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Introduction: Toxic Oil Syndrome (TOS) emerged in Spain in 1981 after ingestion
of rapeseed oil adulterated with aniline derivatives. More than four decades later,
survivors continue to report cognitive complaints, but objective evidence of long-
term dysfunction remains limited.

Methods: In this case-control study, 47 TOS survivors and 44 matched healthy
controls completed validated eye-tracking paradigms (visually guided, memory-
guided, and antisaccade tasks) and a standardized neuropsychological battery.
Groups did not differ significantly in age, sex, or education.

Results: TOS survivors showed preserved performance on visually guided and
memory-guided saccades, with no group differences in latency, gain, peak
velocity, or spatial error (all p > 0.05). In contrast, they exhibited fewer correct
antisaccades (mean 3.6 vs. 5.0; p = 0.029), more reflexive saccades (mean 7.0
vs. 5.7, p = 0.033), and increased backward reflexive saccades (mean 6.3 vs.
5.1; p = 0.040). Cognitive testing revealed selective impairments in executive
function, attention, and processing speed, with preserved memory. Structural
equation modeling confirmed that antisaccade impairment remained significant
after adjusting for confounders and demonstrated an independent contribution
of attention to correct antisaccade performance.

Conclusion: Findings indicate persistent frontal-subcortical circuit dysfunction
in TOS survivors, consistent with immune- or vascular-mediated injury patterns
rather than progressive neurodegeneration. Eye-tracking provides a honinvasive
biomarker of latent executive dysfunction and may be useful for long-term
monitoring of populations exposed to environmental toxins.
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Introduction

Toxic oil syndrome (TOS) is a chronic, multisystem disease that
emerged in Spain in May 1981 following the ingestion of rapeseed oil
adulterated with aniline derivatives and illegally distributed for human
consumption. The outbreak rapidly escalated, affecting over 20,000
individuals and causing more than 300 deaths within the first year
(Abaitua Borda et al.,, 1998; Sdnchez-Porro Valadés et al., 2003;
Polentinos-Castro et al., 2021). The acute phase was characterized by
eosinophilia, fever, myalgia, and pulmonary edema, later progressing
to a chronic condition marked by scleroderma-like skin changes,
peripheral neuropathy, muscular atrophy, and both pulmonary and
neuropsychiatric manifestations (Gelpi et al., 2002; De La Paz et al,,
2001). Although extensive multidisciplinary investigations were
conducted, the specific toxic agent was never definitively identified.
Nonetheless, fatty acid anilides and other byproducts of industrial oil
denaturation were implicated based on chemical and toxicological
analyses (Gelpi et al., 2002).

Kaufman and Krupp (1995) proposed that TOS and eosinophilia-
myalgia syndrome may be part of a spectrum of chemically induced
immune-mediated disorders involving the central nervous system.
Their hypothesis initiated early discussions about mechanisms such
as neuroinflammation and excitotoxicity. Notably, eosinophilia-
myalgia syndrome itself is linked to neurocognitive dysfunction
(Armstrong et al., 1997).

One of the earliest studies of cognitive impairment in TOS was
reported in a small neuropsychological study by Del Ser et al. (1986),
who found deficits in episodic and semantic memory within a few years
of the onset. This was followed by a 12-year follow-up study by Kaufman
et al. (1995), which offered clinical evidence of chronic morbidity in
TOS survivors. Among 91 individuals re-evaluated more than a decade
after exposure, over half reported persistent symptoms—fatigue, muscle
cramps, arthralgias, subjective cognitive difficulties, and psychiatric
complaints—despite being otherwise medically stable and lacking signs
of a progressive neuromuscular disorder (Kaufman et al., 1995).

Further objective evidence came from a landmark case-referent
study by De La Paz et al. (2003), conducted 18 years after the outbreak.
TOS patients—particularly middle-aged women—performed
significantly worse than matched controls on tests of motor strength,
sensory function, and several neurocognitive domains such as
memory, attention, processing speed, and psychomotor performance.
The pattern of deficits indicated both peripheral and central nervous
system involvement, with notable disruption of frontal-subcortical
circuits (De La Paz et al., 2003).

Despite earlier findings, the long-term cognitive effects of TOS
remain poorly understood. A recent 43-year follow-up case—control
study found subtle yet measurable deficits in executive function,
attention, and processing speed among TOS survivors, assessed with
modern computerized tools (Lapefia-Motilva et al.,, 2025). In a separate
biomarker study within the same group, slightly elevated serum
neurofilament light chain levels were observed in TOS patients—mainly
due to a few outliers—while levels of glial fibrillary acidic protein and
phosphorylated tau 217 remained within normal ranges (Ruiz-Ortiz
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etal,, 2025). These results suggest ongoing or residual neuronal injury
in some individuals, without a biomarker pattern typical of progressive
neurodegenerative disease (Ruiz-Ortiz et al., 2025).

Eye tracking provides an objective, noninvasive, high-resolution
readout of cognitive control, as voluntary saccades are generated by
frontal-subcortical circuits that subserve attention, executive control,
and working memory. In particular, the frontal eye fields, dorsolateral
prefrontal cortex, and anterior cingulate interact with basal ganglia
loops and the superior colliculus to initiate or suppress gaze shifts;
consequently, the antisaccade task—which requires suppression of a
reflexive glance and generation of a willful movement in the opposite
direction—is a sensitive probe of inhibitory control and working
memory maintenance (Guerrero-Molina et al., 2021; Garcia Cena
et al., 2022a; Garcia Cena et al., 2022b; Wolf et al., 2023; Benito-Ledn
etal, 2024; Leng et al., 2024; Benito-Leon et al., 2025). Across diverse
neurological conditions, increased antisaccade error rates and
prolonged latencies track frontal dysfunction, underscoring the utility
of eye-movement metrics (e.g., error rates, reaction times) as surrogate
markers of executive integrity (Guerrero-Molina et al., 2021; Garcia
Cena et al., 2022a; Garcia Cena et al., 2022b; Wolf et al., 2023; Benito-
Leodn et al., 2024; Leng et al., 2024b; Benito-Leon et al., 2025).

