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Neural correlates of uncertainty
processing: meta-analysis of
fMRI studies
Andrey Timashkov*, Sarah Anderson and Oksana Zinchenko

Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University,
Moscow, Russia

Introduction: Understanding the neural mechanisms underlying decision-

making under uncertainty represents a fundamental challenge in cognitive

neuroscience. This meta-analysis aimed to identify the consistent neural

correlates of uncertainty processing specifically during decision-making tasks.

Methods: We synthesized findings from 76 fMRI studies (N = 4, 186 participants).

Using the Activation Likelihood Estimation (ALE) method, we performed a

voxel-wise meta-analysis of activation foci to identify brain regions consistently

activated across studies.

Results: The analysis revealed nine distinct activation clusters, revealing a

comprehensive neural network involved in uncertainty processing. Key findings

demonstrated predominant activations in the anterior insula (up to 63.7%

representation), inferior frontal gyrus (up to 40.7%), and inferior parietal lobule

(up to 78.1%). We found a functional specialization between emotional-

motivational processes (clusters 1–5) and cognitive processes (clusters 6–9),

with notable hemispheric asymmetries. The left anterior insula was more

strongly associated with reward evaluation, while the right was involved in

learning and cognitive control. Similarly, the right inferior frontal gyrus was linked

to impulse control, and the left to motor planning.

Discussion: Our findings extend the current understanding of the neural

architecture of decision-making under uncertainty. The comprehensive

mapping of neural signatures advances our knowledge of the distinct

roles of key brain regions and provides insights into potential clinical

applications, particularly for developing interventions for uncertainty-related

anxiety. The study highlights important directions for future research in cognitive

neuroscience and clinical practice.
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Introduction

Under uncertainty, making decisions is considered as a primary cognitive process
which influences how we behave as humans and allow us navigate through unpredictable
environment by estimating risks and reward. This capability solely relies on a network
of neural activities at certain brain regions, including the dorsolateral prefrontal cortex
(dlPFC), anterior insula, and the anterior cingulate cortex (ACC), which are considered
essential in integrating sensory information, appraising risk, and modulating emotional
responses, crucial for decision-making across different contexts (Morriss et al., 2019)
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from simple, everyday decisions to complex, high-stake problem 
despite the lack of complete information (Craig, 2009; Shenhav 
et al., 2013). These regions of the brain are constantly in the 
investigation of uncertain processes in neuroimaging research for 
fields in neuroeconomics, psychology and behavioral neuroscience 
(Bechara et al., 2000; Kahneman and Tversky, 2013). 

Morriss et al. (2019), through a comprehensive coordinate-
based meta-analysis, provided foundational insights into the 
neural circuitry involved in general uncertainty processing. 
Their findings emphasized the anterior cingulate cortex 
(ACC) and anterior insula as integrative hubs for cognitive 
and emotional signals during uncertainty. However, a critical 
limitation they acknowledged was the broad scope of uncertainty 
types examined, without isolating those specifically linked 
to decision-making processes. The present meta-analysis 
addresses this gap by focusing exclusively on decision-
related uncertainty to identify brain regions consistently 
recruited when individuals evaluate incomplete or ambiguous 
information in the context of choice. Unlike previous meta-
analyses that examined neural correlates of uncertainty across 
broad contexts (e.g., Morriss et al., 2019), the present study 
specifically focuses on active decision-making paradigms to 
identify the core neural substrates of choice under conditions of 
incomplete information. 

Our review contributes to the field with the updated framework 
based on data from recently published neuroimaging studies by 
Spohrs et al. (2021) and Savage et al. (2020) illustrating the 
pivotal roles of the ACC and the anterior insula in tuning 
emotional responses amid decision-making and Gorka et al. 
(2015), highlighting the association of subcortical structures like 
the amygdala in decision making processes that are based on 
reward under uncertainty, to provide an updated outline of 
the neural mechanisms activated in the presence of incomplete 
information and when outcomes are unpredictable (Lissek et al., 
2014; Gorka et al., 2016; Visalli et al., 2019). For example, 
Canessa et al. (2013) discovered that the disparities in decision-
making approach when faced with uncertainty are corresponding 
to contrasting activation patterns in the ACC and the anterior 
insula. By merging these findings, this paper explores to augment 
our comprehension of the neural mechanisms of facilitating 
decision making processed in uncertain situations. This updated 
composite of neural signatures will propel the field forward by 
elucidating the distinct roles of the key brain regions activated 
during decision making processes under uncertainty, underlining 
future research directions. 

