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Neural correlates of uncertainty
processing: meta-analysis of
fMRI studies

Andrey Timashkov*, Sarah Anderson and Oksana Zinchenko

Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University,
Moscow, Russia

Introduction: Understanding the neural mechanisms underlying decision-
making under uncertainty represents a fundamental challenge in cognitive
neuroscience. This meta-analysis aimed to identify the consistent neural
correlates of uncertainty processing specifically during decision-making tasks.

Methods: We synthesized findings from 76 fMRI studies (N = 4, 186 participants).
Using the Activation Likelihood Estimation (ALE) method, we performed a
voxel-wise meta-analysis of activation foci to identify brain regions consistently
activated across studies.

Results: The analysis revealed nine distinct activation clusters, revealing a
comprehensive neural network involved in uncertainty processing. Key findings
demonstrated predominant activations in the anterior insula (up to 63.7%
representation), inferior frontal gyrus (up to 40.7%), and inferior parietal lobule
(up to 78.1%). We found a functional specialization between emotional-
motivational processes (clusters 1-5) and cognitive processes (clusters 6-9),
with notable hemispheric asymmetries. The left anterior insula was more
strongly associated with reward evaluation, while the right was involved in
learning and cognitive control. Similarly, the right inferior frontal gyrus was linked
to impulse control, and the left to motor planning.

Discussion: Our findings extend the current understanding of the neural
architecture of decision-making under uncertainty. The comprehensive
mapping of neural signatures advances our knowledge of the distinct
roles of key brain regions and provides insights into potential clinical
applications, particularly for developing interventions for uncertainty-related
anxiety. The study highlights important directions for future research in cognitive
neuroscience and clinical practice.
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Introduction

Under uncertainty, making decisions is considered as a primary cognitive process
which influences how we behave as humans and allow us navigate through unpredictable
environment by estimating risks and reward. This capability solely relies on a network
of neural activities at certain brain regions, including the dorsolateral prefrontal cortex
(dIPFC), anterior insula, and the anterior cingulate cortex (ACC), which are considered
essential in integrating sensory information, appraising risk, and modulating emotional
responses, crucial for decision-making across different contexts (Morriss et al., 2019)

01 frontiersin.org


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2025.1662272
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2025.1662272&domain=pdf&date_stamp=2025-11-11
mailto:aytimashkov@hse.ru
https://doi.org/10.3389/fnins.2025.1662272
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2025.1662272/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Timashkov et al.

from simple, everyday decisions to complex, high-stake problem
despite the lack of complete information (Craig, 2009; Shenhav
et al, 2013). These regions of the brain are constantly in the
investigation of uncertain processes in neuroimaging research for
fields in neuroeconomics, psychology and behavioral neuroscience
(Bechara et al., 2000; Kahneman and Tversky, 2013).

Morriss et al. (2019), through a comprehensive coordinate-
based meta-analysis, provided foundational insights into the
neural circuitry involved in general uncertainty processing.
Their findings emphasized the cingulate
(ACC) and anterior insula as integrative hubs for cognitive

anterior cortex
and emotional signals during uncertainty. However, a critical
limitation they acknowledged was the broad scope of uncertainty
types examined, without isolating those specifically linked
to decision-making processes. The present
gap by focusing exclusively on decision-
related uncertainty to identify brain regions consistently

meta-analysis
addresses this

recruited when individuals evaluate incomplete or ambiguous
information in the context of choice. Unlike previous meta-
analyses that examined neural correlates of uncertainty across
broad contexts (e.g., Morriss et al., 2019), the present study
specifically focuses on active decision-making paradigms to
identify the core neural substrates of choice under conditions of
incomplete information.

