuous damage to hippocampal neurons and a
decrease in the mass of the hippocampus (Burke et al., 2015). Long-
term alcohol exposure leads to a significant decrease in thiamine
levels in the body. Alcohol-induced decline in thiamine levels is
closely associated with two mitochondrial pathways (B4, 2017).
Eleutheroside B is an active ingredient extracted from the roots
and stems of ES, which has neuroprotective effects (Chiarugi, 2023).
It exerts neuroprotective effects against hypoxia/reoxygenation-
induced injury in cortical neurons of SD rats, and the underlying
mechanism might be related to promoting the activation of
the PI3K/Akt signaling channel to inhibit neuronal apoptosis,
reduce the degree of lipid peroxidation, and enhance activity
index of antioxidant enzymes (Deng et al., 2020). Eleutheroside
B enhances the interaction between p53 apoptosis-stimulating
protein inhibitor (iASPP) and Keapl, stabilizes Nrf2 levels in
the brains of APP/PS1 mice, inhibits p53 DNA-binding activity,
reduces oxidative stress in the brain, decreases A accumulation
and neuronal apoptosis, improves hippocampal synaptic plasticity,
and thereby alleviates cognitive deficits in APP/PS1 mice (Ding
et al, 2022). The triterpenoid saponins in ES can significantly
reduce B-amyloid-induced neural network damage by promoting
the growth of neurites and axons (Zhou et al., 2023). Eleutheroside
E (EE), the primary component of ES, exhibits significant protective
effects on cognitive function. It alleviates cognitive dysfunction
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induced by isoflurane anesthesia through the modulation of the
a7-nAChR-NMDAR signaling pathway (Lu and Xiao-Qing, 2019).
The active components of ES inhibit neuronal apoptosis, reduce
oxidative stress in the brain, and alleviate cognitive dysfunction.

The main flavonoid components of ES include hyperoside,
rutin, quercetin, and quercitrin. The primary organic acid
components consist of caffeic acid, 1,5-dicaffeoylquinic acid, 4,5-
dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid (Wang et al,
2019). The flavonoid components in ES, such as quercetin and
quercitrin, can alleviate lipid peroxidation damage, enhance the
expression of Bcl-2 protein, and reduce neuronal apoptosis in
the ischemic brain region, thereby protecting the damaged brain
tissue (Zhu et al, 2012). Mice subjected to chronic ethanol
treatment exhibited poor memory retention in the step - down
passive avoidance behavior and elevated plus maze tasks. Quercetin
has remarkable antioxidant activity. After long-term therapeutic
administration, the cognitive behaviors of mice in the aging model
and the alcohol disorder model have been improved (Singh et al.,
2003). Quercetin can treat the cognitive impairment behaviors
and AD pathological manifestations in APP/PS1 double transgenic
mice. Its mechanism of action is closely related to the activation
of the Kelch-like ECH-associated protein 1 (Keapl)/nuclear factor
erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)
signaling pathway and the inhibition of apoptosis by quercetin
(Cheng et al., 2024). The flavonoid components of Acanthopanax
activate the Keap1/Nrf2/HO-1 signaling pathway, reduce neuronal
cell apoptosis, protect damaged brain tissue, and improve cognitive
dysfunction.

The polysaccharide active ingredients in ES significantly
mitigated the alterations in glucose and C-reactive protein
(CRP) levels caused by alcohol, thereby reducing the severity
of alcohol hangover through inhibition of alcohol-induced
hypoglycemia and neuronal inflammatory responses (Bang et al.,
2015). Acanthopanax polysaccharide can protect against H,O,-
induced apoptosis in hippocampal neurons by downregulating
release level of pro-apoptotic protein caspase-3 and enhancing
the activity of DNA damage repair enzymes, thereby inhibiting
ROS-induced neuronal apoptosis (Liu et al., 2013). Acanthopanax
polysaccharides can ameliorate neural damage in SD rats,
potentially through the activation of the SIRT1/PGC-1a pathway,
enhancing SOD activity in brain tissues, reducing MDA content,
improving mitochondrial function and oxidative stress, ultimately
alleviating ischemic brain injury. Activation of the SIRT1/PGC-
la. pathway can improve mitochondrial damage and reduce
ROS production, inhibit neuroinflammation, thereby improving
cognitive function impaired by chronic cerebral hypoperfusion
(Dai et al., 2025). The polysaccharide component of ES inhibits
mitochondrial dysfunction, protects neuronal cells, suppresses
their apoptosis, and alleviates cognitive dysfunction. The specific
mechanism is illustrated in Figure 3 and Table 1.