To contextualize the expected findings, the cascade model 
of prefrontal executive function (Koechlin et al., 2003) oers 
a compelling theoretical framework. This model proposes that 
the prefrontal cortex supports hierarchical and parallel control 
processes during decision-making. Medial structures—such as 
the dorsal anterior cingulate cortex (dACC)—evaluate ongoing 
strategy reliability, while lateral prefrontal regions, including 
frontopolar cortex, support the generation and maintenance of 
alternative strategies. Applying this model to uncertainty may help 
clarify how the brain dynamically integrates emotional evaluation 
and cognitive control to optimize decisions in unpredictable 
environments. 

This meta-analysis systematically maps the current landscape 
of fMRI research on decision-making under uncertainty through 

Activation Likelihood Estimation (ALE). While advanced methods 
like meta-analytic connectivity modeling (MACM) or subgroup 
analyses could oer deeper mechanistic insights, our primary 
objective is to establish a foundational synthesis of reported neural 
activations across studies. By focusing on spatial concordance 
rather than connectivity or subpopulation eects, we provide a 
comprehensive reference for: (1) identifying consistently reported 
activation patterns, (2) highlighting methodological and conceptual 
trends in the literature, and (3) guiding future hypothesis-driven 
investigations with more complex analytical approaches. 

Materials and methods 

Literature search 

The initial literature search was conducted in July 2024, 
with the additional search in January 2025 to account for 
newly published studies. The literature search was conducted 
using PubMed database. Articles were selected using the 
following keywords: “uncertainty,” “anticipation,” “conditioning,” 
“extinction,” “reversal,” “fMRI” and “associative learning,” years 
1995–2024. Initially, 2,554 articles were identified. Following 
preliminary screening for duplicates and required data (fMRI 
data and decision-making paradigms under uncertainty), 234 
articles were selected for further analysis and subsequent 
clustering resulting in 76 eligible studies with the data 
collected on healthy adults, random-eects model. PRISMA 
chart represents the stages of data collection and selection 
(Figure 1). Studies were included if they: (1) used fMRI; 
(2) involved healthy adult participants; (3) employed a task 
explicitly involving active decision-making under conditions 
of uncertainty (e.g., risk, ambiguity, unpredictable threat, 
reversal learning); (4) reported whole-brain coordinates of 
significant activation contrasts related to uncertainty processing. 
Studies were excluded if they focused solely on perceptual 
uncertainty without a decision component or studied exclusively 
clinical populations. 

ALE approach 

This study employed the Activation Likelihood Estimation 
(ALE) method, which enables voxel-wise analysis of images with 
random eects. GingerALE 3.0.2 was utilized in the current 
investigation. The software allows the use of coordinates to 
create a probabilistic activation map using ALE values. These 
values provide information about statistical maps of probable 
activation in relation to the tasks included in the analysis. For 
data consistency, coordinates presented in Montreal Neurological 
Institute (MNI) format were converted to Talairach space. 
Statistical significance was assessed using cluster-level correction 
for multiple comparisons at p = 0.05 and a cluster-forming 
threshold of p < 0.001 (Eickho et al., 2012, 2017). The following 
are the articles included in the final list of publications included in 
the results of the analysis (Table 1). 
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FIGURE 1 

PRISMA flowchart for eligibility of articles. 

Results 

Based on the meta-analysis, which included 1,688 activation 
foci from 76 experiments with a total of 4,186 participants, 
key brain structures involved in decision-making processes were 
identified. The results demonstrate that decision-making engages 
an extensive neural network encompassing both cortical and 
subcortical structures in both hemispheres of the brain. 

We identified 9 statistically significant activation clusters 
(Table 2). Figure 2 shows a brain activation map. The image was 
obtained using the Mango program v.4.1. 

Cluster 1 has a volume of 4,664 mm3 and is entirely located in 
the left hemisphere. The majority (81.6%) consists of subcortical 
structures, while the remaining 18.4% is in the prefrontal cortex. 