To date, no studies have used eye tracking to examine cognitive
dysfunction in TOS. We therefore employed three validated paradigms—
visually guided saccades (basic sensorimotor function), memory-guided
saccades (spatial working memory), and antisaccades (inhibitory control,
executive function, and attention) to detect subtle deficits that may elude
conventional testing (Guerrero-Molina et al., 2021; Garcia Cena et al.,
2022a; Garcia Cena et al., 2022b; Wolf et al., 2023; Benito-Ledn et al.,
2024; Leng et al., 2024b; Benito-Leon et al., 2025). Given the chronic
symptomatology of TOS, the predominance of dysexecutive features, and
the absence of biomarker evidence for ongoing neurodegeneration,
we hypothesized that TOS survivors would exhibit persistent oculomotor
abnormalities, particularly in antisaccade performance, reflecting a long-
standing disruption of frontal-subcortical circuits.

Methods
Population and recruitment procedures

Between April and June 2024, participants were recruited from
the Madrid region, one of the most severely affected areas by the 1981
TOS outbreak. A case-control design was used: individuals with a
confirmed diagnosis of TOS formed the exposed group, while healthy
controls from the same geographic area served as the unexposed
group. All assessments, including interviews and cognitive testing,
were conducted at the 12 de Octubre University Hospital in Madrid.

Participant selection

TOS cases were identified based on diagnostic criteria established
in earlier research (Lapena-Motilva et al., 2025; Ruiz-Ortiz et al.,
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2025). Eligible individuals had experienced either the acute or chronic
phase of the illness. The acute phase was characterized by alveolar—
interstitial infiltrates and/or pleural effusion, along with absolute
eosinophilia of more than 500 cells/mm’. The chronic phase criteria
included persistent myalgia with eosinophilia and/or at least one of
the following: scleroderma-like skin changes, peripheral neuropathy,
pulmonary hypertension, or liver involvement.

Patients were enrolled through the 12 de Octubre University
Hospital’s dedicated TOS unit—the only center in Spain
specialized in the long-term follow-up of affected individuals.
Recruitment was consecutive until 50 TOS cases were included.
The control group consisted of 50 healthy individuals from the
same community, selected from acquaintances or friends of the
patients. Controls were matched by age (£5 years), sex, and
educational level to ensure comparability between groups. Given
the fixed size of the eligible clinic cohort and the absence of prior
eye-tracking effect-size estimates in TOS, we prospectively set a
pragmatic target of 50 cases and 50 matched controls based on
feasibility within the recruitment window, acknowledging that a
formal a priori power calculation was not possible in this rare
disease context.

Exclusion criteria for both groups included any history of
neurodegenerative disease (e.g., Alzheimer’s or Parkinson’s disease),
stroke, chronic kidney disease, alcohol abuse, or prior traumatic injury
involving the central or peripheral nervous system. Identical criteria
were applied to controls to maintain methodological rigor.

Assessments and measures

Demographic and clinical characteristics

Participant data—including age, sex, educational background,
medical history, and current medications—were obtained through a
structured clinical interview and after revision of their medical
records. Educational attainment was recorded in four categories:
illiterate, primary, secondary and higher studies.

Fatigue evaluation

Fatigue was measured using the Fatigue Impact Scale for Daily
Use (D-FIS; Martinez-Martin et al., 2006; Benito-Leon et al., 2007), a
validated 8-item self-report tool designed to assess how fatigue
interferes with daily activities. Each item is scored on a five-point
Likert scale, from 0 (no problem) to 4 (extreme problem), yielding a
total score that reflects the extent of fatigue-related impact
on functioning.

Health-related quality of life

The EuroQol instrument was used to assess perceived health-
related quality of life (Badia et al., 2001). This tool includes two parts:
the EQ-5D descriptive system and a visual analog scale (EQ VAS). The
EQ-5D has five domains—mobility, self-care, usual activities, pain/
discomfort, and anxiety/depression—each rated on a three-level scale
(no problems, moderate problems, severe problems; Badia et al.,
2001). Responses create a health profile, from which an index score is
calculated using standardized European value sets (Badia et al., 2001).
This score ranges from 1, indicating perfect health, to 0, representing
death, and negative scores indicate states worse than death (Badia
et al.,, 2001). The EQ VAS enables participants to rate their overall

Frontiers in Neuroscience

10.3389/fnins.2025.1666809

health on a vertical scale ranging from 0 (the worst imaginable health)
to 100 (the best imaginable health; Badia et al., 2001).

Assessment of depressive symptoms

Depression severity was assessed using the Beck Depression
Inventory-II (BDI-II) (Beck et al., 1996), a 21-item self-report
questionnaire widely used in clinical and research settings (Beck et al.,
1996). Each item reflects a symptom commonly associated with
depression and is scored from 0 (absent) to 3 (severe), based on
experiences over the prior 2 weeks (Beck et al., 1996). Higher total
scores indicate more severe depressive symptoms (Beck et al., 1996).

Assessment of anxiety symptoms

Anxiety was measured using the Beck Anxiety Inventory (BAL;
Beck et al., 1988), a validated instrument consisting of 21 items
evaluating common symptoms of anxiety. Participants rate how much
they have been bothered by each symptom in the past week using a
4-point scale, ranging from 0 (not at all) to 3 (severely bothered). Total
scores range from 0 to 63, with higher scores indicating greater
severity of anxiety (Beck et al., 1988).

Coghnitive function testing

Cognitive performance was assessed using the NeuroTrax
computerized system, which offers standardized and validated tests
across multiple cognitive areas (Doniger et al., 2005; Schweiger et al.,
2007; Dwolatzky et al., 2003). Due to limited time, the assessment
focused on specific domains: verbal and non-verbal memory, attention
(measured through Go-NoGo and Stroop Interference tasks),
processing speed, and executive function (evaluated via the Go-NoGo,
Stroop Interference, and Catch Game tasks; Doniger et al., 2005;
Schweiger et al., 2007; Dwolatzky et al, 2003). All testing was
conducted in Spanish, the native language of all participants.