3.2.2 The active components of Acanthopanax
senticosus target and inhibit microglial activation
Neuroinflammation triggered by microglial activation and the
consequent neurological dysfunction are prominent features of
cognitive impairments such as KS (Li Q. et al., 2023). Activation
of microglia in the prefrontal cortex predicts cognitive decline
in frontotemporal dementia (Malpetti et al., 2023). Mitophagy
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is a process that regulates inflammatory responses by limiting
the accumulation of damaged mitochondria. Inducing microglial
mitophagy may be an effective therapeutic approach for KS patients
(Zhang et al., 2025). Under alcohol exposure conditions, the
activation of hippocampal microglia significantly increases (Walter
et al,, 2023). The specific transcriptome of microglia undergoes
changes after long-term alcohol consumption (McCarthy et al,
2018). Repeated ethanol exposure potentiates microglial activity
(Marshall et al., 2016). Microglia are critical regulators of alcohol
responses in the CNS (Henriques et al, 2018). That early
EtOH exposure caused a deficit in experience-dependent synaptic
plasticity in the visual cortex (Wong et al., 2018).

As an inducible enzyme in cells, the aqueous extract of
ES fruits increases HO-1 expression and reduces NO/ROS
production in LPS-induced microglial cells. Furthermore, the
induction of HO-1 expression protects cells from glutamate-
induced neuronal cell death. The activation of the p38-CREB
pathway and the translocation of Nrf2 are closely associated
with ES-induced HO-1 expression. ES inhibits neuroinflammation
and protects the central nervous system through the p38-CREB
pathway-induced HO-1 expression. Additionally, ES increases the
translocation of Nrf2 to regulate HO-1 expression (Jin et al,
2013). The quercetin component in Acanthopanax senticosus
exerts therapeutic effects on cognitive dysfunction in AD patients
by promoting the phosphorylation of the MAPK signaling pathway
in microglia (Zhang et al., 2024). ES and its active components
activate the p38-CREB pathway in microglia and promote
the phosphorylation of the MAPK signaling pathway, thereby
inhibiting neuroinflammation and achieving therapeutic effects on
cognitive dysfunction. The specific mechanism is illustrated in
Figure 4.

3.2.3 The active ingredients of ES target the
gut-brain axis

Research has found that there is a significant connection
between the gut microbiota and the brain. Through this
connection, the gut microbiota can further affect the CNS and
brain development (Klann et al., 2021). KS is closely related
to the gut-brain axis. The stability of the gut microbiota can
improve cognitive dysfunction through the gut-brain axis (Pan
et al., 2023). Existing studies have found that stabilizing the gut
microbiota and activating the Nrf2 signaling pathway can inhibit
neuroinflammation and promote neurogenesis, thereby alleviating
cognitive impairment (Kong et al., 2024). Bacterial species and
genera are closely related to the mediators of the microbiota-gut-
brain axis, and these mediators are associated with the markers of
the amyloid cascade in AD (Marizzoni et al., 2023).

Eleutherococcus senticosus regulated the gut microbiota in
the ischemic stroke model, mainly by reducing the abundance
of pathogenic bacteria and increasing the abundance of probiotic
bacteria, such as Lactobacillus reuteri and Clostridium butyricum
(Wang et al., 2023). ES extract achieves the therapeutic effect
on cognitive dysfunction by altering the abundance of gut
microbiota. Bacteria of the genus Ruminococcus and those
of the order Clostridiales are closely related to the synthesis
pathway of serotonin 5-hydroxytryptamine (5-HT). Bacteria of
the genus Streptococcus are associated with the synthesis of 5-
HT and acetylcholine (ACH). ES increased the level of tight
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Inhibition of neuronal damage by active components of eleutherococcus senticosus. [Arrows (—

) indicate positive regulations, and the symbol (T)

junction proteins, inhibited the expression of inflammation in the
colon, promoted the protein expression levels of brain-derived
neurotrophic factor (BDNF) and NF-«B in the hippocampus of
irradiated mice, and decreased the relative protein expression
level of nuclear factor kappa B inhibitor alpha (IkBa) in the
hippocampus (Song et al., 2023). ES exerts a therapeutic effect
on ischemic stroke through the gut-brain axis and shows great
potential for treating KS.

4 Construction of KS model

The successful model construction as the foundation for
effective KS treatment. Currently, it is relatively common to use
alcohol and mice to construct a KS cognitive dysfunction model
(Golub et al., 2015). Human epidemiological studies suggest that
the female brain may be more susceptible to the toxic effects of
alcohol. Researchers constructed a cognitive impairment model
with gender differences using SD rats to study the effects of alcohol
exposure on gender disparities (Savage et al., 2000). In addition
to conventional mouse and rat models, the latest research utilizes
zebrafish for the construction of cognitive impairment models.
Zebrafish exposed to alcohol exhibited impairments in retaining
the memory of learned tasks (Rajesh et al., 2018). The zebrafish
is currently a popular animal model in pharmacogenetics and
neuropharmacology (Kalueff et al,, 2014). Research has found
that during the embryonic development of zebrafish, even with
low-dose alcohol intake, there will be significant changes in
their behavior. Alcohol has an impact on the expression of
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TABLE 1 The specific mechanism by which eleutherococcus inhibits
neuronal apoptosis.