The anterior insula has the largest representation at 63.7%. 
Additional activations are present in the inferior frontal gyrus 
(16.2%) and claustrum (16.2%). The activations correspond to 

Brodmann areas 13 (59.8%), 47 (10.6%), and 45 (3.9%). Studies in 

this cluster employed paradigms involving monetary reward and 

punishment (Monetary Incentive Delay tasks), anticipation of gains 
and losses, and risk assessment under uncertainty. General pattern: 
anticipation of decision outcomes with emotional valence. 

Cluster 2 has a volume of 3,736 mm3 with predominant 
activation in the left hemisphere (54.9% left, 45.1% right). 
Activation topography is distributed between the frontal 
region (50.2%) and limbic system (49.8%). Maximum activity 

was recorded in the cingulate gyrus (52.9%), medial frontal 
gyrus (27.6%), and superior frontal gyrus (19.5%). Activations 
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TABLE 1 Descriptive information of studies and contrasts used in the meta-analysis. 

References N 
(female) 

Mean age Handedness Sex Clusters Task 

Wu et al., 2014 52 (29) 50 ± 16.5 Right M/F 1, 3, 4, 5 Monetary Incentive Delay task (anticipation of 
gains/losses) 

Vytal et al., 2014 20 (7) 28 Right M/F 1, 2, 5 Threat of shock paradigm (sustained anxiety) 

Nitschke et al., 2006 21 (11) 29 Right M/F 1, 2, 7 Anticipation and exposure to aversive pictures 

Canessa et al., 2013 15 25.4 ± 2.45 Right – 1, 2, 3, 4, 5, 
6, 8 

Aviation decision making task under uncertainty and 

financial incentive 

Heeren et al., 2017 46 SAD 24.96 ± 6.46, 
NACP 25.30 ± 5.62 

Right F 1 Virtual game “CYBERBALL” (social inclusion/exclusion) 

Savage et al., 2020 94 (64) 21.32 ± 2.28 – M/F 1, 2, 3, 5 Fear reversal learning task (threat and safety learning) 

Gorka et al., 2015 40 (73%) 31.4 ± 12.1 – M/F 1, 3, 4, 9 Reward anticipation tasks (EEG and fMRI) 

Wan et al., 2016 60 30.2 ± 1.5 Right M 2, 3 Complex problem solving tasks in expertise domain 

Mestres-Missé et al., 2017 22 (11) 25.5 ± 3.1 Right M/F 1.4 Learning task with probabilistic sequences and outcomes 

Lim et al., 2020 42 (21) 31.23 ± 10.91 Right M/F 2, 4, 5 Pain anticipation task with learned cognitive schema 

Grandjean et al., 2013 25 (13) 21.8 ± 2.68 Right M/F 1, 2, 6, 7, 9 Stroop task with item-specific proportion congruent 
eect 

Collins et al., 2017 26 (11) 23 Right M/F 3, 4, 6, 9 Working memory and reinforcement learning 

interaction task 

Zhang et al., 2013 20 (16) 24.65 Right M/F 1, 2, 3, 5, 8 Perceptual decision tasks with chosen vs. specified rules 

Young and Nusslock, 2016 40 (20) “PM: 21.19 ± 1.34; 
NM: 20.86 ± 1.83” 

Right M/F 1, 4 Monetary Incentive Delay task under positive/neutral 
mood 

Votinov et al., 2015 43 (HH/LL) “LL: 23.6 ± 1.4; HH: 
23.04 ± 0.8” 

– – 1, 2, 3 Reversal learning task with genetic polymorphism 

analysis 

Enzi et al., 2012 30 (16) 40.9 ± 11.5 Right M/F 1, 3, 4, 5, 8 Monetary Incentive Delay task for reward/punishment 
processing 

Bach et al., 2009 20 (10) 27.4 ± 5.8 Right M/F 6, 7, 8 Task contrasting ambiguity vs. risk in aversive outcomes 
prediction 

Ridderbusch et al., 2021 100 (46) 33.1 ± 10.7 – M/F 5 Delayed extinction training with reinstatement test 

Labrenz et al., 2022 94 (51) 27.04 ± 0.86 – M/F 4, 5, 7 Interoceptive fear conditioning and safety learning 

Ruge and Wolfensteller, 2016 27 (14) 24.6 – M/F 6, 8, 9 Instructed reversal learning vs. feedback-driven learning 