Our review contributes to the field with the updated framework
based on data from recently published neuroimaging studies by
Spohrs et al. (2021) and Savage et al. (2020) illustrating the
pivotal roles of the ACC and the anterior insula in tuning
emotional responses amid decision-making and Gorka et al.
(2015), highlighting the association of subcortical structures like
the amygdala in decision making processes that are based on
reward under uncertainty, to provide an updated outline of
the neural mechanisms activated in the presence of incomplete
information and when outcomes are unpredictable (Lissek et al.,
2014; Gorka et al, 2016; Visalli et al., 2019). For example,
Canessa et al. (2013) discovered that the disparities in decision-
making approach when faced with uncertainty are corresponding
to contrasting activation patterns in the ACC and the anterior
insula. By merging these findings, this paper explores to augment
our comprehension of the neural mechanisms of facilitating
decision making processed in uncertain situations. This updated
composite of neural signatures will propel the field forward by
elucidating the distinct roles of the key brain regions activated
during decision making processes under uncertainty, underlining
future research directions.

To contextualize the expected findings, the cascade model
of prefrontal executive function (Koechlin et al, 2003) offers
a compelling theoretical framework. This model proposes that
the prefrontal cortex supports hierarchical and parallel control
processes during decision-making. Medial structures—such as
the dorsal anterior cingulate cortex (dACC)—evaluate ongoing
strategy reliability, while lateral prefrontal regions, including
frontopolar cortex, support the generation and maintenance of
alternative strategies. Applying this model to uncertainty may help
clarify how the brain dynamically integrates emotional evaluation
and cognitive control to optimize decisions in unpredictable
environments.

This meta-analysis systematically maps the current landscape
of fMRI research on decision-making under uncertainty through
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Activation Likelihood Estimation (ALE). While advanced methods
like meta-analytic connectivity modeling (MACM) or subgroup
analyses could offer deeper mechanistic insights, our primary
objective is to establish a foundational synthesis of reported neural
activations across studies. By focusing on spatial concordance
rather than connectivity or subpopulation effects, we provide a
comprehensive reference for: (1) identifying consistently reported
activation patterns, (2) highlighting methodological and conceptual
trends in the literature, and (3) guiding future hypothesis-driven
investigations with more complex analytical approaches.

Materials and methods

Literature search

The initial literature search was conducted in July 2024,
with the additional search in January 2025 to account for
newly published studies. The literature search was conducted
using PubMed database. Articles were selected using the

» <«

following keywords: “uncertainty,

» «

anticipation,” “conditioning,”

“extinction;” “reversal,; “fMRI” and “associative learning,” years
1995-2024. Initially, 2,554 articles were identified. Following
preliminary screening for duplicates and required data (fMRI
data and decision-making paradigms under uncertainty), 234
articles were selected for further analysis and subsequent
clustering resulting in 76 eligible studies with the data
collected on healthy adults, random-effects model. PRISMA
chart represents the stages of data collection and selection
(Figure 1). Studies were included if they: (1) used fMRI;
(2) involved healthy adult participants; (3) employed a task
explicitly involving active decision-making under conditions
of uncertainty (e.g., risk, ambiguity, unpredictable threat,
reversal learning); (4) reported whole-brain coordinates of
significant activation contrasts related to uncertainty processing.
Studies were excluded if they focused solely on perceptual
uncertainty without a decision component or studied exclusively
clinical populations.

ALE approach

This study employed the Activation Likelihood Estimation
(ALE) method, which enables voxel-wise analysis of images with
random effects. GingerALE 3.0.2 was utilized in the current
investigation. The software allows the use of coordinates to
create a probabilistic activation map using ALE values. These
values provide information about statistical maps of probable
activation in relation to the tasks included in the analysis. For
data consistency, coordinates presented in Montreal Neurological
Institute (MNI) format were converted to Talairach space.
Statistical significance was assessed using cluster-level correction
for multiple comparisons at p = 0.05 and a cluster-forming
threshold of p < 0.001 (Eickhoft et al., 2012, 2017). The following
are the articles included in the final list of publications included in
the results of the analysis (Table 1).
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FIGURE 1
PRISMA flowchart for eligibility of articles.

Results

Based on the meta-analysis, which included 1,688 activation
foci from 76 experiments with a total of 4,186 participants,
key brain structures involved in decision-making processes were
identified. The results demonstrate that decision-making engages
an extensive neural network encompassing both cortical and
subcortical structures in both hemispheres of the brain.

We identified 9 statistically significant activation clusters
(Table 2). Figure 2 shows a brain activation map. The image was
obtained using the Mango program v.4.1.

