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optical flow computation in
spiking neural networks
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Motion detection is a primary task required for robotic systems to perceive
and navigate in their environment. Proposed in the literature bioinspired
neuromorphic Time-Difference Encoder (TDE-2) combines event-based sensors
and processors with spiking neural networks to provide real-time and
energy-efficient motion detection through extracting temporal correlations
between two points in space. However, on the algorithmic level, this design leads
to a loss of direction-selectivity of individual TDEs in textured environments.
In the present work, we propose an augmented 3-point TDE (TDE-3) with
additional inhibitory input that makes TDE-3 direction-selectivity robust in
textured environments. We developed a procedure to train the new TDE-3
using backpropagation through time and surrogate gradients to linearly map
input velocities into an output spike count or an Inter-Spike Interval (ISI). Using
synthetic data, we compared training and inference with spike count and ISI
with respect to changes in stimuli dynamic range, spatial frequency, and level
of noise. ISI turns out to be more robust toward variation in spatial frequency,
whereas the spike countis a more reliable training signal in the presence of noise.
We conducted an in-depth quantitative investigation of optical flow coding
with TDE and compared TDE-2 vs. TDE-3 in terms of energy efficiency and
coding precision. The results show that at the network level, both detectors
show similar precision (20° angular error, 88% correlation with the truth of the
ground). However, due to the more robust direction selectivity of individual
TDEs, the TDE-3 based network spikes less and is hence more energy efficient.
Reported precision is on par with model-based methods but the spike-based
processing of the TDEs provides allows more energy-efficient inference with
neuromorphic hardware. Additionally, we also employed TDE-2 and TDE-3 to
estimate ego-motion and showed results competitive with those achieved by
neural networks with 1.5 x 10° parameters.

KEYWORDS

edge processing, brain-inspired computing, spiking neural networks, time difference
encoders, motion detection, optical flow

1 Introduction

Event-based cameras are the dawn of the brave new world of ultra-efficient
neuromorphic hardware. Taking inspiration from biological retinas, these cameras
transmit only temporal changes in brightness using asynchronous events (Lichtsteiner
etal., 2008). As aresult, they require >10? x less energy and memory than traditional frame-
based cameras, while having 10% x higher dynamic range and up to 10*x shorter latency
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(Gallego et al., 2022), which is particularly handy in robotics
applications. Under constant illumination, temporal changes in
brightness are generated by motion. Therefore, optical flow
estimation is one of, if not the main task in event-based vision.

The efficiency of event-based processing in the estimation of
optical flow is especially well utilized by spiking neural networks
(SNNs)—computational abstractions of biological neurons that
transmit signals in an all-or-none spiking fashion only when the
internal neuronal activation reaches a certain threshold (Maass,
1997b) (Figure 1). Indeed, asynchronous all-or-none spikes seem
like a perfect match to asynchronous all-or-none events due to the
similar nature of these signals. Studies showed that when it comes
to optical flow, SNNs can perform on par (Hagenaars et al., 2021)
or even better (Kosta and Roy, 2023; Cuadrado et al., 2023) than
state-of-the-art traditional neural networks, while requiring up to
50-times fewer parameters (Kosta and Roy, 2023) and promising
up to 10% decrease in compute energy (Lee et al, 2020; Zhang
et al,, 2023). With the development of specially designated to
processing SNNs neuromorphic processors (Davies et al., 2018),
event-based optical flow estimation with SNNs reached a significant
milestone of technological maturity—implementation for vision-
based navigation onboard a drone in a fully neuromorphic pipeline
(Paredes-Vallés et al., 2023).

Although theoretically SNNs are capable of performing a wide
variety of tasks (McCulloch and Pitts, 1943; Hornik et al., 1989;
Maass, 1997a,b), their actual performance strongly depends on
the choice of proper priors such as neural network architecture
and connectivity on the hardware and algorithmic levels. For
example, in image classification tasks, the introduction of randomly
initialized and non-trainable convolutional kernels improves the
classification accuracy compared to fully connected networks
(Frenkel et al., 2021) simply because convolutional kernels extract
a local spatial pattern. Similarly, proper priors to extract spatio-
temporal patterns could enhance algorithms of the optical flow
estimation from event-based data.

A good computational prior for optical flow estimation from
event-based data could be the correlation-based motion detector,
which is ubiquitously employed in the animal kingdom (Clark
and Demb, 2016). As its name suggests, this detector extracts
local motion direction and velocity (i.e. optical flow) based on
the temporal correlations between different points in space (Clark
and Demb, 2016). Such correlation-based estimates were shown
to closely approach the optimal way to extract motion signals in
conditions with low Signal-to-Noise Ratio (SNR) (Sinha et al,
2021; Potters and Bialek, 1994). Event-based cameras, meanwhile,
are prone to noisy outputs (Guo and Delbruck, 2023) due to the
environment (low contrast and light intensity Brosch et al., 2015),
the temperature Czech and Orchard (2016); Nozaki and Delbruck
(2017), the junction leakage (Nozaki and Delbruck, 2017; Ding
et al., 2023), the hardware limitations (manufacturing mismatch
Lichtsteiner et al, 2008), and the very differential nature of
processing which amplifies high-frequency noise (Ding et al., 2023;
Brosch et al., 2015; Simoncelli, 1993). Given such low SNR output,
a correlation-based motion detector is well-suited to process event-
based data.

Bio-inspired correlation-based methods for optical flow
estimation with SNNs
event-based vision and neuromorphic computing communities

generated long-lasting interest in
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with over a decade of relevant research on both software (Paredes-
Valles et al., 2020; Barranco et al., 2015; Brosch et al., 2015; Zheng
et al,, 2023; Orchard et al., 2013) and hardware levels (Brosch
and Neumann, 2016; Milde et al., 2018; Schoepe et al., 2024;
Giulioni et al., 2016; D’Angelo et al., 2020; Gutierrez-Galan et al.,
2022; Haessig et al., 2018; Chiavazza et al., 2023; Sarpeshkar
et al,, 1996; Kramer, 1996; Etienne-Cummings et al., 1993). In
particular, for our study, we are interested in the inspired by the
classical model of the insect motion detector (Reichardt, 1961)
Time-Difference Encoder (TDE) (Milde et al., 2018) due to its
circuit and algorithmic simplicity (Milde et al., 2018). The TDE
detects motion by comparing signals at two points in space:
input to the facilitator provides a time-decaying gain, whereas
input to the trigger converts gain to an input current impulse to
a Current-Based Leaky Integrate-and-Fire (CuBa LIF) neuron,
which integrates it in its membrane potential and converts it into
a firing activity as shown in Figure 1. The TDE tuning to the
preferred direction of motion (PD) is achieved since it produces
output spikes only when the trigger event arrives after the facilitator
one, as otherwise there is no gain to be converted to firing activity.
The TDE was successfully implemented on FPGA Gutierrez-Galan
et al. (2022), digital neuromorphic hardware such as SpiNNaker
(D’Angelo et al., 2020), Loihi* and Loihi 2 (Chiavazza et al., 2023),
and custom mixed-signal neuromorphic hardware (Milde et al,
2018). Its potential was demonstrated in robotics applications for
collision avoidance Milde et al. (2018); Schoepe et al. (2024) and
estimation of ego-motion (Greatorex et al., 2025). The strength of
the underlying computational primitive was also explored in tasks
that are not related to vision, such as spotting keywords (Nilsson
etal., 2023).

Despite its appeal, the classical two-point TDE (TDE-2) has
a notable deficiency: in highly textured environments, it loses
direction selectivity because motion in a non-preferred direction
provides the TDE with residual activity in the gain compartment,
which can be subsequently triggered by another edge moving
in the non-preferred direction as shown in Figure 1. Given that
successful event-based navigation requires events that are produced
by the apparent motion of textures (Paredes-Vallés et al., 2023),
loss of direction-selectivity makes classical TDE-2 unsuitable for
vision-based navigation tasks that require precision in optical
flow estimation. Of course, this loss in direction-selectivity can
be partially compensated by either max pooling (Chiavazza et al.,
2023), Winner-Take-All mechanism (Milde et al., 2018; Schoepe
etal., 2024) or subtraction of the velocities estimated by opposingly
tuned detectors. Yet in that case, the energy-efficiency of the
circuitry would still be obstructed as individual TDEs would still
respond to the non-preferred motion.

To solve this problem, we propose to follow recent findings in
neuroscience (Haag et al., 2016, 2017) and to augment the TDE with
a third, inhibitory input. While the classical model of elementary
motion sensitivity in insects (Reichardt, 1961; Clark and Demb,
2016) estimated temporal correlations from two spatial locations,
(Haag et al., 2016, 2017) showed that insect elementary motion
detectors (so-called T4 and T5 cells) pools signals from three spatial

1 TDE implementation on Intel Loihi: https://github.com/intel-nrc-

ecosystem/models.

frontiersin.org


https://doi.org/10.3389/fnins.2025.1667541
https://github.com/intel-nrc-ecosystem/models
https://github.com/intel-nrc-ecosystem/models
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yedutenko et al.

10.3389/fnins.2025.1667541

A.TDE-2 B.TDE-3
facilitator _trigger : ! ! " facilitator  trigger inhibi ' ! !
99 | I_> ' I | 4_II | gger inhibitor | I > | - |
I I | |
| | 1 |
sh= IN [N s N JiND
© (©
(V) L— Y L
2 ‘/ I/l\ 2 ‘/
gl ~— gl ~—
L= ‘ sL— L—
g |ve Vo vin g e [ Vi Vi
S S
o G —
b >
output  Z || output % |
o L— N | L —
Time Time
FIGURE 1
TDE-2 and TDE-3. (A) Left-to-right tuned 2-point TDE. It has two compartments: the facilitator and the trigger. When a stimulus moves to the right
the trigger is activated after the facilitator and the neuron fires. However, in the gain, there is residual activity. Thus, when multiple textures move left
(or orthogonally) the detector loses direction-selectivity (B). Left-to-right tuned 3-point TDE. It has three compartments. Input to the inhibitor resets
the gain to zero and removes residual activity. Therefore, direction-selectivity is retained.

locations with one of them being inhibitory and activated by the
motion in ND. In our implementation, activation of this inhibitory
input resets the gain to zero and eliminates the residual activity to
retain the TDE direction-selectivity (Figure 1). Consequently, even
in highly textured environments, individual TDEs retain direction
selectivity, and the entire circuit spikes much less, becoming more
energy-efficient. We propose to call this detector TDE-3.

Upon fixing issues related to detector architecture, we
performed a more in-depth study of the TDE coding of velocity
with synthetic and real-world data. Specifically, there are five major
contributions of this paper:

1. We present more robust TDE-3 and highlight its advantage over
the TDE-2 on the level of direction-selectivity of a single detector
(Figures 1, 2).

2. We develop a pipeline for the supervised training of the TDE
using Back-Propagation Through Time (BPTT) and surrogate
gradients (Neftci et al., 2019; Zenke and Vogels, 2021) to linearly
map input velocities into an output spike count (Figure 3) or
an inter-spike interval (ISI) between the first and the second
spike (Figure 4) within both wide (10-fold, Figure 5) and narrow
(1.5-fold, Figure 6) dynamic range with precision of up to 2%
(Table 1).

3. We develop a novel approach for training SNNs to have a
specific ISI using BPTT. While most other methods (Bohte et al.,
2002; Mostafa, 2018; Comsa et al., 2020) model the relationship
between input magnitude with differentiable function that is
then used by BPTT, we measure ISI from the amplitude of low-
pass filtered spike train to use BPTT with surrogate gradient (see
Section 5.2.2 for the details). The theoretical advantage of our
method is that it does not require estimation of the relationship
between spike timing and input magnitude, allowing work with
more conventional activation functions.