Criaud et al., 2017 29 (19) 20–42 Right M/F 1, 9 Response inhibition task under dierent cognitive 

control models 

Stout et al., 2018 25 (10) 34.57 ± 10.13 Right M/F 6, 7 Contextual threat conditioning with 

configural/elemental learning 

Fleming et al., 2012 26 (10) 28.3 Right M/F 6 Perceptual decision-making with metacognitive reports 

Davis and Hasson, 2018 25 (12) 24.6 ± 3.9 Right M/F 5 Task examining predictability of object category and 

location 

Bereczkei et al., 2013 27 (14) 23 ± 2.42 Right M/F 3 Trust game examining Machiavellian strategies 

Rodriguez, 2009 14 (8) 21–37 Right M/F 6, 8 Stimulus outcome association learning with prediction 

errors 

Doornweerd et al., 2018 38 (PAIRS) 49.8 ± 9.8 – F 1.3 Food reward processing in monozygotic twins 

Harnett et al., 2016 23 (10) 19.92 ± 0.59 Right M/F 8 Temporal fear conditioning paradigm 

Stewart et al., 2013 PSU: 18, DSU: 
15, CTL: 14 

PSU: 24.39, DSU: 
24.33, CTL: 24.36 

Right M/F 4 Fear conditioning with inspiratory breathing load 

Kokonyei et al., 2019 38 (23) 25.79 ± 4.17 Right M/F 4, 6 Pain anticipation and perception with fear conditioning 

paradigm 

Zeuner et al., 2016 31 (16) 51.0 ± 13.1 Right M/F 1, 3, 7 Probabilistic reversal learning task with reward based 

learning 

Liu et al., 2023 30 (16) 21.55 ± 2.32 Right M/F 1, 2, 3, 5 Sequential risk taking decisions with outcome 

anticipation 

(Continued) 
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TABLE 1 (Continued) 

References N 
(female) 

Mean age Handedness Sex Clusters Task 

Costumero et al., 2016 45 26.44 ± 5.39 Right M 3, 4, 5 Gambling task with monetary reward/punishments 

Limongi et al., 2016 16 (9) 22.4 ± 5.51 Right M/F 1, 2 Action update paradigm with temporal estimation 

Wang et al., 2020 33 25.1 ± 3.8 Right M 3, 6, 9 Associative learning task with tactile events 

Murty et al., 2016 49 (28) 25 (18–36) Right M/F 1, 4, 6, 8 Perceptual surprise task under reward/punishment 
motivation 

Bereczkei et al., 2013 27 (14) 23 ± 2.42 Right M/F 3, 5 Trust game examining neural operations in social 
dilemma 

Bereczkei et al., 2013 27 (14) 23 ± 2.42 Right M/F 3, 5 Trust game examining neural operations in social 
dilemma 

Bothe et al., 2013 19 HT, 24 PIA HT 25.11 ± 3.73, 
PIA 24.46 ± 2.81 

Right M 4 Monetary Incentive Delay task after acute exercise 

Skvortsova et al., 2020 88 – Right F 3 Emotional faces, crying baby sounds, and heat pain tasks 

Remijnse et al., 2005 27 (19) 32 (22–53) M/F 1, 3, 8 Reversal learning task with aectively neutral baseline 

Vorobyev et al., 2015 215 (17) 17–18 Right M 1, 4, 5 Computerized driving task examining risk taking 

behavior 

Yin et al., 2018 18 (9) 17–33 – M/F 1, 3 Classical dierential fear conditioning task 

van der Heiden et al., 2014 10 (5) 25.3 ± 1.77 Right M/F 1 Semantic classical conditioning paradigm for BCI 
communication 

Jocham et al., 2009 35 20–32 – M 5 Probabilistic reversal learning task with genetic analysis 

Paul et al., 2015 29 (14) – – M/F 6 Perceptual categorization task with uncertainty 

responses 

correspond to Brodmann areas 32 (43.6%), 6 (33.5%), and 24 
(21.8%). Studies included tasks involving anxiety-provoking 
stimuli processing, threat anticipation, and fear learning. General 
pattern: assessment of potentially threatening stimuli and 
uncertainty situations. 