Eye movement assessments

All eye-tracking evaluations were conducted in a dimly lit room,
with recordings made monocularly from the dominant eye of each
participant. Standardized instructions were provided, and a practice
trial ensured proper understanding of the task. Saccades with latencies
below 80 milliseconds and those occurring during blinks were
excluded from analysis. The protocol included three well-established
paradigms: visually guided saccades, memory-guided saccades, and
the antisaccade task, all of which were performed on a horizontal axis
(Figure 1) (Guerrero-Molina et al., 2021; Garcia Cena et al., 2022a;
Garcia Cena et al., 2022b; Benito-Leon et al., 2024; Benito-Ledn et al.,
2025). We followed our published eye-tracking protocol to ensure
reproducibility and enable direct comparison with earlier
measurements (Garcia Cena et al, 2020). A brief antisaccade
paradigm (22 trials) was implemented to reduce fatigue and maintain
calibration stability, consistent with clinical and instrument validation
protocols (Hellmuth et al., 2012; Brooks et al., 2019).

o Visually guided saccades

With central fixation maintained, a peripheral target appeared at
+5°, £10°, or +20° along the horizontal meridian in pseudorandom
order; participants were instructed to look at the target as quickly and
accurately as possible and then return their gaze to the central fixation.
A correct visually guided saccade was defined as the first goal-directed
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saccade to the target location; a backward saccade was the subsequent
return movement to fixation.

Measures included: number of correct saccades; number of errors;
latency (ms) from stimulus onset to saccade onset; peak velocity (°/s);
and gain (executed amplitude divided by target amplitude). Spatial
error relative to the target was assessed separately for hypermetria
(overshoot, positive degrees of visual angle) and hypometria
(undershoot, negative degrees); we also counted the number of
hypermetric saccades and the number of hypometric saccades. For the
return movement, we recorded the number of correct backward
saccades; number of backward errors; backward latency (ms); and
peak backward velocity (°/s).

o Memory-guided saccades

While maintaining central fixation, a peripheral cue briefly
appeared and then disappeared; after a short delay, participants made
a saccade to the remembered location; then returned their gaze to the
center once the fixation point reappeared. A correct memory-guided
saccade was the first goal-directed saccade toward the remembered
location; errors were first saccades directed elsewhere.

Gain was calculated as executed amplitude divided by target
amplitude; signed spatial error was the landing-position error (degrees
of visual angle) relative to the cued location (positive = overshoot/
hypermetria; negative = undershoot/hypometria).

Measures included: number of correct memory-guided saccades;
number of errors; latency; peak velocity; gain; hypermetric and
hypometric spatial errors; number of correct backward memory-
guided saccades (return movements to center); number of backward
errors; backward latency; and peak backward velocity.

« Antisaccade task

Participants maintained central fixation; when a peripheral
stimulus appeared, they were instructed to suppress the automatic
glance toward it and instead generate a saccade to the mirror-
symmetric location on the opposite side. A correct antisaccade was
the first goal-directed saccade from fixation (screen center) to the
mirror-symmetric location; a reflexive saccade was an initial saccade
toward the cue, followed by a corrective movement to the mirror
position; any other eye movement was considered an antisaccade error.

Backward eye movements—whether backward antisaccades or
backward reflexive saccades—were defined as saccades from the
mirror-symmetric location back to the screen center.

Measures included: number of correct antisaccades; number of
antisaccade errors; antisaccade latency (ms); number of correct
backward antisaccades; number of backward antisaccade errors;
backward antisaccade latency (ms); number of reflexive saccades;
reflexive saccade latency (ms); number of backward reflexive saccades;
backward reflexive saccade latency (ms); and reflexive saccade
duration (ms).

Standard protocol approvals, registrations,
and patient consents

This study was approved by the Institutional Review Board (IRB)
at the 12 de Octubre University Hospital in Madrid, Spain (CEIC
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codes: 17/035 and 23/616). It was conducted in accordance with the
Declaration of Helsinki. Written (signed) informed consent was
obtained from all participants.

Statistical analyses

Trial-level metrics were aggregated for each participant (means
for normally distributed continuous variables, medians for skewed
distributions, and totals for counts) and analyzed at the group level.
All statistical analyses and figure creation were performed using
Python (v3.12.2). The Python packages used included pandas (v2.2.3)
for data management, TableOne (v0.9.1) for descriptive statistics, and
semopy (v2.3.11) for structural equation modeling (SEM). Continuous
variables were tested for normality with the Kolmogorov-Smirnov
test. Between-group comparisons of demographic, cognitive, and
eye-tracking data were made using independent-sample t-tests for
normally distributed variables and Mann-Whitney U tests when
normality assumptions were not met. Chi-square tests were used to
assess group differences in categorical variables.

In this study, cognitive performance data obtained from the
NeuroTrax computerized assessment were standardized by
transforming raw scores into z-scores using the control group’s
mean and standard deviation as reference. Z-scores were
computed for all participants, regardless of group assignment.
Consistent with previously published NeuroTrax-based protocols
(Lapefia-Motilva et al., 2025; Doniger et al., 2005; Schweiger
et al., 2007), domain-level indices were derived by averaging
normalized values from domain-related test scores (e.g., accuracy,
response time). A global cognitive score was then calculated by
averaging across all domain indices.