Cluster 1 has a volume of 4,664 mm? and is entirely located in
the left hemisphere. The majority (81.6%) consists of subcortical
structures, while the remaining 18.4% is in the prefrontal cortex.
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The anterior insula has the largest representation at 63.7%.
Additional activations are present in the inferior frontal gyrus
(16.2%) and claustrum (16.2%). The activations correspond to
Brodmann areas 13 (59.8%), 47 (10.6%), and 45 (3.9%). Studies in
this cluster employed paradigms involving monetary reward and
punishment (Monetary Incentive Delay tasks), anticipation of gains
and losses, and risk assessment under uncertainty. General pattern:
anticipation of decision outcomes with emotional valence.

Cluster 2 has a volume of 3,736 mm® with predominant
activation in the left hemisphere (54.9% left, 45.1% right).
distributed between the
region (50.2%) and limbic system (49.8%). Maximum activity

Activation topography is frontal

was recorded in the cingulate gyrus (52.9%), medial frontal
gyrus (27.6%), and superior frontal gyrus (19.5%). Activations

frontiersin.org


https://doi.org/10.3389/fnins.2025.1662272
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Timashkov et al. 10.3389/fnins.2025.1662272

TABLE 1 Descriptive information of studies and contrasts used in the meta-analysis.

References Mean age Handedness Clusters |Task
Wu et al,, 2014 52(29) 50 + 16.5 Right M/F 1,3,4,5 Monetary Incentive Delay task (anticipation of
gains/losses)
Vytal et al., 2014 20(7) 28 Right M/F 1,2,5 Threat of shock paradigm (sustained anxiety)
Nitschke et al., 2006 21 (11) 29 Right M/F 1,2,7 Anticipation and exposure to aversive pictures
Canessa et al., 2013 15 25.4 +2.45 Right - 1,2,3,4,5, |Aviation decision making task under uncertainty and
6,8 financial incentive
Heeren et al., 2017 46 SAD 24.96 £ 6.46, |Right F 1 Virtual game “CYBERBALL” (social inclusion/exclusion)
NACP 25.30 & 5.62
Savage et al., 2020 94 (64) 21.32£2.28 - M/F 1,2,3,5 Fear reversal learning task (threat and safety learning)
Gorka et al., 2015 40 (73%) 314 +12.1 - M/F 1,3,4,9 Reward anticipation tasks (EEG and fMRI)
Wan et al., 2016 60 302+ 1.5 Right M 2,3 Complex problem solving tasks in expertise domain
Mestres-Missé et al., 2017 22(11) 25.5+£3.1 Right M/F 1.4 Learning task with probabilistic sequences and outcomes
Lim et al., 2020 42 (21) 31.23 £10.91 Right M/F 2,4,5 Pain anticipation task with learned cognitive schema
Grandjean et al., 2013 25(13) 21.8 £2.68 Right M/F 1,2,6,7,9 |Stroop task with item-specific proportion congruent
effect
Collins et al., 2017 26 (11) 23 Right M/F 3,4,6,9 Working memory and reinforcement learning
interaction task
Zhang et al, 2013 20 (16) 24.65 Right M/F 1,2,3,5,8 |Perceptual decision tasks with chosen vs. specified rules
Young and Nusslock, 2016 40 (20) “PM:21.19 + 1.34; | Right M/F 1,4 Monetary Incentive Delay task under positive/neutral
NM: 20.86 + 1.83” mood
Votinov et al., 2015 43 (HH/LL)  |“LL:23.6 & 1.4; HH: | - - 1,2,3 Reversal learning task with genetic polymorphism
23.04+£0.8” analysis
Enzi et al., 2012 30 (16) 409 £11.5 Right M/F 1,3,4,5,8 |Monetary Incentive Delay task for reward/punishment
processing
Bach et al., 2009 20 (10) 27.4+£58 Right M/F 6,7,8 Task contrasting ambiguity vs. risk in aversive outcomes
prediction
Ridderbusch et al., 2021 100 (46) 33.1+£10.7 - M/F 5 Delayed extinction training with reinstatement test
Labrenz et al., 2022 94 (51) 27.04 4 0.86 - M/F 4,57 Interoceptive fear conditioning and safety learning
Ruge and Wolfensteller, 2016 |27 (14) 24.6 - M/F 6,8,9 Instructed reversal learning vs. feedback-driven learning
Criaud et al., 2017 29 (19) 20-42 Right M/F 1,9 Response inhibition task under different cognitive
control models
Stout et al., 2018 25 (10) 34.57 £10.13 Right M/F 6,7 Contextual threat conditioning with
configural/elemental learning
Fleming et al., 2012 26 (10) 28.3 Right M/F 6 Perceptual decision-making with metacognitive reports
Davis and Hasson, 2018 25(12) 246 £3.9 Right M/F 5 Task examining predictability of object category and
location
Bereczkei et al., 2013 27 (14) 23 £2.42 Right M/F 3 Trust game examining Machiavellian strategies
Rodriguez, 2009 14 (8) 21-37 Right M/F 6,8 Stimulus outcome association learning with prediction
errors
Doornweerd et al., 2018 38 (PAIRS)  |49.8+9.8 - F 1.3 Food reward processing in monozygotic twins
Harnett et al., 2016 23 (10) 19.92 £0.59 Right M/F 8 Temporal fear conditioning paradigm
Stewart et al,, 2013 PSU: 18, DSU:  PSU: 24.39, DSU: Right M/F 4 Fear conditioning with inspiratory breathing load
15,CTL: 14 |24.33, CTL: 24.36
Kokonyei et al., 2019 38(23) 25.79 +4.17 Right M/F 4,6 Pain anticipation and perception with fear conditioning
paradigm
Zeuner et al., 2016 31 (16) 51.0 +13.1 Right M/F 1,3,7 Probabilistic reversal learning task with reward based
learning
Liu et al., 2023 30 (16) 21.5542.32 Right M/F 1,2,3,5 Sequential risk taking decisions with outcome
anticipation
(Continued)
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TABLE 1 (Continued)
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Costumero et al., 2016 45 26.44 +5.39 Right M 3,4,5 Gambling task with monetary reward/punishments