Cluster 3, with a volume of 3,152 mm3 , is localized in 
the right hemisphere. It predominantly includes subcortical 
structures (88.7%) and partially frontal cortex (11.3%). Dominant 
activity is observed in the anterior insula (61.3%), claustrum 
(22.6%), and inferior frontal gyrus (12.3%), with inclusion of the 
lentiform nucleus (2.8%). Activations correspond to Brodmann 
areas 13 (53.8%), 47 (11.3%), and 45 (2.8%). Studies included 
reinforcement learning tasks, reversal learning, and prediction 
error processing. General pattern: behavior adaptation based on 
feedback. While Clusters 1 and 3 both involve the anterior insula 
and inferior frontal gyrus, they demonstrate clear hemispheric 
specialization and distinct anatomical profiles. Cluster 1 (left) 
shows additional activation in the claustrum, while Cluster 
3 (right) includes the lentiform nucleus. Functionally, they 
are dissociable: Cluster 1 is predominantly associated with 
motivational anticipation, while Cluster 3 is linked to behavioral 
adaptation. This pattern suggests complementary rather than 
identical roles in uncertainty processing. 

Cluster 4, with a volume of 3,040 mm3 , is entirely localized 
in the left hemisphere within subcortical structures (100%). 
Primary activations are in the caudate (64.4%), lentiform 
nucleus (34.5%), and thalamus (1.1%). Detailed analysis revealed 
activations in the caudate head (34.5%), caudate body (30%), and 
putamen (12.7%). Studies included decision-making tasks under 
uncertainty, outcome probability assessment, and processing of 

predictable and unpredictable events. General pattern: probabilistic 
information processing. 

Cluster 5, with a volume of 2,872 mm3 , is entirely located in the 
right hemisphere within subcortical structures (100%). It includes 
the caudate (47.9%), thalamus (34.3%), and lentiform nucleus 
(17.9%). Detailed analysis showed activations in the caudate head 
(26.1%), caudate body (21.8%), and medial dorsal Nucleus (8.9%). 
Studies included temporal prediction tasks, temporal interval 
estimation, and temporal event anticipation. General pattern: 
temporal information processing and prediction. Clusters 4 and 
5, while both involving basal ganglia structures, exhibit dierent 
anatomical distributions and functional specializations. Cluster 4 
(left) is predominantly located in the caudate nucleus, while Cluster 
5 (right) shows greater thalamic involvement. Correspondingly, 
Cluster 4 is associated with probabilistic information processing, 
whereas Cluster 5 is linked to temporal prediction. These 
findings indicate distinct subcortical contributions to dierent 
dimensions of uncertainty. 

Cluster 6, with a volume of 2,648 mm3 , is localized in the 
right hemisphere within the parietal region (100%). Primary 
activations are in the inferior parietal lobule (47.1%), superior 
parietal lobule (23.5%), and supramarginal gyrus (14.7%). It 
corresponds to Brodmann areas 40 (54.4%), 7 (36.8%), and 19 
(8.8%). Studies included working memory tasks, cognitive control, 
and information updating. General pattern: maintenance and 
manipulation of information in working memory. 

Cluster 7, with a volume of 1,792 mm3 , is localized in the 
right hemisphere. It includes frontal cortex regions (68%) and 
subcortical structures (32%). Primary activations are in the inferior 
frontal gyrus (36%), anterior insula (32%), and precentral gyrus 
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TABLE 2 Concordant brain regions associated with uncertainty processing. 

No 

cluster 
Volume 
(mm3) 

Peak 
(coordinates, 
Z-value) 

Hemisphere Lobe Gyrus Tasks contributed 

1 4,664 (−30, 22, 4), Z = 8.94 Left 100% Sub-lobar 81.6%, frontal 
18.4% 

Insula 63.7%, inferior frontal 
16.2%, claustrum 16.2% 

Monetary Incentive Delay tasks, 
reward/punishment anticipation, risk 

assessment under uncertainty. 
General pattern: anticipation of 
decisions with emotional valence 

2 3,736 (−4, 8, 46), Z = 5.47 Left 54.9%, Right 45.1% Frontal 50.2%, limbic 

49.8% 

Cingulate 52.9%, medial 
frontal 27.6%, superior frontal 
19.5% 

Anxiety stimuli processing, threat 
anticipation, fear learning. General 
pattern: assessment of potentially 

threatening stimuli and uncertainty 

situations 

3 3,152 (30, 20, 8), Z = 8.70 Right 100% Sub-lobar 88.7%, frontal 
11.3% 

Insula 61.3%, claustrum 

22.6%, inferior frontal 12.3% 

Reinforcement learning tasks, reversal 
learning, prediction error processing. 
General pattern: behavior adaptation 

based on feedback 

4 3,040 (−10, 8, 0), Z = 5.50 Left 100% Sub-lobar 100% Caudate 64.4%, lentiform 

nucleus 34.5%, thalamus 1.1% 

Decision making under uncertainty, 
outcome probability assessment, 
predictable/unpredictable events 
processing 