We developed multivariate models to evaluate the influence of
clinical, psychological, and fatigue-related variables on eye-tracking
measures that were significant in univariate analyses. After adjusting
for age, sex, and education (Fjell et al., 2010; Roe et al., 2007; Seblova
et al., 2020), we entered clinical comorbidities with established
associations to cognitive decline—arterial hypertension and diabetes
mellitus—because both were more prevalent in the TOS group and
have recognized links to cognitive impairment (Bermejo-Pareja et al.,
2010; Shome et al., 2025). In contrast, polyneuropathy was not
modeled as a confounder because it is an intrinsic feature of TOS and
has not been shown to contribute to cognitive dysfunction.
Psychological symptoms (BDI-II and BAI) and fatigue (D-FIS) were
then included as predictors. To quantify both direct and indirect
pathways, we used SEM. Because BDI-II and BAI scores were highly
collinear, we derived a single mood-distress composite via principal
component analysis; the first component explained 90.92% of the
shared variance and was carried forward as the Composite Variable
for Depression and Anxiety (CVDA) in all multivariable and
SEM models.

All p-values were two-tailed, and statistical significance was
defined as p < 0.05. Given the proof-of-concept and exploratory
nature of this study, no corrections for multiple comparisons were
applied. This decision is supported by established recommendations
that highlight the potential for such adjustments to increase Type II
error unnecessarily and emphasize that they are not essential in
hypothesis-generating research (Rothman, 1990; Perneger, 1998;
Bender and Lange, 2001).
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A: Visually-Guided Saccade Test
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B: Antisaccade Test
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11. Saccadic Movement
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C: Memory-Guided Saccade Test

@ visual Stimulus @ Gaze Position

II. Anti-saccadic Movement

1. Reference Position

FIGURE 1

comprised 22 trials.

IT. Memory Teaching

Schematic of eye-tracking paradigms. (A) Visually guided saccades. Participants fixated a central target (I) and then made a saccade to a peripheral
stimulus (Il). This task indexes basic sensorimotor oculomotor function (latency, gain, peak velocity). (B) Antisaccades. Participants fixated centrally

(1) and, when a peripheral stimulus appeared, suppressed the automatic response toward it and instead generated a saccade to the mirror-symmetric
location on the opposite side (I1). This task indexes inhibitory control, executive function, and attention. (C) Memory-guided saccades. Participants
fixated centrally (I); a peripheral cue briefly appeared to be remembered (l1); after a short delay, they made a saccade to the remembered location (ll1).
This task probes spatial working memory and delayed oculomotor planning. Blue dot = visual stimulus; orange dot = gaze position. Each task

TTT. Memory Test

Results

Of the 50 TOS patients and 50 healthy controls initially recruited,
valid eye-tracking data were obtained for 47 and 44 participants,
respectively. Participants were excluded due to acquisition-related
issues (e.g., inadequate task compliance, calibration errors) or poor
preprocessing quality (signal loss, artifacts, unstable tracking) that
prevented analysis. As this was an exploratory, proof-of-concept study
in a rare condition, a formal a priori sample-size calculation was not
feasible. After data collection, a post-hoc power analysis (two-tailed
independent-samples t-test, « = 0.05) showed that the analytic sample
(N'=91) had approximately 83.8% power to detect the observed
medium effect size (Cohen’s d ~ 0.62) for the global cognitive score.
Accordingly, the study was not powered to detect small between-
group differences.

Demographic and neuropsychological data are summarized in
Table 1. Groups were comparable in terms of age (mean age ~59 years),
sex distribution (predominantly female), and educational attainment
(p>0.05 for all comparisons). However, TOS patients exhibited
significantly higher prevalence of diabetes mellitus (25.5% vs. 2.3%),
arterial hypertension (66.0% vs. 20.5%), and polyneuropathy (72.3%
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vs. 0%; all p < 0.005). TOS patients also showed markedly worse scores
in health-related quality of life (EuroQol-5D index), fatigue (D-FIS),
anxiety (BAI), and depression (BDI-II; all p < 0.001). Cognitively, they
demonstrated significantly lower global cognitive scores (p = 0.007),
with prominent deficits in executive function (p = 0.017), attention
(p=0.014), and information processing speed (p=0.009). No
significant differences were observed in memory subdomains.

Oculomotor tasks

Visually guided saccades

TOS survivors exhibited preserved performance across all visually
guided saccade measures. Figure 2 shows the distribution of
parameters recorded during the task: (1) number of correct saccades,
(2) latency (ms), (3) peak velocity (°/s), (4) gain (executed amplitude
divided by target amplitude), (5) number of hypermetric saccades, (6)
number of hypometric saccades, (7) number of correct backward
saccades, and (8) backward latency (ms). As detailed in Table 2, no
statistically significant differences were observed between groups in
any parameter (all p>0.05). TOS participants showed subtle,
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TABLE 1 Demographic and clinical characteristics of the study population by group.

Variable Controls (N = 44) Patients (N = 47)
Age, mean (standard deviation) 58.3(8.1) 60.1 (8.0) 0.286*
Female, % 28 (63.6) 35 (74.5) 0.373"
Education, N (%) 0.226°
Illiterate 1(2.3) 3(6.4)
Primary studies 16 (36.4) 18 (38.3)
Secondary studies 12 (27.3) 18 (38.3)
Higher studies 15 (34.1) 8(17.0)
Diabetes mellitus, N (%) 1(2.3) 12 (25.5) 0.004°
Arterial hypertension, N (%) 9 (20.5) 31 (66.0) <0.001°
Polyneuropathy, N (%) 0(0.0) 34 (72.3) <0.001°
EuroQol 5-Dimensions index, median [Q1, Q3] 0.9 [0.7, 1.0] 0.4 [0.1,0.8] <0.001¢
Fatigue Impact Scale for Daily Use, mean (standard deviation) 4.9 (6.3) 19.2 (8.5) <0.001°*
Beck Anxiety Inventory, median [Q1, Q3] 4.0(1.8,11.8] 22.0 [14.0, 30.5] <0.001¢
Beck Depression Inventory, median [Q1, Q3] 5.0 [2.0, 14.0] 19.0 [11.5, 28.5] <0.001°¢
Global Cognitive Score, mean (standard deviation)* 0.0 (0.7) —0.5(0.9) 0.007°
Cognitive domains®
Memory, mean (standard deviation) 0.0 (0.9) —0.3(0.9) 0.209*
Immediate memory, mean (standard deviation) 0.0 (0.9) —0.3(0.9) 0.257°
Delayed memory, mean (standard deviation) 0.0 (0.9) —0.3 (1.0) 0.149*
Executive function, mean (standard deviation) 0.0 (0.8) —0.4 (1.0) 0.017°
Attention, median [Q1, Q3] 0.1 [-0.2,0.5] —0.2 [-1.4,0.3] 0.014°
Information processing speed, mean (standard deviation) 0.0 (0.8) —0.6 (1.0) 0.009°

*Student t test.