4. We compare the robustness of velocity coding with TDEs to
noise (Figures 7, 8) and spatial frequency (Figure 9) composition
of the scene—two major challenges for velocity coding with
correlation-based motion detectors. Our results show that spike
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count is more robust to noise, while ISI is less affected by changes
in spatial frequency and provides faster velocity inference.

5. We performed quantitative characterization of resolution,

robustness, and energy efficiency of encoding real-world optical
flow (Figures 10-12, Tables 3, 4) and ego-motion (Figures 13—
15, Tables 5, 6) by TDEs. For the optical flow, TDE performs
on par with model-based methods of local motion estimation
(Rueckauer and Delbruck, 2016; Gallego et al., 2022) (directional
error < 20°), but has the advantage of being naturally
compatible with spike-based neuromorphic hardware. For the
ego-motion, TDEs performed on par (and sometimes even
better) with neural networks with 1.5 x 10> parameters (angular
velocity error of &~ 3°/s). In all of the experiments, TDE-3-
based networks were more energy-efficient than TDE-2-based,
requiring on average 2.6 x fewer spikes (Figure 12).

To summarize, the paper presents a robust computational
primitive to optimize the estimation of optical flow from event-
based data, compatible with spike-based neuromorphic hardware
for low-power inference.

2 Time-difference encoders:
principles of operation

Before discussing the main findings of the paper, it is important
to understand the TDE-2 and TDE-3 computational principles in
terms of direction-selectivity and velocity coding to get insight into
the features and limitations of the systems under investigation.

2.1 Computational primitive and detector
architecture

The TDE-2 computational principle is to extract temporal
correlations at two spatial locations: facilitator and trigger. A

spike input to the facilitator leads to activation of a time-decaying
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A. Textured stimulus
B. TDE-2
facilitator trigger Response spikes facilitator trigger

Augmented 3-point TDE retains direction-selectivity in a textured environment. (A) Visual stimulus composed of vertical bars. The bars had three
light intensity levels: white, gray, and black. The size of the texture along the motion axis was 80 pixels and 3 pixels along the orthogonal direction.
We employed 5 velocities: 0.1 px/timestep, 0.2 px/timestep, 0.33 px/timestep, 0.5 px/timestep and 1 px/timestep. The motion direction (left-right,
right-left, top-bottom, bottom-top) and velocity were randomly chosen for each stimulus example (2,000 examples per testing round, 400 testing
rounds). To vary the "amount” of texture in stimuli we randomly varied the fraction of the gray bars from 0% to 80%. (B) TDE-2 and TDE-3 and their
responses to stimuli moving in 4 cardinal directions. (C) Direction-selectivity index (fraction of spikes fired upon stimulus motion in PD).
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Pipeline for supervisory training of TDE with BPTT to linearly map velocities with spike-count based inference.
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FIGURE 4

Pipeline for supervisory training of TDE with BPTT to linearly map velocities with ISI-based inference.

gain, while a spike input to the trigger converts the gain into
an excitatory current which charges CuBa-LIF neuron and leads
to spiking (Milde et al., 2018) (Figure 1). Essentially, the time-
decaying gain extracts temporal correlations as the neuron reports
the coincidence of inputs to the facilitator and trigger within a
temporal window of the gain decay and scales the current according
to the delay between activation of the facilitator and trigger. Hence,
faster motion leads to a higher number of spikes with shorter
intervals between them and vice versa.

The direction-selectivity of the neuron is ensured by the
combination of the two factors. Its activation in the direction anti-
parallel to PD, also known as null direction (ND), is prevented
since when activation of the trigger precedes the activation of
the facilitator, there is no gain to convert to current (Figure 1A
center). In the case of the motion in the direction orthogonal to
PD (OD), the facilitator and trigger are activated simultaneously.

Frontiersin Neuroscience

In the hardware, detector firing is prevented by the delay between
the processing of the trigger and gain. On the algorithmic level,
the delay is realized through the sequence of computational steps:
TDE-2 first processes trigger and then gain. Hence, in the case of
OD motion, there is also no gain to be converted to the current at
the moment of trigger activation.

The crucial deficiency of such a system is that upon motion
in OD or ND, there is no gain to be converted to current only
at the moment of the trigger’s activation by the same stimulus.
As in such purely excitatory architecture motion in OD and ND
leaves a trace of residual gain activity, another stimulus moving in a
non-preferred direction will lead to detector activation (Figure 1A).
Hence, upon motion in a highly textured environment, individual
TDE-2 can lose direction-selectivity.

Our TDE-3 solves the problem of the residual gain by
incorporating a third, inhibitory input. Relative to the gain, the

frontiersin.org
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inference, and (C) comparison of the velocity tuning curves. Blue—training

inhibitory input is located on the opposite side of the detector and
upon activation resets the gain to zero (Figure 1). As a result, when
secondary stimuli are moving in the ND, they will first appear at
the inhibitory flank. The activation of inhibitory input will remove
any residual gain activity, such that when the stimulus activates the
trigger, there again will be no gain to be converted to current. In
the case of motion in the OD, detector activation will be prevented
by simultaneous processing of facilitator and inhibitory inputs
(assuming stimuli wide enough to cover 3 inputs) such that the OD
motion will leave no trace in gain activity. Thus, the addition of the

Frontiersin Neuroscience

inhibitory flank allows the detector to retain direction-selectivity in
textured environments (Figure 2). As a consequence of such more
robust direction-selectivity of individual TDEs, the entire network
can spike up to 2-4 times less (Table 6).

2.2 Velocity coding with TDE

When the moving stimulus passes the TDE, two properties
of the emitted spike train allow downstream circuitry to estimate
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TABLE 1 High-resolution velocity inference with the TDE.

Training  Test Correlation, Relative \|
inference inference r error spikes
(%)
spike count spike count 0.99 2.5 5.6
ISI 0.91 30(7.9")
IS1 spike count 1.0 2.1 7.4
IS 1.0 27

"Here first two input velocities generated only 1 spike. Therefore, the estimated velocity was
0, which led to a large error in the estimated velocity. We excluded those two values from the
analysis to get a better feel of the actual coding error when the velocity can be estimated and
get the value of 7.9%.

velocity: the number of spikes and ISI (Milde et al., 2018; Gutierrez-
Galan et al., 2022). The spike count is directly proportional to the
input velocity, while the ISI is inversely proportional. Fast motion
means a short temporal delay between the activation of the gain and
its conversion to current. Consequently, the current is large and the
number of emitted spikes is high. Conversely, vigorous firing means
that spikes closely follow each other and the interval between them
is small (Milde et al., 2018). Of special interest is ISI between the
first two spikes as it allows very fast velocity inference (Milde et al.,
2018).

To decode stimulus velocity from TDE activity in the presence
of multiple edges, one needs to perform motion segmentation to
relate counted spikes/measured ISIs to a particular moving edge. To
this end, we propose to count spikes starting from each activation
of TDE’s trigger as it indicates passage of a new edge. Additionally,
we limited the time window over which spikes are counted for
spike count inference. Otherwise, in the presence of multiple edges
motion of the very last edge would affect the measured velocity of
the very first edge.

From the perspective of a single neuron’s coding capacity, and
regardless of the inference method, all-or-none spiking is more of
a liability than an asset. All-or-none spiking is a liability, because it
introduces a latency vs. dynamic range dilemma, as spiking occurs
in time (Rieke et al., 1999). For example, to discriminate input
velocities within a range of, e.g. 100 different values, would require
a coding window of at least 100 timesteps either to count spikes, or
to measure interspike intervals. Even with a very short timestep of 1
ms, the lag becomes substantial for edge applications like robotics,
where neuromorphic hardware is needed the most and low latency
is paramount. Thus, to avoid impractical latency, one can either
encode a narrow range of input velocities with high resolution,
or a wide range of input velocities with low resolution (Figures 5,
6). Therefore, a strategy to reconcile latency and dynamic range
requirements would be to use each detector within a relatively
narrow range of velocities, while boosting the dynamic range of the
entire network by using detectors with different spacing between
detector inputs.

The coding of velocity by the TDE is additionally troubled by
the noise and spatial frequency of a scene. Noise leads to the non-
stimulus-related activation of detectors. Spatial frequency biases
detector responses as edges closely following each other will lead to
stronger TDE activation than a single edge. In the results section,
we compare spike count and ISI-based inference in terms of their
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TABLE 2 Ego-motion network parameters.

Timestep duration (dt) 50 ms
Synaptic weight 2.37
Time constant, gain 252 ms
Time constant, current 470 ms
Time constant, membrane 153 ms
Time constant, A 750 ms
STCE, spatial neighborhood 6
STCE, temporal window 50 ms

robustness in various noise (Figures 7, 8) and spatial frequency
(Figure 9) conditions. We observe that spike count is more robust
to noise, while ISI is less biased by scene spatial frequency.

3 Experiments and results

The experiments that we performed can be classified into three
categories: (1) investigation of the robustness of the direction-
selectivity of individual TDE-3 and TDE-2 (Figure 2), (2) training
TDEs to linearly map input velocities into output (Figures 5-7),
and (3) application of the TDEs for optical flow and ego-motion
inference from real-world data (Figures 10-12).

3.1 Robust direction-selectivity of
individual TDE-3 in textured environments

To compare the direction-selectivity of TDE-2 and TDE-3,
we simulated their responses to textures moving in four cardinal
directions (Figure 2B): left-to-right (L-R), right-to-left (R-L), top-
to-bottom (T-B) and bottom-to-top (B-T). For each stimulus
presentation (2000 per testing round), we randomly varied the
texture composition, motion direction, and velocity (see Section
5.1 for the details). To show that the robust direction-selectivity
of the TDE-3 stems from its structure and is not due to some
particular set of parameters, we varied at each testing round (400
in total) all of the TDE parameters over a 10-fold range. Without
loss of the generalization, we limited our investigation of direction-
selectivity to responses of L-R motion-sensitive TDEs (Figure 2B)
that sampled signals from three adjacent pixels through which
textures were moving.

Figure 2B shows how the responses of TDE-2s and TDE-3s
depend on the texture’s direction of motion. One can appreciate
that while L-R TDE-2 fires to all stimuli directions, the spiking
of the TDE-3 is contained to stimuli in its preferred direction. To
assess the TDE’s direction-selectivity quantitatively, we calculated
the so-called Direction-Selectivity Index (DSI) as the ratio between
the number of spikes emitted by motion in PD and the total
number of spikes fired by the TDE in a testing round. Figure 2C
compares the DSI of TDE-2s and TDE-3s averaged across all of
the testing rounds. For the TDE-2, the mean DSI is 0.36 with
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a standard deviation of 0.08. Such DSI indicates a rather poor
direction-selectivity in a textured environment, because on average
inference of motion direction with such a detector is only 11%
better than random guessing. On the other hand, the TDE-3 has
a DSI of exactly 1, with zero deviation. DSI equal to 1 means that
regardless of the initialization of the parameters, simply because
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of its structure with inhibitory input that eliminates residual gain
activity (details—Section 2, illustration—Figure 1), the TDE-3 is
activated only by motion in the PD.