5 2,872 (10, 6, 2), Z = 5.91 Right 100% Sub-lobar 100% Caudate 47.9%, thalamus 
34.3%, lentiform nucleus 
17.9% 

Temporal prediction tasks, time 

interval assessment, temporal event 
anticipation 

6 2,648 (30, −52, 42), Z = 5.37 Right 100% Parietal 100% Inferior parietal lobule 47.1%, 
superior parietal lobule 23.5%, 
supramarginal 14.7%, 
precuneus 14.7% 

Working memory tasks, cognitive 

control, information updating 

7 1,792 (44, 8, 24), Z = 4.93 Right 100% Frontal 68%, sub-lobar 

32% 

Inferior frontal 36%, insula 

32%, precentral 24%, middle 

frontal 8% 

Response inhibition tasks, impulse 

control, task switching 

8 1,568 (−48, 2, 30), Z = 5.75 Left 100% Frontal 100% Precentral 56%, inferior 

frontal 40.7%, middle frontal 
3.3% 

Motor planning tasks, action 

preparation, decision making with 

motor component 

9 944 (−38, −46, 40), 
Z = 4.11 

Left 100% Parietal 100% Inferior parietal lobule 78.1%, 
precuneus 9.4%, angular 6.3%, 
supramarginal 6.3% 

Spatial attention tasks, spatial 
information processing, sensory 

information integration 

(24%). It corresponds to Brodmann areas 9 (44%), 13 (32%), 44 
(12%), and 6 (12%). Studies included response inhibition tasks, 
impulse control, and task switching. General pattern: cognitive 
control and inhibition. 

Cluster 8, with a volume of 1,568 mm3 , is located in the 
left hemisphere within the frontal cortex (100%). It includes 
the precentral Gyrus (56%) and inferior frontal gyrus (40.7%). 
Activations correspond to Brodmann areas 6 (61.5%) and 9 
(38.5%). Studies included motor planning tasks, action preparation, 
and decision-making with motor components. General pattern: 
motor planning and execution. Clusters 7 and 8 demonstrate 
clear hemispheric and anatomical dierentiation. Cluster 7 (right) 
encompasses the inferior frontal gyrus and anterior insula, regions 
central to inhibitory control. In contrast, Cluster 8 (left) is centered 
on the precentral gyrus, supporting motor planning functions. This 
dissociation aligns with established models of lateralized frontal 
cortex organization, where right-sided regions specialize in control 
processes and left-sided regions in action implementation. 

Cluster 9, with a volume of 944 mm3 , is localized in the 
left hemisphere within the parietal region (100%). Dominant 

activations are in the inferior parietal lobule (78.1%) and precuneus 
(9.4%). It corresponds to Brodmann areas 40 (81.3%), 39 (12.5%), 
and 19 (6.3%). Studies included spatial attention tasks, spatial 
information processing, and sensory information integration. 
General pattern: spatial processing and attention. 

Discussion 

Our meta-analysis of 76 fMRI studies (N = 4,186) reveals 
that decision-making under uncertainty engages a distributed 
network of nine cortical and subcortical clusters. The most 
consistent activations occur in the anterior insula (up to 63.7% 
representation), inferior frontal gyrus (up to 40.7%), and inferior 
parietal lobule (up to 78.1%), with distinct functional specialization 
between emotional-motivational processes (clusters 1–5) and 
cognitive processes (clusters 6–9). These findings align with and 
extend previous meta-analyses by Morriss et al. (2019) and Feng 
et al. (2022), who similarly identified anterior insula and anterior 
cingulate cortex as core hubs for uncertainty processing. Our 
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FIGURE 2 

Rendered ALE maps showing significant concordance across studies for uncertainty processing. 

results provide novel insights into hemispheric specialization, with 
left anterior insula’s involvement in reward evaluation and right 
anterior insula’s engagement in learning and cognitive control. 