Eleutherococcus | The mechanism of action for
treating KS

senticosus
components

Eleutheroside B 1. Activate the PI3K/Akt signaling pathway
2. Inhibit p53 DNA-binding activity

3. Reduce oxidative stress in the brain

4. Decrease A accumulation and neuronal
apoptosis

5. Improve hippocampal synaptic plasticity

Eleutheroside E 1. Modulate the a7-nAChR-NMDAR signaling

pathway

Flavonoid components 1. Alleviate lipid peroxidation damage
2. Enhance the expression of Bcl-2 protein
3.Educe neuronal apoptosis

4. Activate the Keap1/Nrf2/HO-1 pathway

Polysaccharide active 1. Inhibite alcohol-induced hypoglycemia and

ingredients neuronal inflammatory responses
2. Activate of the SIRT1/PGC-1a pathway
3. Improve mitochondrial damage

4. reduce ROS production

5. inhibit neuroinflammation

neuronal markers and the phenotypes of glial cells in the model
(Paul et al., 2020).

Cognitive deficits associated with alcoholism are also a
consequence of cerebellar dysfunction (Botta et al, 2010).
Therefore, constructing a typical in vitro alcohol exposure cell
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model is equally essential for exploring the pathogenesis of KS
and identifying effective treatment strategies. Existing studies have
further dissected the characteristics of the reduced initial T cell
population known to exist in alcohol-exposed mice, and have
described alterations in the phenotype of effector regulatory T
cells associated with the pathogenesis of chronic alcohol-induced
immune dysfunction (Paterson et al., 2023). Alcohol exposure also
causes changes in neuronal genes (Tyler and Allan, 2014). The
co-culture technique of neurons and microglia has become the
preferred in vitro pharmacological model for studying the effects of
drugs on the behaviors associated with alcohol-induced cognitive
dysfunction (Li et al., 2024).

Due to thiamine deficiency, which is a common condition
associated with alcohol abuse and linked to high morbidity and
mortality rates, its deficiency may lead to a rarer condition known
as KS (Cook et al., 1998). After long-term alcohol consumption, it
leads to insufficient nutritional intake of thiamine. Following the
damage to the gastrointestinal tract, the absorption of thiamine is
reduced, and there are obstacles to the bioavailability of thiamine
in the body’s cells (Martin et al., 2003). Long-term excessive alcohol
consumption can cause damage to the body’s intestinal barrier
function. Even though the intestinal epithelial cells are renewed
every 3-5 days after stopping excessive alcohol consumption, the
impairment of intestinal function still persists (Lu et al., 2017).
Therefore, the construction of a damaged intestinal stem cell model
is also central to investigating the pathogenesis of KS in Figure 5.
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5 Advances in pharmacokinetic
studies of ES

The pharmacokinetic results of ES showed that EE was
distributed in the brain tissues of irradiated mice (Song et al,
2022). The high-performance liquid chromatography combined
with solid-phase extraction method was used to determine the
content of isofraxidin in the plasma of rats after oral administration
of Acanthopanax extract (ASE), and the pharmacokinetic behavior
of isofraxidin in ASE or pure compound was also determined.
The results showed that after rats were orally administered with
Acanthopanax extract, the content of isofraxidin in their plasma
was the sum of the contents of free isofraxidin and its precursors in
the Acanthopanax extract in vitro (Sun et al., 2007). Eleutheroside
B, as an active ingredient of traditional Chinese medicine, has
a bioactivity score ranging from —0.08 to 0.38 (Ahmed et al,
2021). The changes in metabolic levels in the plasma and brain
of rats after oral administration of ES extract were explored by
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
technology. The identified active ingredients in plasma and
the cerebral cortex were Eleutheroside C3, Eleutheroside M,
Eleutheroside B, and Eleutheroside Al. Those three compounds
as well as the leaf extract had dendrite extension activity against
primary cultured cortical neurons. The effect might relate to
memory enhancement (Yamauchi et al, 2019). The ultra-high
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Construction of animal models and cell models related to KS. The cognitive impairment model constructed with SD rats is used to study the impact
of alcohol exposure on gender differences. Zebrafish exposed to alcohol have also become an important model for studying KS.

TABLE 2 The targets and specific mechanisms of ES active ingredients in treating KS.