For simplicity of interpretation, in Figure 2 we limited our
analysis to 1D motion. Yet, the same conclusion holds for
the 2D motion as well (Supplementary Figure 1). We performed
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FIGURE 11
Optical flow coding by TDE: rotating disk
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Circuitry energy efficiency. (A) Example of the EVIMO-2 dataset. On events—green, Off events—red. (B) Ratio of the spikes emitted by TDE-2 and
TDE-3 based networks for the three datasets: triangles—disk and boxes from Rueckauer and Delbruck (2016); squares—MVSEC driving sequences;
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experiments with textures of increasing complexity (vertical bars,
checkerboard, randomly generated textures) moving in 2D and
showed that in all of the cases, TDE-3 had higher DSI than TDE-
2. However, an increase in texture complexity decreased the DSI of
TDE-3 (see Supplementary Figure 1 for details).

3.2 Supervised training of TDE-3

To promote linear mapping between the input velocities in
PD and the TDE outputs, we performed supervised training with

Frontiersin Neuroscience

BPTT and surrogate gradients for both spike count and ISI-based
inference methods and compared obtained results (see Section 2
and 5.2 for the details). Note that in the context of linear mapping
of input velocities into TDE outputs, the TDE-2 and TDE-3 are
identical because the delay between the activation of the facilitator
and trigger is not affected by the inhibitory input. Therefore,
although in experiments with synthetic data we perform all of the
training on the TDE-3, the results are generalizable to the TDE-2.
There were three types of experiments with training of TDE-3.
First, we established that detectors are trainable in principle and
that linear mapping between input velocities in a given cardinal
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direction and TDE output is possible for various stimuli dynamic
ranges (Figures 5, 6, Table 1). Second, we investigated how training
and mapping are affected by changes in the spatial frequency of the
stimulus—a known liability of correlation-based motion detectors
(Borstand Euler, 2011) (Figure 9). Third, we studied the robustness
of TDE training and inference in the presence of various levels of
noise (Figures 7, 8).

3.2.1 Linear mapping of velocity of moving edge

To study how the TDE can map the input velocity into its
output, we simulated the TDE responses to a single edge moving
from left to right at various constant velocities. We opted for these
stimuli because they directly target the goal of linear mapping while
keeping things simple and unambiguous. To avoid overfitting and
the necessity to separate stimuli into validation and test datasets, we
randomly assigned the velocity of an edge at each stimulus example
presentation. We employed two stimuli sets. One contained 5
velocities within a 10-fold range of magnitude and was used to show
that the TDE can encode velocities in a wide dynamic range. The
second stimuli set contained 15 different velocities spanning 1.5-
fold range of magnitudes and was used to show that the TDE can
encode velocities with fine resolution (see Section 5.1).

As a metric of the quality of linear mapping, we used the
Pearson correlation coefficient between the stimulus and the
estimated velocity (Pearson, 1895). The performance of the trained
TDEs was assessed with both ISI and spike count regardless of
which one was used during training to study the connection
between these two inference methods. Additionally, to assess the
dynamic energy efficiency of the trained detectors, we calculated
the average number of spikes elicited by a stimulus.

Figure 5 shows that the TDE can be trained to encode a wide
dynamic range of input velocities. The loss function on panels A
(training with the spike count) and B (training with ISI) gradually
decreases during training, indicating that with both inference

TABLE 3 TDE performance with real-world data: translating boxes.

Detector Inference mean Fraction Total N
type method AAE + of spikes spikes
std (°) in PD
TDE-2 Spike count 19 £31 0.43 229686
ISI 18 431
TDE-3 Spike count 18 32 0.7 126692
181 17431

TDEs were trained with spike count inference (see Section 5.2.3).

TABLE 4 TDE performance with real-world data: rotating disk.

10.3389/fnins.2025.1667541

methods it is indeed possible to train the TDE to discriminate input
velocities in a wide dynamic range.

Figure 5C makes a quantitative comparison of velocity coding
with various training and inference methods. Unsurprisingly, the
correlation coefficient between estimated and true velocity is the
highest when evaluation is done with the same inference method
as training: r = 0.97 for the spike count training and inference
(blue line), r = 0.99 for the ISI training and inference (green line).
Yet, training with spike count leads to reasonable performance
with ISI inference (r = 0.86, orange line) and vice versa (r = 0.85,
red line), with the only problem being distinguishing between the
two highest velocities. Training with ISI-based inference also leads
to a lower average number of spikes emitted by stimulus (1.9 vs.
4.4), suggesting higher energy efficiency when implemented on
neuromorphic hardware (Caccavella et al., 2023).

Figure 6 demonstrates that the TDE can effectively encode
a narrow dynamic range of input velocities with high precision
(Panels A and B). In Panel C, one can appreciate that apart from the
case of training with spike count and evaluation with ISI (orange
line, r = 0.91), input velocities are mapped into TDE outputs nearly
perfectly, with a correlation » ~ 1.0 (Table 1). Also, ISI evaluation
with spike count training results in a decrease in dynamic range, as
the estimate becomes zero for the first two velocities. This occurs
because these two almost equal velocities (0.0256 and 0.0263) were
encoded with 1 spike, making the ISI indeterminable.

For this
Therefore, we calculated mean relative error by dividing the

experiment, fine resolution was paramount.
difference between true and inferred velocity by true velocity and
averaging this metric across all velocities (see Equation 5, Table 1).
Unsurprisingly, ISI evaluation with spike count training yielded
the largest relative error (30%). Even when excluding the first two
velocities, which, because TDE emitted only 1 spike, contributed to
the variance the most, the relative error remains >= 3 times higher
(7.9%) than for the other three conditions, where velocity was
encoded with an error as small as 2.1% (ISI training, spike count
evaluation, red line). We also note in this experiment that training
with ISI led to a higher average number of spikes (7.4) compared
to spike count training (5.6) (see Table 1).

To conclude, the TDE can be trained to successfully encode the
velocities in wide and narrow ranges.

3.2.2 Spatial frequency and velocity coding by
TDE

When multiple moving edges are present, temporal signal
integration by current and voltage compartments could lead to
biases in velocity estimation due to variations in distance between
moving edges (i.e. spatial frequency). To test whether training of the

Detector type Inference method mean AAE =+ std (°) rAEE + std Correlation, r Total N spikes
TDE-2 Spike count 21+ 24 0.43 +0.23 0.87 1638878

IS1 21+24 047 +0.18 0.88
TDE-3 Spike count 22+24 0.45 + 0.26 0.87 1532557

ISI 21424 047402 0.88
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yaw angular velocities as functions of time for four testing sequences. Black—ground truth angular velocity, Gray—IMU data, Cyan—TDE-2,
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TABLE 5 Performance comparison on MVSEC sequences.

10.3389/fnins.2025.1667541

MVSEC sequence Detector type mean AVE =+ std (°/s) Correlation, r Total N spikes
Outdoor_day_1 TDE-2 3.7+3.5 0.84 1.4 x 10
TDE-3 3.8+3.0 0.87 4.9 x 107
IMU 19+14 0.98 -
Outdoor_day_2 TDE-2 32+41 0.63 7.0 x 10%
TDE-3 31442 0.79 2.1 % 108
IMU 22£20 0.93 -
Outdoor_night_2 TDE-2 34+34 0.80 1.4 x 108
TDE-3 3.0+£29 0.85 4.8 x 107
IMU 17415 0.95 -
Outdoor_night_3 TDE-2 37433 0.84 1.3 x 10
TDE-3 3.6+3.1 0.86 4.3 % 107
IMU 1.6+ 1.5 0.96 -

Angular Velocity Error (AVE) reported as mean = std.

TABLE 6 ARRE comparison on MVSEC sequences (rad).

Method Outdoor_ Outdoor_ Outdoor_ Outdoo
e EA day2 night2 night3

This work 0.00325 0.0028 0.003 0.0032

TDE-2

This work 0.033 0.0027 0.0026 0.00315

TDE-3

IMU 0.00166 0.00192 0.00148 0.0014

Mitrokhin 0.0994 0.108 0.116 0.121

etal. (2019a)

Yeetal. 0.00916 - 0.00499 0.00482

(2020) [SEM

learner from

Zhou et al.

(2017)]

Yeetal. 0.00267 - 0.00202 0.00202

(2020)

Zhu et al. 0.00867 - - -

(2019)

TDE-2 in 0.00065 - 0.00053 0.00067

Greatorex

et al. (2025)

TDE-3 can mitigate this problem, we trained TDE-3 to linearly map
the velocities of two moving edges into the spike count and ISI while
varying the distance between edges in a 10-fold range (see Section
5.1). W employed a wide dynamic range of velocities (see Section
5.1) as it presents a more natural kind of stimuli due to optical
flow in real-world scenes varying over a large range of apparent
velocities (Mitrokhin et al., 2019b; Rueckauer and Delbruck, 2016).

Figure 9 shows that one can train the TDE to linearly encode
velocities of multiple moving edges with both spike count- (Panel
A) and ISI-based (Panel B) inference. In Panel C, we plotted the
obtained tuning curves of the responses to the second edge for
all 4 testing combinations. Shading indicates standard deviation in
response to a given velocity and originates from the variation in
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distance between edges. Panel C shows that regardless of inference
during testing, training with ISI (ISI test -green line, r = 0.99; spike
count test -red line, r = 0.96) leads to a higher correlation with
stimulus velocity than training with spike count-based inference
(spike count test— blue line, r = 0.88; ISI test—orange line, r =
0.87). However, training with ISI-based inference tends to constrict
dynamic range, effectively encoding velocities over a 3-fold range.
Training with spike count-based inference preserved almost the
entire dynamic range of input velocities but saturated at the highest
velocities. Training with spike count also led to a higher average
number of emitted spikes 7.7 vs 2.6. Noteworthy, regardless of
the inference method employed during training, spike count-
based inference during testing resulted in higher variation in the
estimation of velocity.

To conclude, Figure 9 shows that the trained TDE is fairly
robust to variation in stimulus spatial frequency.

3.2.3 Noise and velocity coding by TDE

To test whether training of the TDE to encode velocity is robust
to noise, we injected background activity noise into our simulation-
one of the primary sources of noise in event-based vision (Guo and
Delbruck, 2023). Noise was modeled as stochastic events following
a Poisson distribution, with mean rates varying over a 50-fold
range: from 0.2 Hz/px to 10 Hz/px (see Section 5.1). The same noise
levels were applied during training and during testing.

To allow the network to combat noise, we employed a Spatio-
Temporal Correlation Filter (STCF) of events (Section 5). STCF is
a popular noise-combating tool in the field of event-based vision
(Guo and Delbruck, 2023; Rueckauer and Delbruck, 2016; Gallego
etal, 2022) that allows an event to pass the filtering stage only when
there are events in at least n neighboring pixels within a specified
time window (Section 5.2, Guo and Delbruck, 2023), with n being
a trainable parameter. Although, strictly speaking, as a result we
would test not the performance of the TDE, but of the TDE and
STCE, our approach is still sound. The reason for this is that STCF is
almost always part of the TDE circuitry (Milde et al., 2018; Schoepe
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et al, 2024; D’Angelo et al, 2020; Gutierrez-Galan et al., 2022;
Chiavazza et al., 2023). Therefore, since in real applications TDE
will always be paired with STCE, it makes sense to investigate their
joint performance. Especially, since STCF does not eliminate all
of the noise and there is always a concern that aggressive filtering
would destroy part of the signal.

In the presence of noise, not every increase in current is caused
by a moving edge. Therefore, one of the goals of the training is to
suppress the TDE activations caused by noise. To account for this
factor in the loss function, we calculated the loss between all of the
velocity estimates performed by the TDE and stimulus ground truth
at the corresponding timepoints (effectively, this ground truth was
zero everywhere except at the moment of edge appearance). Also,
to evaluate how the trained TDE can reject noise and preserve true
motion signal, we employed an additional metric called fraction
of true activity (FTA) as the sum of estimated velocities caused
by the stimulus (true motion signal) to the total sum of estimated
velocities (caused by signal and noise).