Limongi et al., 2016 16 (9) 22.4+£551 Right M/F 1,2 Action update paradigm with temporal estimation

Wang et al., 2020 33 25.1£3.8 Right M 3,6,9 Associative learning task with tactile events

Murty et al., 2016 49 (28) 25 (18-36) Right M/F 1,4,6,8 Perceptual surprise task under reward/punishment
motivation

Bereczkei et al., 2013 27 (14) 23+2.42 Right M/F 3,5 Trust game examining neural operations in social
dilemma

Bereczkei et al., 2013 27 (14) 23+242 Right M/F 3,5 Trust game examining neural operations in social
dilemma

Bothe et al., 2013 19 HT, 24 PIA HT 25.11 £+ 3.73, Right M 4 Monetary Incentive Delay task after acute exercise

PIA 24.46 & 2.81

Skvortsova et al., 2020 88 - Right F 3 Emotional faces, crying baby sounds, and heat pain tasks

Remijnse et al., 2005 27 (19) 32 (22-53) M/F 1,3,8 Reversal learning task with affectively neutral baseline

Vorobyev et al., 2015 215(17) 17-18 Right M 1,4,5 Computerized driving task examining risk taking
behavior

Yin et al., 2018 18 (9) 17-33 - M/F 1,3 Classical differential fear conditioning task

van der Heiden et al., 2014 10 (5) 253+ 1.77 Right M/F 1 Semantic classical conditioning paradigm for BCI
communication

Jocham et al., 2009 35 20-32 - M 5 Probabilistic reversal learning task with genetic analysis

Paul et al,, 2015 29 (14) - - M/F 6 Perceptual categorization task with uncertainty
responses

correspond to Brodmann areas 32 (43.6%), 6 (33.5%), and 24
(21.8%). Studies included tasks involving anxiety-provoking
stimuli processing, threat anticipation, and fear learning. General
pattern: assessment of potentially threatening stimuli and
uncertainty situations.