The observed functional dissociation between ventral 
emotional-motivational networks and dorsal cognitive-control 
systems aligns with hierarchical models of prefrontal cortex 
organization–the cascade model of cognitive control (Koechlin 
et al., 2003; Collins and Koechlin, 2012; Donoso et al., 2014) 
which posits two coordinated tracks within the prefrontal cortex: 
a medial track, including the vmPFC and dACC, responsible for 
evaluating the reliability of ongoing behavioral strategies, and a 
lateral track, encompassing frontopolar and lateral PFC regions, 
which facilitates the exploration and implementation of alternative 
strategies. This model oers a structured account of how the 
brain manages uncertainty by balancing stability and flexibility in 
decision-making (Vassena et al., 2014). 

While the Cascade Model provides a compelling framework 
for our findings, other prominent models oer complementary 
perspectives. For instance, the expected value of control theory 
(Shenhav et al., 2013) conceptualizes the anterior cingulate cortex as 
a region computing the value of deploying cognitive control, which 
aligns with the role of dACC (Cluster 2) in monitoring strategy 
reliability under uncertainty. Similarly, the Salience Network 
perspective (Seeley et al., 2007)—comprising the anterior insula 
and dACC—emphasizes the detection and integration of salient 
stimuli to guide behavior, a process central to decision-making 
under uncertainty. Our findings of consistent co-activations in 
these regions strongly support this network view. The cascade 
model was chosen for its specific focus on hierarchical control 
organization, which eectively parses the functional dissociation 
between medial (evaluative) and lateral (cognitive control) systems 
observed in our clusters. 

Beyond the hierarchical organization within the PFC, which 
is described by the Cascade Model, our findings can be fruitfully 

interpreted through the lens of large-scale brain networks. The 
consistent co-activation of the anterior insula and dorsal anterior 
cingulate cortex (dACC) (Clusters 1, 2, 3) aligns them with 
the core of the Salience Network (SN), which is dedicated to 
detecting and integrating behaviorally relevant stimuli (Seeley 
et al., 2007). Concurrently, activations in the dorsolateral prefrontal 
cortex (dlPFC) and inferior parietal lobule (IPL) (Clusters 6, 7, 
8, 9) correspond to the Central Executive Network (CEN), which 
subserves working memory, cognitive control, and goal-directed 
attention (Vincent et al., 2008; Worthy et al., 2016). 

The Triple Network Model (Menon, 2011) posits that the 
SN plays a crucial role in dynamic switching between the 
CEN and the Default Mode Network (DMN). We propose that 
uncertainty represents a potent salient signal that engages the 
SN. This engagement may facilitate the attenuation of DMN 
activity (associated with internal mentation) and the subsequent 
recruitment of the CEN to implement cognitive control strategies 
necessary for decision-making in unpredictable environments. 
Thus, the functional dissociation observed in our ALE maps likely 
reflects the coordinated yet distinct contributions of the SN (for 
appraisal and alerting) and the CEN (for implementation and 
control) during uncertainty processing. This network perspective 
complements the cascade model by describing the broader 
architectural context in which these medial and lateral PFC systems 
are embedded. 

Medial track engagement is supported by the activation pattern 
observed in Cluster 2, which includes the dorsal ACC and 
medial frontal gyrus—regions implicated in conflict detection and 
appraisal of strategy failure. This mirrors the cascade model’s 
conceptualization of dACC as a monitor of strategy reliability, 
particularly during threat anticipation and emotionally salient 
uncertainty. These findings also align with Morriss et al.’s (2019) 
finding that ACC integrates cognitive and emotional information 
during uncertainty. 

Frontiers in Neuroscience 07 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1662272
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1662272 November 6, 2025 Time: 18:9 # 8

Timashkov et al. 10.3389/fnins.2025.1662272 

Lateral track involvement is evident in right-lateralized clusters 
(e.g., Clusters 3, 6, and 7), encompassing the inferior frontal 
gyrus and inferior parietal lobule. These areas are involved in 
response inhibition, working memory, and adaptive control— 
functions associated with evaluating and switching between 
alternative strategies, as outlined in the cascade model’s lateral 
system. The inferior parietal lobule activations (Cluster 6) during 
working memory tasks further reflect the cascade model’s proposed 
monitoring of the counterfactual strategy. These mappings not 
only support the cascade model’s architecture but also underscore 
how emotional and cognitive circuits are dynamically recruited in 
parallel to guide behavior under uncertainty. 