Figure 7 shows the results of the training for two extreme cases
of “bright” (noise rate=0.2Hz/px) and “dark” (noise rate=5Hz/px)
scenes. With low noise level, the performance of the TDE (Figure 7
top row) was almost identical to the performance in noiseless
experiments (Figure 9) in terms of the shapes of the tuning curves
and the correlation with stimulus velocities. These observations are
also confirmed by FTA (Figure 8) with almost all TDE activity being
caused by the stimulus. The results of the training with a high level
of simulated noise are shown in Figure 7, bottom row. With both
inference methods, there is an early drop in the loss function (AII
and BII panels) caused by an increase in the number of neighboring
pixels where at least one event should occur for any given event to
pass the STCF processing stage (see Section 5.2). As a result of this,
more noise is rejected and loss dramatically decreases.

Panel CII illustrates tuning curves obtained in all 4 testing
conditions. One can immediately note that training and inference
with ISI (green line) leads to massive standard deviation (shading)
in the estimated velocity. Surprisingly, TDEs trained with ISI
showed better performance when testing was done with spike count
(red line) as the standard deviation was lower and the correlation
coeflicient was higher (r = 0.8 vs. r = 0.64). With ISI-based training,
about half of the encoded motion signals were related to the
stimulus (Figure 8). Yet, given the low mean spike count (N = 1.6),
TDEs coding capabilities were rather poor, with at least one edge
being ignored most of the time. Training with spike count-based
inference leads to much better performance with both spike-count
(blue line and shading, r = 0.83) and ISI-based (orange line and
shading, r = 0.8) evaluation. Spike count-based training leads to a
mean spike count of 7.5 spikes. Since with this training condition
almost 70% of encoded motion signals were related to the stimulus
(Figure 8), we conclude that spike count-based training allows TDE
to fairly reliably encode motion signals in the presence of noise.

In Figure 8 we summarized the influence of the noise levels
on the correlation between output and ground truth input velocity
(panel A), FTA (panel B), and mean number of spikes generated
by a moving edge (panel C). Panels A and B show that TDE-
3 is very robust up to a noise level of up to 2Hz/px with FTA
90%
throughout and largely regardless of the training / inference

>95% and correlation with the stimulus velocity r of ~
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method. However, a further increase in noise level led to a sharp
decrease in performance with most of the TDE output being noise-
driven. Our results also show that in the presence of noise, the
spike-count-based inference serves as a more robust and reliable
training signal. The likely reason for this is that ISI dependency
on only two spikes makes it susceptible to noise, whereas spike
count measures signals over a certain time window, and therefore
mitigates variation in response caused by exact spike timing.

3.3 Real-world data

We studied the performance of the TDE-2 and TDE-3 with
real-world data on the levels of (i) estimation of the local motion,
(ii) estimation of the global motion (ego-motion), and iii) energy
efficiency. In all of the experiments, the real-world data was used as
a test dataset. TDEs were pre-trained on synthetic data (see Section
5.2.3) using spike count as the inference method because it gives
better performance in the presence of noise (Figure 8). We pooled
ON and OFF events as often encountered in biological systems
(Clark and Demb, 2016; Borst et al., 2020; Sterling and Laughlin,
2015). The neuronal parameters used in these experiments are
listed in the Table 2.

3.3.1 Local optical flow estimation

To study coding of the local optical flow, we employed
sequences of boxes moving to the right and counterclockwise
rotating disk from the dataset presented in Rueckauer and Delbruck
(2016). The former is an example of textured stimuli with multiple
edges moving in the same direction and thus directly tests the
robustness of TDE direction-selectivity and gains obtained by
augmenting the TDE-2 with an inhibitory input. The latter contains
a high dynamic range of velocities in both magnitude (80-fold) and
direction (360°) and is used to probe velocity coding by TDEs in
real-world scenes.

3.3.1.1 Translating boxes

We start the analysis of TDE responses to boxes moving
to the right (Figure 10) by estimating the direction-selectivity of
individual TDEs in a manner similar to DSI (Figure 2). Although
strictly speaking, here we cannot calculate the DSI because the
motion of the boxes was confined to one direction, we can
approximate it by calculating the fraction of total spikes in the
network that belonged to the detectors tuned in the L-R direction.
Ideally, this number should be one, as only L-R detectors should
spike. Table 3 shows that for the network of TDE-2 only 43% of
spikes are from the L-R detectors, while for the network of TDE-
3 70% of spikes are attributed to L-R detectors. Thus, just as in
the case of synthetic data (Figure 2), the TDE-3 has more robust
direction-selectivity.

Next, in Figure 10 we visualized optical flow coding by the
TDEs using the colormap from Figure 14. Surprisingly, although
the TDE-3 has a more robust direction-selectivity on the level
of individual detectors, on the network level the TDE-2 and
TDE-3 seem to have similar qualitative performance regardless of
inference methods. This qualitative observation is also confirmed
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FIGURE 14
Color map employed for the visualization of the optical flow.
Direction is encoded with hue, magnitude with brightness.

quantitatively: Table 3 indicates that in all of the testing conditions,
the Average Angular Error (AAE) (& 20°) and standard deviation
of the angular error (& 30°) were almost identical.

The apparent contradiction between responses at the level
of individual TDEs and at the network level arises because the
estimation and visualization of optical flow require subtracting the
outputs of detectors tuned to opposite motion directions (Section
5.2.3). When an edge is moving to the right it generates residual
gain activity in T-B, B-T and R-L tuned detectors which would
be converted to TDE output upon appearance of a second edge
moving to the right (Figures 1, 2, Section 2). For B-T and T-B tuned
detectors, this activation should be equal (except for noise), whereas
activation of L-R tuned detector would be always higher than
activation of R-L tuned detectors. Consequently, the subtraction of
velocities estimated by the opposingly tuned detectors compensates
for poor direction-selectivity of individual TDE-2s by removing
signals caused by residual gain activity from the data stream.

To conclude, networks of TDE-2s and TDE-3s can both reliably
infer motion direction in natural scenes with spike count and
ISI-based inference.

3.3.1.2 Rotating disk

The ability of TDE to encode motion in a wide dynamic
range of direction and magnitude was tested with the aid of a
rotating disk sequence (Rueckauer and Delbruck, 2016) (Figure 11
top panel) that challenged networks of TDE with 360° range of
motion direction and 80-fold range of velocity magnitude. To
deal with such stimuli conditions, the network of TDEs tuned to
4 cardinal directions sampled the space anisotropically, with the
lower distance between the TDE inputs in the center and higher
in the periphery (Figure 15). This bioinspired approach (D’Angelo
et al., 2020) allowed us to reconcile the dynamic range, resolution,
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FIGURE 15
Spacing between compartments of TDE as a function of its location
within the visual field.

and latency requirements (see Section 2, 5.2). We evaluated optical
flow coding by networks of TDE-2 and TDE-3 with spike count and
ISI-based inference.

Figure 11 employs a color code scheme from Figure 14 to
visualize the optical flow coding of various TDE networks to
compare with ground truth (Figure 11 left bottom). The figure
indicates that in all 4 testing conditions, there is a close
correspondence between TDE inference and ground truth. This
observation is also supported quantitatively. In all four cases, TDE
showed similar [and fairly low, see Rueckauer and Delbruck (2016)]
AAE (mean and std of &~ 20°, Table4) and relative average
endpoint error (rAEE, mean of &~ 0.4, std of &= 0.2).

Although an error of 40% in the estimation of velocity might
seem substantial in terms of coding precision, it is important
to keep three things in mind. First, we encode over a wide
dynamic range of velocities. Secondly, each detector encodes
velocities with few spikes/short ISI, so, naturally, such coarse
binning would impair precision. However, most importantly, there
is an almost 90% correlation between the estimate of the TDE
velocity and ground truth (Table 4). The high correlation with
ground truth is the most important result, because since optical
flow depends on the ratio between velocity and distance, it does
not provide information about absolute velocities anyway (Serres
and Ruffier, 2017). Meanwhile, a high correlation with velocity
indicates that regardless of the exact scale, networks of TDE can
reliably determine the relative distribution of the velocities in the
visual scene.

To summarize, both TDE-2 and TDE-3 can extract a wide
dynamic range of velocity direction in magnitude from real-
world event-based data with both spike count and ISI-based
velocity inference.

3.3.2 Ego-motion estimation

To assess how well networks of TDE-2/TDE-3 can estimate
global optical flow caused by ego-motion we used 4 outdoor driving
sequences (2 day-time, 2 night-time, Figure 13 left column) from
the MVSEC dataset. We followed the approach of Greatorex et al.
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(2025) where the yaw rotation rate (angular velocity) is estimated
by integrating spikes from L-R detectors with a positive sign and
spikes from R-L detectors with a negative sign. The spacing between
TDE inputs was 2 (Greatorex et al., 2025).

Now, since we integrate over the space, theoretically the
estimates of the angular velocity are biased by amount of texture
in the scene: multiple slowly moving objects would lead to larger
spike count than few quickly moving ones. However, in practice
it is less of a problem because large turns (high angular velocity)
usually occur on the crossings, and in cities crossings tend to have
quite a lot of texture.

Still, there remains the problem of scale: how should one
convert into °/s? Here, in our proof-of-principle study, we simply
normalized output such that maximal activity corresponds to
maximal angular velocity across all sequences. Since peak angular
velocity depends only on dynamics of a vehicle, it is reasonable
to assume that we know what our peak activity would correspond
to. However, we know what was the peak activity only after the
sequence played out, while ideally one would like to estimate it
in real-time. In Figure 13 (right column) we plotted the estimated
angular velocities with TDE-2 (cyan trace), TDE-3 (deeppink
trace), together with the ground truth (black trace) and the yaw
rotation measurements provided by IMU (gray trace) for the 4
aforementioned outdoor motion sequences. The IMU serves a
nice benchmark estimating yaw rotation rate using standard off
the shelf sensor that operates in non-visual domain to which no
postprocessing was applied. The plots show that all three ways
to estimate angular velocity reasonably follow ground truth yaw
angular velocity.

To quantitatively assess performance of the TDE-based
networks we calculated errors in the angular velocity estimation
(Angular Velocity Error, AVE) and correlation with the ground
truth angular velocity for TDE-based networks and IMU. We also
calculated number of spikes emitted by TDE-2 and TDE-3 based
networks (Table 5). To compare our results with other approaches
to ego-motion estimation from MVSEC event-based visual input
(Greatorex et al., 2025; Zhu et al., 2019; Mitrokhin et al., 2019a;
Ye et al.,, 2020) we also estimated Average Relative Rotation Error
(ARRE, see Methods for the details, Table 6).

The same as in the case of moving boxes (Figure 10, Table 3)
and rotating disk (Figure 11, Table 4), TDE-2 and TDE-3 had
similar mean AVE of ~ 3 deg/s, which was almost two times higher
than the mean AVE of the IMU. In terms of correlation with the
ground truth, TDE-3 had r in the range of 0.79 (Outdoor_day_2)
to 0.87 (Outdoor_day_1), which is slightly higher than for TDE-2
(0.63-0.84). Yet both of them are considerably worse than the IMU,
whose correlation with the ground truth is > 95%.