"Chi-square test or Fisher’s exact test, as appropriate.
‘Mann-Whitney U test.

4Z-scores (control group as reference, see Methods).
Bold values indicate statistical significance at p < 0.05.

non-significant trends toward slightly faster backward latencies and
marginally higher peak velocities. Gain values remained tightly
centered around 1.0 in both groups, indicating accurate amplitude
scaling. Variability in spatial error (hypermetric and hypometric
saccades) was also comparable. These findings indicate that visually
guided saccades are preserved in TOS survivors, with no evidence of
disrupted basic oculomotor function.

Memory-guided saccades

Performance on the memory-guided saccade task was also
preserved in TOS survivors. Figure 3 displays the distribution of
measures: (1) number of correct memory-guided saccades, (2) latency
(ms), (3) peak velocity (°/s), (4) gain, (5) number of hypermetric
saccades, (6) number of hypometric saccades, (7) number of correct
backward memory-guided saccades, and (8) backward latency (ms).
Compared with controls, TOS participants exhibited mild,
non-significant tendencies toward longer latencies, lower peak
velocities, and greater dispersion of spatial error (including
hypermetric and hypometric errors). Gain values remained close to
1.0 in both groups. As summarized in Table 2, no statistically
significant group differences were found in any parameter (all p > 0.05).
These results indicate that memory-guided saccadic performance
remains largely intact in TOS, suggesting that the integration of spatial
working memory with oculomotor planning is preserved.
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Antisaccades

In contrast, TOS survivors demonstrated impaired antisaccade
performance accompanied by increased reflexive responses,
consistent with deficits in attentional and executive control. Figure 4
illustrates the distribution of eight parameters: (1) number of
correct antisaccades, (2) antisaccade latency (ms), (3) number of
correct backward antisaccades, (4) backward antisaccade latency
(ms), (5) number of reflexive saccades, (6) reflexive saccade latency
(ms), (7) number of backward reflexive saccades, and (8) backward
reflexive saccade latency (ms). Compared to matched controls, TOS
patients exhibited significantly fewer correct antisaccades (mean 3.6
vs. 5.0; p = 0.029). In parallel, they showed more reflexive saccades
(mean 7.0 vs. 5.7; p = 0.033) and a modest increase in backward
reflexive saccades (mean 6.3 vs. 5.1; p=0.040; Table 2). No
significant differences were observed in antisaccade latency
(p = 0.854), backward antisaccade latency (p = 0.723), or reflexive
saccade duration (p = 0.251).

To further examine these associations, we constructed structural
equation models (SEMs) adjusting for potential confounders. Attention
was specified a priori as the sole mediator because antisaccade
performance relies on top-down attentional control, and including
multiple, correlated domains would over-parameterize the model in this
sample (Munoz and Everling, 2004; Kogoglu et al, 2021)
We intentionally excluded formal executive function scores because of
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FIGURE 2

Healthy controls TOS patients. Healthy controls TOS patients

Violin plots of visually guided saccade measures. Violin plots show the distribution of oculomotor measures for healthy controls (blue) and patients
with toxic oil syndrome (orange). From left to right, top row: number of correct saccades, latency (ms), peak velocity (°/s), and gain (executed
amplitude divided by target amplitude). Bottom row: number of hypermetric saccades, number of hypometric saccades, number of correct backward
saccades, and backward latency (ms). Solid lines indicate group medians; dotted lines indicate group means.

their strong conceptual and statistical overlap with antisaccade
performance, which itself is a sensitive and well-established indicator of
executive control (Nieuwenhuis et al., 2004; Mirsky et al.,, 2011). Similarly,
we did not include the global cognitive score, which aggregates across
multiple domains not directly related to antisaccade generation and could
obscure specific associations with oculomotor measures.

Given the higher prevalence of vascular risk factors and mood/
fatigue symptoms in the TOS group, these variables were incorporated
into the models alongside age, sex, and education. The antisaccade
impairment remained significant after full adjustment. The SEMs
confirmed that the reduced number of correct antisaccades in TOS
survivors remained significant after adjustment (p = 0.02; Figure 5).
Attention also showed a significant direct positive influence on
antisaccade performance (p = 0.01; Figure 5). By contrast, while TOS
exerted significant direct effects on reflexive (p = 0.03; Figure 6) and
backward reflexive saccades (p = 0.04; Figure 7), these outcomes were
not significantly mediated by attention or other covariates. Overall,
the models demonstrate that TOS status consistently impacted
antisaccade and reflexive measures, whereas attentional control
contributed independently only to antisaccade performance.

Discussion

This proof-of-concept study investigated saccadic eye movements
and cognitive function in TOS survivors more than four decades after
exposure. The most salient finding was a selective impairment in the
antisaccade task: TOS participants generated significantly fewer
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correct antisaccades and exhibited increased reflexive and backward
reflexive saccades. In contrast, performance in visually guided and
memory-guided saccades was preserved across all parameters,
including latency, gain, peak velocity, and spatial error measures.
These findings suggest that basic oculomotor control and spatial
working memory are preserved, whereas higher-order executive
functions, particularly inhibitory control, are selectively impaired.
This pattern is consistent with our neuropsychological results, which
identified deficits in executive function, attention, and processing
speed, with memory performance remaining relatively intact. SEM
models confirmed that antisaccade impairments remained significant
after adjusting for confounders. Notably, attention exerted an
independent positive influence only on correct antisaccade
performance (Figure 5), whereas reflexive and backward reflexive
saccades (Figures 6 and 7) were driven by TOS status alone. Overall,
the converging oculomotor and cognitive data indicate a long-term
disruption of frontal-subcortical circuits in TOS survivors.