Cluster 3, with a volume of 3,152 mm?, is localized in
the right hemisphere. It predominantly includes subcortical
structures (88.7%) and partially frontal cortex (11.3%). Dominant
activity is observed in the anterior insula (61.3%), claustrum
(22.6%), and inferior frontal gyrus (12.3%), with inclusion of the
lentiform nucleus (2.8%). Activations correspond to Brodmann
areas 13 (53.8%), 47 (11.3%), and 45 (2.8%). Studies included
reinforcement learning tasks, reversal learning, and prediction
error processing. General pattern: behavior adaptation based on
feedback. While Clusters 1 and 3 both involve the anterior insula
and inferior frontal gyrus, they demonstrate clear hemispheric
specialization and distinct anatomical profiles. Cluster 1 (left)
shows additional activation in the claustrum, while Cluster
3 (right) includes the lentiform nucleus. Functionally, they
are dissociable: Cluster 1 is predominantly associated with
motivational anticipation, while Cluster 3 is linked to behavioral
adaptation. This pattern suggests complementary rather than
identical roles in uncertainty processing.

Cluster 4, with a volume of 3,040 mm?>

, is entirely localized
in the left hemisphere within subcortical structures (100%).
Primary activations are in the caudate (64.4%), lentiform
nucleus (34.5%), and thalamus (1.1%). Detailed analysis revealed
activations in the caudate head (34.5%), caudate body (30%), and
putamen (12.7%). Studies included decision-making tasks under

uncertainty, outcome probability assessment, and processing of

Frontiers in Neuroscience

predictable and unpredictable events. General pattern: probabilistic
information processing.

Cluster 5, with a volume of 2,872 mm?, is entirely located in the
right hemisphere within subcortical structures (100%). It includes
the caudate (47.9%), thalamus (34.3%), and lentiform nucleus
(17.9%). Detailed analysis showed activations in the caudate head
(26.1%), caudate body (21.8%), and medial dorsal Nucleus (8.9%).
Studies included temporal prediction tasks, temporal interval
estimation, and temporal event anticipation. General pattern:
temporal information processing and prediction. Clusters 4 and
5, while both involving basal ganglia structures, exhibit different
anatomical distributions and functional specializations. Cluster 4
(left) is predominantly located in the caudate nucleus, while Cluster
5 (right) shows greater thalamic involvement. Correspondingly,
Cluster 4 is associated with probabilistic information processing,
whereas Cluster 5 is linked to temporal prediction. These
findings indicate distinct subcortical contributions to different
dimensions of uncertainty.

Cluster 6, with a volume of 2,648 mm?, is localized in the
right hemisphere within the parietal region (100%). Primary
activations are in the inferior parietal lobule (47.1%), superior
parietal lobule (23.5%), and supramarginal gyrus (14.7%). It
corresponds to Brodmann areas 40 (54.4%), 7 (36.8%), and 19
(8.8%). Studies included working memory tasks, cognitive control,
and information updating. General pattern: maintenance and
manipulation of information in working memory.

Cluster 7, with a volume of 1,792 mm?, is localized in the
right hemisphere. It includes frontal cortex regions (68%) and
subcortical structures (32%). Primary activations are in the inferior
frontal gyrus (36%), anterior insula (32%), and precentral gyrus
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TABLE 2 Concordant brain regions associated with uncertainty processing.
Hemisphere Lobe

(coordinates,

Z-value)