Since most of the other studies that were estimating ego-
motion from MVSEC driving sequences were done with neural
networks trained to estimate change in orientation between two
timesteps, for a proper comparison we also employed ARRE metric,
which describes how much the estimated change in orientation
differs from the ground truth (Table 6). To obtain change in the
orientation we integrated estimated angular velocities over 50ms,
that corresponded to the frame rate at which ground truth was
available in Zhu et al. (2018a,b).

The results show that our algorithms based on TDE-2 /
TDE-3 perform on par with neuronal networks containing 1.5 x
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105 trainable parameters (Mitrokhin et al, 2019a). Caution,
however, should be applied in interpreting these results. In
most of the other approaches (Zhu et al, 2019; Mitrokhin
et al, 2019a; Ye et al, 2020) networks estimated pitch, roll,
and yaw angles, whereas we estimate only the yaw angle.
Although driving cars indeed mainly rotate along the yaw
axis, ground truth data show small [~ 10 times smaller than
yaw rotations Zhu et al. (2018a)] but non-zero pitch and roll
angular velocities. Furthermore, in our study, we recovered
the absolute scale by normalization, while (Zhu et al, 2019
Mitrokhin et al., 2019a; Ye et al, 2020) had to learn it from
the data.

Noteworthy, in Greatorex et al. (2025), where yaw rotations
were estimated from the output of TDE-2 in a way similar to
ours, the ARRE was at least two times lower than even the
IMU. Perhaps the discrepancy between our results and those
from Greatorex et al. (2025) can be explained by the presumably
higher frame rate at which they processed incoming events.
Although we were unable to run our network at such a high
frame rate for the entire image, we can replicate the results of
Figure 6 in Greatorex et al. (2025), where in total 200 TDE-
2 units were used to estimate the angular velocity of the first
90 s in the Outdoor_day_I dataset. We ran the network at
10 kHz, but still performed worse than (Greatorex et al., 2025)
(Supplementary Figure 2).

3.3.3 Circuit energy-efficiency

Describned above experiments with the real-world data show
that TDE-2 and TDE-3 give almost identical performance in terms
of encoding of optical flow. The reason is simple: subtraction of
the responses of opposingly-tuned detectors removes any residual
activity from TDE-2 responses.

Yet, a quick inspection of the column “Total N spikes”
in Tables 3-5 shows that TDE-2-based circuitry always spiked
more than TDE-3-based circuitry. The reason for this is that
although subtraction of velocity estimates made by opposingly
tuned detectors mitigates the loss of direction-selectivity of TDE-2
in a textured real-world environment, the inhibitory input to TDE-
3 eliminates residual activity immediately at the level of motion
detection.

To make a statistical argument for the higher energy efficiency
of TDE-3 we compared detector spike count with additional 9
real-world sequences from Burner et al. (2022), example of such
a sequence is shown in Figure 12A.

The box plot in Figure 12B shows that, in all three stimulus sets,
TDE-2 emitted more spikes than TDE-3. For statistical comparison,
we employed linear mixed-effect models, treating dataset type as a
fixed (Bates et al., 2015), since sequences from the same dataset are
more alike than those from different datasets (because they were
recorded with the same hardware and under similar conditions).
The analysis showed that TDE-2 emitted significantly more spikes
than TDE-3 (mean TDE-2/TDE-3 ratio: 2.7, p ~ 6 X 10_8). Thus,
although pooled responses of TDE-2- and TDE-3-based networks
exhibit the same precision in optical flow estimation, TDE-3-based
networks are on average about 2.7 times more efficient in terms of
emitted spikes.
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4 Discussion

In the present study we performed a thorough investigation
of the TDE as a computational prior for optical flow estimation
in SNNs on three different levels: detector architecture, velocity
inference, and real-world performance. Although our study was
focused on the algorithmic level, there is little doubt that TDE-
3 can be implemented in hardware. First, inhibitory inputs in
neuromorphic motion detectors have a long, 30-year history
(Kramer, 1996; Deutschmann et al., 1997; Higgins et al., 1999; ROS
et al., 1999; Giulioni et al., 2016) and can be readily implemented
as a simple switch or logical gate. Second, TDE-3 is a natural
extension of TDE-2 and hence is naturally compatible with all of
the neuromorphic hardware on which TDE-2 was implemented:
from custom-manufactured chips to Loihi 2 (Milde et al., 2018;
Gutierrez-Galan et al., 2022; D’Angelo et al., 2020; Chiavazza et al.,
2023; Schoepe et al., 2024; Greatorex et al., 2025).

Below, we summarize the key outcomes of the study and discuss
possible future improvements.

4.1 Detector architecture

On the level of detector architecture, we showed that classical
TDE-2 loses direction selectivity in a textured environment due
to residual activity in the gain compartment (Figures 1, 2, 10). We
proposed a bio-inspired solution for this problem: augmenting the
TDE-2 with an inhibitory input that resets the gain and removes
residual activity upon activation (Figures 1, 2, 10). This procedure
preserves the direction selectivity of individual TDE-3s (Figure 2,
Table 3) and increases the computational efficiency of the network
of TDEs by decreasing the total number of spikes 2-4 times
(Figure 12), which proportionally decreases energy consumption
when implemented on neuromorphic hardware (Caccavella et al.,
2023).

Although we obtained a principal result regarding the benefits
of inhibitory input for the performance of the TDE, there are two
issues that must be addressed to secure optimal performance of
TDE-3:jitter in event timing (Czech and Orchard, 2016; Ding et al.,
2023) and the way inhibition is implemented.

Jitter creates a problem for direction selectivity because the
reset of the gain during motion in the orthogonal direction requires
simultaneous activation of facilitator and inhibitor compartments
(see Sections 2, 5.2), which is hardly achievable with real-world data
due to jitter. A solution to this problem is to low-pass filter inputs to
the facilitator and inhibitor compartments. We did this crudely, by
binning events into timesteps [which is still compatible with digital
neuromorphic processors such as Loihi (Davies et al., 2018)], but
the TDE could benefit from the incorporation of an adaptive low-
pass filter with trainable parameters. It is crucial for the filter to be
adaptive because there is a trade-off between velocity resolution,
which requires short time constants, and combating noise, which
requires long time constants. Adaptability is crucial since the
optimal time constant depends on the particular characteristics
of the visual scene such as velocity distribution, illumination, and
spatial frequency.

In our approach, inhibition was implemented as resetting
the gain to zero. Essentially, the same was also done by ROS
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et al. (1999). However, this is not the only way inhibition can be
implemented. For example, in the insect T4/T5 elementary motion
detectors that served as the inspiration for TDE-3, activation of
the inhibitory input opens chloride channels that (i) hyperpolarize
the neuron to terminate response to the stimulus and (ii) decrease
membrane resistance (neuronal gain), such that the subsequent
activation of what we call here the “trigger” does not have any
effect on the response (Borst et al., 2020; Zavatone-Veth et al,
2020). In some biologically motivated studies, detector output was
proportional to the difference between inputs to facilitator and
inhibitor (Bahroun et al, 2019; Mano et al, 2021) and inputs
were low-pass filtered (Mano et al., 2021). In other neuromorphic
approaches, the absence of inhibition was required for a detector
to produce an output Kramer (1996), but inhibition also had
a terminating/subtractive effect on the detector output (Kramer,
1996; Higgins et al., 1999; Deutschmann et al.,, 1997). Similarly,
inhibition terminated output in a two-point detector proposed in
Giulioni et al. (2016).

In our opinion, the way inhibition should be implemented
depends on the nature of signal coding in a given detector. For
example, in insect T4/T5 cells output is encoded with graded
(analog) signals that have their own low-pass filter dynamics (Borst
etal, 2010; Zavatone-Veth et al., 2020). With such graded outputs,
it is beneficial for inhibition to directly terminate output, because
otherwise downstream neurons would be left with the impression
that some slower moving edges follow a fast one. In detectors where
stimulus velocity is encoded with output duration, whether as a step
response (Kramer, 1996) or a spike train (Giulioni et al., 2016),
inhibition directly terminating the output is appropriate. Note,
however, that encoding velocity with spiking duration requires
sustained high-rate spiking that is detrimental for circuitry energy
efficiency and runs counter to sparsity-one of the tenets of
computation in SNN.

In spiking detectors like TDE-3 or the one presented by
ROS et al. (1999), where velocity is encoded with output spike
rate/interspike interval, shutting down spiking would decrease the
detector’s velocity coding range. Hence, to maintain coding range
while avoiding responses to stimuli moving in the non-PD, it is
beneficial to decouple the detector’s output from inhibition.

Also note that the nature of inhibition determines between
which points of a three-point detector motion is measured. When
inhibition directly affects neuronal output, the motion signal is
measured from trigger to inhibitor. When inhibition is decoupled
from the output, we effectively measure the motion signal from
facilitator to trigger. In cases where motion in PD and ND is pooled
with different signs (Bahroun et al., 2019; Mano et al., 2021; Borst
et al., 2010; Zavatone-Veth et al., 2020), the excitatory signal is
measured between facilitator and trigger, while the inhibitory signal
is measured between inhibitor and trigger.

4.2 Velocity inference

For the velocity inference, we developed a procedure for
supervised training of the TDE:s to linearly encode input velocities
using spike count- and ISI-based inference (Figures 3, 4). For the
ISI-based training, we developed a novel approach. While most
other methods (Bohte et al., 2002; Mostafa, 2018; Comsa et al.,
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2020) model the relationship between input magnitude and a
differentiable function then use BPTT, we measure ISI from the
amplitude of the low-pass filtered spike train to use BPTT with a
surrogate gradient (see Section 5.2.2 for the details). The theoretical
advantage of our method is that it does not require estimation of the
relationship between spike timing and input magnitude, allowing it
to work with more conventional activation functions.

We investigated the performance of both inference methods
in conditions with wide (Figure 5) and narrow (Figure 6) dynamic
ranges of input velocities and tested their robustness toward
variation in stimulus spatial frequency (Figure 9) and background
activity noise (Figure 7). We found that although in a noise-
free environment ISI-based inference performs slightly better than
spike count in terms of the correlation coefficient between true and
estimated velocity (Figures 5, 6, 9), when noise is present, spike
count turns out to be more reliable, especially when both training
and test inference are count-based (Figures 7, 8).

Overall, we found that the TDE-based networks are robust
across a wide range of noise conditions, showing FTA of >95% and
correlation with stimulus velocity of &~ 90% at all noise levels except
the two highest (5 Hz/px and 10 Hz/px, Figure 8). However, we
suspect that in those conditions it may be possible to exploit TDEs
more efficiently. To this end, we suggest more aggressive filtering at
the STCF stage, as was done for the real-world data (Figures 10, 11).

Examining training progression, we observe that while the loss
curves for training with spike count inference tend to be relatively
smooth, the loss curves for training with ISI exhibit noticeable
jumps, with changes in the loss value appearing more pulsatile than
gradual. This behavior can be attributed to the initialization, which
results in very high spiking rates (see Section 5.2 for the details).
Under these conditions, it is easier to regulate spike count than
the ISI (inter-spike interval) between the first two spikes. For spike
count, improving the loss function requires only a slight adjustment
in the spike count for one of the stimulus velocities. In contrast, ISI
regulation is more challenging because the ISI tends to decrease
over time (being shortest immediately after trigger activation).
Consequently, training with ISI requires more epochs to produce
meaningful differences in velocity estimation, which also manifest
in a more abrupt fashion.