The bilateral activation patterns reveal complementary 
processing streams. Left anterior insula’s dominance in reward 
evaluation (Cluster 1) corresponds to the cascade model’s actor 
reliability monitoring, while right anterior insula’s involvement 
in learning (Cluster 3) reflects hypothesis testing for alternative 
strategies. Similarly, the lateralization in inferior frontal gyrus– 
right-sided for impulse control (Cluster 7) and left-sided for motor 
planning (Cluster 8)–suggests parallel uncertainty resolution 
mechanisms. These findings extend Feng et al.’s (2022) network 
approach by demonstrating how hemispheric specialization 
facilitates concurrent strategy evaluation. The prominence of 
anxiety-related activations in Cluster 2 (cingulate gyrus, medial 
frontal gyrus) suggests that uncertainty processing abnormalities 
may stem from disrupted reliability monitoring (Stout et al., 2019). 
As Morriss et al. (2021) noted, individuals with high intolerance 
of uncertainty show altered prefrontal activation patterns. Our 
Cluster 2 findings provide specific neural targets for interventions, 
particularly for conditions like generalized anxiety disorder where 
dorsal ACC hyperactivity during threat appraisal may reflect 
maladaptive hypothesis generation (Bu et al., 2016; Klass et al., 
2021; Spohrs et al., 2022). 

While our search strategy prioritized terms that allowed 
for direct comparison with prior meta-analytic work (Morriss 
et al., 2019), future studies might benefit from incorporating 
additional keywords such as “cognitive flexibility” and 
“exploration-exploitation” to capture an even broader spectrum 
of decision-making under uncertainty. Furthermore, while ALE 
approach establishes spatial convergence, it cannot assess dynamic 
interactions central to the cascade model. Future research should 
employ dynamic causal modeling to test information flow between 
medial and lateral prefrontal pathways and examine how individual 
dierences in metacognitive ability (Fleming et al., 2012; Jiang et al., 
2022) modulate these networks. The convergence between our 
meta-analytic findings and the cascade model suggests promising 
avenues for theoretical integration with explicitly test model 
predictions about dACC-triggered exploration and frontopolar-
mediated strategy maintenance using paradigm-driven fMRI 
designs. Such work would bridge meta-analytic patterns with 
computational accounts of prefrontal function. 

Several limitations of the ALE methodology should be 
considered. First, ALE relies on reported peak coordinates, which 
may introduce a bias toward statistically strong foci. Second, the 
spatial smoothing inherent to the method can inflate the apparent 
overlap between activations. Third, ALE identifies consistency, 
not magnitude, of activation across studies. Finally, our approach 
assumes a degree of homogeneity across studies in design and 
analysis, which is an inherent challenge in meta-analysis. 

It is noteworthy that our meta-analysis did not identify 
significant convergence in the cerebellum, despite its established 
role in various cognitive functions. This is likely attributable 
to the specific nature of the included paradigms. Our analysis 
focused on value-based and emotional-motivational appraisal 
under uncertainty, which engages a cortico-striato-thalamic 
network. In contrast, the cerebellum’s contribution may be more 
critical for processing uncertainty in contexts that require explicit 
probabilistic reasoning and the construction of internal models 
to guide predictions, as demonstrated in tasks of inductive 
inference (Blackwood et al., 2004). Furthermore, its role is well-
established in domains requiring sensorimotor prediction and 
adaptive behavioral updating (Blakemore et al., 2001; Kobayashi 
and Hsu, 2017; Johnson et al., 2019). The paradigms in our final 
sample were not optimized to capture this specific computational 
demand of the cerebellum. Future research employing paradigms 
that directly contrast these dierent forms of uncertainty could help 
delineate the distinct and shared neural systems involved. 

Conclusion 

Current study provides significant insights into the neural 
mechanisms underlying decision-making under uncertainty. By 
identifying nine distinct activation clusters, we highlighted the 
critical roles of the anterior insula, inferior frontal Gyrus, 
and inferior parietal lobule in uncertainty processing. Our 
findings confirm previous research regarding the anterior insula’s 
prominence in reward evaluation and emotional regulation, 
while also revealing functional specialization within the identified 
clusters. The observed bilateral activation patterns underscore the 
complexity of neural networks involved in decision-making, with 
distinct roles attributed to each hemisphere. 
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