10.3389/fnins.2025.1662272

Tasks contributed

Gyrus

1 4,664 (—=30,22,4),Z =894 |Left 100% Sub-lobar 81.6%, frontal |Insula 63.7%, inferior frontal |Monetary Incentive Delay tasks,
18.4% 16.2%, claustrum 16.2% reward/punishment anticipation, risk
assessment under uncertainty.
General pattern: anticipation of
decisions with emotional valence
2 3,736 (—4,8,46), Z=5.47 Left 54.9%, Right 45.1% | Frontal 50.2%, limbic Cingulate 52.9%, medial Anxiety stimuli processing, threat
49.8% frontal 27.6%, superior frontal |anticipation, fear learning. General
19.5% pattern: assessment of potentially
threatening stimuli and uncertainty
situations
3 3,152 (30, 20, 8), Z =8.70 Right 100% Sub-lobar 88.7%, frontal |Insula 61.3%, claustrum Reinforcement learning tasks, reversal
11.3% 22.6%, inferior frontal 12.3% |learning, prediction error processing.
General pattern: behavior adaptation
based on feedback
4 3,040 (—10, 8,0), Z=5.50 Left 100% Sub-lobar 100% Caudate 64.4%, lentiform Decision making under uncertainty,
nucleus 34.5%, thalamus 1.1% |outcome probability assessment,
predictable/unpredictable events
processing
5 2,872 (10,6,2), Z=591 Right 100% Sub-lobar 100% Caudate 47.9%, thalamus Temporal prediction tasks, time
34.3%, lentiform nucleus interval assessment, temporal event
17.9% anticipation
6 2,648 (30, —52, 42), Z = 5.37 |Right 100% Parietal 100% Inferior parietal lobule 47.1%, |Working memory tasks, cognitive
superior parietal lobule 23.5%, |control, information updating
supramarginal 14.7%,
precuneus 14.7%
7 1,792 (44, 8,24), Z=4.93 Right 100% Frontal 68%, sub-lobar |Inferior frontal 36%, insula Response inhibition tasks, impulse
32% 32%, precentral 24%, middle | control, task switching
frontal 8%
8 1,568 (—48,2,30), Z=5.75 |Left 100% Frontal 100% Precentral 56%, inferior Motor planning tasks, action
frontal 40.7%, middle frontal |preparation, decision making with
3.3% motor component
9 944 (—38, —46, 40), Left 100% Parietal 100% Inferior parietal lobule 78.1%, |Spatial attention tasks, spatial
Z =411 precuneus 9.4%, angular 6.3%, linformation processing, sensory
supramarginal 6.3% information integration

(24%). It corresponds to Brodmann areas 9 (44%), 13 (32%), 44
(12%), and 6 (12%). Studies included response inhibition tasks,
impulse control, and task switching. General pattern: cognitive
control and inhibition.

Cluster 8, with a volume of 1,568 mm?, is located in the
left hemisphere within the frontal cortex (100%). It includes
the precentral Gyrus (56%) and inferior frontal gyrus (40.7%).
Activations correspond to Brodmann areas 6 (61.5%) and 9
(38.5%). Studies included motor planning tasks, action preparation,
and decision-making with motor components. General pattern:
motor planning and execution. Clusters 7 and 8 demonstrate
clear hemispheric and anatomical differentiation. Cluster 7 (right)
encompasses the inferior frontal gyrus and anterior insula, regions
central to inhibitory control. In contrast, Cluster 8 (left) is centered
on the precentral gyrus, supporting motor planning functions. This
dissociation aligns with established models of lateralized frontal
cortex organization, where right-sided regions specialize in control
processes and left-sided regions in action implementation.

Cluster 9, with a volume of 944 mm?, is localized in the
left hemisphere within the parietal region (100%). Dominant

Frontiers in Neuroscience 06

activations are in the inferior parietal lobule (78.1%) and precuneus
(9.4%). It corresponds to Brodmann areas 40 (81.3%), 39 (12.5%),
and 19 (6.3%). Studies included spatial attention tasks, spatial
information processing, and sensory information integration.
General pattern: spatial processing and attention.

Discussion

Our meta-analysis of 76 fMRI studies (N = 4,186) reveals
that decision-making under uncertainty engages a distributed
network of nine cortical and subcortical clusters. The most
consistent activations occur in the anterior insula (up to 63.7%
representation), inferior frontal gyrus (up to 40.7%), and inferior
parietal lobule (up to 78.1%), with distinct functional specialization
between emotional-motivational processes (clusters 1-5) and
cognitive processes (clusters 6-9). These findings align with and
extend previous meta-analyses by Morriss et al. (2019) and Feng
et al. (2022), who similarly identified anterior insula and anterior
cingulate cortex as core hubs for uncertainty processing. Our
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Rendered ALE maps showing significant concordance across studies for uncertainty processing.

results provide novel insights into hemispheric specialization, with
left anterior insula’s involvement in reward evaluation and right
anterior insula’s engagement in learning and cognitive control.