To decode stimulus velocity from TDE activity in the presence
of multiple edges, one needs to perform motion segmentation to
relate counted spikes/measured ISIs to a particular moving edge.
How does one know when to count spikes or measure ISI? Here,
we proposed counting spikes starting from each activation of the
TDE’s trigger, as it indicates the passage of a new edge. This worked
for a shallow network where we could read out trigger activations,
but suppose there were more layers after the TDE. How could
downstream circuitry perform motion segmentation? One obvious
solution would be to establish so-called skip connections between
the input to the TDE’s trigger and downstream circuitry. Another
solution could exploit the fact that immediately after activation
of the trigger, the TDE’s signal is maximal; i.e., if one counts
spikes within a certain sliding time window, the local (in time)
maximal count would be close to the moment of edge appearance
at the TDE’s trigger. Similarly, the shortest distance between two
spikes would occur for the first two spikes after trigger activation.
Hence, downstream circuitry could potentially perform motion
segmentation by performing temporal max pooling.

Frontiersin Neuroscience

10.3389/fnins.2025.1667541

For velocity coding, the fundamental limitation of the TDEs
is the latency vs. dynamic range dilemma (see Section 2). Since
spike amplitude is usually fixed, high dynamic range requires a
lot of spikes (or timepoints between spikes), which necessarily
leads to a long latency in velocity inference. The best way to solve
this problem is to implement TDE on a neuromorphic chip that
allows spikes of different amplitudes, such as Loihi 2 (Orchard
et al., 2021; Chiavazza et al,, 2023), Tianjic (Pei et al., 2019), or
Neuron-Flow (Moreira et al., 2020). As a result, one does not
need to count spikes or intervals between spikes, because velocity
magnitude is immediately available from the first spike. This would
also allow simplifying the neuronal model, since the “current” and
“voltage” compartments of the TDE are needed only to convert
gain decay into spikes. If one can directly read out the decay
value at the moment of trigger, there will be no need for such
conversion. For more conventional neuromorphic hardware that
produces binary spikes, one can solve the latency vs. dynamic range
dilemma by employing the so-called “eccentric downsampling”
using several detectors tuned to different velocity bandwidths
such that each detector emits only a few spikes [Figure 15,
D’Angelo et al. (2020)].

4.3 Performance with real-world data

We evaluated the performance of TDE-2 and TDE-3 on
real-world event-based data at both the local (Figures 10, 11,
Tables 3, 4) and global (ego-) motion levels (Figure 13, Tables 5,
6). Our results showed that, for both types of tasks, TDE-2 and
TDE-3 achieved similar precision (Tables 3-5). However, TDE-3-
based networks emit approximately 2.7 times fewer spikes than
TDE-2 networks and are therefore considerably more energy-
efficient. For local motion, our results show that across an 80-
fold change in velocity magnitude (AEE, Table 3) and a 360°
change in direction (AAE, Table 3), the performance of shallow
TDE-based networks is similar to model-based local motion
detectors (Rueckauer and Delbruck, 2016), but with the advantage
of being naturally compatible with SNNs. Thus, they can be
implemented in low-power neuromorphic hardware to exploit
the spatio-temporal sparsity of event-based datastreams. For ego-
motion, TDE-based inference of yaw rotations from MVSEC
driving sequences performs worse than IMU but on par with neural
networks containing 1.5 x 10> trainable parameters (Table 5).

In the experiments with real-world data, we employed TDEs
whose time constants and synaptic weights were trained on artificial
data. Although this approach is theoretically prone to overfitting
and a simulation-reality gap, we do not consider it a problem here.
The reason is that training is used only to tune TDE parameters
so that they linearly encode a certain range of velocities. In this
setting, the only problem that can arise during transfer from
simulation to real-world is that the real-world velocity range
differs from that envisioned during training. However, since we
train TDEs to encode motion in abstract terms of the fraction
of the distance between facilitator and trigger covered in one
algorithmic timestep (see Section 5.2.3), one can scale the dynamic
range of encoded velocities by simply changing the timestep
duration. Alternatively, one can employ a collection of TDEs with
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different distances between inputs to cover a high dynamic range of
input velocities.

Despite the high correlation between TDE outputs and local
optical flow (Figures 10, 11, Table 3), the absolute error in optical
flow estimation remains significant—about 40%. The main sources
of this error are noise, texture-induced biases, and the poor
velocity resolution of individual TDEs. One way to reduce the
error would be to better combine detector outputs. At present, we
simply subtract outputs of oppositely tuned detectors and employ
spike count/ISI to infer velocity. More sophisticated methods of
spike processing-such as combining spikes across spatial locations,
integrating orthogonally oriented TDEs, or jointly using spike
count and ISI-might yield better estimates of optical flow. We
think the most promising approach is to use trainable SNNs
that take TDE outputs as inputs, ideally with self-supervised
training methods that employ information bottleneck theory
to ensure robust and energy-efficient processing (Yang et al,
2025).

In principle, ego-motion can be estimated by globally
integrating and combining signals from differently tuned TDEs.
However, the estimate would be biased by the amount of texture
within a visual scene, since a few fast-moving objects may produce
fewer spikes than many slowly moving objects. A solution to this
problem could be some form of normalization that accounts for
scene spatial frequency. Yet, our small-scale tests suggest that naive
solutions, such as averaging all non-zero local velocity estimates,
do not work well (data not shown). It may therefore be beneficial to
train an SNN to correct for texture bias in TDE outputs.

Overall, we believe there is great potential in using TDE-
3 outputs as inputs to SNNs that estimate optical flow from
event-based data. TDE-3 extracts simple, abstract features such
as moving edges, which are ubiquitous in visual scenes. Despite
noise and biases, motion information is present in TDE outputs,
and the goal of downstream processing is to extract this
information by properly accounting for those imperfections.
Neural networks are well suited to this task, as they can be
trained to compensate for noise and bias. Indeed, combining
a model-based prior for coarse estimation with a neural
network for refinement is a popular approach across fields.
In physics, for example, it helps accelerate convergence while
reducing model complexity (Zia et al., 2025). Similarly, research
on drone acrobatics has shown that autopilots trained on
abstract representations of visual scenes bridge the simulation-
to-reality gap more effectively than those trained on raw images
(Kaufmann et al., 2020).

To conclude, we presented TDE-3 as a potent computational
prior for motion detection from event-based data in SNNG. It can
be trained and enables fast, efficient, precise, and robust coding of
optical flow. We think that for low-level visual processing, TDE-
3 offers greater robustness than Convolutional Neural Networks
(CNNs). Unlike CNNs, which rely on architectures shaped by
training data and are therefore prone to overfitting, TDE-
3 employs a fixed, analytic architecture, reducing the risk of
overfitting and enhancing stability. More broadly, our study
highlights the importance of understanding biologically relevant
features (e.g., the relation between structure and function) in
the design of neuromorphic solutions for real-time, low-power
motion detection.
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5 Methods
5.1 Datasets

5.1.1 Synthetic data

The synthetic dataset consists of vertically oriented bars of
three light intensity values: white, gray, and black. The grayscale
values were converted into events using a simplistic custom-
made simulator of an event-based camera, which retained its
key property: encoding changes in grayscale value with spiking
signals that report increases (on events) or decreases (off events)
in light intensity. Specifically, we modeled voltage in the event-
based detector as being proportional to the logarithm of light
intensity and reported contrast each time the temporal derivative
of this signal (V; — V;_;) was higher/lower than the threshold
value of £0.15.

To compare the robustness in direction-selectivity of TDE-
3 and TDE-2, we simulated their responses to moving textured
stimuli consisting of bars oriented orthogonally toward the
direction of motion. The bars had three intensity levels: white,
gray, and black. The size of the texture along the motion
axis was 80 pixels and 3 pixels along the orthogonal direction
(Figure 2A). We employed five velocities: 0.1 px/timestep, 0.2
px/timestep, 0.33 px/timestep, 0.5 px/timestep and 1 px/timestep.
The motion direction (left-right, right-left, top-bottom, bottom-
top) and velocity were randomly chosen for each stimulus example
(2,000 per testing round). To vary the "amount" of texture in stimuli
we randomly varied the fraction of the gray bars from 0% to 80%.

To train the TDE-3 to linearly map velocities of moving edges
into spike count-based or ISI-based output, we employed isolated
edges on a homogeneous background. To avoid over-fitting and
the necessity to separate stimuli into training and test datasets, for
each training epoch we de-novo randomly generated 100 examples
of moving edges with various velocities. We employed two sets of
velocities. One was relatively wide (5 velocities spanning a 10-fold
range, see above). The other was relatively narrow with 15 velocities
within a range from 0.025 to 0.04 px/timestep. This stimulus set
was employed to show that the TDE can encode velocities with
high precision.

To study the effect of variation in scene spatial frequency on
the coding precision of ISI- and spike count-based inference, we
trained the TDEs to linearly encode velocities of two edges moving
at the same velocities at different distances from each other. We
used 5 velocities from 0.1 to 1 px/timestep and randomly varied the
distance between edges within a range of 3,4,5,7 and 10 pixels.

To study the effect of noise on training and inference with
spike count and ISI-based methods, we simulated one of the
most prominent types of noise in event-based vision - background
activity noise, as a Poisson process following the approach by Guo
and Delbruck (2023). The noise was injected after the conversion
of grayscale values to events as some stochastic events. We used
six mean rates of noise: 0.2 Hz/px, 0.5 Hz/px, 1 Hz/px, 2 Hz/px, 5
Hz/px, and 10 Hz/px. This effectively covered the dynamic range
in event-based vision from high to low SNR conditions (Guo and
Delbruck, 2023). For this set of experiments, we employed the same
set of 5 velocities as above and varied the distance between edges
within a range of 3 to 10 pixels as above. The timestep duration was
set to 10ms.
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5.1.2 Real-world data

We used three real-world datasets: disk and boxes recorded
(Rueckauer and Delbruck, 2016) (Figures 10, 11), MVSEC driving
sequences (Zhu et al., 2018b) [Figure 13, and EVIMO-2 Burner
et al. (2022), Figure 12].

In Rueckauer and Delbruck (2016), data was collected with an
event-based camera DAVIS 240C with a resolution of 240 x 180
pixels and contained various sequences of the full-field motion with
a duration between 1 second and 4 seconds. We were specifically
interested in two sequences: one with the apparent motion of
the various boxes to the right (Figure 10) and the one with the
disk rotating clockwise (Figure 11). The former sequence contained
multiple moving edges closely following each other with very
similar velocities and thus directly targeted the key weakness of the
TDE-2 of loss in direction-selectivity in a textured environment
(Figures 1, 2). The second sequence contained a large dynamic
range of velocities (proportional to the distance from the center of
rotation) and was thus ideally suited to test the optic flow coding
properties of the TDEs.

The dataset contained ground truth optical flow that could
be inferred from the IMU measurements. Indeed, motion in the
sequences was confined to the motion of the camera: for the boxes
to yaw and for the disk to roll rotations (z-axis). Hence, in this case,
ground truth optical flow can be obtained as a displacement vector
of individual events from the IMU measurements with Equation 1
following Rueckauer and Delbruck (2016):

¢ =Re—ey+T)+ep (1)

where e is the initial location of an event (ey, ¢,), € - end location
of the event, eq is the location of IMU center, T describes motion
due to yaw and pitch rotations, and R describes motion due to roll
rotation (z-axis):

T=k |:)/i| . R = |:C'OSZ —Sll’lzi| (2)
X SiInz COSz

where xy, and z are the rotation rates of IMU around
corresponding axes (pitch, yaw, and roll rotations) and k is a scaling
factor that converts degrees to pixels for the yaw and pitch rotations
equal to 4.25 px/° (Rueckauer and Delbruck, 2016).