Our findings build upon earlier TOS studies by employing
objective, high-temporal-resolution eye-tracking paradigms to detect
subtle executive dysfunction. They also parallel deficits observed in
other immune-mediated disorders. For instance, eosinophilia—
myalgia syndrome—a condition with shared toxic and immunologic
mechanisms—has been associated with similar impairments in
executive function and attention, alongside magnetic resonance
imaging evidence of subcortical white matter abnormalities
(Armstrong et al., 1997). Both syndromes likely represent a continuum
of toxic-immune encephalopathies with convergent effects on
prefrontal networks (Armstrong et al., 1997).
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TABLE 2 Visually guided and memory-guided saccade and antisaccade tests.

10.3389/fnins.2025.1666809

Controls (N = 44) Patients (N = 47) p value
Visually guided saccade test
Number of correct saccades, median [Q1, Q3] 12.0 [12.0,12.0] 12.0 [11.0, 12.0] 0.149*
Number of errors, median [Q1, Q3] 0.0 [0.0, 0.0] 0.0 (0.0, 1.0] 0.149°
Latency (ms), mean (standard deviation) 236.8 (30.8) 232.8 (33.9) 0.562"
Peak velocity (°/s), mean (standard deviation) 316.7 (65.9) 329.6 (59.1) 0.333%
Gain (saccade amplitude/target amplitude), median [QI, Q3] 1.0 [1.0, 1.0] 1.0 (1.0, 1.0] 0.096*
Spatial error relative to target — hypermetria (° visual angle), median [Q1, Q3] 0.4 [0.3,0.6] 0.4 [0.3,0.8] 0.831*
Number of hypermetric saccades, mean (standard deviation) 6.0 (2.3) 6.5(2.0) 0.298"
Spatial error relative to target - hypometria (° visual angle), median [Q1, Q3] —0.5[-0.8, —0.3] —0.5[-0.8, —0.3] 0.548*
Number of hypometric saccades, mean (standard deviation) 5.5(2.3) 4.7 (1.7) 0.105"
Number of correct backward saccades, median [Q1, Q3] 11.0 [9.8,11.0] 11.0 [10.0, 11.0] 0.615*
Number of backward errors, median [Q1, Q3] 0.0 [0.0, 1.2] 0.0 [0.0, 1.0] 0.615*
Backward latency (ms), median [Q1, Q3] 219.6 [205.4,231.1] 209.2 [197.5,230.2] 0.257*
Peak backward velocity (°/s), mean (standard deviation) 320.5(70.9) 323.0 (58.2) 0.859°
Memory-guided saccade test
Number of correct memory-guided saccades, mean (standard deviation) 8.3(2.8) 7.6 (3.5) 0.286"
Number of errors, mean (standard deviation) 3.7 (2.8) 4.4 (3.5) 0.286°
Latency (ms), median [Q1, Q3] 413.5 [307.3, 561.6] 456.0 [355.6, 591.1] 0.331°
Peak velocity (°/s), mean (standard deviation) 285.5 (84.9) 265.8 (70.4) 0.244°
Gain (saccade amplitude/target amplitude), mean (standard deviation) 0.9 (0.3) 0.9 (0.3) 0.573%
Spatial error relative to cued location - hypermetria (° visual angle), median [Q1, Q3] 0.6 [0.3,1.3] 1.0 [0.3, 1.8] 0.130*
Number of hypermetric saccades, mean (standard deviation) 5.2 (3.0) 53(3.1) 0.915°
Spatial error relative to cued location - hypometria (° visual angle), median [Q1, Q3] —3.1[-5.1,-0.9] —4.0 [-6.8, —1.1] 0.435*
Number of hypometric saccades, mean (standard deviation) 4.6 (3.1) 4.6 (2.7) 0.980°
Number of correct backward memory-guided saccades, median [Q1, Q3] 8.0 [5.0, 10.0] 7.0 [4.0, 10.0] 0.446*
Number of backward errors, median [Q1, Q3] 3.0 [1.0, 6.0] 4.0 [1.0,7.0] 0.446°
Backward latency (ms), median [Q1, Q3] 332.6 [299.1, 398.3] 326.2 [270.4, 451.2] 0.990*
Peak backward velocity (°/s), mean (standard deviation) 286.8 (97.7) 288.2 (94.0) 0.948"
Antisaccade test
Number of correct antisaccades, mean (standard deviation) 5.0 (3.1) 3.6 (3.0) 0.029°
Number of antisaccade errors, median [Q1, Q3] 0.0 [0.0,1.5] 1.0 [0.0, 2.0] 0.418*
Antisaccade latency (ms), median [QI, Q3] 370.7 [340.1,428.6] 383.0 [319.5, 449.4] 0.854*
Number of correct backward antisaccades, mean (standard deviation) 4.1(2.5) 3.3(2.8) 0.136°
Number of backward antisaccade errors, median [Q1, Q3] 1.0 [0.0,2.0] 1.0 [0.0, 2.0] 0.475%
Backward antisaccade latency (ms), median [Q1, Q3] 355.8 [312.4,417.7] 361.3 [316.0, 438.3] 0.723*
Number of reflexive saccades, mean (standard deviation) 5.7 (2.9) 7.0 (3.1) 0.033"
Reflexive saccade latency (ms), median [Q1, Q3] 332.0 [302.5,354.9] 315.9 [287.4,361.1] 0.248*
Number of backward reflexive saccades, mean (standard deviation) 5.1(2.5) 6.3 (2.7) 0.040°
Backward reflexive saccade latency (ms), mean (standard deviation) 436.2 (137.2) 445.8 (144.1) 0.745°
Reflexive saccade duration (ms), median [Q1, Q3] 270.4 [198.1,342.0] 307.3 [226.1, 388.2] 0.251*

“Mann-Whitney U test.
"Student t test.
Bold values indicate statistical significance at p < 0.05.