The observed functional dissociation between ventral
emotional-motivational networks and dorsal cognitive-control
systems aligns with hierarchical models of prefrontal cortex
organization-the cascade model of cognitive control (Koechlin
2003; Collins and Koechlin, 2012; Donoso et al., 2014)

which posits two coordinated tracks within the prefrontal cortex:

et al,

a medial track, including the vmPFC and dACC, responsible for
evaluating the reliability of ongoing behavioral strategies, and a
lateral track, encompassing frontopolar and lateral PFC regions,
which facilitates the exploration and implementation of alternative
strategies. This model offers a structured account of how the
brain manages uncertainty by balancing stability and flexibility in
decision-making (Vassena et al., 2014).

While the Cascade Model provides a compelling framework
for our findings, other prominent models offer complementary
perspectives. For instance, the expected value of control theory
(Shenhav et al., 2013) conceptualizes the anterior cingulate cortex as
aregion computing the value of deploying cognitive control, which
aligns with the role of dACC (Cluster 2) in monitoring strategy
reliability under uncertainty. Similarly, the Salience Network
perspective (Seeley et al., 2007)—comprising the anterior insula
and dACC—emphasizes the detection and integration of salient
stimuli to guide behavior, a process central to decision-making
under uncertainty. Our findings of consistent co-activations in
these regions strongly support this network view. The cascade
model was chosen for its specific focus on hierarchical control
organization, which effectively parses the functional dissociation
between medial (evaluative) and lateral (cognitive control) systems
observed in our clusters.

Beyond the hierarchical organization within the PFC, which
is described by the Cascade Model, our findings can be fruitfully
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interpreted through the lens of large-scale brain networks. The
consistent co-activation of the anterior insula and dorsal anterior
cingulate cortex (dACC) (Clusters 1, 2, 3) aligns them with
N), which is dedicated to
detecting and integrating behaviorally relevant stimuli (Seeley

the core of the Salience Network (S

etal,, 2007). Concurrently, activations in the dorsolateral prefrontal
cortex (dIPFC) and inferior parietal lobule (IPL) (Clusters 6, 7,
8, 9) correspond to the Central Executive Network (CEN), which
subserves working memory, cognitive control, and goal-directed
attention (Vincent et al., 2008; Worthy et al., 2016).

The Triple Network Model (Menon, 2011) posits that the
SN plays a crucial role in dynamic switching between the
CEN and the Default Mode Network (DMN). We propose that
uncertainty represents a potent salient signal that engages the
SN. This engagement may facilitate the attenuation of DMN
activity (associated with internal mentation) and the subsequent
recruitment of the CEN to implement cognitive control strategies
necessary for decision-making in unpredictable environments.
Thus, the functional dissociation observed in our ALE maps likely
reflects the coordinated yet distinct contributions of the SN (for
appraisal and alerting) and the CEN (for implementation and
control) during uncertainty processing. This network perspective
complements the cascade model by describing the broader
architectural context in which these medial and lateral PFC systems
are embedded.

Medial track engagement is supported by the activation pattern
observed in Cluster 2, which includes the dorsal ACC and
medial frontal gyrus—regions implicated in conflict detection and
appraisal of strategy failure. This mirrors the cascade model’s
conceptualization of dACC as a monitor of strategy reliability,
particularly during threat anticipation and emotionally salient
uncertainty. These findings also align with Morriss et al.’s (2019)
finding that ACC integrates cognitive and emotional information
during uncertainty.
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Lateral track involvement is evident in right-lateralized clusters
(e.g., Clusters 3, 6, and 7), encompassing the inferior frontal
gyrus and inferior parietal lobule. These areas are involved in
response inhibition, working memory, and adaptive control—
functions associated with evaluating and switching between
alternative strategies, as outlined in the cascade model’s lateral
system. The inferior parietal lobule activations (Cluster 6) during
working memory tasks further reflect the cascade model’s proposed
monitoring of the counterfactual strategy. These mappings not
only support the cascade model’s architecture but also underscore
how emotional and cognitive circuits are dynamically recruited in
parallel to guide behavior under uncertainty.