The driving sequences of a car driving through West
Philadelphia from the MVSEC dataset were recorded with
a DAVIS 346B with resolution of 346 x 360 (Zhu et al,
2018b). We specifically were interested in four sequences:
outdoor_day_1, outdoor_day_2, outdoor_night_2,
outdoor_night_3. The duration of the outdoor_day_2
sequence is 10 minutes long; other sequences are about 5 minutes
long. The driving sequences were accompanied by ground-truth
angular velocity estimated through fusion of IMU, GPS, stereo-
camera and LiDAR (Zhu et al, 2018b) and were used to test
ego-motion estimation with TDEs.

The EVIMO-2 dataset was recorded with a Samsung DVS G3
with resolution of 640 x 480 and contains various scenes of indoor
motion (Burner et al., 2022). We used sequences from the SFM and
IMO subsets to compare energy efficiency of TDE-2 and TDE-3
(Figure 12).
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5.2 Inference and training

5.2.1 Training and inference with the synthetic
data

The SNNs were simulated using the PyTorch framework,
inspired by previous implementations (Neftci et al, 2019
Hagenaars et al., 2021). Depending on the application, the networks
included several types of elements such as TDEs, STCFs, and low-
pass filters of the spike trains (i.e., spike traces). Each element was
defined by its synaptic weights and time constants.

Algorithm 1 shows the computations performed when TDE-
2 and TDE-3 process input signals. Apart from the inhibitor that
resets TDE-3’s gain upon activation, there is no difference in
signal processing. As one can see, the neuronal dynamics of TDEs
resemble those of a CuBa LIF neuron. We opted for this neuronal
model because of its simplicity and because TDE-3 was developed
from TDE-2, which already employed the CuBa LIF neuron (Milde
et al,, 2018). The CuBa LIF neuron is the simplest configuration
that allows conversion of the gain activation value into a spike train.
In principle, other, more complicated neuronal models are possible
(Gerstner et al., 2014). However, hardware implementations with
graded spikes (Orchard et al., 2021; Pei et al., 2019; Moreira et al,,
2020) would allow for an even simpler model than the CuBa LIF
neuron, since the gain activation value could then be read out

directly.

Parameters:

1: g= gain, i= current, v= voltage, s= spike

2: t = time constant, wy; = synaptic weight, 6 =
threshold

3: ag=1ﬂ#=a(pg)

40w = A =0 (ps)

: av=ﬁ=°’(l)v)
TDE-2 TDE-3

1: for te[1, 7] do 1: for te[1,T] do

2: i[t] < a;-i[t=1]+ 2: ift] < a;-i[t=1]+
glt—1]1-Tr(t] glt—-1]-Tr[t]

3: glt] < oag-glt-1]+ 3: glt] « (ag-glt—11+
wg - Fac[t] wg-Fac[t])-(1—=Inh[t])

4: vit] < ay-v[t—=1]+ 4 vit] «ay-v[t—=1]+
i[t] ilt]

5:  s[t] « 5. s[t] «
spike_fn(v[t] —0) spike_fn(v[t] —0)

6: vit] < (1 —=s[t]) - 6: vit] <« (1 —=s[t]) -
vit] vit]

7: end for 7: end for

Algorithm 1. TDE-2 and TDE-3 neural dynamics.

The trainable parameters of the TDE included the gain, current,
and voltage time constants, as well as the synaptic weight of the
gain compartment. To facilitate learning of the neuronal time
constants, we used the approach proposed by Fang et al. (2021),
which reformulates neuronal decays as the product of the gain,
current, and voltage with the sigmoid of a trainable parameter (pg,

pi»Pv)-
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To mitigate the effect of background activity noise in
experiments with real-world data and injected noise, we employed
STCF filtering as described by Guo and Delbruck (2023)
(Algorithm 2). In this simple yet effective algorithm, an event is
allowed to pass the filtering stage only if at least one event occurs
in the n nearest neighboring pixels (a trainable parameter) within a
specified time window. Essentially, the filter extracts correlations
(hence the name) between a pixel and its neighborhood while
rejecting uncorrelated noisy events. As a result, STCF improves
the signal-to-noise ratio while preserving signal sparsity. The filter
can be effectively modeled as an LIF neuron with a very short leak
constant, whose firing threshold is parameterized by the number of
neighboring pixels 7.

Parameters/state:

1: v[x,y, t] = filter voltage at pixel (x,y) and time
t

2: s[x,y, t] = filter output spike at pixel (x, y) and

time t

3: e(x,y, t,p)= input events with polarity p

4: n= spike threshold

5: for te[1,T] do

6: for each pixel (x,y) do

1T

7: vix,y, t] <Y 3 Y e(x+1,y+7j, t,p)

P i=—1j=-1
s[x, y, t] < spike_fn(v[x, y, t] —n)
: end for
10: end for

Algorithm 2. STCF implementation.

To train SNN with BPTT, we addressed the
differentiability of the spiking activation function by using

non-

surrogate gradients (Neftci et al., 2019; Zenke and Vogels, 2021)
(Figure 16). This method enables backpropagation in SNNs by
replacing the spiking activation function with a differentiable
function of similar shape and steep slope during the backward pass
(Neftci et al., 2019; Zenke, 2019; Zenke and Vogels, 2021). We used
the surrogate gradient proposed in Zenke (2019) (Figure 16). The
right column of Figure 16 compares the derivative of the spiking
function (i.e., the Heaviside function) with the surrogate gradient
function on a logarithmic scale. As shown, while the derivative of
the spiking function is zero everywhere except at 0, the surrogate
gradient has a small non-zero derivative, which allows the error
gradient to pass and thus enables training of the SNNs.

Depending on the coding scheme (spike count or ISI), we used
two slightly different training pipelines to extract motion direction
and velocity (Figures 3, 4). The two first steps are common to both
pipelines. The input layer simply converts events to spikes. Then,
these spikes are fed into the layer of TDE-3s, which effectively
perform 1D convolution with kernel size=3, stride=1, and weights
being facilitator, trigger, and inhibitor. This layer consists of two
channels, one for each motion direction. At the next processing
stage, spike count-based and ISI-based pipelines deviate. For the
spike count-based velocity estimator we can straightaway find the
total number of spikes emitted by each of the detectors, convert it to
estimated velocity (see Algorithm 3), calculate the loss, and perform
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a backward pass. For the ISI-based velocity estimation, the training
of the network is not so straightforward and is described in Section
5.2.2.

Parameters/state:

1: win = temporal window over which spikes are
integrated

2: B= factor to scale the spike sum

3: itgelt] = current in the corresponding TDE

4: 1ipc = 1indicator of whether TDE’'s current
increased

5: Stdelt] = spikes from a TDE

6: V[t] = velocity estimate

7: for te[1,T] do

8

Iinclt] « Spike—fn(itde{t] —Itge[t—1])

0
V[t] < B- Z Stde[t“‘k] 'iinc[t_Wj-n1

k=—win

e}

10: end for

Algorithm 3. Velocity inference with spike count.

To promote linear mapping of input velocity into velocity
estimated from TDE-3’s output activity, we used the mean absolute
error (L1 loss) between the normalized TDE-3 estimates and
the ground truth edge velocities. Normalization ensures linear
mapping because it removes scale such that the loss depends
only on the nonlinearities of the mapping. Normalization was
done with respect to the maximum estimate/velocity in the batch
(Equation 3). Additionally, to ensure the sparsity of the learned
solution, we added a regularization loss which is proportional
to the mean squared spike count. Spikes were summed along
temporal dimension and average across examples within the batch
(Equation 3). At the same time, to avoid the vanishing of the
gradient due to low neuronal activity (Rossbroich et al., 2022), the
network was initialized to have a high firing activity by making the
synaptic weights large and the time constants long.

Vest,b — Vtrue,b +

1 N
L:train = N bz_;

L1 velocity loss

2\

N T
0.05|1072. % > ( Stde(bs t)) 3)
1

b=1 \t=

regularization loss

For the velocity set with a wide (10-fold) dynamic range of
velocities, the detector is trained to linearly map this dynamic
range into limited spiking output. Hence it makes sense to estimate
velocity as a spike count scaled by minimal discernible velocity (0.1
px/timestep), such that minimal velocity is encoded with one spike.
For the narrow dynamic range (1.5-fold), the detector is trained to
encode a limited dynamic range with very high precision. Hence,
it makes sense to use a bias factor: to infer velocity, we multiply
the spike count by the velocity resolution (0.001 px/timestep), and
then, if the spike count is larger than 1, we add to it a bias factor
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FIGURE 16
Surrogate gradient.Top, left—spiking (Heaviside) function. Top, right—derivative of the spiking function (Dirac function). Bottom, left—surrogate
function. Bottom, right—gradient of the surrogate function that was used during backward pass. Note logarithmic scale for the derivative plots.

of 0.024 px/timestep. This bias factor is necessary because it allows
encoding a velocity of 0.025 px/timestep with only 1 spike. Without
this bias factor to have a velocity resolution of 0.001 px/timestep,
would have required to use of 25 spikes for the velocity of 0.025
px/timestep.

To assess TDE-3 performance in the presence of multiple
moving edges, one needs to perform motion segmentation: to
relate counted spikes to particular edges. To do so we (1) limit the
temporal window within which spikes are counted to 10 timesteps
and (2) count spikes starting from the increase in TDE current.
An increase in current is always a consequence of activation of the
trigger. This means that the motion of a new edge causes it and
thus solves the problem of motion segmentation. When we trained
the detector to encode velocity amidst variation in stimulus spatial
frequency, we calculated the error for the velocity estimate of each
of the edges.

In the experiments with noise (Figures 7, 8), not every increase
in current is caused by a moving edge, and one of the goals of the
training is to suppress the TDE activations caused by noise. To
account for this factor in the calculation of the loss, we calculated
the loss between all of the velocity estimates performed by the TDE
and stimulus ground truth at corresponding timepoints (effectively,
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this ground truth was zero everywhere except at the moment of
edge appearance see Section 5.1). Also, to evaluate how the trained
TDE can reject noise and preserve the true motion signal, we
employed an additional metric called fraction of true activity (FTA)
as the sum of estimated velocities caused by the stimulus (true
motion signal) to the total sum of estimated velocities (caused by
signal and noise).

5.2.2 Training of the spiking neural networks to
code with interspike interval

Apart from spike count, another intuitive method to encode
signals in SNNGs is relative spike timing (Gollisch and Meister, 2008;
Rieke et al., 1999). The main benefit of such signal coding is that it
allows for much shorter latency (Rieke et al., 1999; Gollisch and
Meister, 2008) while also enhancing coding capacity on a network
level (Paugam-Moisy and Bohte, 2012). Training SNNs to have
specific spike timing has a long history, with the first classical paper
published as early as 2002 (Bohte et al., 2002).

In the present paper, we developed a novel method to train
SNNs to encode a signal with ISI using supervised learning with
BPTT (Figure 4). While most other methods (Bohte et al., 2002;
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Mostafa, 2018; Comsa et al., 2020) model the relationship between
input magnitude with differentiable function and then use BPTT,
we measure ISI from the amplitude of low-pass filtered spike train
to use BPTT with surrogate gradient. The theoretical advantage of
our method is that it does not require estimation of the relationship
between spike timing and input magnitude, allowing to work with
more conventional activation functions.

Parameters/state:

1: 7= filter time constant

2: y = scaling factor

3: Xg = spike trace amplitude upon arrival of the
first spike

4: iipe = indicator of whether TDE's current
increased

5: x[t] = spike trace at time t

6: Vest = estimated velocity

7: for each ijnc>0 do

8: Take filter output x at the timestep preceding
the second spike since increase in current

9: Estimate elapsed time since first spike: t <«
v 1n(%)

10: Estimate inter-spike interval: ISTI <« t+1

11: Estimate velocity:  Vest < %

12: end for

Algorithm 4. Estimation of velocity from ISI.