Comparable profiles have been reported in chronic exposure to
organophosphate pesticides, which selectively impair attention,
executive functioning, and processing speed, while sparing language
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and visuospatial abilities (Jamal, 1997; Ross et al., 2013; London et al.,
2012). These similarities reinforce the notion that diverse
environmental toxicants can lead to common neurobehavioral
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FIGURE 3

Violin plots of memory-guided saccade measures. Violin plots show the distribution of oculomotor measures for healthy controls (blue) and patients
with toxic oil syndrome (orange). Top row (left to right): number of correct memory-guided saccades, latency (ms), peak velocity (°/s), and gain
(executed amplitude divided by target amplitude). Bottom row (left to right): number of hypermetric saccades, number of hypometric saccades,
number of correct backward memory-guided saccades, and backward latency (ms). Solid lines indicate group medians; dotted lines indicate group
means.
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FIGURE 4

Violin plots of antisaccade measures. Violin plots illustrate the distribution of measures for healthy controls (blue) and patients with toxic oil syndrome
(orange). Top row: number of correct antisaccades, antisaccade latency (ms), number of correct backward antisaccades, and backward antisaccade
latency (ms). Bottom row: number of reflexive saccades, reflexive saccade latency (ms), number of backward reflexive saccades, and backward
reflexive saccade latency (ms). Solid lines indicate group medians; dotted lines indicate group means.
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FIGURE 5

Structural equation model for antisaccade performance in toxic oil syndrome (TOS) survivors. Path diagram illustrating the direct and indirect effects of
TOS on the number of correct antisaccades, adjusted for covariates. Predictor variables included a composite variable for depression and anxiety
(CVDA), fatigue (D-FIS), diabetes mellitus, arterial hypertension, education, sex, and age. Attention was modeled as a potential mediator. Arrows
represent standardized regression coefficients with associated p-values. TOS showed a significant direct negative effect on antisaccade performance
(p=-1720, p = 0.02). At the same time, attention was positively associated with performance ( = 0.928, p = 0.01), indicating that both disease status
and attentional processes independently influenced antisaccade measures. CVDA, Composite Variable for Depression and Anxiety; D-FIS, Daily Fatigue

Impact Scale.

TOS

1.798 2.168 0.180 0.480
-val: 0.00 / p-val: 0.00 -val: 0.01 -val: 0.00
p-va p v% .687 p-va p-va
p-val: 0.04 X ) X
CVDA  D-FIS «<———— Diabetes  Education  Hypertension Sex
-0.195 -0.342 0.363 0.294 1.761
p-val: 0.00 \ p-val: 0.12\p-val: 0.02( p-val: 0.07 p-val: 0.03
-0.295 : .051
p-val: 0.25 Attention p-yal: 0.23
-val: 0.20
Number of reflexive saccades

FIGURE 6

Structural equation model for reflexive saccade performance in toxic oil syndrome (TOS) survivors. Path diagram illustrating the direct and indirect
effects of TOS on the number of reflexive saccades, adjusted for covariates. Predictor variables included a composite variable for depression and
anxiety (CVDA), fatigue (D-FIS), diabetes mellitus, arterial hypertension, education, sex, and age. Attention was modeled as a potential mediator. Arrows
represent standardized regression coefficients with associated p-values. TOS exerted a significant direct positive effect on reflexive saccade frequency
(p=1761, p = 0.03), while attention showed no significant mediation effect. CVDA, Composite Variable for Depression and Anxiety; D-FIS, Daily
Fatigue Impact Scale.

outcomes via frontal-subcortical disconnection.

Notably,
organophosphate contamination was an early suspect in TOS etiology,
although it was later discredited (Gelpi et al., 2002).

The antisaccade task is a sensitive probe of frontal dysfunction,
particularly implicating the dorsolateral prefrontal cortex, frontal eye
fields, and basal ganglia circuits (Pierrot-Deseilligny et al., 1995). Our
finding of impaired antisaccades, alongside elevated reflexive and
backward saccades, indicates a failure of inhibitory control, consistent
with dysfunction in frontostriatal pathways (Pierrot-Deseilligny et al.,
1995). This profile echoes those seen in neurodegenerative disorders,
including Parkinson’s disease dementia and dementia with Lewy bodies

Frontiers in Neuroscience

(Mosimann et al., 2005), Huntington disease (Patel et al., 2012) and
multiple system atrophy (Brooks et al.,, 2017), as well as psychiatric
(Caldani et al, 2017;
Subramaniam et al., 2018; Obyedkov et al., 2019). Similar antisaccade

conditions such as schizophrenia
impairments have also been reported in prodromal or cognitive disorders,
notably idiopathic REM sleep behaviour disorder (Hanuska et al., 2019)
and mild cognitive impairment (Kocoglu et al., 2021). Eye_movement
abnormalities have also been noted in Alzheimer’s disease dementia
(Costanzo etal., 2023) and ataxias (Szpisjak et al., 2021), underscoring the
broader relevance of antisaccade deficits marker of frontal-subcortical

dysfunction across diverse disorders.
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Structural equation model for backward reflexive saccade performance in toxic oil syndrome (TOS) survivors. Path diagram illustrating the direct and
indirect effects of TOS on the number of backward reflexive saccades, adjusted for covariates. Predictor variables included a composite variable for
depression and anxiety (CVDA), fatigue (D-FIS), diabetes mellitus, arterial hypertension, education, sex, and age. Attention was modeled as a potential
mediator. Arrows represent standardized regression coefficients with associated p-values. TOS exerted a significant direct positive effect on backward
reflexive saccade frequency ( = 1433, p = 0.04), while no significant indirect effects through attention or other covariates were detected. CVDA,
Composite Variable for Depression and Anxiety; D-FIS, Daily Fatigue Impact Scale.