The CNS target sites

The mechanism of action of KS

Eleutherococcus senticosus

components
1. Activate the PI3K/AKkt signaling pathway

Eleutheroside B Cortical neurons
2. Inhibit p53 DNA-binding activity
3. Reduce oxidative stress in the brain
4. Decrease AP accumulation and neuronal apoptosis
5. Improve hippocampal synaptic plasticity

1. Modulate the a7-nAChR-NMDAR signaling pathway

Neuronal
1. Reduce B-amyloid-induced neural network damage by promoting the

Eleutheroside E
Neurites and axons
growth of neurites and axons

Triterpenoid saponins
1. Alleviate lipid peroxidation damage

Flavonoid components Neuronal in the ischemic brain region
2. Enhance the expression of Bcl-2 protein
3. Educe neuronal apoptosis
4. Activate the Keap1/Nrf2/HO-1 pathway

Polysaccharide active ingredients Hippocampal neurons 1. Inhibit alcohol-induced hypoglycemia and neuronal inflammatory
responses
2. Activate of the SIRT1/PGC-1a pathway
3. Improve mitochondrial damage
4. Reduce ROS production
5. Inhibit neuroinflammation

The aqueous extract of ES fruits Microglial cells 1. Inhibit neuroinflammation
2. Inhibit the p38-CREB pathway-induced HO-1 expression
3. Activate the p38-CREB pathway 4. Promote the phosphorylation of the
MAPK signaling pathway

Promote the phosphorylation of the MAPK signaling pathway

Microglial cells
1. Reduce the abundance of pathogenic bacteria and increasing the

ES extract The gut microbiota
abundance of probiotic bacteria
2. Increase the level of tight junction proteins

3. Inhibit the expression of inflammation in the colon

Quercetin

4. Promote the protein expression levels of BDNF and NF-«kB

5. Decrease the relative protein expression level of nuclear factor IkBa in the
hippocampus
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performance liquid chromatography-tandem mass spectrometry
of the triple quadrupole system is used to detect the contents of
four triterpenoid components of ES in rat plasma and monitor its
pharmacokinetic characteristics (Song et al., 2016). The proteomics
results indicate that the ES extract significantly inhibits the
functional changes in the expression of radiation response proteins
in the PFC of mice (Zhou Y. et al., 2018). The findings from omics
studies indicate that the active components in ES are significantly
distributed in brain tissues, demonstrating therapeutic potential for
KS.

6 Conclusion and outlook

The active components in ES protect neuronal cells, combat
oxidative stress, preserve mitochondrial function, inhibit neuronal
apoptosis, and suppress microglial activation while simultaneously
inhibiting neuroinflammatory responses, thereby ameliorating
cognitive dysfunction induced by chronic alcohol exposure in
Table 2.

Therefore, we hypothesize that ES possesses significant
potential for treating KS. Its brain-penetrating components
significantly inhibit neuronal apoptosis and microglial activation
caused by long-term alcohol exposure, a risk factor for KS.
Components such as flavonoids, polysaccharides, and glycosides
may serve as the potential pharmacological basis for its therapeutic
effects on KS. Compared to conventional thiamine direct
supplementation therapy, ES not only treats KS by protecting the
CNS but also achieves therapeutic effects through the gut-lung
axis. After identifying the main active components of ES that
exert therapeutic effects on KS, the development of novel targeted
formulations will achieve more significant therapeutic outcomes.

We advocate for the collection of KS case data from the
past 5 years. All cases should be jointly diagnosed using both
Western and traditional Chinese medicine diagnostic criteria.
A comprehensive description of the disease’s distribution across
populations, regions, and time should be provided. Patients
will be stratified and randomly assigned to blocks. Both
healthcare providers and participants will be blinded to the group
assignments. The intervention period will last for 8 weeks, during
which the routine medication for underlying diseases (such as
antihypertensive drugs) will be maintained, and the concurrent
use of other nootropic agents will be prohibited. Follow up every
2 weeks to record medication adherence and adverse events (graded
according to CTCAE 5.0 standards). After 8 weeks of treatment,
use the MMSE score, Montreal Cognitive Assessment (MoCA),
Rey Auditory Verbal Learning Test (RAVLT), Activities of Daily
Living (ADL) scale, and TCM syndrome score table to evaluate
the intervention effects of Acanthopanax on patients’ memory and
cognitive impairments. Collect fecal, blood, and urine samples from
patients before and at the 8th week of Acanthopanax treatment
for microbiological and metabolomics studies. Use brain imaging
techniques to observe and compare hippocampal volume and
white matter integrity in patients. Apply appropriate statistical
methods to analyze the collected data to determine whether
the differences between the treatment and control groups are
statistically significant. Meanwhile, any adverse reactions that may
occur during the treatment process will be closely monitored to
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assess the safety and tolerability of ES Injection. Through this series
of rigorous clinical research designs and evaluation methods, the
aim is to provide a scientific basis for the clinical application of
ES injection. Meanwhile, it lays the foundation for the research on
novel targeted formulations of active ingredients in ES.
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