Specifically, we were interested in the ISI between the first
two spikes, as it should provide the shortest latency (Milde et al.,
2018; Gutierrez-Galan et al., 2022). The key is to estimate the time
between two spikes in a differentiable manner. To do so, we added
to the pipeline in Figure 3 low-pass filtering of the TDE output
spikes (Figure 4).The filtering yields an exponentially decaying
spike trace x(t). By taking filter output at the timestep directly
preceding the second spike one can estimate ISI as ISI = #(x) + 1.
Next, by taking an inverse of it and scaling it by a proper factor ()
one can convert it to the estimate of the input velocity. Finally, to
train a network with BPTT one can calculate the loss function using
Equation 3.

On the practical level, there are three factors to take care of to
successfully implement a training pipeline based on the ISI:

1. ISI interval is undefined when the TDE emits less than two
spikes because the notion of interval requires 2 points. We
assume that <2 TDE spikes mean an extremely slow motion of
an object. Therefore we set ISI to a very large value (10° - 10°
timesteps) such that when inverted it will lead to an extremely
low estimated velocity.

2. Scaling of the inverted ISI to estimate velocities. This can be
done similarly to scaling of spike count: for the stimuli set with a
wide dynamic range we multiplied the maximal inverted ISI (=1)
with maximal stimuli velocity; for the stimuli set with a narrow
dynamic range, we also used bias and multiplied inverted spike
count with the difference between maximal and minimal stimuli
velocity.

3. Handling of multiple moving edges. We opted to handle
multiple moving edges similarly to spike count inference: the
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first two spikes were determined with respect to the current
increase. Also, in the presence of noise, the loss function
and performance evaluation were handled similarly to the
spike count.

5.2.3 Nuances of the application of TDEs to the
real-world data

Real-world data was used only as a test dataset. We pooled
together ON and OFF events as it is often encountered in biological
systems (Clark and Demb, 2016; Borst et al., 2020; Sterling and
Laughlin, 2015). The network was trained with synthetic moving
bars to fit its dynamic range to the dynamic range of velocities
in real-world data. Compared to simulation, estimation of the
optical flow with TDEs in the real-world data has three additional
challenges: (1) other (not only background activity) types of noise,
(2) the necessity to coordinate the activity of multiple TDEs,
and (3) the high dynamic range of velocities (2 decades for the
rotating disk).

Apart from background activity noise, another prominent
source of noise in the event-based data is jitter in event timing
(Czech and Orchard, 2016). Event arrival is specified with
microsecond precision, yet the time between actual change in
intensity and event generation can vary in a range of milliseconds.
Therefore, strictly speaking, each pixel of a moving edge generates
an event at a different time (Czech and Orchard, 2016). This is
especially problematic for the 3-point TDE because the prevention
of its activation upon motion in an orthogonal direction is
underpinned by simultaneous activation of facilitator and inhibitor,
which is hardly possible given the event jitter. To avoid this
problem, one needs to increase the co-activation of the facilitator
and inhibitor. The most straightforward way to do so is to
downsample the event stream in time. For instance, feeding events
to the network using time bins, where events within a bin are
considered to occur simultaneously. There is a trade-off between
mitigation of event jitter and dynamic range of velocity coding.
Here (Figures 10, 11), given the relatively low stimulus velocity, we
chose to slice events into bins of 50 ms (i.e. 20 frames per second).
The same frame rate was chosen for the driving sequences from
MVSEC dataset because there ground truth was available at 20Hz
(Zhu et al., 2018b) (Figure 13). For consistensy, we also employed
the same frame rate with EVIMO-2 dataset (Burner et al., 2022)
(Figure 12).

In contrast to synthetic data where we mostly employed either
one or two opposingly tuned detectors, with the real-world data
we sampled each pixel of the visual field with TDEs tuned along
4 cardinal directions: Left-to-Right (LR), Right-to-Left (RL), Top-
to-Bottom (TB), and Bottom-to-Top (BT) akin to how it is done
in vertebrae and insect visual systems (Clark and Demb, 2016).
Although there are 4 cardinal directions, motion occurs along
2 axes: horizontal and vertical. Since a point in space cannot
simultaneously move in 2 opposite directions, the next logical step
in the processing pipeline is to subtract velocity estimates obtained
from opposingly tuned detectors. This move is ubiquitously
employed in biological systems (Borst et al., 2020; Clark and Demb,
2016; Reichardt, 1961) and was shown to optimize velocity coding
by biological elementary motion detectors (Kithn and Gollisch,
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2019). Here we found that such a subtraction compensates for the
poor direction-selectivity of individual TDE-2 (Tables 4-6).

The sequence with a rotating disk contained a very high
dynamic range of velocities (2 decades: from 1 to 80 px/s). As was
discussed earlier, using a single TDE to encode such a high dynamic
range with high resolution is sub-optimal in terms of latency. Yet,
it is possible to do so using a set of detectors tuned to different
velocities. One elegant way to achieve so is to gradually increase
spacing between TDE inputs (i.e. facilitator, trigger, inhibitor) as
the detector position moves away from the center (D’Angelo et al.,
2020) (Figure 15). Indeed, given internal parameters, the TDEs
where the facilitator and trigger are spaced by n pixels can encode
n times higher velocities than the detector where the facilitator and
trigger are spaced by 1 pixel.

Although such an eccentric increase in TDE receptive fields
nicely fits the rotation disk (where velocity increases as one moves
out of the center), this solution is rather general and universally
encountered in animal visual systems (Sterling and Laughlin, 2015).
The reason for this is that most of the optical flow is engendered
by self-motion and most of the self-motion is directed forward. As
animals tend to look toward the focus of expansion (a point in the
visual field from which optical flow originates), the further an object
is from the center of the visual field, the higher its retinal velocity.
Given that robots also mostly move forward, eccentric increase
in the receptive field is beneficial for robotics applications as well
(D’Angelo et al., 2020).

The specifics of our implementation are as follows. Using
synthetic data, we first pre-trained TDE with spacing between
compartments of 1 px to linearly encode 5 levels of velocity
(from 0.1 px/timestep to 0.5 px/timestep). Now, it is important to
recognize that the TDE encodes only the delay between activations
of the facilitator and trigger compartments. Hence, the results of
the training are indifferent toward the spatial configuration of the
TDE, i.e. resultant velocity coding is not so much about px/timestep
as about a fraction of the distance between facilitator and trigger
covered within a timestep. Hence, by simply regulating the distance
between the TDE inputs by a factor of n, one can scale the TDE
range of velocity by said n without the need to re-train the TDE.
Here, we used TDEs with distances between inputs of 1, 2, 3, 4, 6,
and 8 pixels (Figure 15). Paired with a timestep duration of 50ms,
it means that together the TDEs were able to cover velocities in the
range of 2 to 80 px/s. For the spike count inference, the window
over which spikes were counted was limited to 5 timesteps. Before
feeding into the layer of TDEs signal was filtered by 3 by 3 STCF
filter (Guo and Delbruck, 2023).

For the MVSEC and EVIMO-2 datasets we employed TDE with
distance between inputs equal to 2. For MVSEC dataset we used
LR and RL TDEs and calculated total activity by pooling spikes
from LR TDEs with positive sign, and spikes from RL TDEs with
negative sign.

5.2.4 Performance evaluation for the real-world
data

For the qualitative comparison between the optical flow
inferred with the TDEs and the ground truth, we visualized the
optical flow using the colormap in Figure 14. To make quantitative
comparisons, we used the Angular Average Error (AAE), Average
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Endpoint Error (AEE), relative Average Endpoint Error (rAEE),
Angular Velocity Error (AVE), Average Relative Rotation Error
(Zhu et al.,
1895).
AAE measured the difference between the direction of motion

2018a), and Pearson correlation coefficient (Pearson,

estimated with the TDEs and the ground truth motion direction,
and it was calculated with Equation 4:

4

AAE = Z arccos (

where v is the velocity vector estimated with the TDEs, u is the

VixUix + ViyUiy )
[vil[uj|

ground truth vector, and i denotes individual optical flow estimates
(i.e. per pixel per timestep). Zero velocity measurements were
not counted in Equation 4. AEE was calculated as the difference
between optical flow vectors inferred with TDE and ground truth
using Equation 5:

N
1
AEE = — XI: \/ (Vix — tix)2 + (viy — )2 (5)

i=

The problem of AEE is that it is hard to get from it an
intuition about the quality of velocity estimate. First of all, this
error accumulates over time such that it becomes hard to compare
algorithms run at different simulation frequencies. Secondly,
understanding whether coding error is acceptable does not depend
on the absolute value of error, but on the ratio between error and
true velocity. Therefore, we used rAEE to normalize AEE by the
ground truth velocity to give a relative measure of performance
quality using Equation 6:

N )2 )2
1 \/(sz Uix)* + (sz uzy)

AEE = — 6
A= 2 jui ©

i=1

Angular Velocity Error was calculated in the similar way to
Average Endpoint Error, such that mean AVE across the entire
sequence can be calculated with equation:

mean AVE = — ’1//(” e(;z (7)

where gﬁgt and ey are the ground truth and estimated yaw
rotation rates.

To benchmark our performance on the MVSEC dataset, we
employed ARRE, which estimates the error between two rotations
using the formula:

ARRE(P, G) = XT: Hlogm(PtTG,) ’2 (8)
=1

where T is the duration of the sequence, P, is the transpose of
the predicted (estimated) orientation at time ¢ (pitch, roll, and yaw),
G; is the ground truth orientation, and logm denotes the matrix
logarithm. ARRE describes the error in ego-motion estimation
according to the following reasoning.
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Orientation in space can be specified using a rotation matrix R.
One of the key properties of rotation matrices is that their inverse
is equal to their transpose, i.e., R~' = RT. This property allows us
to estimate the difference between two rotations Ry and R, as

AR =R Ry, ©)
where AR is the relative rotation from Ry to Ry (Lynch and Park,
2017).Indeed, if R; = Ry, the result is the identity matrix I, whereas
any deviation from I quantifies the difference between the two
rotations.

Although we can calculate the error in this way, AR is still a
matrix, and ideally we want a single scalar to quantify the rotational
difference. Fortunately, rotations can also be parametrized in
exponential form:

Ry =Ry exp(x W), (10)

where W is the unit vector along the axis of rotation, and x is
the rotation angle (Lynch and Park, 2017). To extract the angle
x corresponding to the rotational difference, we take the matrix
logarithm of R| R,. The same reasoning is applied in Equation 8
to reduce a rotation difference to a single scalar measure.

How can we obtain rotation matrices to calculate ARRE? To do
so, we can integrate the ground truth angular velocity (Zhu et al.,
2018b,a) as well as the angular velocity estimated by the TDEs.
At first, it might seem unusual to compute rotations when both
the network output and the ground truth already provide angular
velocity. The reason is that we aim to compare our results with
other studies, and most previous works (Ye et al., 2020; Zhu et al.,
2018a; Mitrokhin et al., 2019a) employed neural networks where
rotations were learned in a self-supervised fashion—by forcing the
network to estimate the rotation between two images sampled at
different time intervals.

Since we measure only yaw rotations and assume all other
rotations are zero, the rotation axis w coincides with the yaw axis,
and yx represents the yaw angle. Therefore, the ARRE reduces to a
simple product of the average angular velocity error (AVE) and the
sampling interval At:

ARREy,, ~ AVE - At. (11)
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