Hypertension Sex

0.294

Number of backward reflexive saccades

While reflexive saccades are generally preserved in early
Alzheimer’s disease, they tend to be impaired in subcortical and
mixed dementias (Mosimann et al., 2005). The altered antisaccade
pattern in TOS thus further supports selective involvement of
executive networks. Functional neuroimaging and lesion studies
suggest that the dorsolateral prefrontal cortex is involved in
response suppression, the frontal eye fields in vector inversion,
and the anterior cingulate cortex in error monitoring (Funahashi,
2006; Munoz and Everling, 2004; McDowell et al., 2008; Curtis
and D’Esposito, 2003).

TOS was originally linked to aniline-contaminated rapeseed oil,
triggering a systemic eosinophilic and autoimmune response with
central nervous system involvement (Abaitua Borda et al., 1998;
Sanchez-Porro Valadés et al., 2003; Polentinos-Castro et al., 2021;
Ricoy et al., 1983; Téllez et al., 1987). Neuropathological findings
described central chromatolysis in anterior horn cells and brainstem
nuclei, alterations in brainstem monoaminergic centers, and
non-necrotizing vasculitis with focal ischemia—findings suggestive of
microangiopathy and neuroinflammation. Although consistent white
matter damage was not observed, the broader pattern suggests diffuse
involvement rather than localized lesions (Ricoy et al., 1983; Téllez
etal., 1987).

Persistent low-grade neuroinflammation may contribute to the
long-term deficits observed in TOS. Animal models of environmental
neurotoxicity,  including to and

exposure manganese

organophosphates, consistently exhibit prolonged microglial
activation, astrocytosis, and elevated cytokine release (e.g., IL-6,
TNF-a), resulting in the disruption of frontal network function
(Raison et al., 2006; Zhang et al., 2023; Kirkley et al., 2017; Popichak
et al., 2018; Ke et al., 2019; Sarkar et al., 2018; Conley et al., 2020;
Dinamene et al., 2013). In particular, manganese neurotoxicity has

been shown to induce the secretion of pro-inflammatory cytokines
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(TNF-a, IL-1p, IL-6) by microglia, which in turn amplifies astrocytic
NF-xB
neuroinflammation and cortical dysfunction that persists well beyond

reactivity via signaling and results in sustained
the exposure period (Kirkley et al., 2017; Popichak et al., 2018; Ke
et al,, 2019; Sarkar et al., 2018; Conley et al., 2020; Dinamene et al.,
2013).

organophosphate models, where sustained microglia-mediated

Comparable mechanisms have been described in
neuroinflammation amplifies neuronal hyperactivation and disrupts
cortical network function long after the acute exposure (Somkhit
et al, 2022). In addition, endothelial dysfunction may further
compromise cerebral perfusion in metabolically demanding prefrontal
regions (ladecola, 2013).

Importantly, the absence of elevated neurodegeneration biomarkers
in TOS patients argues against progressive neuronal loss, distinguishing
this syndrome from Alzheimer’s disease (Ruiz-Ortiz et al., 2025).
Consistent with this, preserved episodic memory and the absence of
hippocampal dysfunction suggest a static or slowly progressive
encephalopathy, possibly more akin to conditions such as multiple
sclerosis, small vessel disease or long COVID, where frontal-subcortical
networks are preferentially affected (Benito-Ledn et al., 2025; O'Brien
et al,, 2003; Jolly et al., 2025; Olazaran et al., 2009). Altogether, our
findings support a model of non-degenerative, immune-mediated
disruption of prefrontal white matter integrity in TOS, manifesting as
enduring deficits in executive function and response inhibition.

Our study’s limitations include a small sample size, which may
have reduced the ability to detect subtle differences in latency or gain
metrics. This limited sample size increases the risk of a Type II error
and, consistent with the exploratory nature of the study, justifies not
applying corrections for multiple comparisons. The cross-sectional
design also restricts causal conclusions. Polyneuropathy was not
treated as a confounder; although characteristic of chronic toxic oil
syndrome, it is not linked to cognitive dysfunction, and adjusting for
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it could lead to over-adjustment and mask the true effects of the
disease. Nonetheless, we acknowledge its clinical implications and
report its prevalence and distribution in Table 1. Comorbidities such
as hypertension, diabetes, and higher levels of anxiety, depression, and
fatigue were more frequent in the TOS group. Still, these factors were
incorporated into our multivariable and SEM models alongside
demographic variables. Importantly, the antisaccade deficit remained
significant after full adjustment, suggesting that the observed
association reflects disease-related effects rather than the influence of
comorbid conditions alone. However, residual confounding cannot
be completely ruled out. The lack of neuroimaging data further limits
structural interpretation. Future research should include both
structural and functional neuroimaging to better localize and
understand the observed deficits. Finally, our findings may not apply
beyond the specific group of Spanish TOS survivors studied.
Comparative research in other populations exposed to toxins—such
as workers exposed to organophosphates or patients with eosinophilia-
myalgia syndrome—could help determine whether antisaccade deficits
are a common feature of chronic toxic-immune encephalopathies.

In conclusion, to our knowledge, this is the first study to apply
eye-tracking to evaluate cognitive dysfunction in TOS. By combining
antisaccade and related paradigms with standardized cognitive testing,
we demonstrate ongoing antisaccade impairments and dysexecutive
deficits consistent with disruption of frontal-subcortical control. The
pattern of findings is more compatible with immune-or vascular-
mediated injury than with ongoing neurodegeneration. Given that
eye-tracking is objective, noninvasive, brief, and well-tolerated in older,
multimorbid cohorts, antisaccade-based measures offer a practical
candidate biomarker of residual executive dysfunction that now
warrants  validation in

longitudinal, adequately powered,

multimodal studies.
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