The bilateral activation patterns reveal complementary
processing streams. Left anterior insula’s dominance in reward
evaluation (Cluster 1) corresponds to the cascade model’s actor
reliability monitoring, while right anterior insula’s involvement
in learning (Cluster 3) reflects hypothesis testing for alternative
strategies. Similarly, the lateralization in inferior frontal gyrus-
right-sided for impulse control (Cluster 7) and left-sided for motor
planning (Cluster 8)-suggests parallel uncertainty resolution
mechanisms. These findings extend Feng et al’s (2022) network
approach by demonstrating how hemispheric specialization
facilitates concurrent strategy evaluation. The prominence of
anxiety-related activations in Cluster 2 (cingulate gyrus, medial
frontal gyrus) suggests that uncertainty processing abnormalities
may stem from disrupted reliability monitoring (Stout et al., 2019).
As Morriss et al. (2021) noted, individuals with high intolerance
of uncertainty show altered prefrontal activation patterns. Our
Cluster 2 findings provide specific neural targets for interventions,
particularly for conditions like generalized anxiety disorder where
dorsal ACC hyperactivity during threat appraisal may reflect
maladaptive hypothesis generation (Buff et al., 2016; Klass et al,,
2021; Spohrs et al., 2022).

While our search strategy prioritized terms that allowed
for direct comparison with prior meta-analytic work (Morriss
et al, 2019), future studies might benefit from incorporating
additional keywords such as flexibility” and
“exploration-exploitation” to capture an even broader spectrum
of decision-making under uncertainty. Furthermore, while ALE

“cognitive

approach establishes spatial convergence, it cannot assess dynamic
interactions central to the cascade model. Future research should
employ dynamic causal modeling to test information flow between
medial and lateral prefrontal pathways and examine how individual
differences in metacognitive ability (Fleming et al., 2012; Jiang et al.,
2022) modulate these networks. The convergence between our
meta-analytic findings and the cascade model suggests promising
avenues for theoretical integration with explicitly test model
predictions about dACC-triggered exploration and frontopolar-
mediated strategy maintenance using paradigm-driven fMRI
designs. Such work would bridge meta-analytic patterns with
computational accounts of prefrontal function.

Several limitations of the ALE methodology should be
considered. First, ALE relies on reported peak coordinates, which
may introduce a bias toward statistically strong foci. Second, the
spatial smoothing inherent to the method can inflate the apparent
overlap between activations. Third, ALE identifies consistency,
not magnitude, of activation across studies. Finally, our approach
assumes a degree of homogeneity across studies in design and
analysis, which is an inherent challenge in meta-analysis.
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It is noteworthy that our meta-analysis did not identify
significant convergence in the cerebellum, despite its established
role in various cognitive functions. This is likely attributable
to the specific nature of the included paradigms. Our analysis
focused on value-based and emotional-motivational appraisal
under uncertainty, which engages a cortico-striato-thalamic
network. In contrast, the cerebellum’s contribution may be more
critical for processing uncertainty in contexts that require explicit
probabilistic reasoning and the construction of internal models
to guide predictions, as demonstrated in tasks of inductive
inference (Blackwood et al., 2004). Furthermore, its role is well-
established in domains requiring sensorimotor prediction and
adaptive behavioral updating (Blakemore et al., 2001; Kobayashi
and Hsu, 2017; Johnson et al., 2019). The paradigms in our final
sample were not optimized to capture this specific computational
demand of the cerebellum. Future research employing paradigms
that directly contrast these different forms of uncertainty could help
delineate the distinct and shared neural systems involved.

Conclusion

Current study provides significant insights into the neural
mechanisms underlying decision-making under uncertainty. By
identifying nine distinct activation clusters, we highlighted the
critical roles of the anterior insula, inferior frontal Gyrus,
and inferior parietal lobule in uncertainty processing. Our
findings confirm previous research regarding the anterior insula’s
prominence in reward evaluation and emotional regulation,
while also revealing functional specialization within the identified
clusters. The observed bilateral activation patterns underscore the
complexity of neural networks involved in decision-making, with
distinct roles attributed to each hemisphere.
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